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Figure 1: Learning cartwheels with spacetime bounds. The top green motion shows the reference, and the bottom yellow motions are
simulations. The curves represent the Y position of the character’s center of mass, and are colored to represent the reference (green), the
simulations (yellow), and the spacetime bounds (red). The blue region illustrates the nonuniform feasible region under the given spacetime
bounds. During training, episodes are terminated immediately once any spacetime bounds are violated, as shown in the bottom simulation.

Abstract
Equipping characters with diverse motor skills is the current bottleneck of physics-based character animation. We propose a
Deep Reinforcement Learning (DRL) framework that enables physics-based characters to learn and explore motor skills from
reference motions. The key insight is to use loose space-time constraints, termed spacetime bounds, to limit the search space in
an early termination fashion. As we only rely on the reference to specify loose spacetime bounds, our learning is more robust
with respect to low quality references. Moreover, spacetime bounds are hard constraints that improve learning of challenging
motion segments, which can be ignored by imitation-only learning. We compare our method with state-of-the-art tracking-based
DRL methods. We also show how to guide style exploration within the proposed framework.

CCS Concepts
• Computing methodologies → Animation; Physical simulation; • Theory of computation → Reinforcement learning;

1. Introduction

Recent years has seen many advances in physics-based char-
acter animation, especially since the application of Deep Re-
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inforcement Learning (DRL) algorithms [LvdPY16, PALvdP18,
YTL18, PRL∗19]. These modern methods produce physically
plausible motor skills either by tracking high quality refer-
ence motions [PALvdP18, PRL∗19], or via smartly designed re-
wards [YTL18]. However, tracking reference motions requires the
existence of high quality example motions, and inherently prohibits
any exploration of the potentially large feasible region of some mo-
tor skills for style variations. Designing good reward signals for
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DRL systems requires nontrivial domain knowledge and human in-
sights, and does not directly support style exploration either.

We propose a simple DRL framework that can be used either
standalone, or combined with imitation or hand-designed rewards.
The proposed framework imposes spacetime constraints, hereafter
referred to as spacetime bounds, as they mainly bound the character
states in space and time, during the reinforcement training process.
That is, the DRL system only samples and accepts states within the
spacetime bounds specified.

The advantages of the proposed bounding-constraint-based
framework over a tracking-based system include:

• Reward Simplification: Our framework can learn various motor
skills with just a binary survival reward correlated to violations
of spacetime bounds. An imitation or a hand-designed reward
are not necessary anymore to reproduce motor skills. Simplified
reward design and parameter tuning can potentially enhance a
wider adoption of DRL methods in physics-based character ani-
mation.
• Increased Robustness: Tracking-based DRL methods stay close

to a reference motion as much as possible. So when the refer-
ence motions are not in high quality, such as interpolated sparse
keyframes, tracking methods may fail due to the physical im-
plausibility of the reference motion. Spacetime bounds, however,
are looser constraints. They allow freer exploration of the state
space and thus may still succeed in finding physically plausible
motions that resemble the low quality references. Meanwhile,
spacetime bounds are hard constraints on the states. Challenging
parts of reference motions, such as a quick 360◦ turn in a dy-
namic dance, can be ignored by an imitation reward to favor task
success, but have to be respected when spacetime bounds are
specified. Therefore our framework can reproduce skills more
robustly and more faithfully.
• Style Exploration: As spacetime bounds only loosely constrain

the DRL exploration, multiple styles of a motor skill may be
discovered. We show that using simple heuristic terms to reward
metrics such as energy levels, different locomotion styles can be
easily discovered. Such style exploration is quite challenging if
possible at all using only imitation-based methods, as the style-
encouraging terms conflict with reference tracking rewards.

We review the most relevant prior works in Section 2. Then we
detail the concept of spacetime bounds and its interaction with the
feasible region of the dynamic skill in Section 3. Our DRL training
framework and important parameter setups are described in Sec-
tion 4. Various results are showcased in Section 5. Finally we con-
clude with discussions on limitations and future work in Section 6.

2. Related Works

Synthesizing natural human motions in interesting styles has been
a long-term central topic in character animation. Recently the ma-
chine learning community has also started to investigate generation
of human-like motions using deep learning tools. Here we only re-
view the work most relevant to ours.

Kinematic models can synthesize natural human movements
with a pure data-driven approach [KGP02, SH07, AvdP16, Cla16].

Latent representations can also be learned offline from data
for synthesis at runtime [SHP04, LWH∗12, LWB∗10]. Recently,
deep neural network are quite successful at achieving fast com-
pact kinematic models that generalize better beyond the training
data [HSK16, HKS17, ZSKS18]. Such models can also serve as
front-end motion generators for back-end physics-based models
[BCHF19, PRL∗19, WGH20].

