
Noname manuscript No.
(will be inserted by the editor)

Direction-Changing Fall Control of Humanoid Robots:
Theory and Experiments

Ambarish Goswami · Seung-kook Yun · Umashankar Nagarajan ·
Sung-Hee Lee · KangKang Yin · and Shivaram Kalyanakrishnan

Received: date / Accepted: date

Abstract Humanoid robots are expected to share hu-

man environments in the future and it is important to

ensure the safety of their operation. A serious threat

to safety is the fall of such robots, which can seriously

damage the robot itself as well as objects in its sur-
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rounding. Although fall is a rare event in the life of a

humanoid robot, the robot must be equipped with a

robust fall strategy since the consequences of fall can

be catastrophic.

In this paper we present a strategy to change the

default fall direction of a robot, during the fall. By

changing the fall direction the robot may avoid falling

on a delicate object or on a person. Our approach is

based on the key observation that the toppling motion

of a robot necessarily occurs at an edge of its support

area. To modify the fall direction the robot needs to

change the position and orientation of this edge vis-a-

vis the prohibited directions. We achieve this through

intelligent stepping as soon as the fall is predicted. We

compute the optimal stepping location which results in

the safest fall. Additional improvement to the fall con-
troller is achieved through inertia shaping, which is a

principled approach aimed at manipulating the robot’s

centroidal inertia, thereby indirectly controlling its fall

direction.

We describe the theory behind this approach and

demonstrate our results through simulation and exper-

iments of the Aldebaran NAO H25 robot. To our knowl-

edge, this is the first implementation of a controller that

attempts to change the fall direction of a humanoid

robot.

1 Introduction

Safety is a primary concern that must be addressed be-

fore humanoid robots can freely exist in interactive hu-

man surrounding. Although the loss of balance and fall

are rare in typical controlled environments, it will be in-

evitable in physically interactive environments. Out of

a number of possible situations where safety becomes
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an issue, one that involves a fall is particularly worri-

some. Fall from an upright posture can cause damage to

the robot itself, to delicate and expensive objects in the

surrounding or can inflict injury to a human being. Re-

gardless of the substantial progress in humanoid robot

balance control strategies, the possibility of fall remains

real, even unavoidable. Yet, only a few comprehensive

studies of humanoid fall (encompassing fall avoidance,

prediction, and control) have been undertaken in the

literature.

A humanoid fall may be caused due to unexpected

or excessive external forces, unusual or unknown slip-

periness, slope or profile of the ground, causing the

robot to slip, trip or topple. In these cases the dis-

turbances that threaten balance are larger than what

the balance controller can handle. Fall can also result

from actuator, power or communication failure where

the balance controller is partially or fully incapacitated.

In this paper we consider only those situations in which

the motor power is retained such that the robot can ex-

ecute a prescribed control strategy.

One can ignore the possibility of a fall and wishfully

hope that its effects will not be serious. However, fail-

ure studies, such as in car crash, have taught us against

following this instinct. In fact, planning and simulation

of failure situations can have enormous benefits, includ-

ing system design improvements, and support for user

safety and confidence. With this philosophy we closely

focus our attention to the phenomenon of humanoid fall

and attempt to develop practical control strategies to

deal with this undesired and traumatic failure event.

A controller dealing with an accidental fall may have

two primary and distinctly different goals: a) self-damage

minimization and b) minimization of damage to oth-

ers. When a fall occurs in an open space, a self-damage

minimization strategy can reduce the harmful effects of

the ground impact. If, however, the falling robot can

damage nearby objects or injure persons, the primary

objective would be to prevent this. The current paper

reports a control strategy for changing the default fall

direction of the robot so that it avoids contact with

surrounding objects or people as a mean of minimizing

damage to others. Recently, Wilken et al. have reported

a third possible goal of a fall controller, that of a delib-

erate fall of a humanoid soccer goalie [40]. This is the

case of a strategic fall.

Time is at a premium during the occurrence of a

fall; a single rigid body model of a full sized humanoid

indicates that a fall from the vertical upright stationary

configuration due to a mild push takes about 800-900

ms [37]. In many situations the time to fall can be sig-

nificantly shorter, and there is no opportunity for elab-

orate planning or time-consuming control. Yet, through

simulation and experiments we are able to demonstrate

that meaningful modification to the default fall behav-

ior can be achieved in a very short time and damage to

the environment can be avoided.

Let us clarify that a fall controller is not a balance

controller. A fall controller complements, and does not

replace, a balance controller. Further, a fall controller

is not a push-recovery controller. A push-recovery con-

troller is essentially an extended balance controller, which

specifically deals with external disturbances of larger

magnitude when the robot must take a step in order

to regain balance ( [28, 36, 41]). The fall controller is

activated only when the default balance controller or

the push recovery controller has failed to stabilize the

robot.

We have reported our earlier work on humanoid fall

direction change in [19,26,42,43]. In the current paper

we provide a comprehensive account of our work includ-

ing generalization, extension and improvements. Also,

we present results of hardware experiments of fall direc-

tion change control performed on an Aldebaran NAO

H25 robot.

Examples of our current results are shown in Fig. 1,

in which a “table top” humanoid robot (Aldebaran NAO

H25 [14]) is surrounded by three dolls occupying three

of the four 45◦ sectors of the semicircular area in front

of the robot. The objective of the fall direction con-

troller is to make the robot fall inside the empty sector

given the same push by a linear actuator from behind.

In different experimental trials, shown in Fig. 1(b-e),

we rearrange the dolls in order to change the location

of the empty sector. Using our fall controller, the robot

successfully avoids hitting the dolls by falling into the

empty sector.

2 Related Work

A number of recent papers reported on the damage min-

imization and prediction aspects of humanoid fall. In

their exhaustive work, Fujiwara et al. ( [9–13]) proposed

martial arts type motion for damage reduction, com-

puted optimal falling motions using minimum impact

and angular momentum, and fabricated special hard-

ware for fall damage study. Ogata et al. proposed two

fall prediction methods based on abnormality detec-

tion and predicted Zero Moment Point (ZMP) [22, 27].

The robot improves fall prediction through experimen-

tal learning. Renner and Behnke [29] use model-based

approach to detect external forces on the robot and

Karssen and Wisse [21] use principal component anal-

ysis to predict fall. Hobbelen and Wisse [15] proposed

Gait Sensitivity Norm which can be used as a fall de-

tector. Following human movement based search proce-
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(a)

(b)

(c)

(d)

(e)

Fig. 1: (a) The Aldebaran NAO robot is pushed from behind
by a linear actuator. Its front semicircle is divided into four
equal sectors 45◦ each. Three dolls are placed in three arbi-
trary sectors while the fourth sector is empty. (b-e): In four
trials, we rearrange the dolls in order to change the location
of the empty sector relative to the robot. Under an identical
push the robot successfully changes the fall direction in real
time and falls into the empty sector to avoid hitting the dolls.

dure, Ruiz-del-Solar et al. implemented a low damage

fall sequence for soccer robots [33,34]. In [16] and [17],

fall prediction and control are treated together using

Gaussian mixture models and Hidden Markov model.

Ishida et al. employed servo loop gain shift to reduce

shock due to fall [18]. Kanoi et al. worked on fall detec-

tion from walk patterns [20]. Fall damage minimization

is obviously of natural interest in human biomechan-

ics [3–6].

2.1 Damage minimizing fall control strategies

Many of the previous works on damage minimizing fall

focuses on implementing heuristics such as lowering the

center of mass of a humanoid robot during fall. For

example, Ruiz del Solar et al. [33] and Fujiwara et

al. [13] used strategies taken from Japanese martial arts

according to the direction of fall (forward, backward,

sides) and each strategy is accompanied by a lowering

of the CoM.

A few of the works listed below further reduced the

damage from fall by designing specific trajectories for

the CoM instead of just lowering it. However, these

works were limited to forward fall only. Fujiwara et

al. [9] added braking of the landing speed after lowering

the CoM so that the falling robot reduces the impact ve-

locity. The braking was achieved by stretching the body

fast just before the robot hits the ground. Also, they re-

duced the feedback gain after braking in order to make

the joints compliant. Ogata et al. used straight [22] and

curvilinear [27] trajectories of the CoM, and both the

trajectories virtually targeted the same two phases: low-

ering the CoM and re-stretching the body to reduce

the vertical speed just before the impact. In hardware

experiments, Fujiwara et al. [11] used a simplified hu-

manoid robot and used optimization techniques to de-

sign the optimal joint trajectories for minimizing the

impact velocity during a forward fall while maintaining

all the constraints. Interestingly, the motions obtained

were similar to the results from the previous works in

that they also included the two similar phases.

Ruiz del Solar et al. [34], instead of minimizing the

direct impact velocity, tried to minimize damage to each

joint by reducing the axial force and torque resulting

from the impact. They used motion-capture data to

construct the base fall motions and hand-tuned them

joint by joint.

In their study of intentional fall, Wilken et al. [40]

adopted an inverse approach; instead of minimizing the

fall damage, they first designed the fall motions and

then changed the robot’s structure to reduce the dam-

age. Springs and flexible rubber struts were added to



4 Ambarish Goswami et al.

the most damage-prone locations of the robot given the

deliberate fall motion of a robot soccer goalie.

2.2 Biomechanical studies of human fall

At present, modeling, analysis and simulation of fall are

active research topics in biomechanics. This research

suggest that the body segment movements during a fall

are not random and unpredictable, but involve directed

efforts to land safely [32]. Fall strategies in humans

can thus inspire biomimetic strategies for a humanoid

robot.

