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Abstract
The symmetrizable and converged Laplace–Beltrami operator (�M) is an indispensable tool for spectral geometrical analysis
of point clouds. The �M, introduced by Liu et al. [LPG12] is guaranteed to be symmetrizable, but its convergence degrades
when it is applied to models with sharp features. In this paper, we propose a novel �M, which is not only symmetrizable but also
can handle the point-sampled surface containing significant sharp features. By constructing the anisotropic Voronoi diagram in
the local tangential space, the �M can be well constructed for any given point. To compute the area of anisotropic Voronoi cell,
we introduce an efficient approximation by projecting the cell to the local tangent plane and have proved its convergence. We
present numerical experiments that clearly demonstrate the robustness and efficiency of the proposed �M for point clouds that
may contain noise, outliers, and non-uniformities in thickness and spacing. Moreover, we can show that its spectrum is more
accurate than the ones from existing �M for scan points or surfaces with sharp features.

Keywords: point-based methods, methods and applications, point-based graphics, modelling, computational geometry

ACM CCS: Computational Geometry and Object Modeling → Geometric algorithm

1. Introduction

The Laplace–Beltrami operator (LBO) (�M) plays a critical role in
the spectral geometry analysis. It is a fundamental tool and has been
intensively applied in numerous geometry processing applications,
such as surface filtering [DMSB99], geometry modeling [YZX*04],
mesh segmentation [LZ07] and skeleton extraction [TAOZ12]. De-
veloping a robust �M estimation is thus one of essential geome-
try processing tasks, and a vast related literature [Tau95, DMSB99,
WMKG07, BSW08, CLB*09] has emerged in the past two decades.
Nonetheless, most of these works mainly focus on triangular surface
models.

∗Corresponding author: Yunhai Wang (cloudseawang@gmail.com)

As commodity depth sensors become widely available for scan-
ning acquisition, point-based representation is now ubiquitous in
computer graphics. There has recently been increasing interest
in discretizing �M on point set surfaces. Belkin et al. [BSW09]
first proposed a provable �M (BSW) on point-sampled surfaces,
which can converge yet be not symmetrizable. With a local
Voronoi cell, a converged and symmetrizable �M (PBMH) was
constructed in [LPG12]. However, their convergence usually de-
grades in cases with sharp edges or spikes. The �M proposed
by Petronetto et al. in [PPH*13] can handle sharp features. It is,
however, sensitive to noise and outliers thus not suitable for raw
scans.

In this paper, we develop a new �M defined on point set sur-
faces, which can handle the shapes containing sharp features. It is
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2 H. Qin et al. / Laplace-Beltrami Operator

achieved by improving the discretization scheme in [LPG12] with
an anisotropic Voronoi diagram to estimate area elements of each
point. This new scheme not only allows us to construct the local
Voronoi cell for each point on sharp edges, but also provides a more
accurate geodesic distance approximation, which is capable of al-
leviating the �M sensitivity to the noise. Specifically, to compute
the area of the anisotropic Voronoi cell, we conduct an efficient
isotropic simplification and provide the convergence proof. Com-
pared to previous approaches [LPG12, PPH*13], our �M is more
accurate and robust, and can deal with noisy raw scans as shown in
Figure 13.

We show the effectiveness of the proposed discretization method
through a set of comparisons to state-of-the-art techniques. We
also demonstrate the performance of our �M with various appli-
cations, such as point-based surface filtering [PG01], reconstruc-
tion [LPG12] and skeleton extraction [TAOZ12].

In summary, our main contributions include:

� the development of a generalized anisotropic Voronoi diagram
to estimate the volume element for the approximation of the �M
on point set surfaces;

� the proposal of an effective algorithm to compute the area of the
anisotropic Voronoi diagram in the local tangential space.

2. Related Work

The Laplace operator � is a linear second-order differential operator
in Euclidean space Rn, which is defined as the divergence of the
gradient. �M is the more general version of the Laplace operator in
the n-dimensional orientable Riemannian manifold M, that is

�Mf = div gradf. (1)

In geometry processing, we only consider a smooth two-
dimensional (2D) manifold (M, g) which is embedded in R3. By
applying �M to a scalar function f , we can get:

�Mf =
2∑

i,j=1

1√
g

∂

∂ξi

(√
ggij ∂f

∂ξj

)
, (2)

where g = det (G), G = [gij] is a metric tensor, and the coefficients
gij are the components of the inverse of G.

