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Abstract
We present an intuitive animation interface that uses a foot pressure sensor pad to interactively control avatars
for video games, virtual reality, and low-cost performance-driven animation. During an offline training phase,
we capture full body motions with a motion capture system, as well as the corresponding foot-ground pressure
distributions with a pressure sensor pad, into a database. At run time, the user acts out the animation desired on the
pressure sensor pad. The system then tries to “see” the motion only through the foot-ground interactions measured,
and the most appropriate motions from the database are selected, and edited online to drive the avatar. We describe
our motion recognition, motion blending, and inverse kinematics algorithms in detail. They are easy to implement,
and cheap to compute. FootSee can control a virtual avatar in a fixed latency of 1 second with reasonable accuracy.
Our system thus makes it possible to create interactive animations without the cost or inconveniences of a full body
motion capture system.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism−Animation

1. Introduction

Avatar control in video games, virtual reality, and human-
like character animation has been widely studied (see 8 for
a survey). There are several reasons why this problem is
challenging. Many animation packages have complicated
mouse-based interfaces, and are only mastered by a few ex-
perts. More exotic interfaces25 are more intuitive, but still
not very efficient. To make matters worse, humans are re-
ally good at human motion perception; some recent studies
of human motion perception include 13, 28.

For these reasons, motion capture based performance-
driven character animation has become popular and widely
used18, 9, 5, 4. However, full body motion capture is expensive
and delicate. The capturing process involves a lot of work in-
cluding careful preparation, calibration, special clothing, and
tedious post-processing. Applications like interactive video
games can hardly afford these.

Our system, named FootSee, uses a non-intrusive easy-to-
use pressure sensor mat as the animation front end. A high
quality motion database serves as the animation back end.
Our hypothesis is that many full body motions have their
own distinctive footwork. In addition, postural control is an

essential part of all full body motions, and is constantly reg-
ulated by foot-ground interactions. Our work provides a vi-
able alternative to applications that need an intuitive, interac-
tive, robust, and high quality animation interface, but do not
need high accuracy reconstruction (i.e., require only plausi-
ble animations and can afford occasional mistakes), and do
not involve subtle motions of the upper body.

2. Related Work

There is rich information encoded in the foot-ground interac-
tion forces. Force platforms (often called force plates) have
been widely used to measure ground reaction forces (GRF)
for clinical gait analysis, athletic performance analysis, reha-
bilitation, kinetic and biomechanics research 31, 34, 1, 24, 21. In
these applications, one typically measures the total force and
moment. In contrast, we measure the normal pressure distri-
bution to extract information about locomotion and postu-
ral control. To our knowledge, there has been no application
of the foot-ground pressure measurement in computer ani-
mation. A method of using footprints as a basis for gener-
ating animated locomotion was presented in 32, 30 . As the
authors point out, appropriate timing and footprint positions
are key to the success of their algorithms, but hard to obtain.
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A pressure sensor pad makes a good candidate as a front-end
tool, replacing tedious and non-intuitive manual input. In the
robotics community, however, there has been some work us-
ing bed pressure for monitoring patient activity11. They tar-
get posture estimation while we aim at full body animation.

Although dynamic simulation and/or machine learning
techniques have been used to animate humans14, 10, reusing
motion capture data is still much more realistic. The idea
of motion synthesis based on pre-captured motion databases
has been extensively explored recently16, 2, 20, 18, 26. State-of-
the-art methods require a training or learning phase that typi-
cally lasts for several hours, after which, motions of a certain
kind (locomotion, disco dance, or climbing) can be synthe-
sized interactively, sometimes even in real time. In particu-
lar, 18 focused on interactive avatar control, and reported an
intuitive vision-based interface that can control an avatar to
step around a stool with a 3-second lag. Motion recognition
was done by comparing visual features extracted from on-
line images of the user and the pre-rendered images of the
motions in the database. Vision based interfaces have been
studied in the computer vision community for quite some
time for various tasks such as motion tracking and motion
recognition22, 6. Our work follows the same track of 18 but
uses a novel front end: a foot pressure sensor pad. The ad-
vantage of the foot pressure sensor pad is that it is viewpoint
free (i.e., always under your feet) and occlusion free. The de-
termination of foot-ground contacts, which has been proved
very important to full body animation in previous work, is
fully automatic. The pressure sensor pad does have its own
limitations, which we will elaborate on later.

