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Figure 1: Signed angle field computation: (a) a human model; (b) the harmonic field from the red point on the right foot to the
green point on the left hand; (c) the two gradient fields of the harmonic fields derived from four points on the hands and feet;
(d) the signed angle field ranging from −π to π and visualized from blue to red.

Abstract
In this paper, we propose a novel shape descriptor that is robust in differentiating intrinsic symmetric points
on geometric surfaces. Our motivation is that even the state-of-the-art shape descriptors and non-rigid surface
matching algorithms suffer from symmetry flips. They cannot differentiate surface points that are symmetric or
near symmetric. Hence a left hand of one human model may be matched to a right hand of another. Our Symmetry
Robust Descriptor (SRD) is based on a signed angle field, which can be calculated from the gradient fields of the
harmonic fields of two point pairs. Experiments show that the proposed shape descriptor SRD results in much
less symmetry flips compared to alternative methods. We further incorporate SRD into a stand-alone algorithm to
minimize symmetry flips in finding sparse shape correspondences. SRD can also be used to augment other modern
non-rigid shape matching algorithms with ease to alleviate symmetry confusions.

1. Introduction

Non-rigid surface matching is the foundation of many shape
analysis and retrieval applications [TV08, vKZHCO11].
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While recent years have seen many advances on both sparse
and dense shape matching [KLF11,SY13], most existing al-
gorithms are easily confused by intrinsically symmetric fea-
tures and suffer from symmetry flips. For example, methods
based on geodesic distances or geometric quantities alone
are commonly confused by symmetries present in humans
and animals. Thus points on a left hand of one model may be
matched to points on a right hand of another. This is because
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geometric information mainly concerns about distances that
cannot differentiate symmetric or near symmetric features.

Our intuition is to incorporate surface orientation in dif-
ferentiating symmetric features. Given two pairs of feature
points, we construct two harmonic fields and their gradient
fields respectively. We then intersect these gradient fields to
derive a signed angle field that introduces a sense of ori-
entation and thus is capable of discriminating mirror sym-
metry. We will detail the signed angle field computation in
Section 3. In Section 4, we further construct a Symmetry
Robust Descriptor (SRD) using two signed angle fields gen-
erated from different orderings of the same four-point tuples.
We also show how to incorporate SRD into a sparse match-
ing algorithm to alleviate symmetry flips in Section 5. We
conduct two experiments to validate the effectiveness of our
shape descriptor and matching algorithm in Section 6. Fi-
nally, we conclude our work with a detailed discussion of its
limitations.

In summary, our contributions are: (a) we propose a novel
shape descriptor SRD based on signed angle fields that can
robustly differentiate two pairs of points, even when they are
symmetric or near symmetric; (b) we demonstrate that SRD
can be integrated into existing non-rigid surface matching
algorithms with ease.

2. Related Work

Non-rigid shape matching is a target of extensive research.
Due to space limit, we only discuss prior work most rele-
vant to our own and refer interested readers to survey pa-
pers [TV08, vKZHCO11] for more complete views of the
field.

Multi-Dimensional Scaling (MDS) transforms geodesic
distances into Euclidean distances and thus translates the
problem of matching deformable objects into a simpler
problem of matching rigid objects [EK03]. Certain Eigen-
modes can be switched under shape stretching, which is han-
dled with non-rigid ICP (Iterative Closest Point) alignment
based on thin-plate splines in [JZ06]. Generalized Multi-
Dimensional Scaling (GMDS) improves MDS by finding
the least distortion embedding of one surface into another
directly [BBK06]. More recently [SY12] rely on MDS to
find the initial correspondences and then refine the results by
an EM (Expectation-Maximization) procedure. MDS-based
spectral correspondence techniques, however, generally suf-
fer from the sign flipping problem in eigenvector computa-
tion which results in symmetry flips. We will show how to
incorporate our descriptor to handle this problem.

Sun et al. [SCF10] propose a descriptor based on fuzzy
geodesics for finding sparse correspondences for deformable
shapes. Although more consistent than previous methods
based on normal geodesic distances, it still suffers from sym-
metry flips. We will compare our SRD to their descriptor.

The strength of our descriptor is that it takes into account
the surface orientation.

Recently, descriptors based on pairwise feature points
have been adopted more and more in shape matching. 4-
Points congruent sets support robust rigid surface registra-
tion [AMCO08]. Zheng et al. [ZTZX12] propose iso-lines
of harmonic fields between pairs of interest points as a de-
scriptor for shape analysis. In [vKZH13] another pairwise
descriptor aggregates areas of the faces along the path from
one point to the other into different bins. Our SRD is par-
tially inspired by these pairwise descriptors.