Most fall strategies involving humans are meant for

injury-minimization and they have two main objectives:

1) the reduction of impact velocity, and 2) the distribu-

tion of impact force to a larger contact area. Because

fall strategy is a time-critical task, its success depends

on how early a fall is predicted and a reactive action

is initiated. Hence, the reaction time is an important

factor for a fall [1].

Typical injury-minimization strategies of humans

involve: 1) extending both arms to diffuse full or part of

the impact energy [7]; 2) bending the elbows to break a

fall with reduced impact force [7]; 3) ground touchdown

with the knee to reduce the downward momentum of

fall earlier than the arms [37]; 4) lowering of the CoM

to reduce the vertical impact velocity and kinetic en-

ergy through energy absorption in the lower extremity

muscles during descent [30, 31]; and 5) curling into a

ball similar to athletes and martial artists.

Although biomechanics results can be very valu-

able for our study, we should also be aware of the lim-

its to which they can be directly applied to humanoid

robots. First, the biologically evolved human fall strate-

gies probably operate under a learned and assigned

value on different parts of the body with the high-value

regions to be protected from an impact. Typically, the

human instinct is to protect their head, which is consid-

ered high value, or the frontal face, perhaps to reduce

the pain associated with a ground impact. This may

not necessarily be applicable for a humanoid robot, for

which it may be more worthwhile to protect an area of

critical control circuitry. Further, due to marked differ-

ences in the material and actuation properties between

humanoid and humans, the magnitude of impact forces

for the two cases will be different.

It is remarkable to note the virtual absence of any

literature on direction-changing fall in the field of biome-

chanics. This might be indicative of the fact that these

strategies are not common in nature.

Fig. 2: A schematic diagram showing the essential decision
making process of a humanoid fall controller.

3 Overview of Fall Control Strategy

The essential layout of the decision making process of

a humanoid fall controller can be represented using a

flowchart as shown in Fig. 2. The robot is assumed to

contain a fall predictor module which is always alert and

is continuously evaluating the robot’s state of balance

in the form of a simple question: “Is the robot about to

fall?” The robot is also assumed to have a standard pos-

tural balance controller and possibly a step or a reflex

controller for handling stronger disturbances. Most of
the time, the fall predictor responds in the negative and

the robot performs its planned task using the available

balance controllers. When the fall predictor responds in

the positive it implies that all strategies to maintain or

restore the upright balance of the robot are guaranteed

to fail [19] and that the robot faces an inevitable fall.

This happens when the robot has exited the so called

fall trigger boundary (FTB), which separates the bal-

anced state of the robot and the states that lead to a

fall.

As soon as the robot state breaches the FTB, the

robot must give up trying to restore balance and im-

mediately switch to a fall controller. However, in order

to properly select a fall controller the robot needs to

analyze additional information. Regardless of the final

choice of the fall strategy the robot first analyzes its

state of falling using a module we have named the Fall

Mode Detector (FMD). This module computes and es-

timates a number of quantities such as the robot’s state

of ground contact (single support or double support),
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height of its CoM from ground and the CoM velocity,

lean angle, direction of fall, the length of time the falling

robot takes to touch the ground, etc. [19].

Next, the robot determines if there are objects in

its immediate surrounding that are likely to come in

contact during the fall. If the surrounding is empty, the

robot adopts a minimum damage fall strategy designed

to minimize the mechanical damage to its own system.

If, however, objects or people are detected in its vicin-

ity, the robot uses the information of their locations

and sizes to formulate a direction-changing fall control

strategy that can avoid contacting these objects during

the fall. This last item is the topic of the current paper.

The direction-changing fall controller uses two basic

strategies to change the default fall direction of a robot,

while the robot is falling down, as described below.

1. Foot placement strategy: This strategy attempts to

place the robot feet in an optimal manner in order

to change the geometry of the foot support poly-

gon with respect to locations of surrounding ob-

jects. An appropriate foot support polygon can min-

imize the angular deviation between the robot’s es-

timated and desired fall directions. This technique

is described in Section 4.1.

2. Inertia shaping strategy: Inertia shaping technique

reconfigures the robot’s overall inertia through joint

position control in order to generate angular mo-

mentum that nudges the robot towards the desired

fall direction. This is described in Section 4.2.

Before we can implement the above-mentioned fall

strategies, we need to compute and estimate a number

of additional quantities as described below. These are

the quantities computed in the FMD module, in addi-

tion to sensed information about robot’s environment.

1. Desired fall direction: Given the location and size

of the surrounding objects, the robot computes the

most favorable fall direction by assigning a merit

score to each available direction. Sections 5.3 and

5.4 describe how this merit score is computed and

employed.

2. Control duration: The robot estimates the length

of time after an inevitable fall is predicted, during

which the controller is assumed to remain active.

Typically, the control duration is heuristically set

as a fraction of the total estimated time the robot

would take to fall to the ground. See Section 5.2.1.

3. Reference point: The reference point is the location

on the ground towards which the robot is estimated

to fall at the end of the control duration, based on

a reduced-order inverted pendulum model. This es-

timation makes use of robot’s configuration and its

current CoM velocity. See Section 5.2.2 for details.

The next section provides the details of the direction-

changing fall control strategies.

4 Fall Direction Change through Foot

Placement and Inertia Shaping

Our fall direction change controller uses two basic strate-

gies which can be employed either independently, se-

quentially or simultaneously. The strategies exploit the

following two basic observations: first, regardless of its

complex motion, a falling humanoid topples predom-

inantly about one of the edges of its support area1.

Changing the robot’s support area geometry can pro-

foundly influence its fall direction. The support area

can be modified through the lifting of a foot or through

a stepping action, and the specific parameters for these

actions are selected using a brute-force search process.

This is called the foot placement strategy. The second

observation is that a change in the robot’s overall iner-

tia can further affect its fall direction through a redi-

rection of its linear and angular momenta. We achieve

this by using inertia shaping [24] techniques.

4.1 Support area geometry change through foot

placement

Without any fall control, the direction of fall of a hu-

manoid robot is determined by the location and move-

ment of the Center of Pressure (CoP) relative to the

support area boundaries. The support area can be ap-

proximated by a polygonal area which is the convex

hull of all the contact points between the robot feet

and the ground. When the robot starts to topple, its

CoP touches an edge of the support area called the

leading edge. Therefore, a change in the physical loca-

tion of the leading edge of the support area with respect

to the robot’s CoM exerts influence on the direction of

rotation of the robot, i.e., the direction of fall.

In the schematic diagram of Fig. 3, a humanoid

robot is shown subjected to a forward push as indicated

by the red arrow. If the push is strong enough to topple

the robot, the CoP will approach the front edge (red

dotted) of the support area and the robot will begin to

rotate about this leading edge.

The direction and magnitude of the toppling motion

is given by PQ where P is the CoP and Q is what

we call a reference point. The reference point should

indicate the direction of fall. In this paper, we have

1 The robot can temporarily topple about a vertex of the
foot support polygon.
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(a)

(b)

Fig. 3: A schematic diagram showing the basic idea behind
direction-changing fall control through support base geome-
try modification. A forward push on the robot from the back
is assumed. P denotes the CoP, and Q is the reference point
(capture point, explained in section 4.1). The dotted lines
show the support base (polygonal convex hull) of the robot
while the polygon edge containing CoP is red dotted.

used the Capture Point [28] as the reference point2.

Although PQ may not be initially perpendicular to the

leading edge of the support area, it becomes so once the

toppling motion sets in.

With a different geometry of the support base as in

Fig. 3(b), for the same push, the robot would rotate

about a new leading edge and fall in the new direction

PQ. If the robot is to avoid falling on an object in

front of it, we can effect a change in the fall direction

by changing the support base (specifically, its leading

edge) from Fig. 3(a) to Fig. 3(b).

In practice, there are two major challenges in suc-

cessfully executing this motion. First, the robot be-

comes underactuated as soon as it starts toppling. This

creates 1 or 3 uncontrolled degrees of freedom (DoF)

depending on whether the robot is toppling about an

edge or a corner. Therefore, we should design a con-

2 More detail about Capture Point is included in Sec-
tion 5.2.2.

troller very carefully to deal with this underactuated

phase. Second, the CoP and the reference point contin-

uously move as the robot moves, which might change

the leading edge during fall.

We can make the robot step at a desired location by

controlling its leg joint velocities through inverse kine-

matics. We have the following relationships relating the

velocities of the left and right feet and the robot body:

V L − V body = JL θ̇L (1)

V R − V body = JR θ̇R, (2)

where V L, V R and V body are (6×1) vectors con-

taining linear and angular velocities of the left and right

foot, and of the body frame, respectively. θ̇L and θ̇R are

6 × 1 joint velocity vectors of the left and right legs3,

respectively, and JL and JR are the leg Jacobian ma-

trices.

Subtracting Eq. 1 from Eq. 2:

V R−L = [JR−L]
[
θ̇R, θ̇L

]T
(3)

where V R−L = V R − V L and JR−L = [JR, −JL] is

the (6× 12) matrix called the foot-to-foot Jacobian.

The necessary joint velocities θ̇ =
[
θ̇R, θ̇L

]T
to

move the swing leg to the desired location are given by:

θ̇ = J#
R−L(V R − V L) (4)

where, J#
R−L is the pseudo-inverse (damped least square

[2]) of JR−L.