3. System Overview

FootSee consists of an off-line data capture and database
construction stage (Section 4), an online motion recognition
stage (Section 5), and a motion editing stage (Section 6).
Figure 1 illustrates the main idea.

Figure 1: System illustration. The data in the foot pressure
database and the motion database are properly synchronized
during motion capture.

The motion database and the foot pressure database are
properly synchronized during motion capture, so that the
motion selection module just fetches the motion correspond-
ing to the matching footwork. However, we can also deliber-
ately change the association rules and map footwork to fake

motions. For example, we could map a marching-in-place
motion to walking. This would allow the user to explore a
virtual environment in a limited real environment.

4. Data Capture and Processing

4.1. Data Capture

The database consists of synchronized full body motion data
and foot pressure data. Full body motions are captured by a
Vicon 633 motion capture system at 60 Hz. Foot-ground pres-
sure data is captured by an XSensor35 pressure pad at 12 Hz.
This gives us 5 motion frames for every foot pressure frame.
Our motion capture volume is roughly 1.5m long, 2m wide,
and 2m tall. The pressure sensor pad is about 0.8m long and
2m wide. Given the constraints of the motion capture vol-
ume and the pressure pad dimension, we selected a number
of behaviors to capture: quiet standing (with natural sway),
and interesting motions (kicking, punching, stepping, weight
transfer and balancing). The users were requested to return
to quiet standing between interesting motions, and there was
no specification for the duration of quiet standing.

We use Filmbox15 to map the Vicon marker position data
onto the skeleton shown in Figure 3(b). This skeleton has
21 3-DOF (degrees of freedom) joints. The joint coordinates
are represented by three axes (X ,Y,Z) (coloured red, green,
and blue in the figure). The kinematic root (the black dot
in Figure 3(b)) is located at the intersection of the Lum-
bosacral angle of the spine (the base of the spine) and the
pelvic girdle. Mapping the animation onto the skeleton con-
verts the motion data from marker positions to root posi-
tions and joint angles. The root planar coordinates (the (x,z)
coordinates) are further converted from absolute positions
into relative positions (the difference between consecutive
frames), so transitions can be made easily to similar poses at
different planar locations during later processing.

Figure 2: Custom XSensor pressure sensor pad.

Figure 2 shows our XSensor pressure sensor pad. It is
made of a 160 by 64 grid of pressure sensors. It was origi-
nally designed for measuring the pressures of a person lying
on a bed, and was capable of sampling the whole pad at 6 Hz.
Our pad is specially constructed to measure the larger pres-
sures due to standing and running. Using custom software
developed to our specifications, we can sample a smaller re-
gion of interest at a higher rate.
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In our experiments we only sample the central 80 by 64
region to double the sampling rate to 12 Hz. The spatial sep-
aration of the pressure sensors is 0.5 inches. Each pressure
pixel is a byte value representing 255 different pressure lev-
els. The upper part of Figure 3(a) is a sample pressure image
when the subject is standing still. For easy visualization, we
discard 0 pressure values; we map minimum pressure 1 to
dark green (R,G,B)=(0,127,0), and maximum pressure 255
to dark red (R,G,B)=(127,0,0). For quiet standing, the pres-
sure in all contact areas are generally low, so we only see
green in Figure 3(a). High pressure values usually show up
in the heel area when there is only one foot in contact with
the ground, as the red heel shown in Figure 3(c).

