
Simulation for Control

KangKang Yin, kkyin@comp.nus.edu.sg,
National University of Singapore

Libin Liu, libinliu@cs.ubc.ca,
University of British Columbia

Michiel van de Panne, van@cs.ubc.ca,
University of British Columbia

Abstract. Computer simulation is a powerful tool for developing mo-
tion controllers in humanoid robotics and physics-based character ani-
mation. In this chapter, we first motivate simulation-based methods for
the control of physical robots and digital avatars, and discuss the major
differences between developing controls in simulation and on real robots.
We then detail a series of model-free algorithms developed by our group
over the years. These algorithms are based on sampling time-indexed
control actions for short duration motion fragments, in order to track
desired reference motion trajectories. We term the family of algorithms
SAMCON (Sampling-based Motion Control). The basic SAMCON and
the improved SAMCON methods reconstruct open-loop controls; the
reduced-order feedback policy learning and the guided SAMCON then
build robust linear feedback strategies around the open-loop controls. We
further introduce a general framework – Control Graphs – that learns
and organizes multiple physics-based motion skills and their transitions
from a set of example motion capture clips. This offers a potential solu-
tion for the development of rich motion repertoires for humanoid robots
as well as encourages widespread adoption of physics-based methods for
character animation. Finally, we discuss research opportunities for fu-
ture research on simulation-based control methods and transferring such
controls to physical robots.

Keywords: simulation, motion control, control graphs, sampling, policy search,
motion capture

1 Introduction

Research on motion control with simulation tools mainly originates from the
field of robotics and physics-based computer animation. In robotics, the ever-
growing complexity of robots and their environments drives the need for experi-
mentation in simulation rather than directly performing experiments on physical
robots [11,12,9]. One obvious reason is that real hardware is expensive and breaks
easily, and therefore it is commonly worthwhile to validate control strategies in
simulation before applying them on the robots. In addition, digital models are
easier to alter, numerical parameters are easier to tune, and simulations gener-
ally run faster than realtime. As a result, learning controllers in simulation can
potentially boost the performance by orders of magnitude. Furthermore, some

algorithms, including many machine learning methods, require large datasets
of state transitions or state action pairs, including failure cases, and these are
difficult or impossible to obtain from the physical system.

However in many cases, controllers trained and learned in simulation cannot
be directly applied to physical robots, mainly due to hardware constraints and
modeling errors. First, physical robots have limited sensing capabilities that are
also noisy and delayed; limited actuators that may be noisy and have difficult-
to-model properties; and limited onboard capacity for computation. In contrast,
simulations allow instant and exact access to the state of the world; actuators
are noise and fault-free; and computational resources can be abundant. These
problems can be mitigated by deliberately incorporating limitations and noise
in the simulated world. Second, the simulated world and the real world sim-
ply cannot exactly match each other. The kinematic and dynamic properties of
the simulated robots only approximate those of the real robots. The simulated
world introduces numerical errors such as discretized integrations and the use of
simplified models of real-world physics, such as simplified contact, collision, and
friction models that make the forward dynamics tractable. At the same time,
the simulated world is also perfect and noise-free in a way that is unrepresenta-
tive of the real world. For example, a friction coefficient set to 0.8 will remain
exactly 0.8 at all times; yet in real world no surface can guarantee such condition
everywhere. Therefore it is helpful to bear in mind all the hardware vulnerabili-
ties and modeling imprecisions, in order to develop robust and adaptive control
methods in simulation that will then also work when applied to physical robots.

In physics-based character animation, control methods have been developed
through simulation with goals different from those of robotics. It is often suffi-
cient to achieve physically-plausible simulations rather than physically-accurate
simulations. Moreover, visual realism and richness are emphasized more than
robustness and optimality. For example, a humanoid robot should try to avoid
falling at all times, and in extreme cases where a fall is unavoidable, it should
fall so as to minimize the damage to the environment and to itself. In contrast,
a digital character can choose to fall gracefully rather than seeking to avoid a
fall at all costs. The character can also choose to fall in multiple styles, some
clumsy, some graceful, some childish, some heroic. Stylish movements are more
interesting to look at than optimal and robust ones. With the luxury of having
no hardware limits and no hardware that could be damaged during learning,
physics-based characters can achieve more visually compelling and aggressive
motions than those attainable from physical robots. Our focus in this chapter is
therefore mainly on control methods developed in the digital domain and which
can therefore take full advantage of the benefits afforded by simulated worlds.

Physics-based animation techniques have been widely adopted for passive
physical phenomena and motions, including digital water, smoke and fire, rigid
body simulations, and ragdoll simulations (i.e., passive character simulations).
These methods are now ubiquitous in visual effects for films and games. How-
ever, motion capture remains the prevalent method for achieving high quality
character animation, given the difficulty of controlling and simulating the active,

muscle-driven motions of animals and humans. The control difficulties in realiz-
ing complex human movements arise from non-linear dynamics, under-actuated
systems, and the obscure nature of human control strategies. Nevertheless, the
problem of physics-based character control has seen tremendous progress due
to ongoing research efforts. Under-constrained motions such as balancing and
walking, as well as highly-dynamic skills such as parkour style terrain crossing
and gymnastics, can now be simulated and controlled in real time with a motion
quality that is nearly indistinguishable from motion capture data.

In this chapter we introduce a series of model-free algorithms based on sam-
pling control actions for short duration motion fragments, in order to track
desired reference motion trajectories. We term the family of algorithms as SAM-
CON (Sampling-based Motion Control), which include the basic SAMCON and
the improved SAMCON methods for building open-loop controls. We then present
two methods to build robust feedback strategies around the open-loop controls
reconstructed by SAMCON. The first learns fixed reduced-order linear feedback
policies that are invoked throughout an entire motion episode or motion cycle,
while the second learns fragment-level (time-indexed) linear feedback policies.
Lastly, we describe Control Graphs, a general framework for learning and or-
ganizing multiple motion skills and their transitions with a minimal amount of
prior knowledge, in a fashion that is analogous to Motion Graphs for kinematic
animations. Once built, control graphs support real-time physics-based simula-
tion of multiple characters, each capable of a diverse range of robust movement
skills, including locomotion, highly dynamic kicks and gymnastics, standing, ris-
ing motions, and in-between transitions. To begin, we first place our methods
within the context of previous work.

2 Related Work

We first briefly discuss the choice of simulation tools and then focus on control
methods and algorithms that take advantage of multiple simulations while treat-
ing the specific simulator as a black box. We note that in our experience, the
specific choice of simulation platforms make little difference when the control
methods are sufficiently robust.

Simulation Tools In the 1980s and early 1990s, the common options for for-
ward dynamics simulation of multilinked articulated bodies consisted of a few
third-party packages, together with in-house proprietary simulators. Over the
years, various research groups have released their relatively mature simulation
packages, and a variety of commercial products are also available on the market
for developing games and training software. ODE (Open Dynamics Engine) is
widely used in research mainly because it is open source, relatively small and
well documented. PhysX and Havok mainly target passive physics for gaming
and training applications, and are currently supported by NVidia and Microsoft

respectively. Bullet is another influential physics engine widely adopted for sim-
ulations in motion pictures and its author was awarded a scientific and technical
Academy Award in 2015 for its development. Modern packages usually handle
contact dynamics and integrate easily with modeling and visualization packages,
in addition to simulating jointed structures.

Generally speaking, in humanoid robotics, simulation tools often choose to
work in the joint angle space, i.e., generalized coordinates or reduced coordinates,
so that fast and stable recursive dynamics algorithms can be utilized. SD/FAST,
MATLAB robotics toolbox, and DART all work with reduced coordinates. For
animation and gaming, full coordinates, also known as Cartesian coordinates, are
prefered in order to also efficiently support multiple independent rigid bodies in
addition to articulated figures. Velocity stepping methods on full coordinates
are well suited to handle contacts and collisions but will have constraint viola-
tions for joints. MathEngine, ODE, Bullet, PhysX, and Havok all work on full
coordinates. Several studies have compared some of these physics engines quan-
titatively. For example, Bullet, Havok, MuJoCo, ODE and PhysX, have been
compared for model-based robotics [9]. Their conclusion is that MuJoCo per-
forms the best in robotics-related tests, while the others win in gaming-related
tests. ODE, PhysX, Bullet and Vortex have also been compared for a biped
locomotion controller SIMBICON [51,10]. They conclude that if the high-level
motion controller is robust enough, the simulations from different physics engines
make little difference.

Physics-based Animation Physics-based simulation and control of passive
rigid bodies have been quite mature and popular in graphics-driven industries
such as the gaming and film industry. The control problems there usually in-
volve generating controllable simulations and plausible variations of passive sim-
ulations [2,38,44]. Simulation and control of human-like characters, however, is
currently uncommon in industry but remains quite active as a research topic.
Since the early work on this problem over two decades ago, controllers had been
developed for many simulated skills, including walking, running, swimming, nu-
merous aerial maneuvers, and bicycle riding. However, controller design often
relies on specific insights into the particular motion being controlled, and the
methods often do not generalize for wider classes of motions. It also remains dif-
ficult to integrate motion controllers together in order to produce a multi-skilled
simulated character.

There are three broad categories of algorithms for solving the control prob-
lem for physics-based characters. The spacetime optimization, or trajectory op-
timization framework pioneered physics-based animation by imposing dynamics
constraints such as equations of motion in optimizing animation trajectories
that also satisfy user constraints, such as given keyframes [47,1]. Such methods
incur high computational cost and possibly objective function tuning, and do
not guarantee physically-plausible controls for successful forward simulations.
Recently, control actions, typically joint torques, can be directly optimized for
based on high-level control features using hybrid inverse/forward dynamics al-

gorithms [29,5]. Model-based optimal control also provides a general method for
developing robust control about given reference trajectories [32].

Controllers without explicit and exact modeling of the dynamics have also
been designed with the help of human expertise [15,51,4] or learned through
optimization [40,41]. Such controllers can be quite robust if appropriate feed-
back laws are incorporated, such as the foot placement strategy in SIMBICON-
type controllers [51,50]. Data-driven methods that track motion capture exam-
ples provide superior realism and variations [20,27] for physics-based human-like
characters. In particular, the sampling-based control strategy proposed in [27]
has demonstrated the ability to robustly track a wide variety of motions, in-
cluding those involving complex changing contacts. Therefore in this chapter
we will focus on developing robust open-loop and closed-loop controls based
on this method. In addition, we present learning methods that enable robust
multi-skilled characters.

Sampling-based Methods Our use of sampling is inspired by past successes of
sampling-based methods in various fields. In robotics, randomized sampling al-
gorithms for path planning [43,19,18], especially RRTs (Rapidly-exploring Ran-
dom Trees) offer significant benefits in speed and robustness over conventional
deterministic planning algorithms. RRTs have also been used for manipulation
planning in character animation synthesis [48]. In this chapter, we reconstruct
controls to produce plausible trajectories. A trajectory is a path with a time
constraint. Thus trajectory planning is a more difficult task than path planning:
while path planning only needs to consider kinematic constraints such as colli-
sions with static objects, trajectory planning has to take dynamic constraints
into account as well.

In computer vision, visual tracking with Sequential Monte Carlo methods
and particle filtering algorithms [7,8,16] have been quite successful. In particle
filtering, distributions are represented by a set of particles; each particle has a
likelihood weight assigned to it that represents the probability of that particle
being sampled from the probability density function. To prevent sample deple-
tion due to weight collapse during particle propagation, a resampling step adapts
the distribution of particles according to their likelihoods. Similarly, in the basic
SAMCON, we only generate samples for the next time step from good samples
in the current time step.

Sampling-based algorithms have also been explored in both passive anima-
tion [2,44] and active animation [40]. The use of local stochastic search or ge-
netic algorithms with built-in randomness can produce interesting motion, mor-
phology, and behavior variations. More recently, sampling-based optimization
methods, such as the CMA (Covariance Matrix Adaptation) strategy, have been
shown to be effective in optimizing walking controllers [46] and generating op-
timal gaits and morphologies for animal locomotion when combined with tra-
ditional derivative-based spacetime optimization [45]. The improved SAMCON
algorithm also utilizes a special CMA method referred as pµW , λq-CMA-ES [14].