4.1.1 Estimation of the allowable stepping zone

The allowable stepping zone D is the region on the

ground anywhere inside which the robot can plant its

foot within the control duration time ∆T . As shown in

Fig. 4 the allowable stepping zone is approximated as a

rectangular area with sides 2Dx and 2Dy. At each point

on this rectangle the robot foot can rotate through a

range of orientation from −Dβ to Dβ . The values of

Dx, Dy and Dβ are computed using the following equa-

tions:

Dx = ∆T

12∑
i=1

∣∣∣JR−L(x, i)θ̇MAX
i

∣∣∣ ≈ γ∆T 12∑
i=1

|JR−L(x, i)| ,

(5)

Dy = ∆T

12∑
i=1

∣∣∣JR−L(y, i)θ̇MAX
i

∣∣∣ ≈ γ∆T 12∑
i=1

|JR−L(y, i)| ,

(6)

Dβ = ∆T

12∑
i=1

∣∣∣JR−L(β, i)θ̇MAX
i

∣∣∣ ≈ γ∆T 12∑
i=1

|JR−L(β, i)| ,

(7)

3 We assume 6-DoF legs.
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where θ̇MAX
i is the maximum velocity of the ith leg

joint and i corresponds to one of the 12 joints of the two

legs. JR−L(k, i) is the numerical value of (k, i) element

of Jacobian JR−L, which is computed at the time of

control trigger. Note that k ∈ [x, y, β] corresponds to

the rows 1,2, and 6, respectively of JR−L. Finally γ is a

constant used to approximate θ̇MAX
i , which is assumed

same for all joints.

To compute the best foot placement location we di-

vide the allowable stepping zone into a number of small

cells. Each cell corresponds to a foot position given

by (x, y) and contains a range of foot orientation an-

gles given by β. The dimension of each cell is selected

manually through trial and error. We re-plant the non-

support foot according to (x, y, β) of each cell in sim-

ulation, and estimate a new reference point and a new

CoP. We repeat this step at each cell to find the optimal

new CoP.

In practice we use only the upper half of the al-

lowable stepping zone cut by the inclined separatrix

line which is perpendicular to PQ and goes through

the center of the moving foot, as shown in Fig. 4. This

is because when a robot is falling towards PQ it can

hardly place its foot on the other side of the separatrix.

This area, shaded in yellow in Fig. 4, is divided into

cells of foot position (x, y).

The angle of deviation between the desired and the

estimated fall direction is computed for each case and

the optimal CoP is selected as the one that results in

the smallest deviation. We assume a polygonal foot sole

and the support polygon can be computed with a finite

number of points. The reference point needs to be es-

timated at the time the non-support foot touches the

ground.

4.1.2 Step controller for a toppling humanoid

Recall that optimal stepping corresponds to the robot

stepping on a location on the ground and with a foot

orientation angle that results in the minimum angular

deviation between the estimated and the desired fall di-

rection. Note that this optimal solution does not imply

optimality in a global sense. Also, the controller does

not guarantee the optimal solution, but rather it tries

to achieve the best fall angle given the strategies.

Because the available time is very short, the esti-

mation is done using inverted pendulum models. Once

the optimal step location is computed, one could hope

to simply control the joint angles through inverse kine-

matics. However, taking a successful step to the optimal

step location is not trivial because the standard inverse

kinematics solution will not be sufficient for a toppling

robot. There are two reasons for this. First, the support

Fig. 4: The allowable stepping zone is shown by the yellow
shaded area. The left foot is the support foot. P is the CoP
when the robot is in the single support phase and Q is the
reference point. T represents an object for the robot to avoid
falling on. The allowable stepping zone is the yellow-shaded
upper part of the rectangle (above the inclined blue separatrix
line) with the maximum half-side lengths Dx and Dy. Dβ
denotes the maximum amount of rotation of the swing foot.

foot of the toppling robot is not flat with the ground;

therefore, the computation of the position and orien-

tation of the stepping foot based on robot joint angles

will be inaccurate. Moreover, the toppling of the robot

foot makes the robot underactuated because of the pas-

sive joint created at the foot/ground contact. In sim-

ple terms, underactuation makes the robot kinematics

influenced by its dynamics in non-intuitive ways, and

a simple position controller is not likely to succeed in

making the robot step as planned.

To deal with this, one solution might be to imple-

ment a controller that directly models and controls the

robot’s state of underactuation [8]. However, such con-

trollers are typically computationally expensive, a lux-

ury we do not have for the current application. What

we currently do is to continuously estimate the rotation

angle of the robot’s stance foot and add appropriate

correction in the control of its stepping foot. Assuming

that the robot possesses an IMU in the trunk, the foot

rotation angle can be estimated by noting the mismatch

between the trunk orientation angles as computed by

the IMU and by the robot joint angle sensors. With

this information, we implement a leg controller to en-

sure that the swing foot is flat as it touches down on

the ground.

Since we assume that the CoP does not change dur-

ing the fall, the CoP is modeled as a passive rotational

joint about which the support foot rotates, as shown in

Fig. 5. The support foot rotation is estimated using the

inverted pendulum models without control. The trans-
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inin
(a) (b)

Fig. 5: (a) Desired future landing posture after the fall control
time. T 0

s and T 0
n are the transformation of the support and

the non-support foot with respect to the global frame. T sn is
the desired transformation matrix from the support foot to
the non-support foot to attain the desired landing posture.
(b) Desired current robot posture to realize the desired land-
ing posture. For a robot that is toppling, the support foot
rotates about the CoP, P , towards the reference point Q. We
model a free joint at P . Without external forces, the joint
angle should increase. The leg joints are controlled to satisfy
T sn computed in (a).

formation of the non-support foot with respect to the

global frame T 0
n is determined by the desired stepping

location. The transformation of the support foot T 0
s is

estimated by simulating the inverted pendulum model.

Therefore, the desired transformation matrix from the

support foot to the non-support foot T sn can be com-

puted as,

T sn = (T 0
s)

−1T 0
n. (8)

If the joints are controlled according to T sn before

the non-support foot hits the ground as in Fig. 5(b),

the robot is expected to step on the desired location

by gravity, Fig. 5(a). We can compute joint velocities

needed to move the swing leg using Eq. 4.

Although an appropriate stepping action (including

foot lifting) can exert powerful influence on the future

motion of the falling robot, in some cases it still may

not be sufficient to control the robot to fall in the right

direction. In these cases we employ a approach called

inertia shaping, which attempts to systematically con-

trol the robot’s centroidal angular momentum through

the kinematic control of its overall inertia matrix. We

describe inertia shaping in the next section.

4.2 Inertia shaping

The humanoid can attempt to further change the fall

direction after a step is taken. Since a falling robot

is normally underactuated, direct control of the CoM

would not be effective in general. However, we can in-

directly change the fall direction by generating angular

momentum. For this, we have developed a technique

called inertia shaping [24].

In inertia shaping, we control the centroidal compos-

ite rigid body (CRB) inertia [38] or the locked-inertia of

the robot. Centroidal CRB inertia is the instantaneous

rotational inertia of the robot, referenced at its CoM,

if all its joints are locked. Unlike linear inertia, which

is always constant, the CRB inertia is a function of the

robot configuration and can vary continuously.

Approximating the robot as a reaction mass pen-

dulum, RMP [24], or an inverted pendulum with rigid

body inertial mass, and assuming no slip at the ground,

its CoM velocity V G can be computed as (see Fig. 6):

V G = ωPG × PG (9)

where G and ωPG are the CoM location and the angular

velocity of the inverted pendulum, respectively. For best

results, we want V G = −c PT for some scalar c. 4 This

can be achieved by setting the desired angular velocity

ωd as follows,

ωd = −k (ez×PT ) , (10)

where ez×PT is a unit vector along the cross product

of z and PT , and k is the magnitude of angular velocity.

The desired locked inertia is obtained as Id = RIR−1,

where I is the current locked inertia and R is the ro-

tation matrix obtained with an exponential map [25]

from ωd:

R = exp(Ωd), (11)

where Ωd is the skew-symmetric matrix corresponding

to ωd.

To implement inertia shaping, we string out the 6

unique elements of the CRB inertia matrix in the form

of a vector: I(3×3) → sÎ(6×1). Next, we obtain the CRB

inertia Jacobian JI which maps changes in the robot

joint angles into corresponding changes in sÎ, i.e.,

δsÎ = JIδθ. (12)

To attain Id, the desired joint velocities are given

by:

θ̇ = J#
I (Id − I) (13)

where J#
I is the pseudo-inverse of JI .

The humanoid can recruit all the joints to attain Id.

The effect of inertia shaping might not always be big

4 Extension to a general case with multiple objects such as
in Fig 16 is trivial once the desired fall direction is chosen.
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(a) (b)

Fig. 6: a) To avoid falling on the cylindrical object located at
T , the desired linear velocity of the robot’s CoM, V G, should

be towards
−→
TP , where P is the CoP. b) To achieve this the

robot should overall rotate about an axis obtained by the
cross product of PT and the vertical.

enough to obtain the desired CoM velocity V G, how-

ever, even a modest change is sometimes very useful.

Equation 13 is used for whole body inertia shaping,

which cannot be launched before stepping (foot place-

ment) is completed, because the two actions may be

in conflict. This can sometimes lead to the the loss of

useful time during which the robot’s upper body does

not contribute to attaining a desired fall direction. To

correct this situation, we introduce partial inertia shap-

ing, which is a procedure to change the CRB inertia of

the robot simultaneously during foot placement, with-

out using the joints that are involved in the latter.