According to Equation (2), evaluating �M requires the estimation
of the second derivative, which is not well defined for meshes and
point clouds. By using Stokes’s theorem to turn a second derivative
into two first-order derivatives, �M can be represented as∫

M
�Mf · φdu =

∫
M

< ∇f, ∇φ > du, (3)

where du is the volume element. However, evaluating first-order
derivatives is still a challenge for point clouds. To address this
issue, Belkin et al. [BN05] propose to approximate �M with the
integration of continuous functions:

�Mf (p) = lim
t→0

1

4πt2

(∫
M

e− ||p−q||2
4t (f (p) − f (q)

)
duq (4)

which does not require the first and second-order derivatives.

2.1. The discretization schemes

To build the discrete �M, it is necessary to approximate the con-
tinuous representation of the �M for every vertex in meshes or
every point in point clouds. Since the topology structure is differ-
ent between meshes and point clouds, different schemes have been
proposed.

Mesh based: The graph Laplacian [Tau95] is the simplest dis-
crete �M for meshes. Since it is a general extension of the Laplace
operator based on finite difference, it can be taken as the approxima-
tion of Equation (2). However, it will generate a variety of artifacts
such as geometric distortion since it does not consider the geometry
information.

To incorporate geometry information, most of the discretization
methods rely on the finite element method with different assump-
tions. Depending on the area element used, some methods may
result in non-symmetric matrices with complex eigenvalues and
eigenvectors, which limits the application of such �M. Desbrun
et al. [DMSB99] use the area of the triangles of one-ring neighbours
to estimate �M, while the local Voronoi cell is used as the area ele-
ment for the integration [MDSB03, VL08, DGCD*13]. All of these
discrete schemes have similar forms of a cotangent scheme, which is
widely applied in geometry processing and shape understanding for
meshes [BKP*10]. However, it has been shown in [WMKG07] that
discrete �M defined on mesh cannot satisfy all of the properties of
its continuous counterpart. In order to guarantee the convergence of
the discrete �M, Belkin et al. [BSW08] and Chuang et al. [CLB*09]
construct the discrete schemes based on different continuous func-
tions defined on a 2D manifold, where the former uses the Gaussian
kernel, while the latter employs B-Spline as the basis function to
define the continuous function in R3. In both approaches, the area
element for the integration calculus is still the original mesh.

To directly implement spectral analysis on meshes, it is nec-
essary to symmetrize a non-symmetric �M matrix. An empirical
symmetrization, which uses 0.5(L + LT ) to replace the original
non-symmetric �M matrix L, is proposed in [Lév06] at the expense
of partially losing mesh independence. To preserve mesh indepen-
dence and symmetry of �M on mesh simultaneously, Vallet and
lévy generalize the cotan weights on a discrete exterior calculus
framework [VL08].

Point based: Based on different continuous representations, there
are different methods to approximate the �M on point clouds. De-
riving from Equation (2), Liang et al. [LLWZ12] approximate the
�M using a moving least square method to reconstruct the local
surface, while Macdonald et al. [MBR11] first compute an embed-
ded function in R3 based on the closest point method and then apply
the standard Cartesian finite difference to get �M. However, both
of these two methods require the reconstruction of a local surface
for each point, which takes considerable time.

Since the weighted integration schemes (Equation (4)) only de-
pends on the kernel function and the area element, many recent
methods are derived from this representation. By using the Gaus-
sian function as the kernel function, Belkin et al. [BSW09] per-
form the integration with triangles generated by local Delaunay
triangulation in the local tangent space. Although the resulting
�M is converging as points get denser, the resulting matrix is not
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guaranteed to be symmetrizable. By improving this approach with
the local Vornoni cell to estimate the area element, the �M matrix
generated by Liu et al. [LPG12] is guaranteed to be symmetrizable.
Since this method requires point clouds to satisfy certain sampling
conditions, its convergence will degrade at sharp edges or spikes.
With the combination of smoothed particle hydrodynamics and a
global optimization procedure to estimate area elements, Petronetto
et al. [PPH*13] propose a mesh-free discrete �M. Although this
�M is symmetrizable and can handle the shape with sharp features,
it is sensitive to noise.