4.2. Feature Extraction

For motion recognition (Section 5), a 10-component feature
vector x = (x1,x2, ...x10) is extracted from every pressure
image. The feature vector consists of the velocity of the cen-
ter of pressure (COP) (2 components), contact area of both
feet (2 components), and the first 6 Hu moments (6 compo-
nents). The COP velocity helps differentiate the motion di-
rections (stepping direction, weight shifting direction etc.).
The contact areas help differentiate motion types (one-foot-
on-ground motion, e.g., kicking or stepping; or two-foot-on-
ground motion) and bilateral motions (left-foot kicking or
right-foot kicking). Hu moments are a set of algebraic in-
variants that combine regular moments3. They are invariant
under change of size, translation, and rotation. Hu moments
have been widely used in pattern recognition and proved suc-
cessful in various applications. Other measures, such as sep-
aration of the feet, may easily come into mind as feature
candidates. However, they are not used because they contain
singularities; for instance, when one foot is in the air, the
foot separation is not defined just from the pressure data.

We will use the Mahalanobis distance12 of feature vectors
as the distance metric for motion recognition later. Assum-
ing the component variables of the feature vector are uncor-
related, the Manalanobis distance of xi and x j is defined as

di, j = (xi −x j)TC−1(xi −x j) (1)

where C = diag{σ2
1 , ...,σ2

10} is the diagonal covariance ma-
trix computed from the database feature vectors.

To compute the contact areas of the left foot and the right
foot, we first need to know the foot to which a pressure pixel
belongs. In our setup, the Vicon cameras are all placed in the
front of the subject and all the motions we captured are fac-
ing in roughly the same direction. With the foot orientation
known, foot tracking and recognition is very simple. The
peak pressure point and all its neighborhood pixels within
a bounding box (a box little bigger than the subject’s foot)
are classified as one foot. The peak pressure point of the
remaining pixels and its neighborhood pixels are classified
as the other foot. It is easy to determine which foot is left

(a) (b)

(c)

Figure 3: (a) A raw (top) and a labelled (bottom) foot pres-
sure distribution image. Pressure level 1 is mapped to dark
green and pressure level 255 is mapped to dark red. The
black dot is the center of pressure. The coloured dots are
the center of pressure of the same color bordered foot. The
yellow foot is the left foot. The red foot is the right foot. (b)
The skeleton model. The black dot is the kinematic root. The
(X ,Y,Z) axes of joint coordinates are represented by the red,
green and blue axes. (c) A foot pressure image and its cor-
responding motion frame. The blue dot is the ankle position
estimated from the avatar. The cyan dot is the ankle position
estimated from the pressure data.

and which is right since the orientation of the subject is rel-
atively fixed. In case there is only one foot in contact with
the ground, e.g., Figure 3(c), we determine left and right by
checking which foot it is closer to just before one of the feet
disappears. For visualization, the left foot is bordered yellow,
and the right foot is bordered red. The black dot is the center
of pressure. The coloured dots are the center of pressure of
the corresponding foot.

To perform inverse kinematics later (Section 6.1), we also
need to estimate the ankle position of the user from the pres-
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sure images. When the foot is in full contact with the ground,
i.e., when its bounding box is sufficiently large, the rounded
centroid of the last three rows of the foot is taken as the an-
kle position. The ankle position of the avatar is estimated by
projecting the ankle joint position onto the horizontal plane,
and then transforming it into the pressure pad coordinates.
The transformation between the Vicon coordinate frame and
the pressure pad coordinate frame is known at the capture
and calibration stage. Usually we align the axes of the pad
and Vicon calibration tools to reduce this transformation to
a simple translation, determined by where we put the Vicon
calibration tool. In Figure 3(c), the cyan dot is the estimated
user ankle position, the blue dot is the estimated avatar ankle
position.

5. Motion Recognition

As illustrated in Figure 1, the first step of the online mo-
tion synthesis is to recognize the user’s motion by compar-
ing the newly input foot-ground pressure images with the
images contained in the foot pressure database. There is no
camera involved in the whole avatar control process once the
database is constructed. The system “sees” the users through
their feet. Our online motion recognition is based on activ-
ity detection and template matching. An offline supervised
learning process was done after the data capture. We de-
scribe it here rather than in the last section because it is more
relevant to the motion recognition task.