Most recently twisting symmetry flips can be reduced
by penalizing transformations that deviate too much from
a pure rotation [ATCO∗10] or large deformation distor-
tions [ZSCO∗08]. Global reflective symmetry axis curves
are found to be robust for shape correspondences [LKF12].
The work of [OMPG13] is designed to address the symmet-
ric ambiguity problem present when matching shapes with
intrinsic symmetries, and thus shares the same goal as ours.
Their method performs shape matching in a quotient space
of the functional space [OBCS∗12] where the symmetry has
been identified and factored out [LCDF10]. It needs one ref-
erence shape with known symmetry for each category of
models in advance, and cannot handle models with severe
deformation.

3. Signed Angle Field

Our novel shape descriptor is based on a scalar field that we
call signed angle field. A signed angle field builds upon two
gradient fields, which are vector fields computed from har-
monic fields. We now detail the construction of these fields.

3.1. Harmonic Field

Given two points we first construct a harmonic field that is
a scalar function f defined for each vertex of a surface that
satisfies ∆ f = 0, where ∆ is the Laplace-Beltrami operator,
subject to certain Dirichlet boundary constraints. On a trian-
gle mesh surface, ∆ can be discretized as

∆i = ∑
j∈Ni

wi j(u j−ui)

where Ni indicates the neighboring vertices of i. wi j is
the weight of edge (i, j), and we use the contangent
scheme [MDSB03]:

wi j =−
1
2
(cotαi j + cotβi j)

where αi j and βi j are the angles facing the edge in the two
faces sharing the edge. Rewrite the Laplacian operator equa-
tion as a matrix, we get

∆ f =−L f
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where L is a sparse N by N matrix with entries:

Li j =

 ∑ j wi j, if i = j
−wi j, if j ∈ Ni
0, otherwise

For any point pair (p,q), a harmonic field can be con-
structed by solving the sparse linear system L f = 0 with con-
straints f (p) = 0 and f (q) = 1. We refer interested readers
to [MDSB03, SCOL∗04, DKG05] for more details.

Harmonic fields offer many desired properties: they are
smooth; their local extremes coincide with singularities; and
they are invariant to isometric deformations due to the use
of cotangent weights that reduces the sensitivity to noise and
tessellation. Figure 1(b) shows an example of the harmonic
field from a point on the right foot (red) to a point on the left
hand (green). The field varies smoothly between these two
points as indicated by the color distribution.

3.2. Gradient Field

Once we compute the harmonic field between two points p
and q, its gradient field can be derived straightforwardly. For
any face (i, j,k) in the triangle mesh we solve[ x j− xi

xk− x j
n

][
g
]
=

[ u j−ui
uk−u j

0

]
(1)

where xi,x j,xk ∈<3 are the vertices of the face, and ui,u j,uk
are the scalar values from the harmonic field for these ver-
tices. Since the gradient field is derived from the harmonic
field, it possesses the same nice properties such as smooth-
ness, isometric invariance and insensitivity to noise. In Fig-
ure 1(c), we show the gradient fields constructed from two
harmonic fields: one is from the right foot to the left hand
and the other is from the left foot to the right hand.

3.3. Signed Angle Field

Given two normalized gradient fields Ga and Gb, we can
construct a signed angle field through their intersection as
follows. On face i of a triangle mesh, we calculate the in-
cluded angle between the two gradient vectors (Gai ,Gbi ). To
determine its sign, we check the directions of the face nor-
mal ni and the two gradient vectors. Thus the signed angle
Ai for face i is

Ai = D ·acos(dot(Gai ,Gbi)) (2)

where D is the sign indicator determined by

D =

{
+1, if dot(cross(Gai ,Gbi),ni)> 0
−1, otherwise

(3)

The above signed angle field mainly has two advantages
when applied to non-rigid surface matching for shapes with
global intrinsic symmetry. First, it inherits the nice prop-
erties of harmonic fields: smoothness, isometric invariance,

Figure 2: Similarity between signed angle fields for near-
isometric(top) and non-isometric(bottom) shapes.

and insensitivity to noise. In Figure 2, we show two exam-
ples of signed angle fields. The shapes in the first row are
near-isometric while the shapes in the second row are not.
The signed angle fields for both cases, however, are similar.
This is essential for non-rigid shape matching.