During partial inertia shaping, we basically recruit

only the upper body joints. The CRB inertia Jacobian

JI introduced above can be re-written as:

JI = [JPIS , JFP ] (14)

where, JPIS is the CRB inertia Jacobian corresponding

to the joints that are free from foot placement strategy

execution, whereas JFP is the CRB inertia Jacobian

corresponding to the joints involved in the foot place-

ment strategy execution. The desired angular velocities

θ̇PIS to attain Id by partial inertia shaping are given

by:

θ̇PIS = J#
PIS (Id − I − JFP θ̇FP ) (15)

where J#
PIS is the pseudo-inverse of JPIS and θ̇FP is

given by the controller for the optimal foot placement

strategy.

Just as the CRB inertia matrix can be defined with

respect to any appropriate point such as the CoM or the

CoP, the inertia shaping can be performed interchange-

ably about these respective points. We have earlier per-

formed inertia shaping about the CoM [43]. However,

since the desired angular velocity used to derive the

desired inertia matrix is computed about the CoP, it

is preferable to perform inertia shaping about CoP as

well. Moreover, partial inertia shaping about CoP is

more effective than that about CoM because the arm

and the upper body configurations make more signifi-

cant contributions to the CRB inertia about CoP. So,

the desired inertia matrix Id derived here is about CoP

i.e., IPd as shown in Fig. 7.

Fig. 7: Comparing inertia shaping about CoM (left) and CoP
(right). Shaded solid ellipsoids and ellipsoids with dashed out-
lines, in each case, denotes current and desired inertia matri-
ces, respectively. Note that inertia shaping about the CoP
allows a movement of the CoM (G to G′), which the other
does not.

5 Planning and Selection of the Optimal Fall

Control Strategy

In the previous section, we described the general nature

of the two strategies that we use to change the fall direc-

tion of humanoid robots. However, there are additional

details to pay attention to: a specific control needs to

be selected along with the associated parameters and

it is to be executed at a specific time and for a specific

duration. Moreover, the implemented control may con-

tain the two strategies executed either independently,

sequentially or simultaneously We need a plan to coor-

dinate and supervise these strategies. This section de-

scribes this planning process, which is based upon the

geometric set-up of the robot in its environment, and

the computation of a few supporting quantities men-

tioned in Section 3.

We have made the following assumptions in formu-

lating and selecting our controller:

– All motors stay active during the entire motion of

the robot;
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– The robot can perfectly sense its states, including

its global position and all the joint angles;

– The robot knows the location and overall physical

dimensions of all the objects in its vicinity all the

time 5;

– The floor has enough friction to ensure no slip; and

– The robot’s feet are polygonal.

The last assumption is required to compute the esti-

mated fall angle for which we use the CoP location. For

feet with curved boundaries the CoP location may be

continuously fluctuating which may result in unstable

computation of fall direction.

Under these assumptions, we discuss the process

of prediction of when and how the humanoid would

fall, and talk about the selection of proper direction-

changing fall controllers according to the falling behav-

ior and the positions and sizes of the surrounding ob-

jects.

5.1 Prediction of humanoid fall: Fall trigger boundary

(FTB)

The first step in entering a fall control mode is through

the fall predictor described in Section 3 and in Fig. 2.

The prediction of fall is a critical component of the fall

management strategy. The fall predictor helps decide

when to switch from a fall avoidance (or balance main-

tenance) controller to a fall controller. A fall predictor

continuously monitors the robot’s state, and raises a

flag as soon as it predicts an imminent fall. A trig-

ger from the fall predictor prompts the robot to aban-

don the balance maintenance mode, which was just pre-

dicted to fail, and to execute a fall control strategy.

As schematically shown in Fig. 8, the FTB of a robot

encloses a region in its feature space in which a given

balance controller is able to stabilize the robot. An exit

through the FTB is an indication of an unavoidable fall

and this event can be used to activate the switch from

the robot’s balance controller to a fall controller.

The parameters that characterize the feature space

can include both sensor data such as joint angle and

ground reaction force (GRF), and any number of com-

puted variables such as CoM and CoP positions, robot

lean angle, angular momentum, etc.

5.2 Fall mode detector (FMD)

In order to choose the correct fall strategy, it helps for

the falling robot to quickly estimate how it is going to

5 The actual determination of this beyond the scope of this
paper.

Fig. 8: Schematic of Fall Trigger Boundary (FTB), a bound-
ary in a humanoid feature space that surrounds the region
where the humanoid is able to maintain balance. The axes
in the figure represent different robot features such as CoM
coordinates, angular momentum components, etc. The FTB
represents the limit beyond which the robot controller must
switch to a fall controller. The shape and size of the FTB are
characteristics of a given balance controller.

Fig. 9: Simple model of an inverted pendulum falling under
gravity. P is CoP, m is the humanoid mass, and φ is the lean
angle between the CoP-CoM line and the vertical. We use
this model for the fast estimation of time duration and other
parameters of the robot.

fall. For this, we approximate the robot as an equiva-

lent inverted pendulum as shown in Fig. 9. The pendu-

lum connects the CoP and CoM of the robot and has

a point mass equal to the robot mass. If the CoP is lo-

cated on an edge of the support area, the pendulum is

constrained to rotate on a plane perpendicular to the

edge. In this case, we model the robot as a 2D inverted

pendulum. If instead, the CoP is located at a corner,

the estimation uses a 3D spherical inverted pendulum

model. The 2D pendulum model has a closed-form so-

lution. However, since the 3D pendulum does not have

closed-form solutions, we simply simulate its dynamic

equations for the period of control duration. Because

the control duration is typically very short, this simu-

lation can be adequately handled.

It might appear at first that the 3D inverted pendu-

lum, being a higher dimensional entity, would also ex-

hibit the behavior of the 2D pendulum, and that only

the 3D model would be sufficient to model a falling
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humanoid. However, the motion of a 2D pendulum is

constrained in its plane, and it correctly models the mo-

tion of a falling humanoid that is toppling about one

of the edges of the feet. On the other hand, the motion

of the robot, which is toppling about one of the foot

vertices, is correctly modeled using a 3D pendulum.

5.2.1 Estimation of control duration

Time-to-fall is a critical parameter for the evaluation

and formulation of a fall response strategy. The biome-

chanics literature contains some data on the time-to-

fall of human subjects. A simple forward fall of an

adult starting from a stationary 15◦ inclination takes

about 0.98 s, whereas that for a backward fall starting

from stationary 5◦ inclination takes 0.749 s (with flexed

knees) and 0.873 s (with extended knees) [37].

The fall controller remains active until its lean angle

crosses a certain threshold ϕthreshold. We assume that

all external forces have disappeared when the robot

starts to use the fall controller. The control duration

∆T is obtained through an incomplete elliptic inte-

gral of the first kind for the 2D inverted pendulum

model [35] when the lean angle goes over the threshold,

i.e., ∆T is the time for the pendulum to hit the thresh-

old (not the ground). For the 3D spherical pendulum

model, we simulate its dynamic equations to obtain∆T .

5.2.2 Estimation of reference point

As mentioned before, the capture point is used as the

reference point in this work. In order to estimate the

capture point at the time ∆T , we need a planar veloc-

ity of the robot. Since we use a 2D pendulum model,

the planar velocity can be directly calculated from the

angular velocity of the pendulum.

For the 2D linear inverted pendulum model, the ve-

locity after time ∆T is computed from the pendulum

energy equation as follows:

ϕ̇(∆T ) =

√
2E

I
− 2mgL cos(ϕ(∆T ))

I
(16)

where E is the total energy (constant) of the pendu-

lum, I is the moment of inertia of the pendulum with

respect to CoP and L is the distance between its CoP

and CoM. For the spherical pendulum, the simulation

of the dynamic equations yields the velocity.

5.3 Geometric setup

In 3D space, both the robot and the surrounding ob-

jects are approximated by circumscribing vertical cylin-

ders centered at their respective CoMs. On the horizon-

tal projection, the objects are represented by circles and

(a) (b)

Fig. 10: The 2D projection of a humanoid robot surrounded
by obstacles of different sizes. (a) The central red circle rep-
resents the robot. Its center is located at the robot’s CoM
and its diameter is equal to robot’s maximum leg spread.
The circles shown in green are the circumscribing circles of
the objects’ 2D projections. (b) Following configuration space
approach, these latter circles are grown by robot’s radius and
the robot is reduced to a point. Safe fall regions (cyan cones
enclosed by the solid black curves) are the free cones in which
the robot’s CoM can fall without hitting an object.

the robot is represented by a circle with its center at the

CoM and the maximum leg spread as its diameter as

shown in Fig. 10(a). We assume that the position and

size of the objects are known to the robot at all times.

Following the configuration space formulation used in

traditional motion planning algorithms [23], the object

circles are grown by the radius of the robot circle and

the robot is reduced to a point (Fig. 10()b).

The entire planning process uses information in po-

lar coordinates (r, θ) with the point robot at the origin

(0, 0), where r ∈ R+ represents the distance from the

point robot and θ ∈ Θ = [0, 2π] represents the direc-

tion. The direction θ = 0 represents the reference di-

rection with respect to which all objects’ positions and

orientations are known. Only objects within a radius of

1.5 times the height of the robot are considered for the

planning process and the other objects are considered

too far from the robot to be hit.

In this work, the fall direction θf ∈ Θ is defined as

the vector connecting the robot’s initial and final CoM

ground projections. The initial state is at control trig-

ger and the final state is the touchdown of the robot

with the ground, estimated using inverted pendulum

simulations. At fall trigger, all controllers on the robot

are assumed to be stopped and the joints are locked

with the robot behaving like a rigid body until control

trigger is reached. After control trigger is reached, the

only active controller is the safe fall controller. The fall

direction is independent of the intermediate configura-

tions of the robot, which implies that it is independent

of the CoM position during fall.