In the paper, our approach focuses on the �M, which can handle
the model with sharp features. The key is that we propose a new area
element based on an anisotropic Voronoi diagram in the tangential
space. Numerical experiments show that this �M can represent
more details in spectral geometry processing.

3. �M Approximation With Anisotropic Voronoi Diagram

As [BSW09, LPG12], we use the Gaussian function as the kernel
function and thus the �M can be approximated as follows:

�Mf (p) = 1

4πt2

∑
q∈p(δ)

(
e− ||q−p||2

4t (f (q) − f (p))vol(q)

)
, (5)

where p(δ) consists of neighbour from p within δ, and vol(q) refers
to the volume element (area elements in our case) represented by
the point q.

In Section 3.1, we introduce the anisotropic Voronoi diagram in
the local tangent space to define the area element for every sampled
point and then we discretize the anisotropic Voronoi diagram to
compute the area element in Section 3.2. Convergence of the �M
is shown in Section 3.3. In Section 3.4, we analyse the reason why
our �M is less sensitive to noise than PBMH [LPG12].

3.1. Anisotropic Voronoi diagram in local tangent space

In Equation (5), the volume element is the only unknown term for
�M approximation. In general, Voronoi cells are used to estimate
volume elements for sampled points in Riemannian manifold space
or Euclidean space, and are defined as:

VorM(p) = {x ∈ M|dM(p, x) ≤ dM(q, x), q 	= p}, (6)

where dM(·, ·) is the geodesic distance between two sampled points.

With the proof that the local Voronoi cell area on the tangen-
tial space is converging to its counterpart on the manifold, Liu
et al. [LPG12] estimate the area of the Euclidean Voronoi cell on
the local tangent plane. As a result, the distance dM(p, q) is ap-
proximated by the distance dT (p, q) in the local tangent space T .
Given a point cloud P on the surface M, where the point cloud
P is (ε, sε)-sampled. It means that the point cloud P satisfies two
conditions, that is,

∀x ∈ ,∃p ∈ P : ||x − p|| ≤ ε,

∀p, q ∈ P : ||p − q|| ≥ sε, 0 < s < 1.

Figure 1: The comparisons between the projections of points on the
tangent plane in PBMH [LPG12] and AVD. In PBMH (a), approxi-
mative distances dTp

(p, qi) and dT
qi

(qi, p) of the geodesic distance

between the point q and qi are different in tangent spaces Tp and
Tqi . When the local surface at the point p becomes sharper, the ratio
dTp

(p, qi)/dT i
q
(qi, p) is close to zero, which leads to the degenera-

tion of �M in PBMH. In contrast, the ratio dMa
(p, qi)/dMa

(qi, p)
of two approximated distances of the geodesic distance dM(p, qi)
in (b) is equal to 1, and x is the middle point of the line pqi .

For any point p ∈ P , its Voronoi cell is defined as:

Vor(p) = {xp ∈ Tp|dTp
(p, x) ≤ dTp

(x, q), ||p − q|| ≤ δ}, (7)

where xp is the projection of x on the tangent plane Tp , and dTp
(·, ·)

is the distance between the projections of two points in the tangent
plane Tp . To ensure that the estimated tangent plane is converging
to the real tangent plane [BSW09], δ is set to be 10ε. In other words,
xp is selected by projecting all sampled points x to the local tangent
plane Tp .