The second strength of the signed angle field is its ability
to differentiate symmetric features. Existing shape match-
ing algorithms usually check the compatibility of geodesic
distances or geometric descriptors between interest points.
Thus they cannot tell the correct matches from their sym-
metrically flipped ones. For example, when matching the
first shape in Figure 2 to itself, the left limbs are easily
mismatched to the right limbs by pure geometry based de-
scriptors. In contrast, our proposed signed angle field takes
into account surface directions, e.g., flow from left to right
or from right to left, and thus can differentiate symmetric
points. As we can see, the signed angle field on top left
of Figure 2 is different from the field of Figure 1(d), even
though the point pairs are symmetric.

4. Symmetry Robust Descriptor

We now propose a novel shape descriptor based on the
signed angle fields introduced above. Given four points [rf
(right foot), lh (left hand), lf (left foot), rh (right hand)]
on a surface as shown in Figure 3(a), we first construct a
signed angle field A[(r f ,lh),(l f ,rh)] from the two gradient fields
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(a) (b) (c) (d)

Figure 4: SRD construction: given four points [lf, rh, rf, lh], we can construct two signed angle fields – (a) from [(lf,rh),(rf,lh)],
and (b) from [(lf,rf),(rh,lh)]. For each signed angle field we can build one 1D descriptor by allocating the faces into bins
according to their signed angle values uniformly divided in the range (−π,+π), and then accumulating the areas of the faces
that belong to a particular bin. We use different colors to visualize bin values in the figure. Then the two 1D descriptors are
combined into a 2D descriptor as shown in (d).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Eight signed angle fields from different per-
mutations of the same four-point tuple. We always com-
pute the signed angle fields from the points in the order of
[(red,green),(blue,purple)].

G(r f ,lh) and G(l f ,rh) as described in the last section. A one
dimensional descriptor can then be built by allocating the
faces into k bins according to their signed angle values uni-
formly divided in the range (−π,+π). Then we accumulate
the areas of all the faces that belong to a particular bin as the
bin value.

Next we compute the signed angle field A[(r f ,l f ),(lh,rh)]
from gradient fields G(r f ,l f ) and G(lh,rh) (Figure 3(e)). This
switching of the second and third points gives another 1D

descriptor. By combining the above two 1D descriptors from
the two angle fields formed by the same set of four points,
although in different orders, we obtain a 2D shape descrip-
tor of size k by k. Figure 4 illustrates this process in more
details, where the x axis denotes the bin values from the first
angle field while y axis denotes the bin values from the sec-
ond angle field. This descriptor, which we call Symmetry
Robust Descriptor (SRD), is able to differentiate symmetric
points on surfaces undergone non-rigid deformations, as we
will show later.

Note that one single signed angle field alone can be am-
biguous in the sense that Figures 3(a) and (d) look exactly
the same. This ambiguity of signed angle fields motivates
our two dimensional descriptors computed from two signed
angle fields, as shown in Figure 4. Similarly, Figures 3(a)
and (e) combined is different from Figures 3(d) and (h) com-
bined. For ease of interpretation, we always visualize the two
point pairs used for signed angle field computation in [(red,
green),(blue,purple)] in all our figures.

5. Sparse Shape Correspondence

In this section, we incorporate SRD into the algorithm of
[JZ06] to minimize symmetry flips in finding correspon-
dences between two sets of sparse interest points on two
given shapes.

We first compute Heat Kernel Signature (HKS) for all the
surface points and sort the values at a large instant (t = 100)
in descending order [SOG09]. We then iteratively select a set
of sparse points that roughly cover the whole surface evenly.
More specifically, we select the point with the largest HKS
as the first sparse point, and mark its neighbors within a ra-
dius r as covered. Then from all the remaining uncovered
points, we select the point with the largest HKS and again
mark its neighbors within a radius r as covered. We iterate
this process until all the surface points are covered. For our
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tested models and a properly set r, about 100 sparse points
are selected this way. Among all the chosen sparse points,
we detect the local maxima as extreme points, and use their
SRDs for symmetry differentiation. These extreme points
are more stable and consistent than the rest of the sparse
points, and usually about 5∼ 10 extreme points exist in our
tested models.