A safe fall region, characterized by an object-free

cone, is the set of continuous fall directions containing
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no objects inside them as depicted by the cyan cones

enclosed by the solid black lines in Fig. 10(b). These

represent the set of directions in which the robot can

fall without hitting an object.

5.4 Selection of the optimal fall control strategy

Each fall direction θfi receives two scores (si1, s
i
2), whose

weighted sum gives the total score si = w1s
i
1 + w2s

i
2,

where w1 +w2 = 1. Intuitively s1 represents how much

relatively safe the fall direction would be, and s2 shows

how close the fall direction would be to the middle of

the safe cone.

Note that the total score si is zero when the fall

direction θfi is at the bisector of the largest safe fall

region. Therefore, lower the score, safer is the fall di-

rection. w1 and w2 are positive weights, and the equal

weights (w1 = w2 = 1
2 ) are used in the simulations of

this paper.

The planner evaluates and selects from three foot

placement strategies: a) No Action, b) Lift a Leg and

c) Take a Step.

– No Action: There is no attempt at controlling the

robot beyond locking all joints and letting the robot

fall down as a rigid body. This strategy is adopted

when the default fall direction of the robot is already

deemed safe.

– Lift a Leg: This strategy is evaluated only when

the robot is in double-support phase. It involves two

mutually exclusive sub-strategies, 1) Lift the left leg

and 2) Lift the right leg. Lifting a leg reduces the ex-

tent of support base to a single footprint. Although

simple, this strategy can exert significant influence
on the toppling motion.

– Take a Step: This strategy involves taking a step

from the robot’s current position. The number of

possible stepping locations provides a number of

sub-strategies to be evaluated. The control dura-

tion ∆T calculated earlier in the paper is used to

estimate the allowable stepping region.

Inertia shaping strategies, presented in Sec. 4.2, are

sometimes used in conjunction with, and at other times

as a replacement for, the foot placement strategies. We

classify these strategies as follows:

– Whole Body Inertia Shaping: This strategy re-

cruits all robot joints and employs inertia shaping

on the entire robot. The inertia shaping strategy re-

places the foot placement strategy when it fails to

produce a safe fall.

– Partial Inertia Shaping: This strategy employs

inertia shaping using only those joints that are not

involved in the stepping.

5.5 Strategy selection flowchart

The strategy selection is done as presented in the flowchart

in Fig. 11. In case of steady fall, the fall direction es-

timation is more accurate and the No Action and Lift

a Leg strategies are given preference over the Take a

Step strategies because the former are guaranteed for a

successful completion. In case of unsteady fall or when

the No Action and Lift a Leg strategies fail to produce

safe fall, all foot placement strategies are evaluated and

their estimated fall directions are assigned scores. The

strategy with the minimum total score is chosen to be

the optimal safe fall direction. As one can see, even

when no foot placement strategy produces a safe fall

direction, the algorithm chooses the strategy with the

lowest score that corresponds to the fall direction clos-

est to the safe fall region.

When no foot placement strategy produces safe fall,

partial inertia shaping strategy is coupled with the op-

timal foot placement strategy. The bisector of the safe

fall region closest to the direction corresponding to the

optimal foot placement strategy is chosen to be the de-

sired direction for the partial inertia shaping procedure.

This fall direction corresponds to the local minima clos-

est to the current fall direction. While the optimal foot

placement strategy tries to do the best it can, the par-

tial inertia shaping procedure tries to move the body

to the closest safe fall region.

The strategy selection procedure described above

happens only at control trigger whereas the strategy

execution happens after it. At any future time after the

execution of the chosen strategy, if the robot’s fall di-

rection is still unsafe, the whole body inertia shaping is

initiated, because that is the only method available at

that point. The bisector of the safe fall region closest

to the current fall direction is chosen to be the desired

direction of fall and the inertia shaping procedure tries

to achieve it.

Finally, if the robot’s lean angle exceeds a maxi-

mum threshold, all the motors are turned off, i.e., all

joints are unlocked, in order to reduce the damage to

the motors due to impact.

6 Simulation Results

Our fall controller has been executed in the Webots sim-

ulation environment for a human-sized humanoid and

an Aldebaran NAO robot. In order to handle the differ-

ent platforms seamlessly in simulation and experiment,

we developed a modular software architecture which fo-

cuses on an interface to connect a robot controller to

specific applications.
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Fig. 11: Decision making procedure for safe fall planning and
control.

6.1 Full-size humanoid robot

The full-sized humanoid robot that we used for sim-

ulation study is 1.3 m tall and weighs approximately

54 kg. The robot possesses 26 DoF and each leg has

6 DoF. The resolutions of the cells used in Eq. 7 are

50mm for (x, y) and 0.1 rad for β. A control sampling

time is 1 msec. We assume that the global locations and

orientations of the robot bodies are given.

6.1.1 Fall while avoiding a single object

We start from direction-changing fall with a single ob-

ject, since a single object means a sole desired fall direc-

tion that is obviously opposite to the object direction.

Unlike a cluttered environment, in this case we can eas-

ily see the desired direction and compare it with results

from our fall controller.

Figure 12 shows snapshots of the simulation, where

the humanoid stands on both feet and is subjected to

a push on its trunk for 0.1 s. The push has a magni-

tude of 200 N forward and 50 N to the right. The target

for the humanoid to avoid is located 1.2 m in front of

it, and the head of the humanoid would hit it without

any fall control. The fall controller starts 0.05 s after

the push has ended. Inertia shaping, if used, begins to

work as soon as the swinging foot contacts the ground.

During direction-changing fall control, the support base

changes from a rectangle to a point, then to a quadri-

lateral and back to a rectangle, as shown in the bottom

row of Fig. 12.

The direction of fall changes, as expected, according

to support base geometry change. When the humanoid

is on double support, it topples forward and rotates

about the front edge of the support base for which the

CoP is located roughly in the middle. Once the robot

lifts the right leg to take a step, it starts toppling around

the right top corner of the left foot and the support

base shrinks to a point, as shown in Fig. 12(b). Taking

a step makes the support base polygon a quadrilateral,

as shown in Fig. 12(c), and the direction of fall goes to

the right since the reference point is at the right of the

support polygon. Finally, the humanoid achieves the

rightward fall direction.

Figure 13 shows the motion of a falling humanoid

which employs both the support base geometry con-

troller and whole body inertia shaping controller. After

taking a step as shown in Fig. 13(b), the humanoid

changes the fall direction by rolling the upper body

backward, see Fig. 13(c).

Comparison of the CoM trajectories for the three

different cases of no control, support polygon change,

and support polygon change plus inertia shaping are

shown in Fig. 14. The figure clearly shows that the tra-

jectory of the full controller diverges from the trajectory

of the support polygon change and goes backwards.

6.1.2 Fall while avoiding multiple objects

In this case, the robot’s environment contains four ob-

jects as shown in Fig. 15. The robot is pushed at the

CoM of its trunk with horizontal forces of different mag-

nitudes and directions; and the performance of the safe
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(a) (b) (c) (d)

Fig. 12: Top row pictures are snapshots of falling humanoid with changing support polygon. The bottom row figures show the
changing support polygon, the CoP and the capture point. The yellow region is the support polygon. The green square is the
object to avoid. The small red square is the CoP, and the cross mark is the reference point. These two points are connected
by the blue line which also shows the estimated direction of fall. (a) The humanoid gets a forward push. The direction of the
push is shown by the red arrow from the body. The support polygon is a rectangle formed by the two feet. (b) The humanoid
has lifted the right foot to take a step. Since the robot is toppling its support polygon is simply a point, and it is coincident
with the CoP. The reference point implies that the falling direction is toward left. (c) The humanoid has taken a step. The
support polygon is a quadrilateral formed by four points of the right foot and the right-forward corner of the left foot. (d) The
humanoid is falling towards its right, rotating about the rightmost edge of the right foot.

(a) (b) (c) (d)

Fig. 13: Snapshots of a falling humanoid which uses both step controller and whole body inertia shaping controller. The push
is the same as in Fig. 12. Inertia shaping starts after taking a step. The humanoid appears to lean its body backwards as if it
does limbo. After the conclusion of inertia shaping, the humanoid has fallen almost backwards.

fall controller for each case was analyzed. All forces are

exerted for a duration of 100 ms.

When the robot is pushed with a backward force

of 210 N, the default fall is already safe. Our planning

procedure successfully detects steady fall and chooses

No Action as the best strategy, which results in a safe

fall as shown in Fig. 15. Figure 16 shows the safe fall

behavior as a result of choosing Lift a Leg strategy after

identifying a steady fall when pushed with a forward

force of 210 N.

Figure 17 shows the safe fall behavior as a result

of choosing Take a Step and Partial Inertia Shaping.

As expected, we can see significant arm motions in this

case, and the robot falls in the forward left direction.

In order to emphasize the significance of Partial In-

ertia Shaping, we compare the outcomes of different

strategy executions with respect to identical pushes. In

Fig. 19, we compare No Action, Take a Step and Partial

Inertia Shaping strategies when the robot was pushed

with a forward force of 235 N, for a duration of 100

ms. The CoM trajectories show that the safe fall was

produced by using Partial Inertia Shaping coupled with

Take a Step strategy.