Policy Search Reinforcement learning (RL) provides a convenient and well-
studied framework for control and planning. It seeks an optimal policy that
maximizes the expected returns given rewards that characterize a desired task.
Value-iteration RL methods have been used on kinematic motion models, e.g.,
flexible navigation [20], and for physics-based models, e.g., terrain traversal with
constraints [3] and with highly dynamic gaits [33]. Policy search methods are of-
ten applied to problems having continuous action spaces, often searching the
parameter space using stochastic optimization algorithms such as EM-based
approaches [35], policy gradient [36], and reinforcement learning with reward-
weighted regressions [34]. Despite such progress, policy search often suffers from
common issues related to optimization in high-dimensional spaces, such as being
sensitive to the policy representation, requiring large numbers of samples, and
convergence to local optima. Thus adapting such methods to highly agile human
motions other than basic walking and running remains an open problem.

Several recent works make progress on this problem using forms of guided
policy search, an iterative process where new samples from a control oracle in-
form the construction of an improved policy approximation, which then informs
the collection of new samples, and so forth, e.g., [21,22,31]. The guided learning
pipeline of control graphs that we will describe later has a similar guided-learning
structure but is unique in various ways, thus more powerful than previous meth-
ods to date. We develop controllers for a wide variety of realistic, dynamic mo-
tions, including walking, running, aggressive turns, dancing, flips, cartwheels,
and getting up after falls, as well as transitions between many of these motions.
Multiple simulated characters can physically interact in real-time, opening the
door to the possible use of physics in a variety of sports scenarios.

3 Sampling-based Motion Control

We introduce a family of sampling-based algorithms for building both open-loop
and closed-loop controls from motion examples. We start with defining some
terms and symbols we will frequently use hereafter. In a multibody system, i.e.,
a digital avatar, we define a pose as the aggregation of all the internal joint
angles and the root orientation and position at a particular time. A sample is
defined by a pose displacement, that when added to a pose, forms a new pose.
For convenience, we also use sample to refer to the new displaced pose. A pose
or sample only contains positional information. For a dynamically simulated
system, we also need to consider the state, which contains both position and
velocity information of the system. Table 1 lists the various symbols we use
throughout this chapter. Note that the indices i, j, k can have other meanings
depending on the context.

All simulations are performed with the open-source Open Dynamics Engine
(ODE). Our system can simulate four interacting characters in real-time or a sin-
gle character in 10� real-time on a mid-range desktop with our single threaded
C++ implementation. Except for the retargeting experiments, all our experi-

Symbol Description

p pose
p̂ target pose for PD-servos

∆p̂ offset on target poses
m simulated motion clip
m̃ input motion capture clip
m̂ control clip/tracking target trajectory

G̃ reference motion graph
G control graph
C control fragment
δt duration of a control fragment
π control policy of a control fragment

M , â gain matrix and affine term of a feedback policy
Σ variance of policy explorations
s state vector
a action vector
τk simulation tuple corresponds to Ck. τk � psk�1,ak, skq
W random walk on the control graph W � tCku
τ execution episode of the random walk, τ � tτku
i index for reconstruction trial or policy search iterations
j sample index for guided SAMCON
k index for control fragments

Table 1. Symbols

ments are performed with a human model that is 1.7m tall and with a mass of
62kg. It has 45 DoFs (Degrees of Freedom) in total, including 6 DoFs for the
position and orientation of the root. Where possible we use the same PD-gains
for all the joints. For basic locomotion, we can simply set kp � 500, kd � 50 (or
similar values) for each joint. For highly dynamic stunts, a stronger waist, e.g.,
(kp � 2000, kd � 100), and leg joints, e.g., (kp � 1000, kd � 50), are necessary.

3.1 Structure of Controllers

We model a virtual character as an under-actuated articulated rigid body system,
whose pose p � px0, q0, qjq, j � 1, . . . , n is fully determined by the position (x0)
and orientation (q0) of the root and the rotations of all n joints. We drive each
internal degree of freedom with PD-servos:

kppq̂ � qq � kd 9q (1)

where q and 9q represent the joint rotation and rotational velocity respectively,
and the tracking target q̂ is given by a target pose p̂ derived from a target
trajectory m̂. For the basic SAMCON algorithm, we used a simulation time
step of 0.5ms with the conventional PD servos. For the later sections, we follow
the idea of Stable-PD control [42] and replace the second term of Equation 1
with implicit damping [28] for better stability. This allows us to use a large

𝑡𝑡 0 𝛿𝛿𝑡𝑡

𝑚𝑚�

Δ�̂�𝑝

𝜋𝜋
𝑠𝑠0 𝒞𝒞 ∶ 𝑚𝑚� ,𝛿𝛿𝑡𝑡,𝜋𝜋

𝑠𝑠𝑒𝑒

𝑚𝑚�′

𝑠𝑠0′

𝒞𝒞 ∶ 𝑚𝑚� , 𝛿𝛿𝑡𝑡,𝜋𝜋, 𝑠𝑠0, 𝑠𝑠𝑒𝑒

Fig. 1. A control fragment: when the simulate state s10 drifts away from the reference
start state s0, the control policy π is involved to compute a compensation ∆p that
offsets the reference clip m̂ to m̂1. By tracking m̂1 with PD-servos, the simulation can
end near the reference end state se in δt seconds.

𝒞𝒞1 𝒞𝒞2
⋯

𝒞𝒞𝐾𝐾

⟺

Fig. 2. A chain of control fragments form a controller.

simulation time step of 5ms, which significantly speeds up the learning process
and improves the online performance.

Naive tracking of a reference trajectory with joint-level PD-servos is typi-
cally unsuccessful for several reasons. Tracking the motions of individual joints
provides no ability to track or restore the overall balance of a biped model.
The simplistic nature of local PD-controllers also result in a reactive model of
control that has no mechanisms for motion or force anticipation. The reference
motions themselves may be physically infeasible and the kinematic and dynamic
properties of the simulated biped model may also differ from that of the motion
capture subjects. Lastly, there are modeling errors associated with a rigid body
simulator, including oversimplified rigid biped models and simplified contact and
collision models.

When tracking a walking motion, the virtual character usually falls within
one or two steps. When directly tracking a sideways roll, the character cannot
roll more than 40 degrees. It is thus necessary to add corrections to the reference
trajectory in order to complete the underlying tasks successfully. Hereafter we
refer to the process of computing such corrections as control reconstruction,
whose output is a tracking-based motion controller that can generate appropriate
corrections at run time to lead the simulated characters to perform the reference
motion tasks successfully.

Control Fragments The basic units of the controllers in our framework, rep-
resented by the symbol C, are referred to as control fragments. More specifically,

a control fragment is a tuple tδt, m̂,πu as indicated in Figure 1, where m̂ � p̂ptq
represents a sequence of target poses in time, which can be tracked by PD-servos
to simulate a character from a start state s0 to the end state se in δt � 0.1 sec-
onds. In practice, the simulation state in effect when a control fragment begins,
s10, will not be exactly at the expected starting state, s0, due to modeling errors,
numerical drift, and perturbations.

The control actions are represented in the pose space rather than in torque
space; the low-level open-loop nature of torques is likely to make motions more
sensitive to dynamics modeling errors, as might be expected in transferring con-
trollers to real robots, to different characters, or when using different simulators.
The control policy, π, is therefore used to compute a corrective action a to pro-
duce an offset ∆p̂, that is added to m̂ in order to eliminate the deviation. As
illustrated in Figure 1, this offset remains fixed during the duration of a control
fragment, yielding a resulting control clip m̂1 � ∆p̂`m̂ that is then tracked in-
stead of m̂ in order to have the state end near the desired end state, se. Here the
operator ` represents a collection of quaternion multiplications between corre-
sponding joint rotations. The general form of the control policy for each control
fragment can be written as:

a � πps;θkq (2)

where πpa|s;θq represents the probability density of the action a given the state
s and policy parameters θ, and s and a are vectors representing the simulation
state and action, respectively.

We use a selected subset of state and action features in order to facilitate
a compact control policy. For most of the skills developed in this chapter, we
use s � pq�0 , h0, c, 9c,dl,dr,Lq, consisting of the root orientation q�0 , the root
height h0, the centroid position c and velocity 9c, vectors pointing from the
center of mass to the centers of both feet dl,dr, and the angular momentum
L. All these quantities are converted into a quasi-static coordinate frame that
has one axis vertically aligned and another aligned with the character’s facing
direction. As the vertical component of the root orientation q0 is always zero
in this reference frame, q�0 contains only the two planar components of the
corresponding exponential map of q0. s thus represents 18 degrees of freedom
(DoF). Similarly, we use an 11-DoF action vector a that consists of the offset
rotations of the waist, hips, and knees, represented in terms of an exponential
map. Knee joints have one DoF in our model. The final compensation offset,
∆p̂, is then computed from a, where we set the offset rotations of all remaining
joints to zero.

A controller can now be formally defined as a cascade of control fragments
W � tC1, C2, . . . , CNu, as depicted in Figure 2, which can be executed to repro-
duce a given reference motion clip.

3.2 Basic SAMCON

We now detail the basic sampling-based motion control (SAMCON) method that
reconstruct controls from a reference input motion capture clip m̃. The core idea

Algorithm 1 SAMCON
Require:
1: a chain of control fragments W � tCku, k � 1, . . . , N
2: the start state s0
Ensure: a successful execution of the sequence τ

1: tsj0u Ð initialize the starting set with Ns replicas of s0
2: for k Ð 1 to N do
3: for each sample j do

4: generate action aj
k � πpak|s

j
k�1q

5: sjk Ð execute control fragment Ck against aj
k

6: record a simulation tuple τj
k � psjk�1,a

j
k, s

j
kq

7: Ej
k Ð evaluate end state sjk

8: end for
9: tτj�

k u Ð select ns elite samples according to tEj
ku

10: tsjku Ð resample tsj�k u to get a new starting set of size Ns

11: end for
12: τ � tτku Ð select the best path from all saved tτj�

k u

Controller (ࣱ): ऍ,				ऍ , 				ऍ , 				ऍ , 				ऍ , 				ऍ , 				ऍૠ , 				ऍૡ ,				ऍૢ

SAMCON:

Fig. 3. Schematic illustration of the SAMCON process, with Ns � 4 and ns � 2. All
the samples for all the control fragments form a tree. The final reconstructed controller
is colored in red.

is to draw a large number of samples, i.e., pose displacements for each control
fragment, Ck, in order to develop a sequence of actions taku that results in control
fragment end states, tsku, that are nearby those of the desired reference motions.
A straightforward way to draw samples is from normal distributions that have
fixed mean and covariance and are state-independent [27], e.g., πpak|sk�1q �
N p0,Σq.

Algorithm 1 outlines the main steps of SAMCON, and Figure 3 provides a
simple example. Specifically, for the first control fragment, SAMCON initializes
an initial set of states tsj0u with j P 1...Ns replicas of the start state s0, and

samples an action aj1 for each sj0 according to the fixed normal distribution

as described above. It then advances the simulation from sj0 while executing

the control fragment with the corresponding compensation offset ∆p̂j1 computed

from aj1. The simulation results in a tuple τ j1 � psj0,a
j
1, s

j
1q whose end state sj1

is evaluated by a sample cost function to measure the goodness of a sample.
After executing all Ns sample actions and obtaining the simulation tuples

tτ j1 u, SAMCON selects and saves the ns best tuples tτ j�1 u, as measured by the
lowest sample costs, and then systematically resamples the corresponding end
states tsj�1 u according to their costs to obtain a new starting set tsj1u of size Ns

for the successive control fragment. This is akin to the resampling procedure used
in particle filtering, i.e., better samples produce more successors. This sampling
procedure is repeated for each stage of the motion, i.e., once per control fragment,
until the end of the chain is reached. Finally, the resultant controller τ � tτku
is chosen to be the best path of all saved tuples tτ j�k u.