Kinematic models have also been used extensively for mo-
tion style generation and transfer. The most direct approach is
to extract style-related features from the style reference mo-
tion and then impose them on another content reference motion
[ABC96,HPP05,SCF06,IAF09,XWCH15,YM16,HSK16]. In par-
ticular, [HSK16] computes the Gram matrix of motion features
extracted by an autoencoder to represent motion styles. Another
approach is to parameterize motion variations into multiple fac-
tors. Statistic models are usually used to learn such factors from
data [BH00, WFH07, MLC10]. In [AZS∗17], features related to
emotions are mapped into 2D emotion coordinates to support mo-
tion editing of emotional styles. Our style exploration is inspired by
these previous works, but we handle style exploration in a physics-
based framework.

Physics-based models guarantee physical plausibility of synthe-
sized motions, but are usually hard to design or learn. Robust loco-
motion controllers can be manually designed and tuned [YCP03,
YLvdP07, LKL10, CBvdP10, CKJ∗11]. When reference motions
are available, trajectory optimization [ABdLH13] or sampling-
based controllers [LYvdP∗10, LYG15] can reconstruct open-loop
controls that reproduce reference skills with high fidelity. Closed-
loop controls that respond to perturbations can be constructed
through model-predictive control methods [DSAP08, HRL15] or
learned feedback mechanisms [YL10, DLvdPY15, LYvdPG12,
LvdPY16].

Tracking example motions, however, does not work on low qual-
ity references and prohibits exploration of new motion styles, as
we will show in this paper. Our work is directly inspired by prior
works that impose motion constraints rather than tracking refer-
ences [ASvdP13,LP02]. [LP02] transforms input sketches to phys-
ically plausible motions by detecting and imposing environmental
constraints. [ASvdP13] encourages motion variations with respect
to hand-crafted goal constraints. Our method imposes spacetime
constraints during deep reinforcement learning, thus enabling ro-
bust learning and exploration of a diverse set of motor skills.

Deep Reinforcement Learning is a relatively new and effec-
tive approach to learning physics-based motor skills [LHP∗15,
HTS∗17]. The de novo methods synthesize motor skills from
scratch, and usually generate unnatural jerky motions. Special
terms designed to lower energy and improve symmetry can be
added to acquire more natural skills [YTL18]. When kinematic
reference motions are available, a more effective approach is to
add an imitation reward term to encourage tracking of the refer-
ence [PBYvdP17, PALvdP18, PKM∗18, BCHF19, WGH20]. Such
methods can usually synthesize high quality motor skills that are
indistinguishable from the reference. The imitation reward, how-
ever, prohibits exploration of more stylized skills that are different
from the reference. We replace reference tracking with spacetime
bounds that are more supportive to style exploration. In addition,
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spacetime bounds also improve the learning robustness when the
reference motion quality is low.

We show direct comparisons with DeepMimic [PALvdP18] in
our results section. [WGH20] improves DeepMimic with multi-
plicative rewards and an early termination scheme based on re-
ward values. Therefore, it can learn more diverse and robust skills
than DeepMimic. Still, we show that our framework is more ro-
bust than [WGH20] for challenging skills, such as the “mickey sur-
prised” motion as shown in our supplemental video. Furthermore,
spacetime bounds are easier to specify than thresholds on rewards,
and support style exploration better.

3. Spacetime Bounds

Reference tracking-based DRL methods evaluate the quality of mo-
tor skills based on rewards that are real numbers. On one hand, it
is hard to tell if a physics-based skill is successful or optimal from
these numbers. On the other hand, such rewards only encourage but
do not guarantee similarity between the learned skill and the refer-
ence motion. For example, local joint angles or some portion of the
skills may resemble the reference, but not the overall behavior or
the full course of the motion.

We propose to constrain DRL learning with spacetime bounds
instead. Spacetime bounds are constraints in space and time that
correspond well with intuitive definitions of motor tasks. For ex-
ample, a jump is a motor skill that for some duration of the motion
both feet should leave the ground, and at no time of the motion
should the character fall. In order to derive and analyze spacetime
bounds, we start with the following definitions:

• The state space, denoted as S, is the space of all possible states
of a dynamical system.
• An event is a state-time tuple (s, t), and represents the system in

state s at time t.
• A Spacetime, denoted asM, is the space of all possible events.
• A trajectory is a sequence of events in spacetimeM. A trajec-

tory is causal if all points on the trajectory obey applicable phys-
ical laws and dynamic constraints.

Definition 3.1. A spacetime bound b is a subset of spacetimeM.
We denote a set of spacetime bounds as B.

3.1. Feasible Regions and Spacetime Bounds

Spacetime bounds influence control learning via shaping the feasi-
ble region of a motor skill performed by a dynamical system.

Definition 3.2. The feasible region associated with spacetime
bounds B, denoted as Feasible(B), is the set of points on causal
trajectories that B encloses.