After the data capture and processing described in the
last section, we manually segment the motion database into
interleaved quiet standing and action segments. Basically
this involves a human watching the motions in the database
and marking out roughly where each interesting motion
starts and ends. After the motion sequence is segmented, the
proper segmentation of the pressure image sequence is also
known because the two databases are synchronized and we
know their correspondences. We then compute the mean µ

and variance σ2 of the features of the quiet standing pres-
sure images, i.e., we represent the quiet standing as a ran-
dom variable with a multidimensional Gaussian distribution
N(µ,σ2). For new input foot pressure data, we extract the
features as before (Section 4.2), online. We define an activ-
ity score si for frame i as the Mahalanobis distance from the
feature vector x to the quiet standing cluster center µ . When
si is large enough (above a chosen threshold), we conclude
there is an interesting motion possibly going on.

If a possible activity is detected, the feature vector of
the current pressure frame i along with those of k look-
ahead frames and l look-back frames are grouped to-
gether as a feature window X for the current motion: Xi =
(xi−l , ...xi, ...,xi+k). The feature windows of the onsets of
all the interesting motions in the database (denoted as Xi′ )
are candidates that we will compare with the current feature
window. We then define the distance of two feature windows

as

Di,i′ =
k

∑
j=−l

w jdi+ j,i′+ j (2)

where di,i′ is defined in Equation 1, and w j is the weight
computed from a simple linear hat function centered at
j = 0. The motion Xi′ with the minimum motion distance
to the current feature window Xi is recognized as the match-
ing motion, and is selected for motion editing in the next
step. To reduce false positives, i.e., a quiet standing rec-
ognized as an interesting motion, a special quiet standing
motion is made up by repeating µ (l + k + 1) frames, i.e.,
Xo = (µ, ...µ, ...,µ). If it turns out this quiet standing mo-
tion is the best matching motion, the current frame is just a
quiet standing with a bigger sway, and no transition will be
made.

During an interesting motion, we still monitor the mo-
tion distance between the current input feature window and
that of the recognized motion, rather than just playing back
the recognized motion blindly. The reason is two fold. First,
similar behaviors may have different time course. This is es-
pecially true for weight transferring motions in our experi-
ments: the user may shift their weight to the desired location
(say left leg), then stay in that pose for a while (the duration
will be different each time), then shift the weight back. If
we find strong evidence that the selected motion is too slow
or too fast compared to the user input, we do a timewarp-
ing (Section 6.3) to fast forward or slow down the motion
selected from the database. The second reason that we mon-
itor the motion distance is that there is always the possibility
of a mismatch. In this case we need to perform a new search
and find a better motion. We always try to find a good warp
before we give up on the current motion and jump to a new
motion. One point of importance is that we cannot judge the
quality of the current best match by Di,i′ , but rather we nor-
malize it and use Di,i′/(si +si′) as an indication of how good
the best match is. This is because for highly dynamic mo-
tions (motions with high activity scores) even a very good
match may have large distance to the user motion, while a
relatively subtle motion may have small distance to a bad
match.

In our experiments, we use k = 10 look-ahead frames and
l = 6 look-back frames. We initialize a motion buffer with
5 motion frames (the duration of 1 pressure frame). Subse-
quent synthesized motions are put into the buffer for render-
ing at 60 Hz. All the transition decisions plus the synthesis
of the first motion frame after a transition can be made be-
fore the motion buffer underflows. So the total latency of the
system is 12 pressure frames (1 frame of buffering + 10 look
ahead frames + the current frame), i.e., 1 second at our pres-
sure sampling rate of 12 Hz.

The current algorithm for organizing and searching data
is sufficient for our test database. However, as the database
grows larger, better algorithms may be needed. For instance,

c© The Eurographics Association 2003.



Yin and Pai / FootSee: an Interactive Animation System

Motion graph techniques16, 18, 2 can be used. Hierachical
classification and organization18 of the motion database can
also boost search speed. We can also use feature vectors par-
tially to quickly rule out bad matches, say we use the velocity
of COP x̂ = (x1,x2) to quickly discard motions to different
directions. Multiple matching hypotheses can also be main-
tained whenever we search the database.