Sample Cost Evaluation Our cumulative sample cost function uses a weighted
sum of the terms given in Equation 3, which measures the dissimilarity between
a simulation tuple’s end state and that of its corresponding reference end state.

E � wpEp � wrEr � weEe � wbEb

� wcEc � wvEv � wLEL � waEa (3)

where the terms for pose control Ep, root control Er, end-effector control Ee,
and balanced control Eb will be explained shortly. We additionally regularize
the differences between the simulation and the reference in terms of centroid
position Ec, centroid velocity Ev, and the angular momentum EL. The last
term, Ea, simply serves to regularize the Euclidean norm of the actions. We use
pwp, wr, we, wb, wc, wv, wL, waq � p4.0, 4.0, 10.0, 1.0, 3.0, 0.1, 0.03, 0.05q for all our
experiments. Our results are not sensitive to the exact values of these weights
so other values of the same order of magnitude can be used as well. Now we
describe the details of the different terms. Note that over the years these terms
have been evolved to handle a greater variety of motions so they appear slightly
different here from their first definition in Liu et al. [27].

Pose Control: We favor states that are close to the trajectory. Here we simply
use a weighted squared distance of internal joint angles and angular velocities.

Ep �
1°
wi

¸
wipdqpqi, q̃iq � 0.1 � dvp 9qi, 9̃qiqq (4)

where dvp 9q, 9̃qq � } 9q� 9̃q}2 is the Euclidean distance between two vectors, dqpq, q̃q �
} logpqq̃�1q}2 is the distance between two quaternions, and represents quater-
nion multiplication. wi adjusts the relative importance of different joints. We
usually use wi � 5.0 for the waist and the leg joints, and wi � 1.0 for the rest of
the joints. We can adjust the weights to produce further variations, if desired.

Root Control: The root orientation of underactuated systems can only be con-
trolled indirectly via potentially-complex interactions between body parts and
the ground. We therefore select samples that closely track the orientation of the
reference trajectory, as captured by:

Er � dqpq0, q̃0q � 0.1 � dvpq0, 9̃q0q (5)

End-effector Control: Many motions involve non-trivial interactions between
the ground and the hands and feet. The locations of these end-effectors are

thus crucial to task success. We use a term that monitors the error between the
desired and current height of end-effectors, which ensures foot clearance during
locomotion for instance:

Ee �
1

k

¸
phi � h̃iq

2, (6)

where k is the total number of end-effectors considered, hi is the height of the
ith end-effector.

Balance Control: Balance control is typically achieved by adjusting the Center
of Mass (CoM) with respect to the support polygon. We use the relative position
of the CoM with respect to each end-effector instead. This has two advantages.
First, we do not need to detect support polygons from noisy captured motions.
Second, even when an end-effector is not in contact with the ground, its relative
position with respect to the CoM still counts. This is important for the end-
effector to prepare for a proper landing position.

We calculate the balance deviation according to:

Eb �

°
widvprci � r̃ciq°

wi
� 0.1 � dvpvCoM , ṽCoM q (7)

where wi � 1.0{p0.001 � hiq, hi is the height of the end-effector, and rci �
ppCoM � piq is the vector from end-effector i to the CoM.

Results Despite its apparent simplicity, the basic SAMCON algorithm can
produce successful control reconstructions for relatively short reference motions
with rich ground contacts. Figure 4 top shows a simulated forward roll controlled
by the reconstruction of the basic SAMCON. Such simulations have been difficult
to achieve with other methods due to the many transient contacts that are hard
to model.

The inherent robustness of the sampling approach enables straightforward
physically based motion transformation and motion retargeting. For example,
we can reconstruct the forward rolling onto a 100cm height drop as shown in
Figure 4 bottom. We can retarget various motions captured from human sub-
jects, such as the barrel roll, to the Asimo-like robot model as shown in Figure 5.
These retargeting tasks are challenging for the Asimo model because of the large
differences between the human subjects and the Asimo model, in terms of their
kinematic parameters, dynamic parameters, and collision detection geometries.
Nonetheless, SAMCON succeeds in reconstructing controls for most of the mo-
tions we tried for the Asimo-like model. Compared with control reconstruction
for a human-like model, SAMCON requires larger sampling windows, produces
motions of lower quality, and is less accurate in terms of trajectory tracking.
For example, due to wider and boxy legs, and the lack of a waist joint, Asimo
cannot twist its spine or its legs around each other like humans do, and has
to rely on a shoulder strategy to roll sideways. The Asimo running is sluggish,
mostly because Asimo has bent knees defined for its T-pose, which causes early
touchdown of the feet when the knees extend during locomotion. We were not

Fig. 4. Top: a simulated forward roll controlled by the reconstruction of the basic
SAMCON algorithm. Bottom: the same forward roll transformed to a dive roll.

able to successfully reconstruct controls for the backward roll on Asimo. How-
ever, we can produce a successful backward roll from the sampled controls when
we give Asimo a 3-DOF neck.

3.3 Improved SAMCON

The basic SAMCON, Despite the success described above, the basic SAMCON
method has limitations. Firstly, it samples from fixed distributions and the con-
trol reconstruction process treats each trial independently. If failure occurs, the
reconstruction restarts with the same sample distributions without learning any-
thing from past experience. Thus when working with challenging motions where
the success rate of sampling is low, the method becomes inefficient and requires
an excessive number of reconstruction passes. We address this limitation with
the key insight that later control reconstruction passes should learn from earlier
successes and failures in order to draw better samples. We realize such learn-
ing through adaptation of the distributions that we draw samples from. We
implement this sample distribution adaptation scheme by a modified CMA (Co-
variance Matrix Adaptation) method that will be described shortly.

Fig. 5. A sideways roll captured from human retargeted to an Asimo-like robot using
the basic SAMCON.

The second limitation of the basic SAMCON occurs because of the need to
restart the search from the beginning of the motion when failure occurs. As a
result, the method takes excessively long to reconstruct long motions or motions
that contain specific events that are critical to its success. For example, motions
with long-flight phases such as gymnastic movements need to be controlled more
precisely before the take-off, as the flight phase offers limited opportunities to
correct errors. We address this issue by integrating a sliding window mechanism
into the sample distribution adaption process to improve the reconstruction ef-
ficiency and robustness for long motions and motions with critical instants. The
sliding window scheme can also prevent overfitting of earlier control fragments
by moving them out of the window once they converge.

Lastly, the basic SAMCON is inherently noisy and thus the resulted motions
may look jerky. Such artifacts are not so noticeable for floor interactions but can
become disturbing for balancing and locomotion tasks. For instance, the head
and body of the virtual character may shake unrealistically during standing or
while walking. We propose two averaging methods to reduce the noise in re-
constructed controls, which are both effective in terms of noise reduction, but
the simple averaging method needs multiple control trajectories and may be-
come inefficient for challenging motions. In contrast, the elite averaging method
averages elite samples during reconstruction is more efficient in achieving good
results.

Sample Distribution Adaptation To equip the original algorithm with a
learning ability, we employ the idea of distribution adaptation. The key is to ac-
knowledge that even failed reconstruction passes may still contain good samples
in the early iterations. We can thus learn from these elite samples to reshape
the default normal distributions from which we draw samples for the next re-
construction trial. We move the centers of the distribution as well as update
the shape of the distribution, πikpak|sk�1q � N pâik,Σ

i
kq, where k is the control

fragment index and i is the trial index, to favor samples that are closer to the
true solution space, similar to CMA-based algorithms.

More specifically, we adapt the sample distributions for earlier successful con-
trol fragments Ck before we start the next trial Ti, as illustrated in Figure 6. The
first trial T1 draws samples from default normal distributions π1

k � N pâ1
k,Σ

1
kq,

ଵ

ଶ

ଷ

ଵ ଶ ଷ ସ
…

… … … … … …

Fig. 6. An illustration of our sam-
ple distribution adaptation method.
T1: the first control reconstruction trial
fails at control fragment C2, so only the
distribution for C1 is updated. T2 and
T3: after a few trials, more distributions
get updated and longer control trajec-
tories can be constructed. Ti: the dis-
tributions of C1 and C2 have converged,
the reconstruction window is slid to
start from C3.

where â1
k � 0 and Σ1

k is initialized with the default sampling window size. When
T1 fails at control fragment C2, we update the sample distribution for C1 using
the elite samples, i.e., the saved samples, and denote the new distribution as
π2

1 � N pâ2
1,Σ

2
1q. Then we start another reconstruction pass T2 for which we

draw samples from the updated distribution π2
1 for C1. This process continues

and the algorithm utilizes elite samples of past trials to gradually direct future
sample drawings closer and closer to the true solution. This is in contrast to the
basic SAMCON, which always draws samples randomly from fixed distributions.

We use the pµW , λq-CMA-ES method [14], a stochastic global optimization
technique, to update sample distributions for each iteration. Our algorithm thus
only has one new parameter compared to the basic SAMCON: the step size
parameter for the CMA algorithm, and we initialize it to 0.1 for all the examples
shown. The normal distributions are updated according to the quality of elite
samples, that is, better elite samples are weighted more during the update. The
sample quality is measured by: a) the height of the sample’s offspring subtree;
and b) the cumulative cost of the best path from the sample to the leaves.

Note that our distribution adaptation method is different from other appli-
cations of CMA in the control optimization literature [1]. These sample from
the full control space, which usually results in high computational cost even for
sparsely placed control points on the time line, yet we update distributions for
each control fragments independently.

Sliding Window The distribution adaptation method described above further
enables two improvements to achieve more effective control reconstruction, es-
pecially for long motion clips. First, we can choose to run up to a fixed number
of control fragments in each trial, rather than wait until the trial fails, so that
the sample distributions can be updated in a timely fashion. Second, the dis-
tributions for the earlier control fragments will likely converge after multiple
updates, thus we can skip these fragments in future trials to focus sampling only

for the later fragments. These two variations combined suggest a sliding window
mechanism for control reconstruction.

More specifically, we use fifty control fragments (five seconds) as the size of
the sliding window in all our experiments. We slide a fragment outside of the
window if: (a) the distribution of the fragment has been updated for at least five
times and at most twenty times; and (b) the distribution has stabilized, i.e. the
cost of the control has not decreased for the last five trials; or (c) the best sample
drawn from the distribution is good enough according to the cost function. Note
that long motions usually consist of both high dynamic segments and static
balancing periods, thus we need to normalize the cost function according to the
kinetic energy of the window to more accurately estimate convergence.

Generally speaking, reconstructing controls for a challenging motion with
the basic SAMCON may fail even when using large sampling windows, large
number of samples, and multiple passes of reconstruction. In contrast, the im-
proved SAMCON can learn from earlier trials to advance to success window by
window. For motions that can be reconstructed successfully by both algorithms,
the reconstructed controls from the improved SAMCON are superior in quality.
This is because the improved method is able to gradually move and reshape the
sample distributions so that smaller sampling windows can be used to reduce
sampling noise.

Noise Reduction Sampling-based methods are inherently noisy. Post-smoothing
of the controllers does not work as it results in physically invalid controls. We
thus follow the law of large numbers, which suggests simple averaging as an ef-
fective method of noise reduction. The basic SAMCON can employ averaging
in a straightforward fashion. We simply run the reconstruction multiple times
until N control trajectories m̂1

i, i � 1 . . . N are generated. We denote their cor-
responding simulated trajectories as mi. Then we average these trajectories as:

�m1 �
1

N

Ņ

i�1

m̂1
i, m̄ �

1

N

Ņ

i�1

mi (8)

Note that these trajectories are a collection of poses in time, so the averaging op-
eration is applied to all the frames at the same instant of time on the trajectories.
Since time scaling may occur during control reconstruction, the trajectories need
to be first resampled to the same length in time before they can be averaged.

We then rerun the sampling algorithm using �m1 as the initial solution and
m̄ as the reference. This final reconstruction pass only needs to use very small
sampling windows, and thus a much smoother control trajectory can be obtained.
Note again that �m1 itself is not a control solution, just like any kinematically
smoothed version of m̂, because they violate the equations of motion constraint.
However, �m1 is obtained from averaging physically plausible controls and is thus
closer to the solution than kinematically smoothed controls.