We first illustrate the influence of spacetime bounds on feasible
regions using a toy problem. We restrict the motion of a mass point
to the X axis. So its state can be fully described by (x,v), where
x is the position and v is the velocity of the mass point. We then
add forces to accelerate the mass point, but cap the acceleration at
amax = 2m/s2. In Figure 2, we visualize the feasible regions that
correspond to more and more imposed spacetime bounds. Events

Figure 2: Feasible regions for a toy problem when more and more
spacetime bounds are specified. Left: B = {{e1},{e2}}; middle:
B = {{e1},{e2},b1}; right: B = {{e1},{e2},b1,b2}. Note that in
the right most case, the feasible region is much thinner than the
specified red squarish spacetime bounds.

e1 = (x,v, t) = (0,0,0) and e2 = (x,v, t) = (0,0,5) are initially
specified as the start and end of a causal trajectory. Feasible(B)
where B = {{e1},{e2}} directly reflects the amount of trajectories
that connect e1 and e2. We then impose more and more spacetime
bounds to shrink the feasible region. For example, two spacetime
bounds

b1 = {(x,v,T1)|x ∈ [0.5,2.5],v ∈ [−1,1],T1 = 5/3} and

b2 = {(x,v,T2)|x ∈ [−2.5,−0.5],v ∈ [−1,1],T2 = 10/3}
(1)

are added to generate the middle and right feasible regions in Fig-
ure 2. We can see a significant shrinkage of the feasible region with
each added spacetime bound.

In more complicated systems such as a human-like character, the
Degrees of Freedom (DoFs) are much larger and the system dynam-
ics are much more complicated. We expect the feasible regions to
shrink even faster. We illustrates such interaction between space-
time bounds and feasible regions in Figure 3 for a run jump skill.
Note that this figure is only conceptual and not mathematically ac-
curate as in Figure 2.

Generally speaking, different motor tasks performed by different
dynamical systems have different intrinsic difficulties, which cor-
relate to the volume of their feasible regions. For example, highly
dynamic skills, such as a gymnastic backflip, are usually highly
constrained. Their intrinsic feasible regions are usually quite small
to start with. Consequently only professional athletes can perform
such difficult motions in some optimal way. Low dynamic under-
constrained motions, such as normal walking on flat ground, usu-
ally have larger initial feasible regions to start with. As a result,
normal people can locomote and even in different styles. In either
case, feasible regions shrink rapidly when more and more space-
time bounds are imposed. Therefore we do not need to specify
spacetime bounds precisely or tightly for control policy learning.

3.2. Policy Learning with Spacetime Bounds

Within a DRL framework, we sample an initial event e inM and
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Figure 3: Feasible regions of a run jump skill when more and more
spacetime bounds are specified. Green curves are the character’s
CoM Y positions in the reference motion. Red dots and bars rep-
resent spacetime bounds. Blue regions indicate the feasible regions
associated with the specified spacetime bounds. Note that this is
only a conceptual illustration. For all our results reported in Sec-
tion 5, spacetime bounds are directly derived from the reference
motion and applied to every frame of the simulation.

run the current policy πθ to generate a trajectory as long as it stays
inside B. Once the trajectory violates B, we terminate the current
episode immediately. If the learning converges, then the final op-
timal controller πθ∗ can guarantee to generate trajectories within
Feasible(B).

We can construct spacetime bounds from the reference trajec-
tory m(t). More specifically, we define a spacetime bound at t by
restricting the state of the character to be within a region of size σ

centered at m(t). For example, the root orientation should be within
50◦ to the reference angle; or the end-effector positions should be
within 0.5m to the reference positions. We set

B = {m(t,σ)|t ∈ [0,T ]}, (2)

where m(t,0) is exactly the reference trajectory, and m(t,σ) is the
spacetime bound of size σ at time t. σ can be set uniformly for
the whole duration of the motion, or as a function of time for finer
control of the feasible region.

At the beginning of learning, the policy is bad and therefore
the trajectories violate the spacetime bounds very fast. This causes
early termination of the training episodes. As the policy improves,
training episodes will automatically become longer and longer. We
thus do not need to employ a time-based curriculum strategy as in
DeepMimic [PALvdP18], where episodes are heuristically sched-
uled to run longer and longer.

For motions that are highly constrained or in unstable equilib-
rium, the intrinsic corresponding feasible regions are narrow so
loose spacetime bounds can already result in good controllers. For
example, for a cartwheel we only need to bound its CoM positions
(within 0.3m) and orientations (within 40◦). While for motions like
locomotion, the initial feasible regions are relatively large so we
need to tighten the spacetime bounds to learn skills that can re-
produce the reference in a high fidelity. Alternatively, we can em-
ploy appropriate reward terms to guide the policy learning for more
stylish skills.

We note that special cases of the spacetime bounds have been
used before. For example, DeepMimic [PALvdP18] employs an
early termination scheme that terminates an episode whenever cer-
tain links, such as the torso, make contact with the ground. This is
equivalent to the following spacetime bound:

B = {bt |bt = {(s, t)|s ∈ SnoUndesiredContacts}}. (3)

Our spacetime bounds, however, are more general and customiz-
able. These bounds impose stronger constraints than the Deep-
Mimic early termination scheme alone, and thus greatly improve
the sampling efficiency by not wasting time on large unrecover-
able regions of the state space. Our spacetime bounds are also more
flexible than imitation rewards, so that style exploration is possible
during policy learning as we discuss next.

3.3. Style Exploration

For motor skills with large default feasible regions, we can use
style-related reward terms to explore different motion styles dur-
ing DRL training. This is possible within our framework using
spacetime bounds, as the bounds we specify are generally loose.
In contrast, style exploration would be hard, if possible at all, us-
ing tracking-based methods, as the imitation reward and the style
reward may conflict with each other or hard to tune.