6. Motion Editing

The motion recognition module outputs the closest motion in
the database, for each input pressure image. When there is a
transition, the current motion has to be transformed into the
new motion smoothly. Simple spherical linear interpolation
and displacement mapping7 are currently used. For a couple
of situations, such as inverse kinematics, foot-ground contact
constraint satisfaction and timewarping, simple blending has
to be combined with special manipulations to maintain time
and spatial constraints. Since we want motion editing with-
out incurring extra latency, we choose algorithms that are as
simple as possible.

6.1. Inverse Kinematics for Stepping

It is unlikely that the stepping length and direction a user
takes at runtime will be exactly the same as those of the steps
stored in the database. When the stepping error accumulates
over time, the avatar could drift further and further away
from the location of the real user. We developed an analyt-
ical inverse kinematics (IK) algorithm to modify the steps
selected from the database to match the user’s input steps
when large position error is detected. This IK has the fol-
lowing assumptions, and we will give the rationale shortly:

1. The root orientation and planar (x,z) position are un-
changed.

2. The hip joint angles are modified to meet stepping
changes.

3. The ankle and knee joint angles are only modified to keep
constraints satisfied, i.e, compensating for rotation of the
foot during stance, and ground penetration during swing.

The stepping length, direction and height are mainly con-
trolled by the orientations of the pelvic girdle, the left and
the right hips, and the left and the right knees. In our exper-
iments, the user is always facing the same direction so the
orientation of the pelvic girdle (the root orientation) does
not change much. So we left out the pelvic orientation from
our IK. Next to the shoulder joint, the hip joint is the most
movable of all joints. It is a ball-and-socket type of joint
(3 DOF). The knee joint is primarily a hinge type of joint,
combined with a small amount of gliding and rolling23. It is
usually treated in computer graphics as a 1-DOF joint allow-
ing only flexion and extension. Although our skeleton model
treats all joints as 3-DOF joints, the 2 extra joint angles of
the knees remain small all the time. Because we consider
only flat terrain, the knee flexion-extension characteristics

(a) right forward stepping (b) right side stepping

Figure 4: The joint angles of the right leg for two steps.
The horizontal coordinate is the frame number. The verti-
cal coordinate is the joint angle. In both figures, the top red
curve is the knee joint angle. The bottom red curve is the
hip flexion-extension. The blue curve is the hip abduction-
adduction. The green curve is the hip axial rotation. Please
refer to Figure 3(b) for the joint angles’ corresponding rota-
tion axes which are coloured accordingly.

for different steps do not vary greatly in our experiments.
Figure 4 shows the joint angles of two steps we captured.
One is a right forward stepping, the other is a right side step-
ping. The patterns for knee angles are quite similar: a flexion
in toe-off, followed by an extension in strike, followed by a
flexion in opposite toe-off, followed by an extension in oppo-
site strike29. So basically there are two peaks in the knee an-
gle curves. The hip angles, however, vary with the stepping
length and direction more directly. In side stepping, there is
more abduction-adduction; while in forward stepping there
is more flexion-extension.

Based on the above observations, we designed the fast IK
algorithm shown in Figure 5. In Figure 5(a), we know the
initial joint positions of the leg, thus we can compute the
hip-ankle vector a, and the projected hip-ankle vector b (a
projected onto the horizontal plane through the ankle). Sup-
pose we want to shift the ankle position by c to get to a new
location estimated from the new pressure data, keeping the
knee joint angle unchanged and allowing the hip position
to only move vertically (which is equivalent to the first as-
sumption). The new hip-ankle vector e can be computed, be-
cause d can be computed from b and c, and the length of e
equals the length of a. With a and e available, we compute
the quaternion q that rotates a to e.

q = (ksin(θ/2),cos(θ/2)) (3)

where

θ = arccos(
a · e

‖a‖‖e‖
) (4)

and

k =
a× e

‖a× e‖
(5)

q is then concatenated with the quaternion computed from
the original hip joint angles, so the ankle can be transformed
to the new location. This completes the IK for a single leg.
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However, stepping involves two legs. Say we want to shift
the ankle of the leading leg by c. We can not just ask one
leg to try to make this shift because it will likely change
the root’s vertical position. The other leg will be affected by
this root shift, and since its configuration is not changed, its
ankle will be likely moved up into the air or down under the
ground. So we need to distribute the shift c to both legs with
two requirements:

1. The summed shift of the two ankles equals c.
2. The vertical translation of the right hip equals that of the

left hip, because both of them are connected to the pelvic
girdle (see the green bi-directional arrow in Figure 5(c)).