The averaging method described above is simple, effective, and can be directly
applied to the basic SAMCON. However, it requires multiple passes to obtain at

least N successful control trajectories for the averaging operation. If the success
rate of control reconstruction is low, for example for challenging motions that
motivated the distribution adaptation method, the computation can become
prohibitive. We now introduce Elite Samples Averaging, which reduces noise by
using the elite samples as soon as the first control trajectory m̂1 is obtained.

More specifically, for each control fragments in m̂1, we compute a weighted
average of all the elite samples ∆p̂jk as follows:

∆pk �

°
hj∆p̂

j
k°

hj
(9)

where hj is the sample’s subtree height in Figure 3 and has to be larger than four
for a sample to be considered elite. It measures the quality of samples by their
descendants, and is therefore better than the near-sighted sample cost function.
We then use the averaged samples as an improved initial guess for another control
reconstruction pass.

We also shrink the sampling windows gradually and replace the reference
motion with the simulated motion periodically. This is because the average of
elite samples is a better initial guess for control reconstruction, and the simulated
motion is a dynamically-filtered version of the reference motion. For all our
experiments, we reduce the sampling window by 30% after each successful trial.
The algorithm is not sensitive to this parameter to be successful, and will simply
take longer if less reduction is used. We replace the reference motion with the
simulated motion of the last successful reconstruction whenever we encounter a
failure in the reconstruction process. The above described scheme learns from
past successful trials as fast as possible rather than wait for multiple successful
reconstructions. Therefore, the sampling noise can be reduced much faster as
compared to the simple averaging scheme.

Results We have tested the improved SAMCON algorithm using a variety
of motions, including low-momentum motions, high-dynamic motions, airborne
motions, and long performance routines. We initialize the sampling window to
0.1, which is then gradually adapted after each trial. Figure 7 shows the anima-
tion strips of a gymnastic flip on the top, a stylized walk in the middle, and the
stylized walk retargeted to a monster character at the bottom.

In summary, the improved SAMCON using the sample distribution adap-
tation method coupled with the sliding window scheme is more successful for
challenging motions, requires less parameter tuning, and produces motions of
better quality, compared with the basic SAMCON. We refer the interested read-
ers to [25] for more details. The simulated motions are generally of high quality,
but may still contain visible noise for motions with long static balancing periods
where the absolute value of visually tolerable noise level is low. In such cases,
we can apply the elite averaging method to further reduce the noise level in a
few additional control reconstruction runs. When computational resources are
abundant, simple averaging is preferable for better noise reduction effect.

Fig. 7. Simulations of a gymnastic flip (top), a stylized walk (middle), and the stylized
walk retargeted onto a monster character (bottom).

3.4 Learning Feedback Policies

The control fragments reconstructed thus far by both the basic SAMCON and
the improved SAMCON can only produce open-loop controls, meaning that
the simulated characters can complete the tasks successfully without external
perturbations, as the reconstructed control policies π are strictly functions of
time. In order to produce robust execution of skills that can recover from a
reasonable amount of environmental or user-input perturbations, closed-loop
feedback policies are necessary. We explore linear feedback policies as follows:

a � πps;θq

� πps;M , âq

�Ms� â (10)

where M represents a feedback gain matrix, and â is an affine term similar to
the mean of the Gaussian control policy in the improved SAMCON method. The
feedback parameters are then defined as θ � pM , âq.

Learning one linear feedback policy for each control fragment results in a
high-dimensional control parameterization, θ � tθku � tpMk, âku, k P t1, . . . Ku.
Learning through policy search in this parameter space is challenging. We pro-
vide two alternative approaches to this problem. The first is to reduce the dimen-
sionality before learning. We can learn feedback laws not at the granularity of
the control fragments level, but at the motion clips level. We can further learn
reduced-order feedback laws which factorizes the feedback gain matrix M to
reduce its dimensionality. These measures reduce the flexibility and robustness
of the resultant controls, but nevertheless are quite successful for a significant

number of cyclic motion tasks. We refer to this method as learning reduced-order
feedback policies.

The second approach, which we refer to as guided SAMCON, retains the
dimensionality of the control space but builds on the recent ideas of guided policy
search algorithms. Guided SAMCON is an iterative policy search process where
new samples from the control oracle, i.e., SAMCON, inform the construction
of an improved policy, which then informs the collection of new samples by the
control oracle.

We will now discuss learning reduced-order feedback policies for individual
motion skills and defer the discussion on guided SAMCON and control graphs
to Sections 3.5 and 3.6.

Reduced-order Feedback Structure We rewrite the above general affine
form of linear feedback policies as a linear function of changes in sensory obser-
vations:

a �Ms� â

�Mps� ŝq

�MF � δs (11)

where MF is the same m � n feedback matrix as M but we use the subscript
F to emphasize its full-order characteristics, which will then be factorized into
reduced-order feedback matrices shortly. The reference sensory observations, ŝ
can be obtained from the nominal open-loop control policy, such as the output
of SAMCON. Here we only study static output feedback, where the feedback
gains MF do not change over time. MF either stays fixed throughout the entire
motion skills, such as running or rolling, or changes only across distinctive phases
of motion skills, such as vaulting or drop-rolling.

The full-order linear feedback policy is parameterized by the m�n elements of
MF . In order to define more compact policies, we can factor MF into two com-
ponents: (i) a r�n sensory projection matrixMsp that projects high-dimensional
sensory observations to a reduced-order state space; and (ii) a m� r action pro-
jection matrix Map that maps the reduced-order state back to the full action
space to produce the feedback compensation. The feedback policy then becomes:

a �Map �Msp � δs (12)

The reduced order feedback policy has rpm � nq parameters. Choosing r
mn{pm � nq guarantees a policy with fewer parameters than the full policy.
This further implies r minpm,nq. The intermediate reduced-order space of
dimension r can be thought of as a latent space defined by a small number of
abstract composite variables that are particularly useful for providing feedback.
We use (n:r:m) to describe a linear feedback policy with n-dimensional sensory
state, r-dimensional reduced-order space, and m-dimensional actions. Full-order
feedback policies will be denoted by (n:F:m).

Additional sparsity can be enforced by encouraging rows and columns to
be zero. This can implicitly perform feature selection among actions (rows of
Map set to zero) and sensory observations (columns of Msp set to zero). This is
implemented as part of the policy optimization process, as we discuss next.

Policy Optimization We apply policy search using repeated rollouts in order
to optimize the linear feedback structures M , which consists of either the full
matrixMF or its reduced-order factored formMap �Msp. Given a desired motion
task, a cost function is defined. These share a common structure:

costpMq � w � rSpMq, EpMq, UpMq, RpMqs (13)

The function score is a weighted sum of four terms: SpMq rewards structures
that make the motion as robust as possible; EpMq measures how well the re-
sulting motion meets the environment constraints; UpMq measures how well the
motion satisfies user specifications; and RpMq is an optional regularization term
used to encourage the sparsity of M and therefore implicitly feature selection on
the sensing and control variables. We use L1 regularization terms for the norms
of column vectors in the sensory projection matrix Msp as well as L1 norms of
row vectors in the action projection matrix Map. This yields:

RpMq � w0

¸
i

¸
j

��Mspij

��
1
� w1

¸
i

¸
j

��Mapij

��
1

(14)

We again use CMA (Covariance Matrix Adaption), a stochastic global opti-
mization technique [14], to optimize the feedback structure. The optimization
begins from an initial guess consisting of zero-valued entries. For some control
tasks, the optimization is challenging due to the complexity of the dynamical
system and the fact that good solutions may only be found in a highly restricted
region of the parameter space. For these tasks we therefore break the optimiza-
tion into multiple stages, each with increasing difficulty, and each using the
solution of the previous stage as a starting point.

Results We apply our method of learning feedback policies to a variety of
motion skills [6,26], such as running, jumping, and drop-rolling. We will only
discuss two of them in details here. For each skill, we detail the sensory variables,
control actions, cost functions, and staged-learning (if any). We use the basic
SAMCON to construct the open-loop controls from a single captured example
of each skill. We test the full-order linear feedback policies as well as several
reduced orders.

Rolling: To learn a reduced-order feedback policy for a parkour-style front roll,
we repeat a motion captured parkour roll four times to obtain a cyclic kinematic
reference motion. We employ the basic SAMCON to construct an open-loop
rolling controller that is able to roll the character for one cycle. We further
use phase resetting upon right foot contact and right elbow contact to align the

Fig. 8. Forward Rolling with reduced-order linear feedback.

simulation with the reference, rather than adhere to the 0.1s simulation duration
literally for all control fragments.

Optimization is carried out using a series of sequential stages. Rollouts of 2,
4, 16, and 50 locomotion cycles are used during stages 0,1,2, and 3, respectively.
We move CMA to the next stage when the iteration count exceeds 1000 or the
value of objective function is smaller than a chosen threshold. The components
of the cost function are given by:

costpMq � SpMq � UpMq
SpMq � wtpNdTc � tbalanceq
UpMq � wpEp � wτEτ

(15)

where Nd is the desired number of rolling cycles, Tc is the length of one ref-
erence rolling cycle. The simulation is terminated after a fall or when the de-
sired number of cycles is reached. Ns is the actual number of cycles of the
simulation, whose termination time is denoted as tbalance . Ep computes tra-
jectory deviation between the simulated and the reference motions; and Eτ
measures the control energy, which is a sum of all the internal joint torques.
We refer the readers to [6] for their exact mathematical definitions. We use
pwt, ws, wp, wτ q � p200, 10, 10, 0.005q for all the optimization stages.

We learn a successful first-order linear feedback policy (88:1:39) for this skill
using full-body state and action descriptions. The full-body state is of 88 dimen-
sions s � th0,v0, q0, 9q0, qj , 9qju, j P t1, . . . ,mu. h0 is the height of the root; v0,
q0 and 9q0 are the linear velocity, the orientation and the angular velocity of the
root. These quantities are in the facing coordinate frame of the root. qj and 9qj
are the rotation and angular velocity of joint j in the parent body’s coordinate
frame. The full-body action is PD target pose a � tqju, j P t1, . . . ,mu of 39
dimensions. With an extra optimization stage with terrain variations, the rolls
are robust to these as well. Figure 8 illustrates example rolls onto a step. Devel-
oping model-based controllers for this type of task would be difficult because of
the rapidly changing ground contacts. In contrast, policy search methods do not
need an explicit model of the dynamics; the impact of control is simply observed
via policy rollouts. The robustness to pushes varies with respect to the push di-
rection. For example, the character can recover from a large push to the forward
right direction (460N), but only a small push to the forward left (220N), both

Fig. 9. Vaulting over a 90cm-obstacle with multi-phase reduced-order linear feedback.

last for 0.2s. This is explained by the asymmetric parkour roll. The results are
robust to 10 cm steps in the terrain.

Vaulting: Speed vaulting is a complex skill that consists of multiple contact
formations and releases, and full-body clearance over the obstacle, as shown
in Figure 9. A single time-invariant feedback matrix for the full course of the
maneuver is inadequate to produce robust and realistic controls throughout the
motion. Following the common choice of motion decomposition developed by
parkour experts, we segment a full vault into three phases: phase 1 - one hand
reaches out for the top of the obstacle, and both legs lift off from the ground;
phase 2 - the body passes over the obstacle and one foot lands on the other side
of the barrier; phase 3 - the character continues to move fluidly in the direction.
Phase 1 starts from the first frame and ends when the CoM passes the hand-
obstacle contact; phase 2 then starts until one foot touches the ground; phase 3
continues further until the end of the vault. The multi-phase feedback policy for
vaulting then becomes a � Mkδs, where k P t1, 2, 3u is the phase index that
correlates with the character state and simulation time.