Heuristic Style Reward – We first achieve style exploration
with two heuristic reward terms:

• Kinematic Energy: We denote the kinematic energy calculated in
the local frame defined at the CoM as E. Then the style reward
for discovering motions at various energy levels is

rs =


clamp( Emax−E

Emax−Emin
,0,1), to decrease energy

clamp( E−Emin
Emax−Emin

,0,1), to increase energy

(4)

where [Emin,Emax] is the range where kinematic energy is lin-
early rewarded.
• Volume: We denote the convex hull volume of selected points on

the character as V [AZS∗17]. Then the style reward for discov-
ering motions that span various volumes is

rs =

{
e−

V
α , to decrease volume

1− e−
V
α , to increase volume

(5)

where α is a scale parameter.

Data-driven Style Reward – We also illustrate style exploration
with the data-driven style term described in [HSK16], where the
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style of a motion is encoded by the Gram matrix of its features ex-
tracted from a deep autoencoder Φ. We directly use the autoencoder
Φ trained from locomotion data in [HSK16] for our experiments:

rs = e−
‖Gs−G‖2

α , (6)

where Gs is the Gram matrix of the motion in a desired style, and
G is the Gram matrix of the simulated motion. We can then use
stylized locomotion as our style descriptor to encourage the train-
ing to acquire policies that produce locomotion in similar styles.
We also employ a regularization term to penalize large kinematic
energy, large body linear accelerations and large joint angular ac-
celerations, which may occur during style exploration with loose
spacetime bounds. The regularization term is defined as:

rreg = e−∑
N
i=1 wiai/βi , (7)

where ai is the total kinematic energy, body linear accelerations, or
joint angular accelerations. βi is a scale factor and wi is a weight
that sums up to 1 for i∈ {1, · · · ,N}. N is 1 plus the number of body
parts and the number of joints. The final reward is thus

r = rs · rreg. (8)

The heuristic and data-driven style rewards as defined above are
simple to implement and effective in discovering interesting motion
styles as will be shown in Section 5.3.

4. DRL System

Reinforcement learning of motor skills is formulated as a Markov
Decision Process (MDP). The goal is to learn a policy π

∗ that max-
imizes the expected long-term reward:

π
∗ = argmax

π

Es∼ρ0

[
Vπ(s)

]
, (9)

where the policy π outputs a distribution of actions at ∼ π(a|st)
when given a state st , ρ0 is the distribution of initial states.

Vπ(st) = Est ,at∼π

[ t=T

∑
t=0

γ
trt
]

(10)

is the value function, which is the expected discounted cumulative
reward of π starting from state st . T can be either finite or infinite, rt
is the reward at time t, and γ∈ (0,1) is the discount factor. We refer
interested readers to [SB18] for more theoretic derivations. We use
an actor-critic DRL architecture and parameterize both the policy
and the value function using deep neural networks. Similar to Deep-
Mimic, we train the networks with a collection of algorithms such
as PPO [SWD∗17], T D(λ) and GAE(λ) [SML∗15]. We refer in-
terested readers to [PALvdP18] for more detailed explanations. We
terminate training episodes when the specified spacetime bounds
are violated as shown in Figure 1, or when the end state is reached,
or when the time limit is exceeded.

4.1. States and Actions

The system state constitutes a phase index φ, and the position p,
orientation q, linear velocity v, and angular velocity ω of each link,

and the position of chosen end-effectors pe. All kinematic quan-
tities, except the root orientation, are calculated in a local frame
attached to the root and aligned with the motion direction as de-
scribed in [MYGY19]. Therefore the state features are invariant to
the motion direction, which is the X axis by default. For motions
that contain 360◦ rotations in the sagittal plane, such as backflips
and rolling, the Z axis is selected as the motion direction.

Each internal joint is activated by a PD (Proportional Derivative)
servo. The action vector therefore consists of target orientations for
these PD controllers. Each rotational joint is either a 1-DoF rev-
olute joint or a 3-DoF spherical joint. We choose to parameterize
input orientations in quaternions, and target and output orientations
in exponential maps [Gra98], among the multiple choices for pa-
rameterizing 3D rotations [LvdPY16, HKS17, PALvdP18, YTL18,
BCHF19, PRL∗19].

4.2. Network Structure

Figure 4 shows our policy network, which consists of an open-loop
feedforward controller (FFC) and a feedback controller (FBC). The
FFC looks up the kinematic reference motion and outputs the de-
fault target joint angles. The FBC is a trained neural network that
outputs corrections to the FFC. This structure is inspired by pre-
vious works where controls are decomposed into a feedforward
component and a feedback component. Such controllers are more
robust and compliant in general, and faster to learn in DRL set-
tings [YCP03,LYvdP∗10,DLvdPY15,BCHF19]. More specifically,
the FFC stores the joint angles from the reference and linearly in-
terpolates them at run time according to the current phase index
φ to generate q̂. The FBC consists of two fully-connected layers
with 1024 and 512 hidden units respectively, and outputs correc-
tion angles ∆q. We use ReLU activation for each layer. The final
output target angle for the PD servo is then q = q̂+∆q. All angles
q̂, ∆q, and q are parameterized in exponential maps. Alternatively
quaternions could be used for the parameterization and quaternion
multiplication could be used for the angle correction. Our learning
framework can be applied just the same.