However, this definition has the result that the convergence of the
�M degrades at sharp features. The point p in Figure 1(a) is an
example, where {qi |qi ∈ P, ||p − qi || ≤ δ} are the neighbours of
p. The distances between p and qi in the tangent planes Tp and Tqi

are

dTp
(p, qi) =

√
||pqi ||2 − (pqi · Np)2,

dT
qi

(qi, p) =
√

||pqi ||2 − (pqi · Nqi )2, (8)
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where Tqi is the tangent plane of qi , Np and Ni
q are the nor-

mals of p and qi , respectively. As the local surface at the point
p becomes sharper, |Np · Nqi | will close to zero, while dTp

(p, qi)
will become smaller and dT

qi
(qi, p) will become larger. In other

words, dTp
(p, qi)/dT

qi
(qi, p) will be close to 0. Nonetheless,

dTp
(p, qi) and dT

qi
(qi, p) both approximate the geodesic distance

between the point p and qi , a symmetric distance indicates that
dTp

(p, qi)/dT
qi

(qi, p) should be close to 1. That is the reason why
the convergence of the �M proposed in [LPG12] degrades at sharp
edges.

To overcome this drawback, we propose to estimate the volume
element of point p with the anisotropic Voronoi diagram [LS03]
defined on the local tangent space Tp:

Vorani(p) =
{
xp ∈ Tp|dTp

(p, x) ≤ dT
qi

(qi, x)
}

, (9)

where dT
qi

(qi, x) is the distance between the projections of two

points qi and x in the tangent plane Tqi , and xp is the projection of the
point x in the tangent plane Tp . Compared with Equation (7), we can
see that all sampled points x are first projected to two tangent planes
Tp and Tqi and then xp is adaptively determined by first finding a
proper x through comparing dTp

(p, x) with dT
qi

(qi, x). This implies

that the approximated distance dMa
(p, qi) of the geodesic distance

between two neighbouring points p and qi is not dTp
(p, qi), and

also not dT i
q
(qi, p), but

dMa
(p, qi) = dTp

(p, x̂) + dT
qi

(x̂, qi)

≈ dM(p, x̂) + dM(x̂, qi)

= dM(p, qi), (10)

where the point x̂ is the point located at the geodesic line between p

and qi . Furthermore, in terms of Lemma 1.5 [LPG12], the approx-

imate distance holds 1 ≤ dM(p,qi )
dTp (p,x̂)+dT

qi
(x̂,qi )

≤ 1 + O(ε2/ρ2), where

ρ is the smaller of the distances from the point p and qi to the me-
dial axis. Meanwhile, we select x̂ to hold dTp

(p, x̂) = dT
qi

(x̂, qi),

so that dMa
(p, qi)/dMa

(qi, p) is equal to 1. It can avoid the issue
that dTp

(p, qi)/dT
qi

(qi, p) is close to 0 or ∞ at the sharp feature
point [LPG12]. Thus, it prevents the degeneration of the �M at the
sharp feature point. For convenience, we refer to our approach as
AVD.

3.2. Computing Voronoi cell

Although the anisotropic distance measure implied by the
anisotropic Voronoi diagram is more accurate, it is difficult to esti-
mate the area of such a Voronoi cell in the local tangent space. The
boundary of the Voronoi cell V orani(p) is composed of patches of
a quadratic curve as shown in [LS03]. The complexity of comput-
ing an anisotropic Voronoi diagram is in O(n2). Furthermore, the
complexity of computing the area of the Voronoi cell composed of
quadratic curves is higher than that of computing the area of the
Voronoi cell composed of lines. To facilitate the local Voronoi cell
computation, we propose to convert the anisotropic Voronoi cell to
an isotropic version while the distance is preserved.

Figure 2: Illustration of Voronoi cell computation. {qi} are neigh-
bours of the point p. Tp and Tqi are the tangent space of the points
p and qi separately. x̂p and qi

p are the orthogonal projection of the
points x̂ and qi on the local tangent space Tp . x̂qi is the orthogonal
projection of the point x̂ on the local tangent space Tqi . q̂ i

p is the
approximate inverse exponential map of the point qi on the local
tangent space Tp .