We experiment with a manually-chosen reduced set of key sensory properties
and action parameters. A 15-dimensional s � tq0, c, 9c,d,dswu, where q0 is the
root orientation; c and 9c are the CoM position and linear velocity; d is the
vector pointing from the COM to the stance foot; and dsw the position of the
swing foot with respect to the root, for better control of the clearing height
and landing location. In addition, for phase 1 we augment the sensory set with
the position of the supporting hand in order to allow for better control of the
hand-obstacle contact location. These properties are in the facing frame of the
root. We choose the hips and the waist as our key joints for a 9-dimensional
action vector, a � tqswhip, qsthip, qwaistu. All these rotations are defined relative
to their parent frame.

We again use CMA to optimize for the feedback policy. We only learn the
feedback policy for robust transitions between vaulting and running, as vaulting
is short in duration and non-cyclic. Several CMA iterations, with the following
optimization goal, are already sufficient:

costpMq � EpMq � UpMq. (16)

Similar to the rolling task, UpMq for vaulting contains terms to measure the
difference between the simulated motion and the reference, with an emphasis on
the end-effector position difference now for precise control of obstacle clearing

Fig. 10. An physics-based character runs, vaults, jumps, and drop-rolls across a terrain
in parkour style in a real-time simulation. Given a single motion capture clip of each of
these four skills as input, an offline learning process develops robust feedback control
policies for parameterized versions of these skills, as well as transition motions.

and landing. EpMq controls desired contacts and penalizes unwanted collisions.
It is the most important term for guiding clearing maneuvers to overcome obsta-
cles. For vaulting we need to guide both feet to overpass the obstacle; to guide
the hand onto the center of the obstacle for supporting the full body; to control
the contact position of the first landing foot; and to control the hand position
with respect to CoM to stay close to the reference, because the hand supports
the body when both feet are in the air similar to what a stance foot does during
normal locomotion. We refer the readers to [26] for the exact definitions of these
terms.

The vaulting feedback controller thus learned from a single example motion
only works for obstacles that are close in height to that of the example motion.
We can, however, further employ the same policy optimization approach to ob-
tain a series of parameterized feedback controllers that work for a larger range of
parameters. For example, we can achieve running at various speeds and turning
rates, and obstacle clearing maneuvers over barriers of varying heights. These
parameterized running and obstacle clearing controllers can be further composed
together to achieve parkour-style terrain crossing, as shown in Figure 10 if ad-
ditional optimizations are employed to adapt the feedback policies during the
transition periods between different maneuvers. We refer interested readers to
[26] for more details.

3.5 Guided SAMCON

The method for learning feedback policies as described in the last section has
several limitations. First, the feedback policies are learned on a large time scale,
either for the entire motion or for distinctive phases of motion skills. This re-

quires some trial-and-error to test if a single feedback policy works for the entire
motion, or domain knowledge to segment the motion into reasonable phases.
This limits the robustness of the learned policies and necessitates special treat-
ments in order to achieve motion transitions. Ultimately we desire a feedback
policy for each control fragment, so to react to perturbations and changes ro-
bustly in a flexible fashion. The smaller granularity on the scale of 0.1s also
enables a unified learning process for all motion skills and motion transitions,
thus reduces the manual work on motion segmentation and objective function
design. However, learning time-indexed policies significantly increase the dimen-
sionality of the parameter space, posing a significant challenge to derivative-free
optimization methods such as CMA, even when coupled with the sliding window
mechanism and reduced-order feedback.

Inspired by the recent advances on guided policy search [21,22,31], we de-
sign an iterative guided learning process, which we refer to as guided SAMCON
hereafter, for learning linear feedback policies for each control fragments: the
SAMCON method serves as a control oracle that provides high-quality solutions
in the form of state-action pairs; linear regression on these pairs then provides
an estimated linear control policy for any given control fragment. Importantly,
successive iterations of the learning are coupled together by using the current
estimated linear control policy to inform the construction of the solution pro-
vided by SAMCON; it provides the control oracle with an estimated solution,
which can then be refined as needed. This coupling encourages the oracle and
the learned control policy to produce mutually compatable solutions. The final
control policies are compact in nature and have low computational requirements.

We construct high-quality open-loop control trajectories from the input mo-
tion clips using the improved SAMCON algorithm, and initialize the control
fragments with the resulting open-loop controls. Starting from the end state of
the last control fragment sk�1, each execution of a control fragment Ck results in
a simulation tuple τ � psk�1,ak, skq. Guided SAMCON uses the current policy
of each control fragment Ck as the distribution to sample from:

ak � πpsk�1;θkq

� πpsk�1;Mk, âk,Σkq

� N pMksk�1 � âk,Σkq (17)

θk � tMk, âk,Σku as we superimpose Gaussian explorations onto linear deter-
ministic feedback policies. We use a diagonal covariance matrix Σk with the
assumption that each dimension of the action space is independent. This can
be viewed as an enhancement of the basic SAMCON (§3.2) that employed a
fixed sampling distribution, πpak|sk�1q � N p0,Σ0q, and also of the improved
SAMCON (§3.3) that evolves the mean and covariance of the sample distribu-
tions iteratively in a state-independent fashion, i.e., πpak|sk�1q � N pâk,Σkq.
The guided sample selection and resampling implicitly focuses the exploration
on regions of the state space that are both relevant to the current policy as well
as regions of the action space that are known to yield desired motions.

Random Walk (𝒲𝒲): 𝓒𝓒𝟏𝟏,𝓒𝓒𝟐𝟐,𝓒𝓒𝟐𝟐,𝓒𝓒𝟑𝟑,𝓒𝓒𝟏𝟏,𝓒𝓒𝟏𝟏,𝓒𝓒𝟐𝟐,𝓒𝓒𝟑𝟑,𝓒𝓒𝟏𝟏

Guided SAMCON:

Linear Regression:

𝑠𝑠0 𝑠𝑠2
𝑗𝑗 𝑠𝑠3

𝑗𝑗 𝑠𝑠4
𝑗𝑗 𝑠𝑠5

𝑗𝑗 𝑠𝑠6
𝑗𝑗 𝑠𝑠7

𝑗𝑗 𝑠𝑠8
𝑗𝑗 𝑠𝑠9

𝑗𝑗𝑠𝑠1
𝑗𝑗

𝑎𝑎1
𝑗𝑗

∼ 𝜋𝜋1 𝑠𝑠0;𝜃𝜃1

𝓒𝓒𝟏𝟏

𝓒𝓒𝟐𝟐

𝓒𝓒𝟑𝟑

{
{
{

}
}

}

𝝉𝝉:

𝝅𝝅𝟏𝟏 𝝅𝝅𝟐𝟐 𝝅𝝅𝟐𝟐 𝝅𝝅𝟑𝟑 𝝅𝝅𝟏𝟏 𝝅𝝅𝟏𝟏 𝝅𝝅𝟐𝟐 𝝅𝝅𝟑𝟑 𝝅𝝅𝟏𝟏

Fig. 11. Schematic illustration of the guided SAMCON process.

Voluntarily including noise in optimization has been shown to be useful to
prevent over-fitting and allows the learned policy to deal with larger uncertainty
[46,26]. We build on this idea by further adding a Gaussian noise vector εk �
N p0, σ2

εIq to the action samples. We thus compute the compensation offset ∆p̂jk
from ajk�εk. The noise vector is assumed to be unknown to the feedback policies,
and is not recorded or included in regression. We find that a uniform setting
σε � 3� is enough to allow all of our motions to be robustly executed.

We now describe the details of the linear regression for our problem. Then
we will derive the iterative use of the linear regression model from an EM-based
(expectation maximization) policy search algorithm, which readers can safely
choose to skip without affecting the understandability and implementation of
the guided SAMCON.

Estimation of Linear Feedback Policy The linear regression problem for
control fragments k yields a model to predict a as an affine function of s, as per
equation 17, where

Mk �
�
pSTk Skq

�1pSTk Akq
�T

(18)

âk � āk �Mks̄k�1 (19)

diagpΣkq �
1

Nτ
diag

�
pAk � SkM

T
k q

T pAk � SkM
T
k q
�

(20)

where āk and s̄k�1 are the averages of Nk simulation tuples ajk and sjk�1 respec-
tively, the Nk-row matrices Sk and Ak represent the centered collections of all
the tuples, i.e.

Sk �
�
s1
k�1 � s̄k�1, . . . , s

Nk

k�1 � s̄k�1

�T
(21)

Ak �
�
a1
k � āk, . . . ,a

Nk

k � āk

�T
(22)

The feedback policies are initialized to zero, i.e. M � 0, â � 0. To prevent
the regression from being underdetermined, the control fragment sequence W
has to be long enough so that Nk ¥ 200 for all control fragments. This is easy
to achieve for cyclic motions, i.e., we simply repeat the cycle 200 times. For
non-cyclic motion skills and motion transitions, we incorporate control graphs, a
graph structure that will be detailed in Section 3.6, to generate a long random
walk W on the graph such that each control fragment appears at least 200
times in W. All the sample tuples tτ jku for all the control fragments tCku can
be collected simultaneously by generating a successful execution of W using the
guided SAMCON, represented by τ � tτk1 , τk2 , . . . u, as shown in Figure 11.
Then we can extract the simulation tuples for each individual control fragment
to update the feedback parameters as in Equations 18�20.

We further regularize the Frobenius norm of the feedback gain matrix Mk,
so that

Mk �
�
pSTk Sk � λIq�1pSTk Akq

�T
(23)

is used instead of Equation 18. We use λ � 10�6 in all our experiments. The
feedback gains together with the observed prediction variances as captured by
Σk provide a stochastic version of the control policy that will be used to guide
the sampling used by the basic SAMCON that serves as our control oracle:

πkpak|sk�1;θq :� N pMksk�1 � âk,Σkq

Guided Learning as EM-based Policy Search Given a reward function
Rpτq that measures the goodness of a simulation tuple τ � psk�1,ak, skq, re-
sulted from the execution of a control fragment Ck, policy search seeks for the
optimal policy that maximizes the expected return

Jpθq �

»
τ

P pτ ;θqRpτq (24)

with respect to the feedback parameters θ. The probability density of a simula-
tion tuple is determined by:

P pτ ;θq � P psk|sk�1,akqπkpak|sk�1;θqP psk�1q (25)

where P psk|sk�1,akq is the transition probability density and πkpak|sk�1;θq
represents the probability density of the feedback action given the start state
and the feedback parameters.

An EM-style algorithm offers a simple way to find the optimal policy by
iteratively improving the estimated lower-bound of the policy’s expected return.
It is shown in [35] that the iterative update procedure of an EM algorithm
applied to episodic policy search for a linear policy is just a weighted linear
regression over the execution episodes of the current policy. Specifically, let θ0

be the current estimation of the policy parameters, EM-based policy search

computes a new estimation θ that maximizes:

log
Jpθq

Jpθ0q
� log

»
τ

P pτ ;θqRpτq{Jpθ0q (26)

¥
1

Jpθ0q

»
τ

P pτ ;θ0qRpτq log
P pτ ;θq

P pτ ;θ0q
(27)

9

»
τ

P pτ ;θ0qRpτq log
πpak|sk�1;θq

πpak|sk�1;θ0q
(28)

� Lpθ;θ0q � C (29)

where Equation 27 applies Jensen’s inequality to the concave logarithm function,
C is a constant independent of θ and

Lpθ;θ0q :�

»
τ

P pτ ;θ0qRpτq logπpak|sk�1;θq (30)

Note that the optimal θ must satisfies Jpθq ¥ Jpθ0q because Equation 27 is
always zero when θ � θ0. Lpθ;θ0q can be further estimated from a number of
simulation tuples tτ jku sampled according to the current policy πkpak|sk�1,θ0q
as:

Lpθ;θ0q �
1

Nk

Nķ

j�1

Rpτ jq logπkpa
j
k|s

j
k�1;θq (31)

By letting BLpθ;θ0q{Bθ � 0 we can find the locally optimal estimation of θ by
solving

0 �
B

Bθ
Lpθ;θ0q

9
Nķ

j�1

Rpτ jq
B

Bθ
logπkpa

j
k|s

j
k�1;θq (32)

With this maximization step in place (the M step), we then update θ0 with
this optimal θ and then recompute a new set of samples (the E step) and repeat
the EM iteration until obtaining optimal policies.