Our value network is similar to the feedback control branch of
the policy network, except that the final output is a scalar that esti-
mates the value function Vπ(s).

4.3. Initial States Adaptation

The initial state distribution ρ0 determines the states in which an
agent begins each episode. Reference State Initialization (RSI) pro-
posed in [PALvdP18] has been proven to help the agent to access
desirable states early in the learning, and thus improves the effi-
ciency and robustness of DRL algorithms. In our framework, the
RSI strategy is equivalent to setting the initial events to E = m(t,0)
where t is uniformly sampled. The RSI strategy does not work well
for challenging skills or low-quality references, however. First, the
feasible regions are not uniform in size across time. At critical
points where the motions are more likely to fail, drawing more
samples will likely help. Second, the sampled initial states could
be infeasible from low-quality references. A strategy to help evolve
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Figure 4: Our policy network consists of a feedforward controller
(FFC) and a feedback controller (FBC). The FFC outputs default
joint angles q̂ according to the phase index φ and the reference mo-
tion. The FBC is a two-layer fully-connected neural network with
1024 and 512 hidden units respectively. It takes in the full state
vector and outputs offset joint angles ∆q. The final control signal
q = q̂+∆q.

the set of initial states into the feasible regions will be beneficial.
We thus develop the following two adaptation strategies to further
improve the robustness of learning: importance sampling from E,
and evolving E by training experiences.

4.3.1. Importance sampling of reference motion

Generally speaking, learning is more likely to fail early from initial
states sampled around critical points of a motor skill. We therefore
sample more around critical points of the reference motion. More
specifically, we first uniformly divide the reference motion into n
segments. Denote the average estimated return starting from states
in segment k as wk. Then for each new episode, we sample each
segment with probability

p(k) = (1−u)
exp(−wk/v)

∑
n
i=1 exp(−wi/v)

+
u
n
, (11)

where u = 0.2 is the probability to sample uniformly for all our ex-
periments, and v is a scale parameter adaptively set to (maxwk−
minwk)/3. This is similar to the adaptive sampling scheme de-
scribed in [PRL∗19]. There are also other adaptive schemes to fa-
cilitate learning in the literature, such as utilizing value functions
to guide the sampling of body shapes [WL19], or learning pro-
gressively from easier tasks to harder tasks [XLKvdP20] which is
equivalent to the adaptive sampling proposed in [PRL∗19, WL19].

4.3.2. Initial States Evolution

When the reference motion is of low quality, such as hand anima-
tion from sparse keyframes, sampled initial states may be outside of
the feasible region. We develop a scheme to select elite states from
experiences to gradually guide them into the feasible region. More
specifically, we assign a buffer for each motion segment to hold the
current set of elite initial states. These buffers are initialized with

m events sampled from the original reference motion segments. We
then sample initial states from these buffers for training. After each
epoch, we use the Boltzmann distribution to draw m elite samples
from all collected samples to overwrite the buffer:

p(l) =
exp(−wl/v)

∑i exp(−wi/v)
, (12)

where wl is the estimated return of the lth state in the buffer, and v is
a scale parameter that we set to (maxwl−minwl). We note that the
ASI (Adaptive State Initialization) scheme described in [PKM∗18]
and the CMA (Covariance Matrix Adaptation) scheme described
in [LYG15] share a similar motivation, but our scheme is much
simpler to implement and works well for all the results shown in
the paper.

5. Results

We implemented our framework in PyTorch [PyT18] and Bullet
[Bul15]. Our character model weighs 45 kg, and has 15 internal
joints and 34 DoFs in total. Each joint except for the root is actuated
by a stable PD controller [TLT11]. We run the simulation at 600 Hz,
and the control at 30 Hz.

For DRL training, we use a binary survival reward at each con-
trol step. If the state is within the spacetime bounds, the character
earns a reward 1, otherwise 0 and the training episode is termi-
nated immediately. When there are other rewards, such as style
encouraging rewards, we simply multiply the binary survival re-
ward with the other rewards. Since the survival reward is 1, the
reward value is simply the value of the other rewards. We set the
reward discount factor γ = 0.95, and λ = 0.95 for both T D(λ) and
GAE(λ). The learning rate is 2.5×10−6 for the actor network and
1.0×10−2 for the critic network. In each training epoch, we sam-
ple 4096 state-action tuples in parallel on multi-core processors.
The training batch size is 256. We report the performance statistics
on a desktop with an 18-core Intel i9-7980XE CPU, where training
takes about 30 minutes to 24 hours, depending on the length and
difficulty of the motor skills.