Suppose neighbours {qi} of the point p within δ away from p are
considered for the Voronoi cell estimation in Figure 2. We represent

the parameterized geodesic as γ (t,
−→
pq̂i

p), t ∈ (−ε, ε) with initial

conditions γ (0,
−→
pq̂i

p) = p and γ (0,
−→
pq̂i

p) = −→
pq̂i

p . We firstly project
{qi} on the local tangent space of the point p via an approximate
inverse exponential map,

expp

(−→
pq̂i

p

)
= γ

(
1,

−→
pq̂i

p

)
≈ qi, (11)

where the length of the vector
−→
pq̂i

p is equal to the approximated
geodesic distance between p and qi , that is,

||−→
pq̂i

p|| = dTp
(p, x̂) + dT

qi
(x̂, qi), (12)

the direction of the vector
−→
pq̂i

p is same with the direction of the

vector
−→
pqi

p , and qi
p is the orthogonal projection of the point qi on

the local tangent space Tp . Then, we take the point q̂ i
p to construct

the isotropic Voronoi cell of the point p like PBMH [LPG12], as
shown in Figure 2. To reduce the time cost of searching for x̂, the
point x̂ is selected as the middle point between the points p and
qi in our approach. Compared with PBMH [LPG12], the proposed
Voronoi cell preserves the symmetry of the distance in different
tangent spaces. Furthermore, in Theorem 3.1, we prove that when
the point x̂ is the midpoint between p and qi , then the area of the
estimated Voronoi cell converges to the area of the Voronoi cell in
the manifold.

c© 2017 The Authors
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3.3. Convergence theorem

The proof of the convergence of �M in PBMH [LPG12] consists
of two steps: proving the convergence of the estimated Voronoi cell
area and proving the convergence of �M based on the Voronoi cell
area convergence result. Since the difference between our AVD and
PBMH [LPG12] is that different area elements are used, it is only
necessary to prove that the estimated area of the Voronoi cell is
converged to the real Voronoi cell area in our �M (Theorem 3.1).
The proofs for the convergence of the Voronoi cell area are provided
in the Appendix.

Theorem 1 (Voronoi cell approximation). Consider the Voronoi cell
of the point p ∈ P where P is a (ε, sε)-sample of the manifold M,
the Voronoi cell Vorani(p) on the tangent space Tp built by our
algorithm, and the Voronoi cell Vor(p) on the tangent space Tp built
by PBMH [LPG12],

∣∣∣∣
∣∣∣∣vol(Vorani(p))

vol(Vor(p))
− 1

∣∣∣∣
∣∣∣∣ ≤ O(ε/ρ) (13)

∣∣∣∣
∣∣∣∣ vol(VorM(p)

vol(Vorani(p))
− 1

∣∣∣∣
∣∣∣∣ ≤ O(ε/ρ) (14)

holds when ε is small enough.

3.4. Noise analysis

The scanned point clouds often contain different degrees of noise.
It is assumed that the point qi is moved to qi′ with ω along the
normal nqi as shown in Figure 3, qi′ = qi + ωnqi . The error of
the projection distance pqi in the tangent space Tp generated by
PBMH [LPG12] (Figure 3a) is:

∣∣∣∣∣∣pqi
p − pqi′

p

∣∣∣∣∣∣ =
∣∣∣∣∣∣qi

pqi′
p

∣∣∣∣∣∣ = ω

√
1 − (np · nqi )2. (15)

In terms of Equation (12), the projection distances of pqi and pqi′ in
the tangent space Tp are ||pxp|| + ||xqi q̂i

p|| and ||px ′
p|| + ||xqi q̂i′

p ||,
respectively (Figure 3b). Thus, the error of the projection distance

Figure 3: The influence of noise on the distance measure used in
PBMH [LPG12](a) and our AVD(b), where ω is the normal shift of
the point qi , x and x ′ are the middle points of pqi and pqi′ . The
error ||q̂ i′

p q̂i
p|| generated in (b) is half of the error ||qi′

p qi
p|| in (a).

of pqi in AVD is∣∣∣
∣∣∣qi′

p qi
p

∣∣∣
∣∣∣ = ω

2

√
1 − (np · nqi )2. (16)

From Equation (15) and Equation (16), we can see the error gener-
ated by our approach is half of the one of PBMH. Thus, our �M is
less sensitive to noise compared to PBMH.