We assign a constant reward to all simulation tuples, which implies a special
reward function in the form of

Rpτq �

$&
%

1 tuple τ is good enough in the long run so
that the random walk W can succeed.

0 otherwise.
(33)

Solving Equation 32 against this reward function and the Gaussian Explorations
of Equation 17 leads to the linear regression that we described in the last section.

Results A variety of individual cyclic skills have been tested to fully evalu-
ate the capability of the guided SAMCON learning framework, including basic

Fig. 12. Simulations of learned skills under external pushes. Top: kick. Middle: backflip.
Bottom: waltz.

locomotion gaits, dancing elements, flips, and kicks. The example motion clips
for these skills are from various sources and were captured from different sub-
jects. We simply apply them onto our human model, and kinematically blend
the beginning and end of the clips to obtain cyclic reference motions. Errors due
to model mismatches and blending are automatically handled by our physics-
based framework. The animation sequences shown in Figure 12 demonstrate the
executions of several learned skills.

The learned skills are robust enough to enable repeated executions even under
external perturbations. In Figure 12 we show that 400N�0.2s impulses can be
applied to the character’s trunk during the flight phase of kicking without causing
the motion to fail. Generally speaking, faster motions such as running take fewer
learning iterations to achieve robust cyclic motions, as well as tolerating larger
perturbations. In contrast, slow motions such as the balancing phase of the
backflip are more sensitive to perturbations. This may be explained in part by
the additional balance opportunities afforded by each new contact phase. We
also note that we run the learning process for a maximum of twenty iterations,
given that this allows robust feedback policies to be found for all motions tested.
However, none of the motion skills can acquire robust feedback policies with
only one iteration. This suggests a linear regression with the basic SAMCON,
equivalent to the first iteration of Guided SAMCON with a zero policy, is not
enough to achieve robust skills.

The robustness of the guided SAMCON also supports retargeting controllers
onto characters with significantly different morphology from the motion captured
subjects. We simply re-run the pipeline on the new character, with the open-loop
controls initialized and refined from the results built for our default character.
Figure 13 shows several examples where we retarget the cyclic kick and the

Fig. 13. Retargeting kick (top) and dance-spin (bottom) to characters with modified
body ratio.

dance spin to characters with modified body segment lengths. The retargeted
controllers are robust to external perturbations as before.

All the test skills can be learned with the standard settings as described thus
far, while special treatment is applied for walking and running in order to achieve
symmetric gaits. Specifically, we pick one stride (half step) from the example clip
and concatenate its mirror stride to generate a symmetric reference motion. In
addition, we only learn the feedback policies for the first stride, and mirror
the states and actions for the second stride so that the feedback policies are
symmetric too. Enforcing symmetry is not necessary for finding robust control
policies. However, the resulting asymmetric gaits often make the character turn
slightly to one direction. Another interesting observation of the learned walking
and running controllers is that the character turns when gentle sideways pushes
are applied. This offers a simple way to develop parameterized turns for these
locomotion skills, as we can record the corresponding actions under external
pushes and add them to the action vectors in order to make the character perform
shallow turns. We use this simple parameterization method to implement basic
steering behaviors in our demonstrations. For rapid turns we still need to use
controllers learned from relevant motion capture examples.

We further employ contact-aligned phase-resetting for walking and running
controllers, which improves their robustness to large perturbations. In contrast,
we have noted that contact-aligned phase-resets are neither necessary nor helpful
for learning controllers for complex skills such as kicks and backflips. Motions
that involve long airborne phases might be considered sensitive to the contact
events at take-off and landing. However, our pipeline is capable of finding suc-
cessful control policies without contact alignment at the control fragment level
or any other special treatment of these critical instants. In practice, the learned
policies are robust to the simulated contact events occuring in fragments that
immediately precede or follow the nominal fragment for that event.

The offline learning is performed on compute clusters with tens of cores. The
performance of the learning pipeline is determined by the number of necessary
runs of guided SAMCON, whose computational cost scales linearly with respect

Skills
Tcycle tlearning

(s) (min)

Catwalk 0.7 40.3
StridingRun 0.45 21.1

Waltz 5.0 314
Kick 1.6 93.8

DanceSpin 1.6 102
Backflip 2.5 153

Table 2. Performance statistics for
cyclic motions. Tcycle represents the
length of a reference cycle. tlearning is
the learning time for each skill on a 20-
core computer.

𝑠𝑠1 𝑠𝑠2

𝑠𝑠3

(a) a motion graph

𝑠𝑠1 𝑠𝑠2
𝑠𝑠3

(b) a control graph

𝑠𝑠1 𝑠𝑠2
𝑠𝑠3

(c)

Fig. 14. Control graph: a control graph is created by (a) building a reference motion
graph from example motion clips, then (b) converting each clip of the motion graph to
a chain of control fragments. (c) shows a compact representation of the control graph
(b), where each node represents a chain of control fragments, or rather, a controller.

to the length of the clip, the number of samples Ns, and inversely with the
number of cores available. Table 2 lists the learning time for several cyclic skills,
measured on a small cluster of 20 cores. Note that here we run the learning
pipeline with the same configuration for all motions for ease of comparison, i.e.,
20 iterations of guided learning, with Ns � 1000 in the first iteration and Ns �
200 for the remaining iterations. In practice, the required SAMCON samples can
be much lower, e.g. to Ns � 50 � 100, after the first few learning iterations, as
the feedback policies usually converge quickly under the guided learning.

3.6 Control Graphs

The guided SAMCON as described in the last section can be directly applied
to cyclic motions. For non-cyclic motions and motion transitions, we need a
mechanism to apply the basic SAMCON to multiple instances of their control
fragments, in order to collect enough samples for the policy updates in the form
of linear regressions. Inspired by the successful motion graphs [17] for kinematic
motion synthesis, we organize the control fragments into a graph as shown in
Figure 14(b), whereby multiple possible outgoing or incoming transitions are al-
lowed at the boundaries of the control fragments at transition states, such as s1,
s2, and s3. We further define the chains of the control fragments between transi-
tion states as controllers and each controller is uniquely colored in Figure 14(b).
In practice, controllers need to produce particular skills, e.g., running, and to
perform dedicated transitions between skills, e.g. speeding up to a run. In Fig-
ure 14(c) we then illustrate the corresponding connectivity between controllers.
Here, an arrow indicates that the controller associated with the tail ends in

Algorithm 2 Guided Learning of Control Graphs
Require: example motion clips of skills
Ensure: a control graph G

1: build a reference motion graph G̃ from input motion clips
2: initialize a control graph G � tCku according to G̃
3: generate a random walk W � tCk1

, . . . , CkN
u

4: refine the open-loop control clip m̂k for every Ck

5: initialize Mk � 0, ak � 0, Σk � σ2
0I for every Ck

6: for every EM iteration do � policy search
7: generate a successful execution τ of W with Guided SAMCON
8: for each control fragment Ck do
9: tτ i

ku Ð extract sample simulation tuples of Ck from τ

10: update Mk, âk,Σk by linear regression on tτ i
ku

11: end for
12: end for

a state that is close to the expected starting state of the controller associated
with the head. Based on this graph structure, the sequencing of skills is sim-
ply achieved by walking on this graph while executing the encountered control
fragments.

In our framework, the structure of a control graph is predefined and fixed
during the learning process. Given example motion clips of desired skills, this
is done by first building a reference motion graph, and then converting it into
a control graph. Figure 14(a) shows a simple motion graph consisting of three
motion clips and transitions between sufficiently similar frames, e.g. s1, s2, s3,
which define the transition states. Any portion of a motion clip that is be-
tween two transition frames is then converted to a chain of control fragments,
or equivalently, a controller, between the corresponding transition states. In this
conversion, the motion clip is segmented into K identical-duration pieces, with
K chosen to yield time intervals δt � 0.1s. We again initialize the open-loop
controls for the control fragments using the improved SAMCON algorithm, and
initialize the feedback policies π with zero.

Algorithm 2 summarizes the guided learning framework of control graphs.
Given several example motion clips of the target skills as input, the pipeline
builds a control graph that synthesizes robust dynamic motions from arbitrary
random walks over the graph. This allows for motion planners, which are be-
yond the scope of this chapter, to work with the graph as a simple high-level
abstraction of the motion capabilities. The whole pipeline consists of the follow-
ing sub-procedures:

Building Control Graphs: A reference motion graph is firstly built (line 1 of Al-
gorithm 2), and then converted to a control graph (line 2). Building high-quality
motion graphs can be a non-trivial task, even with the help of automated tech-
niques such as the one proposed by [17]. Manual tuning is often necessary to
achieve natural-looking transitions and to remove artifacts such as foot-skating.
Fortunately, the usage of simulation naturally offers the ability to produce phys-
ically plausible motions for the control graph. Therefore, the reference motion
graph does not necessarily need to be carefully tuned. In this chapter, we man-

ually specify the connectivity of the motion graphs for our control graphs by
selecting visually similar poses as transition points. We then apply kinematic
blending to a few frames of the motion clips near the transition points. Our
learning procedure is generally robust to kinematic flaws due to such blending
or noise, and is able to generate high-quality simulated motions. Occasionally,
selected transitions based on pose similarity alone may result in poor results,
such as those between slow motions and fast motions where velocities should
also be taken into account. In such cases, we perform a search for the best tran-
sition point around the originally selected point, using a 0.05s sampling interval.
We can find successful transitions within ten samples in all such cases.

Refining Open-loop Controls: The initial open-loop controls of each control frag-
ment are computed by the improved SAMCON from the individual motion ex-
ample clips, which are not physically plausible when directly connected together
by a random walk on the control graph. To facilitate the graph learning process,
we further refine these open-loop controls as indicated on line 4. Specifically,
this is done by performing the basic SAMCON again on the motion sequence
corresponding to the random walk W, and then replacing the initial open-loop
control clip m̂k and the reference end states with the average of all simulation
instances of the control fragment Ck in W. The averaging improves the possibil-
ity of finding a robust feedback policy that can deal with all possible transitions
involved, similar to its noise reduction effect for the improved SAMCON.

Learning Feedback Policies: In line 5, the feedback policies are initialized, as
well as the default exploration covariances. We find that σ0 � 5� works for
all the skills that we have tested. The EM-based policy search is performed
in line 6–12, where the guided SAMCON trials and the linear regressions are
alternated to improve the feedback policies iteratively. In all our experiments,
this policy search process can converge to robust feedback policies in at most
20 iterations. Guided SAMCON can occasionally fail when generating a long
random walk sequence, especially in the first iteration when the initial zero-
valued policy is applied, where Guided SAMCON degenerates into the basic
SAMCON. To mitigate this problem, we generate more samples (Ns � 1000)
per stage during the first iteration than for the successive iterations (Ns � 200).
If the algorithm fails to complete the designated graph walk, we roll back the
execution of the latest three controllers (25�50 control fragments) and then
restart guided SAMCON from that point.

Progressive Learning: Learning the controllers for all the motion skills of a con-
trol graph simultaneously can be inefficient, because the learning for different
controllers converges at different speeds, i.e., some controllers quickly become
robust, while others may cause SAMCON to fail and restart constantly. This
disparity results in excessive samples being used for the easy controllers and ex-
cessive restarts for the difficult ones, if the entire control graph were to be learned
all at once. To mitigate this problem, we learn control graphs progressively. Fig-
ure 15 illustrates two prototype control graphs and the example learning orders

Cartwheel
& Backflip

Slow Run

Striding Run

180-Turn 1

180-Turn 2

Stand

Speed UpSlow Down
& Turn

Kip Up

Get Up

1 2 3 4 5Learning Order: 6 7

**

Stand

Action1

Action2

Action3

Action4

Slow
Cartwheel

Supine
Get Up

Prone
Get Up

1 2 3 4 5Learning Order: 6

**

Fig. 15. Two porototype control graphs progressively learned in the order marked
in different colors. Only major controllers are shown in the graph for clarity. The
rising skills indicated by dashed arrows will be triggered automatically once the char-
acter falls. Left: Locomotion and gymnastics graph. Right: Bollywood dancing graph.
Action1–arm hip shake; Action2–chest pump+swag throw; Action3–pick and throw;
Action4–hand circular pump.

we use. Specifically, we start from learning controllers for a few cyclic skills.
Non-cyclic skills are then gradually incorporated into the latest subgraph by re-
running the whole learning pipeline. This progressive process skips the learned
skills from guided SAMCON by locking the learned policies instead of generating
additional exploratory samples for further learning. Our experiments show that
the learned feedback policies from the smaller graph are robust enough to deal
with new transitions in the enlarged graph. However, it is possible that the newly
added transitions are not compatible with existing control policies. We suggest
simply unlock the learned controllers connected with the new skill for further
adapting their parameters. Another scheme we employ to improve learning ef-
ficiency is to generate random walks that visit each skill with approximately
equal probability. Some connections between the learned skills are temporarily
neglected to achieve this condition.