We first show that our method can train controllers perform-
ing basic tasks with only spacetime bounds in Section 5.1. Then
in Section 5.2, we present more challenging cases where reward-
based methods fail but our method can still succeed. Next in Sec-
tion 5.3, we demonstrate a variety of motion styles synthesized
by our method, either using heuristic or data-driven style rewards.
Lastly in Section 5.4 we conduct ablation studies on the sensitivity
of spacetime bounds, and the effect of FFC and the initial states
adaptation. We also refer our readers to the supplemental video for
visual assessment of our results.

5.1. Learning without Tracking

We first train the character to follow reference motions without any
imitation reward, but with loose spacetime bounds m(t,σ) with σ

set as follows:

• CoM x,y,z positions: 0.2 m
• Root and joint orientation: 0.7 rad ≈ 40◦

• Endeffector distance: 0.5 m
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Figure 5: CoM Y position with respect to the phase index. The green line is the reference and the red lines represent the spacetime bounds.
Blue dots are samples from 100 episodes of the learned policy. We can see that the feasible regions of the learned skills lie inside the spacetime
bounds; and their sizes are not uniform. For example in backflip (c), it is narrower around the takeoff and wider around the landing.

task Tcycle(s) Ours Ns(106) DeepMimic Ns(106)

walk 1.26 4.08 23.80
run 0.80 4.11 19.31

jump 1.77 41.63 25.65
roll 2.02 12.31 23.00

cartwheel 2.72 17.35 30.45
dance 1.62 10.00 24.59

run jump 1.53 11.02 24.07
backflip 1.75 41.20 31.18

Table 1: Number of training samples Ns needed for character to be
able to perform tasks for 20 seconds without falling.

CoM positions are compared in each dimension x,y,z separately.
Joint orientations are compared in their local frames. Endeffector
distances are compared in a direction-invariant local frame, same as
the one that we use to derive the state representations as described
in Section 4.1. Table 1 lists the number of samples needed for learn-
ing each skill, and Figure 6 shows the snapshots of learned skills.
We note that not all spacetime bounds are needed for all skills.
For highly dynamic motions such as the cartwheel, learning can be
successful with just the bounds on CoM position and root orienta-
tion. Generally speaking, spacetime bounds for COM position and
root orientation bound the overall behavior of the character, such
as moving forward or moving upward. Bounds on local joint orien-
tations address the local pose similarity. Bounds on end-effectors
prevent accumulated errors on a chain caused by individual joint
angle deviations.

Figure 5 illustrates the relationship between the reference motion
and the spacetime bounds. It plots the CoM Y position with respect
to the phase index. The reference m(t) is centered by the spacetime
bounds m(t,σ). As shown in Figure 5(b), sampled CoM Y posi-
tions from simulations controlled by the learned policy lie inside
the spacetime bounds, and can notably deviate from the reference.

Figure 6: Cyclic skills trained with loose spacetime bounds and no
imitation reward.

Figure 5(c) reveals that the feasible region is narrower around crit-
ical points such as the taking off phase of a backflip, and wider
around stable regions such as the landing phase.

Tuning spacetime bounds for internal joints is usually easy, as
the reference can be tracked well through PD controllers, espe-
cially for those joints that do not support the body weight, such
as upper body joints in locomotion skills. CoM positions and root
orientations, however, are not directly actuated and controlled. Yet
it is critical to follow them to achieve the desired motor skills.
In addition, errors for the CoM horizontal position accumulate in
time. Therefore, it takes some time to experiment proper spacetime
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Figure 7: Robustness comparison between policies trained using our DRL framework with different options and DeepMimic, for low quality
references from keyframed sparse poses. Green characters represent the reference motions. Yellow, blue, and red characters represent policies
trained using our DRL framework with spacetime bounds only, with both spacetime bounds and imitation rewards, and with imitation rewards
only. Purple characters represent policies trained using DeepMimic. For both skills, policies trained with spacetime bounds can better
reproduce the intended skills.

Figure 8: Retargeting human motions to an Atlas robot. Policies
are trained using our DRL framework with spacetime bounds only.

bounds for the CoM and the root. Nevertheless, we are able to find
one set of spacetime bounds for all the motions that we tested.

5.2. Robustness to Challenging Cases

Tracking-based DRL systems may fail for difficult motor skills or
due to poor reference quality. For example, when the reference mo-
tion contains fast body rotations or sophisticated foot work, the
tracking-based DRL system tends to sacrifice tracking fidelity of
these challenging motion segments in order to gain longer survival
which leads to bigger total rewards. Our spacetime bounds, how-
ever, set hard boundaries for how much the learned skills can de-
viate from the reference, so the final motion will be guaranteed
to be within a certain neighborhood of the original reference. On
the other hand, our spacetime bounds treat all trajectories within
the preset neighborhood equally, so that deviation from low qual-
ity reference is easier in order to achieve robust skills. In contrast,
tracking-based methods have to compromise the quality of learned
skills for more accurate tracking of the bad reference to gain more
rewards.