Next we utilize the method of [JZ06] to embed all the
sparse points into a six dimensional spectral domain. More
specifically, we first calculate the pairwise geodesic dis-
tances between all pairs of sparse points, and construct an
affinity matrix whose entries are the pairwise geodesic dis-
tances smoothed by a Gaussian kernel. We then compute
the eigenvectors of the affinity matrix, and embed all the
sparse points into the spectral domain formed by the six non-
constant leading eigenvectors. The sparse points of the two
shapes are then matched based on the L2 distance of their
spectral embedding coordinates. We refer interested readers
to [JZ06] for more details of the embedding method.

Due to arbitrary sign flips of eigenvectors, however,
there are 2k possible ways for the embeddings. The
embeddings that minimize the summed distances of all
matched sparse points are selected in [JZ06]. Such em-
beddings, however, can suffer from symmetry flips. We
thus compute the SRD distances from the extreme points,
and choose the embeddings that minimize the summed
SRD distances. Note that we do not need to com-
pute the SRD for every 4-point combination of the ex-
treme points. Suppose there are n extreme points on
the source shape, we find it sufficient to just compute
n SRDs from tuples [(1,2),(3,4)], [(2,3),(4,5)], ..., [(n −
1,n),(1,2)], [(n,1),(2,3)]. After the correct embeddings are
identified by SRDs from the extreme points, the rest of the
sparse points can then be easily matched to their nearest
neighbors in the chosen spectral embeddings.

6. Results

To show the effectiveness of the proposed descriptor, we
conduct two experiments: a permutation test and a shape
matching comparison. The permutation experiment is to tes-
tify SRD’s ability to identify the ground truth from permuta-
tions with symmetry flips; the shape matching test compares
our SRD-based algorithm with several state-of-the art algo-
rithms by finding sparse correspondences between two input
meshes. For both experiments, we use 2D SRD descriptors
of size 6 by 6.

6.1. Data set

We use a subset of watertight models from the SHREC2007
Benchmark [GBP07] which contains 400 meshes in 20 ob-
ject categories. We select three categories of objects: hu-
man, hand, and Armadillo, which contain 18, 20, and 20
models, respectively. We use the manual labeling provided

Figure 5: Statistics of the permutation test on when the
ground truth appears.

by [KLF11] as the ground truth. We do not use models such
as octopus in the dataset because they are highly symmetric
shapes with multiple solutions.

6.2. Permutation test

We conduct a permutation test similar to that of [SCF10],
which uses a 4-point based method for non-rigid shape
matching as well. They compute the Intersection Configu-
ration Distance (ICD) between two pairs of 4-point tuples,
and showed that ICD is more powerful than GDD (the differ-
ences of pairwise geodesic distances). We thus only compare
the performance of SRD to that of ICD.

We use the human and hand models for comparison with
ICD. For each pair of meshes to be matched, we generate
all possible permutations of their extreme points. We then
compute and rank the matching error for each permutation.
Similar to [SCF10], we check the sorted list and record the
first position when the ground truth appears. The earlier the
ground truth appears, the better the algorithm is in terms of
avoiding symmetry flips.

The statistics of our test is shown in Figure 5. For both
datasets, SRD outperforms ICD. The ground truth is found
as the best match for more than 90% and 70% for hu-
mans and hands, respectively, among all the mesh pairs us-
ing SRD. The improvement over ICD, more than 30% and
20% respectively, is significant. Note that this plot is differ-
ent from those of [SCF10] where ICD achieved nearly 100%
for these datasets. This is because [SCF10] treats the sym-
metrically flipped matchings as correct matching. In our ex-
periments, however, we only accept the ground truth without
symmetry flips as correct, so that the matching should not
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SRD

ICD
(a)

SRD

ICD
(b)

Figure 6: Top two matches for human and hand shape cor-
respondence: the first row in each subfigure is the result of
SRD while the second row is the result of ICD. Correspond-
ing points are colored the same. As we can see, SRD usually
finds the correct permutation as the best match; while ICD
returns more symmetrically flipped permutations as the best
match, even though it can return the ground truth as one of
the top matches.

confuse the left and right sides of a human. In Figure 6, we
show examples of matching a man to a woman, and match-
ing a neutral hand to a deformed hand. The first two best
matches are shown on the right side. We see that SRD usu-
ally ranks the ground truth higher than ICD.

Note that SRD does not perform as well for the hand mod-
els as for the human models, mainly because there are both
right hands and left hands in the hand dataset. In this case,
SRD will not rank the manually labeled “ground truth” (left
thumb to right thumb etc.) high up in the returned list. We
treat this as a desirable feature as there are cases where we
just need to retrieve left hands from an input model of a left
hand. Still SRD outperforms ICD, which can be easily con-
fused by symmetry or quasi-symmetry, such as the last row

Figure 7: Comparison of our SRD-based shape matching
with four state-of-the-art methods.

in Figure 6 where the best permutation matched the thumb
to the pinky.