Results Figure 15 shows two prototype control graphs, one consisting of runs,
turns, gymnastic movements, and balancing, and the other consisting of Bolly-
wood dancing elements, get-up motions, and balancing. Only major controllers
are shown in the graphs for clarity. The two control graphs can be further com-
posed into a larger one through the standing behavior. We learn the control
graphs progressively in the order illustrated in Figure 15. We always start by
learning cyclic controllers, using the process just described. Non-cyclic skills are
then gradually incorporated into the latest subgraph by rerunning the whole
learning pipeline.

We further include a few rising skills in the control graphs that will be auto-
matically executed when the character falls. These rising skills have only one-way

Fig. 16. Random walk on the control graph with external perturbations.

connections with the graph and we learn them in a separate procedure. We cre-
ate learning cycles by pushing the character on the trunk in suitable directions
and then invoke a ragdoll controller that tracks the starting pose of the target
rising skill. When the difference between the simulated pose and this starting
pose is small enough, the rising skill is activated and the character gets up and
once again transitions to the beginning of the learning cycle. We currently use a
simple fall detection algorithm that monitors the magnitude of the action vector
as computed by the feedback policies. Once this exceeds a fixed threshold, we
activate the ragdoll control followed by an appropriate rising skill.

The two control graphs together contain a total of 40 seconds of reference mo-
tion. The aggregate construction time for our motion graphs, beginning from the
reference motions, is approximately two full days on a 20-core computer cluster,
including both user-in-the-loop work and offline computation. This begins with
the computation of the open-loop trajectory from the original reference motion
using SAMCON. The compute time for this depends on the quality of the ref-
erence motion, varying from as few as ten minutes for many motions, i.e., runs,
bollywood dances, get-up, kip-up, to one hour or more if the improved SAM-
CON algorithm is required, as was the case for flips and gymnastic motions. The
guided learning procedure usually takes up to one hour to learn a one-second
long skill. In practice, we often stop well before the maximum 20 EM-iterations,
resulting in compute times under one hour for a one-second cyclic skill. In ag-
gregate, we find that it takes between 1–2 hours per second of reference motion,
which includes both the required manual steps and the computational time on
a 20-core cluster. In practice, we can get through all the manual steps in the
daytime and run the learning procedures overnight with batch-mode settings.

Fig. 17. Two simulated characters try to run into each other. Both of them are con-
trolled by the same control graph.

We demonstrate several applications of the prototype control graphs. The
learned skills in the graph are quite robust: a random walk on the graph can
always succeed when no perturbations are applied. With the help of a simple
greedy planner for steering, we can easily achieve interactive navigation in a
scene. The characters can also robustly perform the desired motion skills in the
presence of moderate external perturbations such as pushes on the trunk and
ball-impacts as shown in Figure 16. The character will fall if it is disturbed too
much, which automatically activates the rising controllers that will return the
character to performing desired motions designated by the high-level planner.

Figure 17 demonstrates two simulated characters, steered by a high-level
planner, to always try to run into each other. They repeat the overall behaviors of
colliding, falling, and getting up. The complex contacts and interactions between
the characters would be too difficult to synthesize via kinematic approaches,
while our framework can easily generate these motions in real-time thanks to
the physics-based nature of the simulations and the robustness of the control
graphs. More results and video demonstrations can be found in [24].

3.7 Discussion

We have presented two sampling-based methods, the basic SAMCON and the
improved SAMCON, for constructing open-loop controls for individual motion
skills from example motion clips. We have also described two learning meth-
ods, namely reduced-order feedback learning and guided SAMCON, for learning
closed-loop feedback policies from the open-loop controls reconstructed by the
SAMCON algorithms. In particular, the guided SAMCON framework integrates
all the successful ingredients of sampling-based control reconstruction and policy
search. Therefore using guided SAMCON, we can develop control graphs for a
wide variety of realistic, dynamic motions, including walking, running, aggressive
turns, dancing, flips, cartwheels, and getting up after falls, as well as transitions
between many of these motions. Multiple simulated characters can physically
interact in real-time, which opens the door to the possible use of physics-based
character motions in sports scenarios. In all our experiments, guided SAMCON
always succeeds if the open-loop controls can be constructed. A failure to re-

construct the open-loop controls is usually due to poor quality of the reference
motion or improper selection of transition points.

Compared with robust feedback policies that are specially tailored to loco-
motion, such as SIMBICON-type controllers [51,20], our framework works for a
much richer class of motions including many that have rapid contact changes.
We do note that our learned walking controller is less robust than the walk-
ing gait used to measure the robustness in the original SIMBICON paper [51].
This is similar to earlier results by [46], who also find that their natural walks
are less robust to external force perturbations than the original SIMBICON
walking gait. The robustness of a walking gait is thus related to the partic-
ular walking style as well as the specific feedback system. In comparison to
model-based approaches such as quadratic programming [29,5] and differential
dynamic programming [32], our method does not require exact knowledge of
the dynamics models or carefully-tuned optimization objectives and constraints.
In addition, we incorporate motion transitions in the same framework, thereby
enabling multi-skilled 3D avatars that are capable of real-time interaction with
the environment and with each other. To the best of our knowledge, the guided
SAMCON framework is one of the most general approaches for learning con-
trollers for physics-based characters through simulations.

Advantages of Sampling-based Methods When used for optimization,
sampling-based approaches do not demand derivative computation, in contrast
to gradient-based techniques. This is useful when derivatives are difficult or im-
possible to compute. Many physics-based animation systems are developed on
top of third-party simulators, which can preclude the computation of analytic
derivatives. It is also well-known that derivatives are difficult to compute for
tasks with abundant transient contacts, such as a roll-and-get-up motion. These
contacts pose a serious challenge to inverse dynamics algorithms and gradient-
based optimizations. For situations where gradient computations are plausible,
gradient-based techniques are nevertheless prone to local minima for highly non-
linear problems in high dimensions. Derivative-free sampling techniques are not
immune to local minima, but they can nevertheless often escape a local mini-
mum.

When applied to creating motions, a side benefit of sampling-based meth-
ods is that the stochastic nature of the solution will naturally exhibit a degree
of motion variation. Motion synthesis is often cast as an optimization prob-
lem, based on the assumption that desired motions are optimal in some sense.
However, this ignores the natural variations that are evident in human motion.
Sampling-based methods can also work to achieve a given goal in the absence of
a reference trajectory, although having one greatly prunes the search space and
accelerates the construction. This allows us to generate control sequences for non
goal-oriented tasks, such as idling, where a desired trajectory is hard to specify
or capture [27]. Sampling schemes can potentially discover new strategies, given
enough computational resources.

Sampling-based techniques are also easy to parallelize, which is of importance
in the continuing era of multi-core computers and compute clusters. We show
that control for individual complex tasks can be reconstructed within minutes,
and control for a reasonably-sized graph can be reconstructed within a day or
two, on small-scale clusters.

Automation Our current state features and action features were selected with
skills in mind such as locomotion, kicks, and dancing, these all being skills where
the character’s legs are extensively used for balance. However, these features
proved to be suitable for a wider range of skills, including those where the arms
play an important role, e.g., cartwheels and rising up motions. For motions that
are dominated by the control applied to the arms, such as a hand-stand or a
hand-stand walk, we expect that some new state features and action features
may need to be introduced.

After the initialization procedures, the guided SAMCON framework is largely
automated, with uniform parameter settings being used to develop most of the
motions. However, manually designing the reference motion graph is still neces-
sary at the beginning of the pipeline. Developing good open-loop control clips
for difficult skills or from poor-quality reference motions remains the part of the
learning pipeline that still requires some manual intervention. For future work,
we would like to create a fully automated pipeline.

4 Future Work

There remain many open problems for further investigation in the near future.
We are particularly interested in further pushing forward the robustness and
generalization ability of controllers through simulation; and applying the strate-
gies developed in simulation to real robots. We conjecture that better control
representations need to be devised, and more powerful learning frameworks need
to be explored.

Control Representation In the SAMCON family algorithms, the controllers,
as defined by sequences of control fragments, implicitly define time-indexed
piece-wise policies. The default control fragment duration, 0.1s, represents a
compromise between an excessively long duration, which eventually leads to a
feedback structure that is insufficiently flexible to provide robust control, and an
excessively short duration, which increases the compute time and may be prone
to over-fitting or local minima. In practice, we find that control fragment dura-
tions in the range of 0.05s�0.2s also provide robust solutions. The advantage of
short-duration control representation as compared to longer-duration controls
is that manual segmentation into motion phases and optimization design for
each phase can be avoided; using a fixed linear policy across all phases of a mo-
tion is generally insufficient for complex motions and motion transitions. Our

regression-based learning can efficiently learn the large number of linear feed-
back parameters that result from the use of a unique linear model dedicated to
each control fragment.

This scheme mitigates many difficulties in learning the feedback policies, but
makes the learned policies less flexible. One disadvantage of such control is the
dependency of the control on the time index of the reference motions. In addi-
tion, our method assumes there is no need for multi-modal responses, such as
would arise in the case of a policy that should steer either left or right to avoid a
collision, but should not steer straight. As future work, we wish to develop state-
indexed feedback policies by using data obtained from the time-indexed poli-
cies to learn richer state-based policy representations, such as Gaussian mixture
models or neural networks [21,31,41]. Moreover, our controllers require reference
trajectories and/or open-loop feedforward controls for tracking, even though no
dynamics models are necessary. To achieve a more powerful and robust control
system, we envision a hybrid approach that combines the strengths of model-free
and model-based control methods.

Learning Framework We follow the recent successful guided policy search
framework, an iterative process where new samples from a control oracle inform
the construction of an improved policy, which then informs the collection of new
samples. Our learning pipeline is unique in its use of: (1) the use of an implicit-
dynamics, sampling-based motion reconstruction method as the control oracle;
(2) the use of simple time-indexed linear feedback policies and linear regression
to learn these policies; (3) a focus on difficult, dynamic, and realistic 3D full-
body human motion skills; and (4) the ability to learn transitions between skills
to yield integrated multi-skilled characters. Therefore we are able to generate
controllers with state-of-the-art skill repertoires. We wish to continue pushing
the current learning methods for better performance. However, we note that the
current framework cannot be directly applied to motion skills that involve non-
trivial human-object interactions such as dribbling a soccer ball or non-trivial
interactions between multiple characters such as social dancing or wrestling.

We wish to experiment with deep learning methods, which have been inte-
gral to recent breakthroughs in speech recognition and computer vision. Several
recent studies have shown promising results by applying deep learning for mo-
tion control problems[23,39]. However, current results still fall well short of being
capable of skilled control of human-like motions. Our sampling-based methods
are suitable for generating large datasets, and our learned linear policies may
provide good bootstrapping strategies for training deep neural networks. Among
other benefits, the deep networks may provide a way to learn the state and ac-
tion representations that are best suited for motor control, and to enable new
motor skills that the current learning framework may not be capable of.