From requirement 1, we simply let the shift for the leading
leg to be αc, and the shift of the stance leg to be (α−1)c, see
Figure 5(b). Then by requirement 2, we equate the vertical
shifts of the two hips. It happens that α has a simple closed-
form solution for this hip constraint (see Appendix A).

(a) One-leg IK (b) Planar illustration

(c) Two-leg IK

Figure 5: IK algorithm illustration. Dots are original joint
locations, stars are new joint locations.

Although we compute the pose difference by shifting both
ankles, i.e., by shifting the dots to the imaginary hollow stars
in Figure 5(b), we do not really shift both ankles in the syn-
thesized motion since the stance ankle has to remain fixed.

The kinematic root is temporarily switched to the stance an-
kle after the leading leg takes off, and we perform a displace-
ment mapping from the original hip rotations to the desired
hip rotations during the swing phase of the leading leg, until
its touchdown. The pose of the lower body is transformed so
that we get a step from the left dot to the solid star in Figure
5(b). The imaginary dashed step was used for the IK pose
computation, while the parallel solid step is the actual step
that satisfies both the stance ankle constraint and the step-
ping ankle displacement requirement.

During the step transformation, two constraints have to
be kept. First, due to the hip rotation shift, the stance an-
kle rotation has to be shifted in the reverse direction (oppo-
site of q) to counteract the hip rotation displacement and re-
main stable. Second, our IK basically keeps the knee flexion
in the original stepping. However, large ankle displacement
may need different knee flexion amplitudes to guarantee cer-
tain foot clearance for the swing foot (this can be seen from
Figure 4). We constantly check how close the swing foot is
to the ground. When there is danger of the foot hitting the
ground during the swing, the knee is flexed allowing the foot
to follow the height of its original swing motion. Figure 6(h)
is an example of our IK. The original motion is a step to the
right (see pressure data), and is modified to a right backward
stepping by the IK to match the input pressure data.

More general IK algorithms can be used17, 19, although
we found ours is sufficient when the ankle shifts are small.
When the ankle shift is large (typically that means a match-
ing error occurred), we distribute the correction into several
steps.

6.2. Foot-ground Contact Satisfaction

As already mentioned briefly in the last subsection, the foot-
ground contact is a hard constraint that needs to be satis-
fied all the time and treated explicitly whenever an edit may
change the foot location and orientation. For example in Fig-
ure 5(c), if we want to morph from the dot frame to the star
frame, simple blending will result in ankles sliding from the
dots to the stars. Foot slipping and excessive rotation are vi-
sually very disturbing.† There is a whole spectrum of how
people deal with this problem, also known as footskate: some
work only allows transitions during contact changes18, while
others have addressed this problem more fully17.

We distinguish two cases according to how many feet re-
main in contact with the ground during a transition. Suppose
we want to jump from motion frame i to frame j. If both
feet are in contact with the ground during the transition, we
have two constraints that we have to maintain. The displace-
ments of the lower-body configuration (lower-body rotations

† This actually supports our hypothesis that foot-ground interac-
tion is constantly regulating our full body motions, and justifies our
interface from another perspective.
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and root translation), denoted ∆i j between frame i and frame
j, are computed. Then, the configurations of frame j and
its subsequent frames are all displaced by ∆i j. This elimi-
nates the footskates while most of the time no visible degra-
dation of the motion quality could be detected. The reason
is perhaps that humans are far less sensitive to small dis-
placements of non-constrained body parts than they are to
constrained ones (in this case the feet). ∆’s of subsequent
transitions are composed together with the current displace-
ments should they occur. If during the transition only one
foot keeps in contact with the ground, the solution is much
simpler, as we already mentioned in Section 6.1. The kine-
matic root is temporarily switched to the stance ankle. Only
the stance ankle needs to be kept fixed and all the other joints
are simply morphed to the target configuration.