We compare policies trained using our DRL framework with dif-
fernt options and the original DeepMimic, keeping same parameter
settings wherever possible. Figure 7 shows two reference motions
of rather low quality, keyframed from sparse jogging poses. For
both tasks, policies trained with spacetime bounds can reproduce

ws 0.5 0.6 0.7 0.8
cartwheel E ↓ no style unstable failed failed
cartwheel V ↓ no style no style unstable failed

dance E ↓ no style weird style failed failed
dance E ↑ no style slight style failed failed

Table 2: Style exploration using an imitation reward rather than
spacetime bounds. E ↑ and E ↓ show motions with kinematic energy
encouraged and discouraged respectively, and V ↑ and V ↓ show
motions with full body volume encouraged and discouraged re-
spectively. Most results are style-less motions, or unstable or failed
skills.

the reference tasks in similar styles, while policies trained with-
out spacetime bounds or the original DeepMimic cannot. Figure 9
shows that the policy trained with spacetime bounds can repro-
duce 360◦ jump turns in a break dance, but policies trained without
spacetime bounds or DeepMimic cannot.

We also perform retargeting experiments using our framework,
as shown in Figure 8. We use the built-in Atlas robot model from
PyBullet [Bul15]. The morphology of this robot is significantly dif-
ferent from that of humans. The model also uses three revolute
joints to model spherical joints, so we parameterize rotations of
spherical joints, such as shoulders and hips, using Euler angles.
We directly use the same motions captured from human perform-
ers as references without any kinematic retargeting. Our framework
is able to physically retarget locomotion and gymnastics skills onto
the robot model using spacetime bounds only.

5.3. Style Exploration

5.3.1. Heuristic Styles

We combine spacetime bounds with the heuristic style rewards
as described in Section 3.3 to generate stylized motions, some of
which are shown in Figure 10. We refer the readers to the supple-
mental video for more examples. We set [Emin,Emax] = [20,100]
for the kinematic energy term in Equation 4, and α = 0.12 for the
volume term in Equation 5. In order to generate visually different
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Figure 9: Robustness comparison between policies trained using
our DRL framework with different options and DeepMimic, for a
challenging skill break dance. Green characters represent the ref-
erence motions. Yellow, blue, and red characters represent policies
trained using our DRL framework with spacetime bounds only, with
both spacetime bounds and imitation rewards, and with imitation
rewards only. Purple characters represent policies trained using
DeepMimic. The reference character performs two 360◦ jump turns
during the dance. The policies trained with spacetime bounds are
able to reproduce the reference motion, but the one trained with im-
itation rewards only cannot reproduce the challenging parts. The
policy trained using DeepMimic fails completely.

styles, we deliberately loosen the spacetime bounds in Section 5.1.
For example, we only bound the CoM positions, and root, ankle
and neck orientations for the cartwheel.

5.3.2. Data-driven Styles

We test style exploration using the data-driven style reward as de-
scribed in Section 3.3 for motions selected from the CMU mocap
database, as shown in Figure 12. We directly use the autoencoder
from [HSK16] to encode stylistic walking motions in Figure 12(b)
and (d) to high level features for Gram matrix computation. A neu-
tral run as shown in Figure 12(a) is used to derive relevant space-
time bounds for DRL training. The Gram matrix for the simulated
motion is computed from the current state backward in time for a
fixed duration of one locomotion cycle. Then the data-driven style
term can be evaluated by Equation 6 from the two Gram matri-
ces. We again use larger spacetime bounds than those given in
Section 5.1 to support more aggressive style explorations for these
cases.

Figure 10: Styles explored by using heuristic style rewards with
spacetime bounds. Reference motions are colored in green and styl-
ized motions in yellow. E ↑ and E ↓ show motions with kinematic
energy encouraged and discouraged respectively. V ↑ and V ↓ show
motions with full body volume encouraged and discouraged.

5.3.3. Comparison

We conduct comparative experiments to validate the necessity of
spacetime bounds in style exploration within our DRL framework
as given in Section 4. We use a weighted average of an imitation
reward term and the style reward terms as described in Section 3.3.
That is, using a total reward defined as follows:

r = (1−ws)ri +wsrs, (13)

where ri is the imitation reward from DeepMimic [PALvdP18] and
rs is the style term. We test a range of ws listed in Table 2. As we
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Figure 11: Uniform vs. importance sampling for learning three skills: Indian dance, backflip and walk turn. (Left) Importance sampling
is much more superior for the Indian dance, which contains a few 360◦ turns. (Middle) Importance sampling is beneficial for the backflip,
which contains critical points such as the takeoff. (Right) The two sampling methods do not differ much for the walk turn.

Figure 12: Style exploration with data-driven style rewards. (a) a
neutral run; (b) a happy walk; (c) a happy run trained from the
spacetime-bounded neutral run with the style descriptor extracted
from the happy walk; (d) a bent walk; (e) a bent run trained from the
spacetime-bounded neutral run with the style descriptor extracted
from the bent walk.

can see, lower ws results in successful motor skills, but prohibits
exploration of new styles. While higher ws results in either unsta-
ble or failed motor skills. We also conduct another experiment with
both the spacetime bounds and the composite imitation and style
rewards in Equation 13. In such case, stylized skills can be learned
for all ws without any failure. The learned skills are slightly less
stylized as compared with just using the spacetime bounds and the

Figure 13: The first principal components of the evolved initial
states (blue dots) and the reference states (green dots) for a segment
of a break dance. We use the modified locally linear embedding
[ZW07] for principal component analysis. Around sharp turns, the
evolved initial states significantly deviate from the reference initial
states, which enables the successful learning of this challenging
skill.

style rewards, due to interference from the imitation term. We en-
courage readers to see these motions in our supplemental video.