Generalization In computer character animation, one of the major motiva-
tions for physics-based motion synthesis techniques is to generalize motion cap-
ture data [52,49]. We have demonstrated several forms of motion generalization

within the same framework, but also foresee a number of further developments.
Motion cleanup: Contact-rich motions are hard to capture and clean up. Some
of the input trajectories we use have serious contact flaws, like ground penetra-
tions and contact sliding. Our method currently can correct penetrations but
not sliding. We can experiment with adding another term into the cost function
to penalize sliding and other artifacts in the input that we wish to get rid of.
Motion variations: We focus on small variations that can be treated as noise,
i.e., the same person in the same physical and mental conditions. For motion
variations caused by other reasons, such as mood changes or physical injuries,
new mechanisms have to be devised. Motion parameterization: To achieve a rich
motion repertoire, parameterized feedback controllers that work for a large range
of task-related parameters or environmental parameters are desirable. We have
been successful in parameterizing skill-level or phase-level reduced-order feed-
back controllers, but we have yet to experiment with parameterized controllers
based on control fragments. Motion transformation: Because of the tracking
nature of the trajectory-based sampling, our motion transformations cannot de-
viate too far away from the input trajectory. To achieve even larger transforma-
tions, non-tracking control schemes such as model-based methods that do not
hold on to the reference trajectory all the time are necessary. Manual editing
of the input trajectories can also help shape the synthesized motions. Motion
retargeting: We have retargeted several motions to an Asimo-like robot model,
which differs significantly from human models. If the models were to differ more,
at some point the retargeting would simply fail. Continuation methods may be
helpful for more aggressive retargeting [50].

Transfer Control to Robots A number of challenges remain to be resolved in
order to effectively apply the control strategies developed in this chapter to real
robots. Several sources of mismatch between control in simulation and for real
robots have been presented in the introduction. Given uncertainties in estimating
the kinematic and dynamic parameters of the system, it needs to be ensured that
the control policies are robust with respect to the resulting errors. Approaches
to this include ensemble optimization methods [30] and iterative updates of
the parameters and policies [13]. Uncertainties may also arise with respect to
sensor readings, including the readings being asynchronous and delayed. This
requires another dimension of robustness for the control policy. Because the PD-
controllers used in our simulations have gains that are likely to be quite different
from those seen on low-cost robotic hardware, it makes more sense to view our
PD controllers as a computational step to compute the desired joint torques for
torque-controlled humanoid hardware. Lastly, as others have noted in the past,
e.g., [37], human motions may need to be explicitly retargeted and retimed in
order to be within the capabilities of a given robot. This same problem exists
when athletes of different dimensions and proportions that attempt to perform a
given motion. As in the case of athletes attempting to reproduce a given motion,
the solution is likely to require imitating an overall motion style or motion goals
instead of more directly trying to track the motion in joint space.

Acknowledgements We sincerely thank all our collaborators for their contri-
butions of the work described in this chapter, especially Ding Kai, Weiwei Xu,
Tianjia Shao, and Baining Guo. This work was funded in part by NSERC Dis-
covery Grant RGPIN-2015-04843.

References

1. Mazen Al Borno, Martin de Lasa, and Aaron Hertzmann. Trajectory optimization
for full-body movements with complex contacts. IEEE Transactions on Visualiza-
tion and Computer Graphics, 19(8):1405–1414, 2013.

2. Stephen Chenney and D. A. Forsyth. Sampling plausible solutions to multi-body
constraint problems. In SIGGRAPH’00, pages 219–228, 2000.

3. Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Robust task-based
control policies for physics-based characters. ACM Trans. Graph., 28(5):170:1–
170:9, 2009.

4. Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Generalized biped
walking control. ACM Trans. Graph., 29(4):130:1–130:9, 2010.

5. Martin de Lasa, Igor Mordatch, and Aaron Hertzmann. Feature-based locomotion
controllers. ACM Trans. Graph., 29(4):131:1–131:10, 2010.

6. Kai Ding, Libin Liu, Michiel van de Panne, and KangKang Yin. Learning reduced-
order feedback policies for motion skills. In ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, SCA’15, pages 83–92. ACM, 2015. doi:

10.1145/2786784.2786802.

7. Arnaud Doucet, Nando de Freitas, and Neil Gordon. An introduction to sequential
monte carlo methods. In Sequential Monte Carlo Methods in Practice. Springer,
2001.

8. Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smooth-
ing: Fifteen years later. In Handbook of Nonlinear Filtering. Oxford, UK: Oxford
University Press, 2011.

9. Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based
robotics: Comparison of bullet, havok, mujoco, ode and physx. In ICRA’15, pages
4397–4404, 2015.

10. Stevie Giovanni and KangKang Yin. Locotest: Deploying and evaluating physics-
based locomotion on multiple simulation platforms. Lecture Notes in Computer
Science, 7060:227–241, 2011.

11. Ambarish Goswami, Seung kook Yun, Umashankar Nagarajan, Sung-Hee Lee,
KangKang Yin, and Shivaram Kalyanakrishnan. Direction-changing fall control
of humanoid robots: Theory and experiments. Autonomous Robots, 36(3):199–223,
2014.

12. Sehoon Ha and Katsu Yamane. Reducing hardware experiments for model learning
and policy optimization. In ICRA’15, pages 2620–2626, 2015.

13. Sehoon Ha and Katsu Yamane. Reducing hardware experiments for model learning
and policy optimization. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 2620–2626. IEEE, 2015.

14. Nikolaus Hansen. The CMA evolution strategy: A comparing review. In Towards
a New Evolutionary Computation, volume 192 of Studies in Fuzziness and Soft
Computing, pages 75–102. Springer Berlin Heidelberg, 2006.

http://dx.doi.org/10.1145/2786784.2786802
http://dx.doi.org/10.1145/2786784.2786802

15. Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien.
Animating human athletics. In SIGGRAPH’95, pages 71–78, 1995.

16. Michael Isard and Andrew Blake. Condensation—conditional density propagation
for visual tracking. Int. J. Comput. Vision, 29(1):5–28, 1998.

17. Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. In SIG-
GRAPH’02, pages 473–482, New York, NY, USA, 2002. ACM.

18. James J. Kuffner, Jr., Satoshi Kagami, Koichi Nishiwaki, Masayuki Inaba, and
Hirochika Inoue. Dynamically-stable motion planning for humanoid robots. Auton.
Robots, 12(1):105–118, 2002.

19. S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In Workshop on the Algorithmic Foundations of Robotics, 2000.

20. Yoonsang Lee, Sungeun Kim, and Jehee Lee. Data-driven biped control. ACM
Trans. Graph., 29(4):129:1–129:8, 2010.

21. Sergey Levine and Vladlen Koltun. Guided policy search. In ICML’13, 2013.
22. Sergey Levine and Vladlen Koltun. Learning complex neural network policies with

trajectory optimization. In ICML’14, 2014.
23. Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. CoRR, abs/1509.02971, 2015.

24. Libin Liu, Michiel van de Panne, and KangKang Yin. Guided learning of control
graphs for physics-based characters. ACM Trans. Graph., 35(3):Article 29, 2016.
doi:10.1145/2893476.

25. Libin Liu, KangKang Yin, and Baining Guo. Improving sampling-based motion
control. Computer Graphics Forum, 34(2):415–423, 2015. doi:10.1111/cgf.12571.

26. Libin Liu, KangKang Yin, Michiel van de Panne, and Baining Guo. Terrain runner:
control, parameterization, composition, and planning for highly dynamic motions.
ACM Trans. Graph., 31(6):Article 154, 2012. doi:10.1145/2366145.2366173.

27. Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu.
Sampling-based contact-rich motion control. ACM Trans. Graph., 29(4):Article
128, 2010. doi:10.1145/1778765.1778865.

28. Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. Simulation and control of
skeleton-driven soft body characters. ACM Trans. Graph., 32(6):Article 215, 2013.
doi:10.1145/2508363.2508427.

29. Adriano Macchietto, Victor Zordan, and Christian R. Shelton. Momentum control
for balance. ACM Trans. Graph., 28(3):Article 80, 2009.

30. Igor Mordatch, Kendall Lowrey, and Emanuel Todorov. Ensemble-CIO: Full-body
dynamic motion planning that transfers to physical humanoids. In IROS, pages
5307–5314. IEEE, 2015.

31. Igor Mordatch and Emo Todorov. Combining the benefits of function approxi-
mation and trajectory optimization. In Robotics: Science and Systems, Berkeley,
USA, July 2014.

32. Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović. Contact-aware
nonlinear control of dynamic characters. ACM Trans. Graph., 28(3):Article 81,
2009.

33. Xue Bin Peng, Glen Berseth, and Michiel van de Panne. Dynamic terrain traversal
skills using reinforcement learning. ACM Trans. Graph., 34(4):80:1–80:11, 2015.

34. Jan Peters and Jens Kober. Using reward-weighted imitation for robot reinforce-
ment learning. In Adaptive Dynamic Programming and Reinforcement Learning,
pages 226–232, March 2009.

35. Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regres-
sion for operational space control. In ICML’07, pages 745–750, 2007.

http://dx.doi.org/10.1145/2893476
http://dx.doi.org/10.1111/cgf.12571
http://dx.doi.org/10.1145/2366145.2366173
http://dx.doi.org/10.1145/1778765.1778865
http://dx.doi.org/10.1145/2508363.2508427

36. Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy
gradients. NEURAL NETWORKS, 21(4):682–697, MAY 2008.

37. Nancy S Pollard, Jessica K Hodgins, Marcia J Riley, and Christopher G Atke-
son. Adapting human motion for the control of a humanoid robot. In Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on,
volume 2, pages 1390–1397. IEEE, 2002.

38. Jovan Popović, Steven M. Seitz, Michael Erdmann, Zoran Popović, and Andrew
Witkin. Interactive manipulation of rigid body simulations. In SIGGRAPH’00,
pages 209–217, 2000.

39. Ali Punjani and Pieter Abbeel. Deep learning helicopter dynamics models. In
ICRA’15, pages 3223–3230, 2015.

40. K. Sims. Evolving virtual creatures. In SIGGRAPH’94, pages 15–22, 1994.
41. Jie Tan, Yuting Gu, C. Karen Liu, and Greg Turk. Learning bicycle stunts. ACM

Trans. Graph., 33(4):50:1–50:12, 2014.
42. Jie Tan, C. Karen Liu, and Greg Turk. Stable proportional-derivative controllers.

IEEE Comput. Graph. Appl., 31(4):34–44, 2011.
43. Konstantinos I. Tsianos, Ioan Alexandru Sucan, and Lydia E. Kavraki. Sampling-

based robot motion planning: Towards realistic applications. Computer Science
Review, 1:2–11, August 2007.

44. Christopher D. Twigg and Doug L. James. Many-worlds browsing for control of
multibody dynamics. ACM Trans. Graph., 26(3), 2007.

45. Kevin Wampler and Zoran Popović. Optimal gait and form for animal locomotion.
ACM Trans. Graph., 28(3):Article 60, 2009.

46. Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Optimizing walking con-
trollers. ACM Trans. Graph., 28(5):Article 168, 2009.

47. Andrew Witkin and Michael Kass. Spacetime constraints. In SIGGRAPH’88,
pages 159–168, 1988.

48. Katsu Yamane, James J. Kuffner, and Jessica K. Hodgins. Synthesizing animations
of human manipulation tasks. ACM Trans. Graph., 23(3):532–539, 2004.

49. KangKang Yin, Michael B. Cline, and Dinesh K. Pai. Motion perturbation based
on simple neuromotor control models. In PG’03 (Pacific Conference on Computer
Graphics and Applications), pages 445–449, 2003.

50. KangKang Yin, Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Con-
tinuation methods for adapting simulated skills. ACM Trans. Graph., 27(3):Article
81, 2008.

51. KangKang Yin, Kevin Loken, and Michiel van de Panne. SIMBICON: Simple
biped locomotion control. ACM Trans. Graph., 26(3):Article 105, 2007.

52. Victor B. Zordan and Jessica. K. Hodgins. Motion capture-driven simulations that
hit and react. In SCA (ACM SIGGRAPH/Eurographics Symposium on Computer
Animation), pages 89–96, July 2002.