All the above results are for cases where the robot

was standing stationary upright when pushed. We also

successfully tested the fall control strategy for a few

cases where the robot was pushed during walking. One

result is shown in Fig. 20. The main objective of this

exercise was to insure that the control algorithm works
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Fig. 14: Simulation plots of CoM trajectories (Left) and avoid-
ance angles (Right) of a falling humanoid which was pushed
during upright standing. The avoidance angle is for the line
from the CoP to the CoM. The humanoid falls on the sin-
gle target without any control, which corresponds to a 0◦

avoidance angle. Intelligent stepping improves this to 100◦

and inertia shaping further improves to 180◦. The avoidance
angle between the robot’s fall direction and the direction of
the nearest obstacle is computed using the lean line which
extends from the CoP to the CoM. The oscillation of the
avoidance angle is the result of the oscillation of the CoP,
which is often caused by a rocking motion of the robot when
it does not have a firm and stable contact with the ground.

Fig. 15: The robot is pushed with a backward force of 210 N,
for a duration of 100 ms. Default fall direction is already safe.
No action is taken to change the fall direction.

(a) (b)

Fig. 16: The robot is pushed with a forward force of 210 N,
for a duration of 100 ms, at the CoM of its trunk. The default
fall direction is towards the object in the front. a) The robot
lifts the left leg to change fall direction; b) this results in a
safe fall at an empty space.

(a) (b)

Fig. 17: Robot is pushed by a forward force of 235 N for
100ms. (a) The robot is taking a step and moving arms to
perform Partial Inertia Shaping. (b) Safe fall as a result of
Take a Step and Partial Inertia Shaping Strategies. The green
line shows the unsafe fall direction if partial inertia shaping
was not used.

(a) (b)

Fig. 18: The robot is pushed with a force of 370 N for a
duration of 100 ms, to its right. (a) Whole Body Inertia Shaping
starts when no foot placement strategy produces safe fall and
(b) Safe fall as a result.

Fig. 19: Comparing the performances of different strategies.
NA - No Action, TS - Take a Step, and PIS - Take a Step + Par-
tial Inertia Shaping. The CoM trajectory during each strategy
execution is shown. The robot is pushed with a forward force
of 235 N. Only PIS produces safe fall.
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(a) (b)

(c)

Fig. 20: (a) The robot is pushed with a 200 N forward force
while walking, (b) Take a Step was the optimal strategy. This
stepping location is different from the step the robot was
about to take while walking. (c) Resulting safe fall.

in the walking regime. However, we simulated a very

slow gait in which the robot took a 15cm long step in

1.5sec, resulting in a 0.1m/sec speed for the feet and

0.75m/sec speed for the body. In this case, because the

robot is already in the single support state, it cannot

use the Lift a Leg strategy. Other than this difference,

the rest of the fall strategy described in Fig. 11 was

employed unchanged and without any special modifi-

cation for non-stationary conditions. More exhaustive

experiments of humanoid fall during gait is necessary

and is planned for the future.

Note that the location and direction of the push on

the humanoid body will change the optimal solution of

the direction-changing fall because they will affect the

states of the reduced model, the 2D and 3D inverted

pendulums, which are used in the fall controller. For

example, the same push to the head of the robot will

result in higher rotational velocity compared to a push

at a lower point on the body, Consequently, the results

can be quite different.

6.2 Aldebaran NAO robot

In order to implement the direction-changing control

on the NAO robot, we first need to address a few is-

sues specific to this humanoid robot. The NAO robot is

57.3cm tall, possesses 24 DoF and weighs 5.2kg. Each

arm of NAO has 5 DoF and each leg has 5 DoF. The

head has 2 DoF and the pelvis has a 1 DoF joint. Also,

each hand has a 1 DoF joint.

The kinematic structure of this robot is unique in

that its two legs have the shared joint which connects

the body to both legs. The actuator of the shared joint

is located at the inside of the hip and rotates the two

first joints of the both legs at the same rate, therefore

the two joints cannot be controlled independently. Con-

sequently, our inverse kinematics and inertia shaping

algorithms must be updated.

One way to treat this shared joint is to imagine an

asymmetry in the legs where one leg has 6 DoF and

fully possesses the pelvic joint while the other leg has

5 DoF. This asymmetry raises a problem in solving the

inverse kinematics since most humanoids have two 6

DoF legs and the typical inverse kinematics solution for

a 6 DoF link can be used for both legs. In order to use

our fall controller on NAO, we design a Jacobian-based

inverse kinematics for this special joint configuration,

which enables stepping as well as control of the body

posture.

Suppose that both legs of the robot have firm sup-

port on the ground. In Eqs. 1 and 2, θL is a 5× 1 joint

angle vector of the left leg, and θR is a 6×1 joint angle

vector of the right leg. Consequently, the foot-to-foot

Jacobian matrix JR−L becomes a 6× 11 matrix. Note

that any one of the legs could be considered 6 DoF while

the other is 5 DoF.

In order to simultaneously control the location of

the body frame (6 DoF) and the step location (6 DoF)

we need a total of 12 DoF. This is relatively straight-

forward when each leg possesses 6 DoF. However, for

the NAO H25 robot, we lack 1 DoF because the two

legs have a total of 11 DoF. To deal with this we design

a cost function for the inverse kinematics algorithm to

minimize:

min ‖V R−L − JR−L∆θ‖2 + λ2 ‖∆θ‖2 +

ε2 ‖V body − JR∆θR‖2 , (17)

where V R−L = V R−V L in which V R and V L are the

velocities of the right and left foot, respectively, V body

is the velocity of the trunk. These quantities were intro-

duced in Eqs. 1, 2 and 3. λ and ε are constant weights.

The parameter ε controls the relative importance be-

tween the step displacement and the body displace-

ment. For example, a low ε puts higher priority on the

step displacement. λ regulates the control output ∆θ.

Note that this inverse kinematics is another version of

the damped least-squares solution [2].

This cost function pursues the simultaneous control

of the body location and the step displacement while

minimizing the total joint angle displacements. Equa-
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tion 17 can be re-written as follows:

min

∥∥∥∥∥∥
 JR−L

λI

ε
[
JR 0

]
∆θ −

V R−L
0

εV body

∥∥∥∥∥∥
2

, (18)

which leads to the following inverse kinematics solution:

∆θ =
(
J
T
J + λ2I

)−1

J
T
[
V R−L
V body

]
, (19)

where

J =

[
JR−L
ε
[
JR 0

]] . (20)

Figure 21 shows an example of NAO falling due to

an impact push on its head and how the controller per-

forms according to the proposed strategies with inertia

shaping. The robot initially stands on both feet, and

is subjected to a forward push which has an impulse

of 2.5Ns. The four green columns are objects that the

robot should avoid touching during the fall. Without a

fall control, the robot collides with the front column as

shown in Fig. 21(b). The latter figures show the effect

of using different fall strategies. Simply lifting the left

leg dramatically changes the fall direction as shown in

Fig. 21(c-d). Take a Step strategy enables the robot to

change the fall direction to the front right as shown in

Fig. 21(e-f). The resolutions of the cell used in Eq. 7 are

10mm for (x, y) and 0.1 rad for β. The inertia shaping

strategy can enhance the performance by creating an-

gular momentum in order to indirectly modify the fall

direction as shown in Fig. 21(g-h).

Fig. 22 contains two plots showing the convergence

of two components of the overall angular velocity of the

robot to their desired values, which is controlled ac-

cording to Eq. 10. This control is achieved through the

indirect control of the robot’s locked inertia. The plots

correspond to simulation shown in Fig. 21(g-h). The

angular velocity components are shown to successfully

converge to their desired values ωd. The chattering like

behavior of the angular velocity results from the back

and forth motion of the CoP.

7 Experimental Results of Fall Direction

Change

We have experimentally evaluated our fall controller in

hardware using the Aldebaran NAO H25 robot. In this

section we describe these experiments and also compare

the experimental results to the simulation. Before we

perform the experiments a few technical problems need

to be solved.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 21: Examples of direction-changing humanoid fall
through the proposed control strategies. The NAO robot is
surrounded by four green columns, which the robot should
avoid hitting during a fall. The regions enclosed by the solid
black lines and curves are safe cones. Planning of the con-
troller takes place in the C-space. (a) The robot is pushed
from behind by a 2.5Ns magnitude impulse. The thick red line
depicts the push. (b) Without the fall controller, the robot
ends up hitting the front object. (c) Lift a Leg strategy is
used and the robot lifts the left leg so that the support area
is modified. (d) The robot falls to the front left instead of the
front. (e) The robot uses Take a Step strategy to change the
fall direction. (f) The robot lands on the front right safe re-
gion. (g) Inertia shaping is used with the foot lifting strategy.
(h) The robot falls to a safe region.

7.1 Estimation of global position and foot/ground

contact point

The biggest challenge for the experiment is to estimate

the global posture of the body frame while the robot is

falling. In simulation, this information was readily avail-

able. However, during the experiment we have to esti-

mate it using an IMU and force sensitive resistors (FSR)

in the feet. The estimation is relatively easy when at

least one foot has a firm contact with the ground. The

relative 3D transformation between the foot and the

body frame use its global position in a forward kine-

matics problem. However, when the robot is falling, its

feet can lose the firm ground contact, and we need to
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Fig. 22: The two plots show the effect of angular velocity con-
trol through momentum. The plots correspond to simulation
run shown in Fig. 21(g-h). The two components of the nor-
malized angular velocity are shown to successfully converge
to their desired values ωd. The chattering like behavior of the
angular velocity is the result of back and forth motion of the
CoP.

Fig. 23: (a) An additional IMU is attached on the back of
the NAO robot. (b) Measured yaw angle when the robot is
manually rotated by about 90◦ and returned to 0◦.

depend on the IMU for the computation of the body

coordinate frame.