3.5. Normal estimation

Normal plays a very important role in the proposed algorithm to
define the tangent space. When normal vectors are not available, it
is necessary to estimate normal vectors. The estimation of normals
can be reduced to the eigenvector problem of the covariance matrix
in principal component analysis (PCA) [PGK02]. However, PCA is
sensitive to noise and outliers for normal estimation. To get more
robust and accurate normal vectors, we applied a robust, iterative
and convergent mean shift filter to refine normal vectors estimated
in PCA. More details can be found in the paper [HJY08].

4. Results and Applications

In this section, we verified the effectiveness of our �M with various
point clouds data sets. All experiments were conducted on a Win-
dows platform with Intel Core 2 Duo 2.6GHz CPU and 2GB RAM.
In our implementation, the generation of the �M matrix were writ-
ten in C++, and the eigenproblem was solved in MATLAB. Since
real scanned point clouds may be not (ε, sε)-sampled, the neigh-
bours of the point p was selected as the union of δ-neighbours and
k-neighbours. In the experiments, k was selected as 20.

4.1. Accuracy evaluation

The estimation for the area element at every sampled point is the
key for the approximation of the �M on point clouds. Our first
experiment was to verify whether the area estimated by our approach
is more accurate than others with two uniformly sampled models:
one sphere and one cone. Since we have the ground truth area Areac

of these models, we measured the error of the estimated area by

Area Errors = |Areac − ∑
p∈P vol(p)|

Areac
, (17)

where p is a point in sampled point clouds P and vol(p) refers
to the estimated area of the constructed Vornoni cell around p.
Figure 4 shows the comparison between PBMH [LPG12] and our
approach. We can see that the estimated surface area generated by
our approach is closer to the area of the continuous surface than the
area generated by PBMH [LPG12].

In order to evaluate the accuracy of our �M, we first defined sev-
eral analytic functions over the unit sphere and then compared com-
puted Laplacians with the analytic solutions. The sphere was sam-
pled with three different settings: uniform sampling, non-uniform
sampling and noise perturbation, where 5% of Gaussian noise was
added in the normal and tangent components of the point clouds.
Similar to Petronetto et al. [PPH*13], we measured the accuracy
with L2 error and L∞ error for the functions f (x, y, z) = x, x2, ex ,

c© 2017 The Authors
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6 H. Qin et al. / Laplace-Beltrami Operator

Figure 4: The comparisons of surface area estimation on the uni-
form sampled sphere and cone with PBMH [LPG12] and our
approach.

Table 1: Approximation error of �Mf on the uniformly sampled sphere
(8k points) using L2 error and L∞ error.

Uniform

L2 Error L∞ Error

f (x, y, z) = x PBMH 12.64 1.58
AVD 11.6 1.36

f (x, y, z) = x2 PBMH 5.69 0.97
AVD 4.93 0.81

f (x, y, z) = ex PBMH 11.02 0.75
AVD 9.15 0.66

which are shown in Table 1. We can see that both L2 error and L∞
error with our �M are less than PBMH.

4.2. Convergence of �M

To evaluate the convergence of �M in our approach, we evaluated
eigenvalues of �M on the unit sphere with a different number of
uniform sampling points, as shown in Figure 5. We can see that the
eigenvalues of �M generated by our approach tend to the analytical
eigenvalues as the number of sample points increase. Moreover, the
multiplicity of the eigenvalues with different sample points matches
closely the multiplicity of their analytical counterpart.

4.3. Non-uniformly sampled and noisy point clouds

To verify the robustness of the proposed operator for non-uniformly
sampled point clouds, we first conducted an experiment on the
‘symmetric’ two-hold torus (‘Eight’) model, where two handles
were sampled with different sampling rates. As shown in Figure 6,
the eigenvectors H 2 and H 4 of the �M are still symmetric over the
surface, although the point distribution is non-uniform.

We then conducted another experiment to demonstrate the effec-
tiveness of our �M in handling noisy point clouds. Figure 7 shows
the eigenvalues of the �M on the unit sphere under three settings:

Figure 5: Convergence of the eigenvalues of our �M on the unit
sphere with different number of sampling points.