Over time, the accumulated lower body displacements ∆

will be large enough that visible artifacts will appear. In our
case, we reset this displacement to zero smoothly when-
ever the foot-ground contact breaks, such as in kicking or
stepping motions. If there are no kicking or stepping in the
database, an optimization routine 19 could be invoked regu-
larly to find a configuration as close as possible to the target
motions while maintaining the foot contact constraints.

6.3. Timewarping

The duration and target frame for timewarping is decided
at the motion recognition phase (Section 5). Say we want
to generate n motion frames for m frames fetched from the
database to slow down (n > m) or speed up (n < m) the on-
going motion. We need to resample the original joint angle
trajectories. Define ji = b i

n mc, and αi = i
n m− ji. Then the

ith synthesized frame should be the ( i
n m)th frame in the orig-

inal motion sequence, which we estimate by a linear interpo-
lation of frame ji and frame ji +1 with interpolation coeffi-
cient αi.

However, for the root (x,z) position (i.e., the root planar
coordinates), since we already turned them into relative po-
sitions (Section 4.1), we need to accumulate them properly
instead of simply resampling from surrounding frames. De-
note p′

i as the relative root (x,z) position for frame i. It is
not the interpolation of p′

ji and p′
ji+1, but

p′
i = αi−1p′

ji−1+1 +
ji−1

∑
k= ji−1+2

p′
k +(1−α)p′

ji (6)

when n > m. The same idea is used for computing p′
i when

n < m.

If the latency requirement can be lifted, for instance, in
an off-line performance-driven animation system, we could
have a good sense of where an action begins and ends, and
thus perform a true dynamic timewarping algorithm7 to align
the database motions with the user’s motions.

7. Experimental Results

We experimented with this system on a dual-CPU (1.78 GHz
Intel) machine. Currently FootSee can control an avatar with
a fixed latency of 1 second, and render it at 60 Hz. The CPU
usage during a typical session is very low (approximately
10% on average when measured using the Windows 2000
task manager), leaving the CPU mostly free for other tasks
such as dynamic simulation and game AI. The performance
comes from the simplicity and efficiency of the algorithms
we adopted.

Figure 6 shows some samples of frames generated by
FootSee. The lower left part of each image shows the input
foot pressure image. The lower right part shows the corre-
sponding pressure image of the best matching motion from
the database. The upper right part is the controlled avatar.
For comparison purpose, we also captured the motions of the
real user. These can be seen in the upper left part of each im-
age. Also for comparison, the motion of the user is rendered
with a 1 second lag in sync with the output of FootSee, so
that we can compare the poses easily.

The database for this example is about 5.5 minutes. The
motions are captured from a subject with no formal martial
arts training. Each action typically lasts from 1 to 3 seconds.
The interesting motions were performed randomly and re-
peatedly with 49 occurrences in total. We count a match as
a correct match if both the motion type and the motion ex-
tent of the user action and the avatar action match, i.e., a
low punch matched to a high punch or a right forward step
matched to a right side step is counted as a wrong match.
With IK disabled (since it modifies steps), the recognition
rate for four sessions with more than 10 minutes of motions
in total is about 80%. There are three typical types of er-
rors: 1) Upper body movement variations. For example, in
Figure 6(l) a middle punch is matched to a high punch. 2)
Confusion of low kicks and small steps. We found that the
pressure images of the onsets of small kicks and steps are
actually very similar. 3) Missing slow vertical weight trans-
fers. The pressure images of slow downward weight transfer
are sometimes very similar to those of quiet standing.

8. Discussion and Future Work

In summary, we have developed a new interface for inter-
active avatar control and low-cost performance-driven ani-
mation, using a foot pressure sensor pad and pre-captured
pressure and motion databases. It is intuitive, non-intrusive
and reasonably robust.