Unfortunately, the built-in IMU in the NAO robot

has only 2 gyroscopes and 3 accelerometers, which can

compute only the roll and the pitch angles. The yaw an-

gle of the robot would be missing. This may suffice when

the robot has a firm contact on the ground, but not

when foot toppling is involved. To estimate the missing

yaw angle, we attached an additional IMU with 3 gyro-

scopes and 3 magnetometers externally on the robot’s

back, as shown in Fig. 23.

Note that even 3 accelerometers and 3 gyroscopes

are not sufficient for a reliable estimation of the yaw

angle; the 3 axis accelerometer gives only 2 reference

angles for roll and pitch and the yaw angle estimation

should solely rely on the gyro sensor information, which

suffers from drift. From the additional IMU, the yaw

angle is estimated using the planar heading of the sen-

Fig. 24: Coordinates of the body and the anchor foot. C is
the foot/ground contact point. T 0

c is a global frame of the
contact point. and T 0

b is the global body frame. Note that
the transformation from the foot to C with respect to the
foot is constant.

sor which is obtained from a magnetic compass output.

Kalman filters [39] have been implemented for robust

estimation of the roll and pitch angles.

Given these estimated orientations, the position of

the body is still missing. In order to estimate it, we

use the relative pose between the contact point and the

body given the assumptions of no slip, no movement

of contact point and a polygonal foot geometry. If the

robot does not experience any slip and maintain the

contact point during the fall, the contact point can be

referenced for global position. Figure 24 shows an exam-

ple of the falling robot. The point is that we can obtain

the estimated orientation of the body frame (i.e., body

rotation matrix R0
b in the global body transformation

T 0
b) and the estimated location of the foot contact point

(i.e., position column P 0
c in the global contact point

transformation T 0
c). Combining them results in the full

posture of the body frame.

The following equation describes the relative pos-

ture between the contact point and the body frame:

T 0
cT

c
b = T 0

b , (21)

which is equivalent to the following:

[
R0
c P

0
c

0 1

]
T cb =

[
R0
b P

0
b

0 1

]
, (22)

where T is the transformation matrix and R and P

are the rotation matrix and the position vector, respec-

tively. The superscript and the subscripts 0, c and b

refer to the global frame, the contact point frame and

the body frame, respectively. In Eq. 22, the orientations

of the contact point R0
c and the position of the body

frame P 0
b are unknown given the joint angles. Equa-
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tion 22 can be rewritten as:

R0
c = R0

bR
b
c (23)

P 0
b = R0

cP
c
b + P 0

c , (24)

since

T cb =

[
Rc
b P

c
b

0 1

]
. (25)

In order to estimate the foot/ground contact point

during fall, again we assume no slip and non-changing

contact point during fall. Unlike during simulations where

the contact point information could be directly obtained,

we have to estimate it during the experiment. Since

we also assume the foot area is a polygon, the contact

point can be either an edge (the robot topples like a

2D inverted pendulum) or a vertex (the robot falls as a

3D inverted pendulum). We determine this from the 4

FSRs on each foot. At every control sampling time, the

controller checks the values of the FSRs and sets on/off

states of the sensors from a tuned threshold. From em-

pirical data, the controller estimates that the contact is

over an edge when two adjacent FSRs are ON and their

values are equivalent while the other two are OFF. If

one of them has a significantly higher value than the

other, the controller interprets this a vertex contact.

A hardware implementation of the fall controller on

the NAO robot must factor in its limited capabilities of

sensing and control. The main differences between the

simulation and the experiment are listed in Table 1.

The strategies described in Section 5.4 are utilized.

7.2 Experimental results

A set of four experiments is designed to show the effect

of the proposed strategies. The experiments start with

Lift a Leg strategy, advance to Inertia Shaping with

two different push directions, and show Take a Step

strategy.

In the first experiment, the robot gets a steady push

from behind until it switches to fall control mode and

the proposed strategies are utilized. For repeatability,

we use a linear actuator to give a push to the robot

(the machine visible behind the NAO robot in Fig. 25).

The controller runs on an external laptop connected to

the robot via a wired network. The lean angle of the

robot estimated from the IMU is used to trigger the

direction-changing fall controller.

Without a fall controller, the robot falls forward

as shown in Fig. 25. Figures 26(a-b) demonstrate that

the Lift a Leg strategy can make a significant change

under the same push. The robot lifts the right leg to

change the fall direction and falls almost to the right.

Fig. 25: Default case: without direction-changing fall con-
troller, the NAO robot, when pushed from behind by a linear
actuator, falls forward.

(a) (b)

Fig. 26: Snapshots of the fall experiment. Robot uses the Lift
a Leg strategy. (a) The robot lifts up the right leg. (b) The
robot falls almost completely to the right.

We tested two Lift a Leg strategies, one of which lifts

the left leg and the other lifts the right leg, and the

resultant CoM trajectories are compared in Fig. 27(a).

According to Fig. 27(b), our fall controller seems to

over-predict the resultant fall angles. We think that

this difference is caused mainly due to the change of

the foot/ground contact point during fall. The predic-

tion comes from considering the robot as a 3D pendu-

lum with a fixed contact point, which becomes invalid

when the foot/ground contact point moves. For exam-

ple, in Fig. 26(a), the foot/ground contact point is at

the front-right corner of the left foot, which our con-

troller correctly estimates and the predicted fall angle

is 114◦. However, somewhere between Fig. 26(a) and

Fig. 26(b), the 3D fall motion of the robot causes the

right edge of the left foot to become the foot/ground

contact edge. This prevents the robot from rotating fur-

ther backwards, and the robot ends up falling to the

right (around 90◦). In future work, this issue should be

addressed in order to obtain better prediction accuracy.

In the next experiment, in order to test the effec-

tiveness of inertia shaping, we performed an experi-

ment to see if through inertia shaping we can cancel

the effect of fall direction change, which was originally

achieved through foot lifting. As seen in Fig. 26, lift-

ing of the right foot causes the robot to fall toward its

right. In the following example, after foot lifting, we ex-

ecute inertia shaping using the forward direction fall as

the objective. As seen in Fig. 28(a-b), inertia shaping
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Simulation Experiment

• Faster control sampling time (1 kHz) • Slow control sampling time (≈30 Hz)
• Perfect knowledge of exact global position of the body
frame

• Noisy estimation of global position of the body frame

• Perfect sensing of joint angle, velocity and acceleration • Only joint angles sensed
• Perfect knowledge of foot/ground contact points • Imperfect estimation of foot/ground contact point
• Polygonal feet • Feet perimeter is curved
• Perfect knowledge of exact timing of push • Timing of push is unknown

Table 1: Direction-changing Fall: Difference between simulation [26] and experiment

(a)

(b)

Fig. 27: (a) CoM trajectories of the robot during the Lift a Leg

strategies. The circles denote the end of the trajectories. The
solid blue curve is the CoM trajectory of the falling robot
without a fall controller, and the dotted green and dashed
red curves are trajectories from our fall controller by lifting
the left and right leg, respectively. The forward direction is
displayed by the black arrow. (b) Measured fall angles with
respect to the Lift a Leg strategies and their estimations shown
as horizontal lines at the top and bottom. The differences
between estimations and experimental results mainly from
the fact that the foot/ground contact point changes over time
during fall.

is shown to have successfully canceled the effect of foot

lifting and the robot falls forward. Note that the arms

are stretched to maximize the effect of inertia shaping.

In another inertia shaping experiment, we can make

the robot fall diagonally, under the same forward push,

as shown in Fig. 28(c-d). Figure 29 shows how inertia

shaping changes the CoM trajectory.

Fig. 29: CoM trajectories. The solid blue curve is the tra-
jectory of the falling robot without any control. The dashed
green curve corresponds to the Lift a Leg strategy. The dot-
ted red curve is for the controller with inertia shaping with
forward fall as the goal. The dot-dashed cyan curve is the
result of inertia shaping with right forward fall as the goal.
The circles denote the end of the trajectories.

The third experiment checks the effect of pure in-

ertia shaping without involving any stepping. In this

experiment, only inertia shaping is used to change the

fall direction. In the experiment described in Fig. 28,

the robot had very short time for inertia shaping be-

cause it spends a part of the fall time in lifting up a

leg. In order to have more control time dedicated to

inertia shaping, in this experiment we start from a sin-

gle support pose of the robot as shown in Fig. 30(a).

The robot is pushed from the left and falls to the right

without inertia shaping. Two independent experiments

of inertia shaping with 0◦ (forward) and 45◦ (forward

right) desired fall angles are implemented. The success

of this experiment is evident in the resultant CoM tra-

jectories as shown in Fig. 30(b).

In the fourth experiment, Fig. 31 shows snapshots of

the experiment for Take a Step strategy. A push comes

from the left of the robot which is supported by the

left foot only. The controller modifies the support area

to change the fall direction to 45◦ (right forward). The

support area changes from a rectangle to a line and

then to a pentagon. The direction of fall changes, as

expected, according to support area, and the resultant

trajectory of the CoM is shown in Fig. 32 in which the
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(a) (b)

Fig. 30: Effect of inertia shaping during fall. (a) The NAO
robot is in single support on the left leg when it is pushed from
the right. (b) CoM trajectories with/without inertia shaping.
Without inertia shaping, the robot falls to the right (solid
blue curve). Two tests of inertia shaping with target angles
of 45◦ (dotted red curve) and 90◦ (dashed green curve) are
used to change the fall direction. The circles denote the end
of the trajectories.

robot also takes a step to change the fall direction to

−45◦ (right backward). When the humanoid is on single

support in Fig. 31(a), it topples to the right and rotates

about the right edge of the support foot as shown in

Fig. 31(b). Once the robot takes a step with the right

foot rotated by 45◦, the support base extends to a pen-

tagon as shown in Fig. 31(c). The direction of fall goes

to the right forward since the reference point (capture

point) is at the right forward of the support polygon.