5.4. Ablation Study

5.4.1. Spacetime Bounds Sensitivity

We analyze the sensitivity of spacetime bounds by training a series
of controllers using spacetime bounds of different sizes, varying
from tight to loose. For under-constrained motions with large ini-
tial feasible regions, such as walking, the learned policies change
notably with respect to the size of the specified spacetime bounds.
The looser the sapcetime bounds are, the more relaxed and less con-
strained the learned walk is. For highly constrained motions with
narrow initial feasible regions, such as a cartwheel, too tight space-
time bounds result in training failures, and too loose bounds do
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not influence the learned skills notably. These results reveal the in-
teractions between the spacetime bounds and the inherent feasible
regions of dynamic skills. Please see the supplemental video for
comparisons of the relevant animation results.

5.4.2. Effect of the Feedforward Controller

Integrated neural network models without separating FBC and FFC
can successfully learn many motor skills [PALvdP18]. However,
separating FFC from FBC can result in much faster learning, as
proven by a few recent works [BCHF19, PRL∗19]. We also found
that FFC helps to learn skills that contain ambiguous phase-state
correspondences. For example, we demonstrate in our supplemen-
tal video that our model can successfully learn a back-bridge-with-
leg-lift skill, during which the character is static for a while. In
contrast, models without FFC cannot reproduce the skill at all. The
disadvantage of using FFC is that the original reference data need
to be stored in a memory to compute the final policy.

5.4.3. Initial States Adaptation

Figure 11 shows training with and without the importance sampling
of reference motion as described in Section 4.3.1. For challenging
tasks such as the Indian dance, importance sampling greatly im-
proves the learning and convergence speed. For less challenging
tasks, the benefit of importance sampling will gradually diminish.
Regarding the effect of initial states evolution as described in Sec-
tion 4.3.2, we visualize the evolved initial states together with the
reference states for a break dance in Figure 13. Around sharp turns
of the motion, evolved initial states significantly deviate from the
reference initial states, which enables the successful learning of this
challenging skill. We refer readers to the supplemental video for the
animation result.

6. Discussion

We have presented a deep reinforcement learning framework that
robustly learns motor skills via spacetime bounds. We show that
our method can learn motor skills without any imitation or hand-
crafted rewards. Thus our method is more robust to low-quality
reference motions. Moreover, spacetime bounds impose hard con-
straints to the training process, so the learned skills are guaranteed
to be close to challenging parts of the reference skills. Furthermore,
spacetime bounds can be easily combined with style exploration
rewards, imitation rewards, regularization or any other mechanism
such as [JvWdGL19], to either achieve effects such as style explo-
ration, or to further improve synthesis quality.

All the spacetime bounds that we used are derived directly from
the reference motion, e.g., the target orientation plus and minus 40
degrees. The working range of spacetime bounds are usually quite
large. Intuitively, when the reference quality is good, the bounds
can be tighter. When the reference quality is bad, the bounds should
be looser. When we just need to reproduce the reference, the bounds
should be tighter. When we want to explore different styles, the
bounds should be looser. Moreover, when the motion is highly con-
strained such as a gymnastic backflip, the size of the bounds do not
affect the results that much, and therefore minimal tuning is re-
quired. For under-constrained motions such as locomotion, the size

of the bounds affect the styles of the output. However, if we do not
care too much about the styles, the required tuning is also minimal.

We would like to note that DRL learning with imitation rewards
alone already works well for reconstructing high-quality reference
motions without challenging parts. However, spacetime bounds can
still be used together with imitation rewards for such cases to re-
place ad-hoc early termination techniques such as undesired body-
ground contacts. For low-quality reference motions, skills contain-
ing challenging parts, or style exploration, spacetime bounds can
be used, either alone or together with imitation rewards, to lead the
learning to more faithful reconstruction of the desired skills or more
stylish skills. Imitation-alone methods do not work at all for style
exploration. But imitation rewards can be used together with space-
time bounds and style terms, although they do interfere with style
exploration to certain extent depending on the specific weighting
scheme.

Spacetime bounds together with physical laws and system dy-
namics restrict and shrink the feasible region of a dynamic skill to
constrain the learning in an early termination fashion. We refer in-
terested readers to materials in mathematical physics on spacetime
causal structure [HE73, Pen87, LE60] to better understand the fast
shrinkage of the feasible region under spacetime constraints. Cur-
rently we only use static spacetime bounds. It would be interesting
to investigate how to adaptively adjust the spacetime bounds with
the experiences accumulated during the learning process. Recently,
powerful interactive systems that employ kinematic data-driven an-
imation engines to train physics-based models with DRL have been
developed [BCHF19, PRL∗19, WGH20]. We also wish to integrate
our stylized controllers into a more powerful system in the future,
where the styles can be more explicitly activated as in [AZS∗17].
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