6.3. Finding Sparse Correspondences

We evaluate the matching scheme described in Section 5 us-
ing the protocol of [KLF11]. We use the Human and Ar-
madillo datasets, which contain both symmetric and severely
deformed shapes. We compare our method with four latest
shape matching algorithms [JZ06], [LF09], [KLF11], and
[SY12]. The results are shown in Figure 7.

Our method outperforms the sparse matching algorithms
but is slightly worse than the BIM (Blended Intrinsic Maps)
method of [KLF11]. As our method is designed for sparse
matching only, we believe its performance can be further
improved if appropriate mechanism is added to extend our
sparse matching into dense matching. We also show some
matching examples in Figure 8, where matched point pairs
are colored the same and symmetry flips are connected by
lines. We can see that both [LF09] and [SY12] have symme-
try flips, which are avoided with our method.

The performance statistics of our SRD-based shape
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(a) (b) (c)

Figure 8: Comparison of three methods: (a) [LF09] (b) [SY12] (c) ours. Matched point pairs are colored the same. Symmetry
flips are connected by lines.

matching is listed in Table 1. Our code is in Matlab and
unoptimized. Timing was measured in seconds on a lap-
top with Pentium Dual-Core CPU T4300, 2.10GHz and 4G
RAM. For example, for a human model of 11015 vertices,
we extracted 100 sparse points in about 4.2 seconds, among
which 5 are extreme points. Harmonic fields computation
for all pairs of extreme points took about 1.9 seconds. SRDs
computation took about 0.8 seconds. In total, all computa-
tions for one human model took about 8.8 seconds. Thus
matching two human shapes from scratch takes about 18
seconds. However, for shape retrieval applications, we can
pre-compute relevant quantities for shapes in the database
and store their SRDs for fast online shape retrieval.

7. Discussion

We have proposed a symmetry robust descriptor which is
able to minimize symmetry flips for sparse matching of de-
formable surfaces. The key to SRD’s success is its aware-

ness of the surface orientation between two pairs of inter-
est points. We have also incorporated SRD into a stand-
alone algorithm for finding sparse correspondences between
non-rigidly deformed surfaces. Note that SRD can also be
used to complement other existing algorithms with ease.
Many shape matching methods search for the best mapping
between two shapes by minimizing an objective function
which usually has similar values for symmetric features. We
can thus use SRD in postprocessing to remove false positives
within the top matches returned by such symmetry insensi-
tive algorithms.

There are several limitations of our shape descriptor, how-
ever. The computation of SRD depends on the accuracy of
the gradient fields and signed angle fields. For instance, it is
well known that the gradient of harmonic functions may be
hard to compute robustly far from the “sources”. Therefore
increasing the size of the SRD actually degrades its perfor-
mance. Experimentally we found SRDs of 6× 6 or 8× 8
work best. Another effect of inaccurate fields is that SRD
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Model #Vertices #Sparse(Extreme) Points Sparse Points Detection Harmonic Fields SRDs Total
Human 11015 100 (5) 4.2 1.9 0.8 8.8

Armadillo 21774 102 (7) 9.3 11.8 2.8 26.9

Table 1: Performance statistics of each major step of our SRD-based shape matching. Timing is measured in seconds.

may mismatch nearby feature points, such as matching an
index finger tip to a middle finger tip, as can be seen from
Figure 8(c). Moreover, SRD is good at differentiating global
intrinsic symmetries but not local symmetries, such as the
center of the palm and the center of the back of the hand.
SRD also does not work well for challenging symmetries
that are even hard for humans to detect, such as multiple
arms of an octopus.

In the future, we plan to apply SRD to dense surface
matching, such as the coarse-to-fine shape correspondence
method of [SY13]. We would also like to extend SRD to
a 3D descriptor where the third dimension indicates the
geodesic distance to one of the four points used to construct
SRD. We conjecture such 3D SRD might achieve better per-
formance. In addition, we wish to incorporate Regions of
Interest, similar to [vKZH13], to adapt our algorithm for par-
tial shape matching. Note that even though our SRD-based
matching does not require complete models, as illustrated by
the second row of Figure 8, currently the missing part should
remain insignificant.
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