Fig. 32: CoM trajectories when the robot uses the Take a Step

strategy. Two target falling angles (± 45◦) are used. The solid
blue line is the COM trajectory of the falling robot after a
push from the left. The dashed green curve is from the Take

a Step strategy with the 45◦ target angle, and the dotted red
curve is for −45◦ target angle. The solid circles denote the
end of the trajectories.

7.3 Comparison with simulation results

The bottom row figures of Fig. 28 show motions from

simulations, which correspond to the experimental re-

sults with the same strategies and goals that are shown

in the top row figures. In terms of the CoM trajectories,

Fig. 33 shows the comparison between the trajectories.

We see that the apparent motions in the experiments

match well with those seen in the simulations though

the specific states such as CoM trajectories are not iden-

tical.

In the experiment, we often encountered a prob-

lem due to lack of motor power in the experiments.

Even though we use the same maximum joint speed

and torque as in the simulations, motors subjected to

high load often could not follow the desired trajectories

and stalled as a consequence. During a fall, the robot is

likely to be unbalanced and some joints would be under

high gravitational load. Therefore, during fall control,

the desired motion cannot be met since the joints can-

not be actuated properly. In the experiment shown in

Fig. 28(c-d), we found that the hip roll joint did not

follow the desired trajectory, which caused a distorted

motion and the resulting fall direction diverged from

what was obtained in the simulation. This lack of power

also makes it hard to achieve consistent results in the

experiments. Given the same initial condition including

a push, the robot may take the right action expected in

simulation when every joint follows the desired trajec-

tories but may not when any controlled joint is stalled.

Thus, currently the capability of our fall controller is

limited by the hardware specifications.

Also, the maximum rotational speed of the actu-
ators did not match those that were obtained in the

simulation. For example, the simple action of lifting-up

a leg by the same height takes longer time in the exper-

iment compared to that in the simulation. This means

that we have smaller time to execute motions needed

for the inertia shaping. The difference between the tra-

jectories of Fig. 33 with 90◦ target angle comes from

this speed limit. Since lifting-up takes more time in the

experiment, inertia shaping starts working later in the

experiment, and the moving-right CoM leads the lifted

foot to touch the ground in the experiment before in-

ertia shaping generates enough momentum to pull the

CoM forward. This touch may leave a noisy trajectory

due to the change of the contact point during fall. Note

that we estimate the body posture based on the consis-

tent contact point.

However, we can incorporate actual torque and ve-

locity limits if we know them beforehand. Since the cur-

rent NAO API does not support velocity control used

in simulation, we had to modify the velocity controller
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Fig. 33: CoM trajectories of the experiments and simulations
in Fig 28. Lift a leg and Inertia shaping strategies are used.
Two target falling angles ( 90◦ and 45◦ ) are used. The solid
blue curve is for the simulation with the 90◦ target angle,
the dashed green curve is for the experiment with the 90◦

target angle, the dotted red curve is for the simulation with
45◦ target angle, and the dash-dotted cyan curve is for the
experiment with the 45◦ target angle, The solid circles denote
the end of the trajectories.

into a position controller. This controller modification

and the slow control sampling time in the experiment

(≈30 Hz) sometimes caused jerky motion.

8 Conclusion and Future Extensions

This paper reported the theory and hardware exper-

iments of direction-changing fall control of humanoid

robots among multiple objects. The fall controller con-

tains a planner which, for a given set of surrounding ob-

jects, assigns merit scores to each direction around the

robot. The scores depend on the position of the objects

relative to the robot, and their sizes, which the robot

is assumed to know all the time. The merit scores indi-

cate the desired fall direction of the robot. The planner

then logically evaluates the control strategies available

to the robot and determines the best strategy or set

of strategies to fall in the desired direction. The robot

controller executes this strategy in an interactive man-

ner such that real-time modifications can be made in

case there is a risk of failure.

The robot employs two basic control strategies at

its disposal, the foot placement control and the iner-

tia shaping control. The foot placement control opti-

mally changes the geometry of the foot support poly-

gon of the robot in order to influence the evolution of

the CoP on the polygon and indirectly control the fall

direction. This strategy contains three components, No

Action, Lift a Leg (left or right leg), and Take a Step

(left or right step), all of which the planner evaluates

separately. The inertia shaping control aims at appro-

priately modifying the global inertia of the robot, such

that it possesses a desired angular momentum, thereby

attaining the desired fall direction. The inertia shap-

ing control can either recruit all the joints of the robot

body, which is called Whole Body Inertia Shaping, or

only those joints that are not used for foot placement,

which is called Partial Inertia Shaping. The controller

employed whole body inertia shaping when all other

strategies were predicted to fail or when the selected

strategy was sensed to leading to a failure. Several suc-

cessful safe fall behaviors under a variety of external

disturbances were demonstrated in simulation on a full-

sized humanoid model and a smaller humanoid robot,

the Aldebaran NAO H25. Hardware experiments on the

NAO robot were also reported.

The theory and implementation of our direction-

changing fall control have shown acceptable performance,

however they also have revealed a few points for future

discussion.

The planning procedure presented in this paper makes

the following assumptions: (i) the fall direction esti-

mated using an inverted pendulum approximation of

the robot favorably compares with the actual fall direc-

tion (ii) all strategy executions are complete, i.e., the

robot is able to reach the desired configuration corre-

sponding to the strategy before it touches the ground.

Using more sophisticated models for better prediction

of the terminal fall direction is one of the future av-

enues of this research. The falling motion of a robot is

complex and it is hard to tightly control it because of

underactuation. Estimation errors can accumulate very

rapidly.

The second assumption is relevant for the perfor-

mance of the fall controller. An example of an incom-

plete strategy is when the robot topples too far and hits

the ground before the stepping controller gets enough

time to extend the swing foot fully. This can happen at

large inclination angle of the robot. In order to prevent

this, the fall controller should select a plan that is based

on a shorter execution time. However, we pay a price for

this in terms of the performance of the fall controller.

An incomplete optimal plan is not comparable to other

plans, and can result in a complete failure.

A robot can be controlled to physically interact with

objects in its surrounding during the fall and can ad-

vantageously modify the fall direction. This interaction

can involve holding or pushing on a nearby wall or on

a furniture. Also, the current work assumed that the

objects surrounding the robot are stationary. This re-

striction can be relaxed and the algorithms updated to

factor in moving objects such as humans.
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Currently, the merit score based determination of

the desired fall direction only considers the location and

size of the objects with respect to the robot. There is

no consideration either of the speed, the direction of

movement of the robot or the direction of the distur-

bance force. Using these factors can refine the fall direc-

tion significantly. An important practical issue on the

topic of fall control is the challenge of quantitative de-

termination of the capabilities of the controller. This is

necessary to provide a workable guideline for the robot

user.

Most of the simulations and experiments are per-

formed with the robot at the stationary upright con-

dition. The main reason for selecting this posture is to

introduce repeatability in the experiments and in the

evaluation process. For example, we found it fair and

repeatable to compare two fall control scenarios against

a disturbance, both starting from the stationary upright

initial pose. However, when the robot is walking, it is

very difficult to compare the performances since it can

vary greatly with very small differences in the initial

robot states. Although we have tested a few isolated

cases, our work on this important topic has not been

exhaustive. The application of fall controllers on fully

walking humanoids and their appropriate evaluation is

one of the major topics for the future work. This study

should also include the relationship between the walk-

ing speed and direction and the direction of fall.

An interesting avenue for future study is the effect

of foot shape on the nature of fall. It is conjectured that

small modifications in foot shapes can make it easier to

change the robot’s fall direction.

Since our experimental validation is limited to a

small robot, implementing our fall controller on a full

sized robot hardware will be an interesting future re-

search topic. We actually expect better performance for

a larger humanoid since the larger size allows a longer

fall duration that gives more room for the fall controller

such as a larger allowable stepping zone and longer ex-

ecution of the inertia shaping control.

In this work we have introduced the concepts of fall

trigger and control trigger. Developing robust fall trig-

ger and control trigger would be essential, however it is

extremely challenging since they are likely dependent

on a number of variables such as a specific balance con-

troller and the robot states.
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(a) (b) (c) (d)

Fig. 28: (Top Row) Snapshots of the fall experiment with Lift a Leg strategy and inertia shaping. (Bottom Row) Snapshots
of the fall simulations which have the same goal fall direction as the experiments. (a) After lifting up the right leg, the robot
starts inertia shaping with the objective of canceling the effect of the Lift a Leg strategy. (b) Inertia shaping successfully makes
the robot fall almost forward. (c-d) The robot uses inertia shaping to fall diagonally forward after lifting up the right foot, and
inertia shaping is reasonably successful.

(a) (b) (c)

Fig. 31: The top row pictures are snapshots of falling humanoid with changing support polygon. The bottom row figures show
the support polygon and Capture point. The small red square is Capture point. The dashed blue arrow is the estimated fall
direction. (a) The support area is a rectangle formed by the left foot. Capture point resides inside the support area. (b) The
robot is toppling after the push, and the support area in the inner edge of the left foot. Capture point is at the right, which
implies the robot is falling to the right. (c) The robot has taken a step, and the support area is a pentagon formed by the
contact points of the two feet. Capture point is out of the support area, and the robot falls diagonally as we intended. The
target falling angle of the controller is 45◦ (right forward). The CoM trajectory of this experiment is shown in Fig. 32.