Obviously, one can not expect to completely reconstruct
all full body motions only from foot pressure measurements,
but we can get very plausible motions from a well chosen
database. The performance we have demonstrated may be
sufficient for many important applications such as virtual re-
ality, video games, and performance-driven animation.
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(a) rightward weight transfer (b) leftward weight transfer (c) downward weight transfer

(d) backward weight transfer (e) middle kick (f) high kick

(g) forward stepping (h) rightward stepping (i) leftward stepping

(j) low punch (k) high punch (l) middle punch

Figure 6: Sample frames generated by FootSee. For each image, the lower left part shows the input foot pressure image. The
lower right part shows the corresponding pressure image of the best matching motion. The upper right part is the controlled
avatar. For comparison purpose, we render the motion of the user at the upper left part in sync with FootSee.
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Also there will always be a trade-off between responsive-
ness and accuracy. Some recognition mistakes can be easily
resolved if we allow longer latency, and make decisions us-
ing more information than onsets. Motion editing faces the
same trade-off as well. If we know exactly where we are
going before we step, the IK result will be better. In our sit-
uation, the leg may already be half way in the air before we
see the stepping error.

Where possible, we selected simple, fast, and easy to
implement algorithms, despite the availability of more so-
phisticated ones (as we have already pointed out when de-
scribing our solutions). For instance, our motion recogni-
tion algorithm needs negligible training time and a very
small amount of training data. It is interesting that the meta-
analysis of 27 suggests that more novel and complex recog-
nition algorithms do not necessarily work better. Our goal
was to quickly develop a practical system to test this ani-
mating approach, and to add complexity only when simple
techniques failed. As a result, our technique can be imple-
mented by anyone with a similar foot pressure sensor pad.

We would like to improve some of the current limitations
in future work:

• The current foot tracking and recognition (Section 4.2)
probably only works for fixed foot direction. If the user
changes his facing direction during database capture and
online control, we may need to estimate the orientation
of the feet from the pressure data as well. By carefully
exploiting the foot spatial and temporal coherence, this
may or may not be a hard problem.

• Although currently FootSee is neither truly real-time nor
highly accurate, it provides a solid point of departure for
both types of applications. We would like to try higher
pressure sensor density, higher pressure range and res-
olution, and higher capture rate, which should improve
both latency and accuracy. We would also like to incor-
porate better (but not much slower) inference algorithms,
and modelling of behavior dynamics to recognize motions
and arbitrate ambiguities, for applications that can afford
longer latency.

• We would like to combine other non-intrusive sensing
techniques with FootSee. For example, a camera can prob-
ably see the arm motions better than FootSee, while Foot-
See can resolve many ambiguities that a camera cannot.

Despite these current limitations, we believe FootSee is a
promising technique that provides an intuitive and easy-to-
use interactive interface for many types of applications, in-
cluding interactive video games, avatar control, sports train-
ing, and performance-driven animation.
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Appendix A: Derivation of α

Denote the hip position as h, the ankle position as a. As il-
lustrated in Figure 5(a), the hip vertical translation t is cal-
culated as follows

t = ‖hy −ay‖−
√

‖e‖2 −‖d‖2

Equate the left hip translation with the right hip translation,
we can get an equation of this form√

aα2 +b1α + c1 −
√

aα2 +b2α + c2 +d = 0

The above equation can be deduced to a quadratic equation

Aα
2 +Bα +C = 0

We pick the solution in [0,1]. In case the two solutions are
both in this range, we pick the one closer to 0.5. There are
cases when both solutions are out of the range [0,1], and
the resulting animation is often weird. This is because the
needed correction is too large (this often means a wrong
match just happened), while the kinematics is satisfied, other
constraints such as center of mass should stay in the feet sup-
port polygon is violated. In this case, we reduce the correc-
tion to be made in this step recursively until we get a rea-
sonable solution for α , and the stepping error is distributed
into IKs for the following steps as well, rather than trying to
correct the error in one unrealistic step.
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