Figure 6: The eigenvectors of H 2 (a), and H 4 (b) of the �M pro-
posed by our approach, for the symmetric model ‘Eight’ (40k points)
(c) with the non-uniform sampling distribution.

uniform sampling, non-uniform sampling and noise perturbations,
where 5% of Gaussian noise was added in the normal and tangent
components of the point clouds. It showed that the eigenvalues gen-
erated by our approach are closer to the analytical eigenvalues than
PBMH [LPG12]. The stability of the eigenvectors of the �M is
illustrated in the third row of Figure 7, where we can see that the
eigenvectors H 4 are almost the same under three settings.

4.4. Sharp features

To illustrate the efficiency of the proposed operator in handling the
models with sharp features, Figure 8 compares the eigenvectors of
�M on the model with sharp features under isometric transforma-
tions. Here, we used a flat square model sampled with 101 × 101
points. The isometric models with sharp features were created by
folding the flat square with 0, 30, 70 and 120 degrees from left
to right in Figure 8. Notice that the eigenvectors of the �M on
BSW [BSW09] and PBMH [LPG12] vary under isometric trans-
formation, while the eigenvectors of the proposed operator are well
preserved. Furthermore, Figure 9 shows asymptotic behaviour in
the semi-log scale for our approach on the model with sharp fea-
tures when discretizing the �M in a uniformly sampled folding
square with increased density. Notice that the error resulting from
the AVD discretization was always less than the one obtained with
BSW and PBMH. Thus, the proposed operator is robust and stable
for the model with sharp features. In the next subsection, we also

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



H. Qin et al. / Laplace-Beltrami Operator 7

Figure 7: The effectiveness of our �M in handling a uniformly
sampled sphere, non-uniformly sampled sphere and noisy sphere.
The first row shows the sampled point clouds on these three spheres
from left to right, the second row shows the eigenvalues of �M
generated by our AVD, PBMH and the analytic solutions, and the
last row shows the eigenvectors H 4 of the �M under three settings.

proved the capacity of our approach to better encode sharp features
in surface reconstruction 11 and skeleton extraction 12.

4.5. Application

To verify whether the �M estimated with our approach can rep-
resent more details with sharp features, we used the �M for the
spectral representation of point clouds. First, the eigen problem of
the �M matrix was solved to get the base vectors Hi of the sampled
surface [LPG12]. Then, the base vectors were used to reconstruct
point clouds:

f =
∑

< f, H i > Hi. (18)

Figure 11 and Figure 10 qualitatively and quantitatively compared
the reconstruction of point clouds generated by other approaches
and our �M, respectively. In Figure 11, we used separate 2k bases
with the largest eigenvalues to reconstruct the hand model in our
approach, BSW [BSW09] and PBMH [LPG12]. Compared with
PBMH and our AVD, noise is introduced into the model recon-

Figure 8: The comparisons of eigenvectors H 2 (the first three lines)
and H 10 (the last three lines) on the model with sharp features. The
first and fourth lines are the results generated by BSW [BSW09], the
second and fifth lines are the results generated by PBMH [LPG12].
The third and sixth lines are the results generated by our approach.

structed in BSW [BSW09]. More geometric details with sharp fea-
tures are preserved in our approach than in PBMH [LPG12] and less
reconstruction error is generated in our approach than in PBMH. The
larger the eigenvalue is, the lower the frequency information that
is encoded in the corresponding base. The experiment, therefore,
showed that more sharp features are encoded in our approach than
in PBMH [LPG12]. Furthermore, we used all bases to reconstruct
models to demonstrate the accuracy of surface representation in our
approach. Figure 10 shows the max error and the mean error in
our approach and PBMH [LPG12] between the original models and
the reconstructed models with all bases, where we can see that the
max error was becoming less and less as the number of used bases
was increasing. Meanwhile, both the max error and the mean error
generated by our �M are less than by PBMH [LPG12]. We can
conclude that a more highly accurate surface is generated by our
approach than by PBMH [LPG12].

To further verify that our approach is efficient in representing
the geometry structure of point cloud data, we configured our �M
and PBMH to the point clouds-based skeleton extraction approach
[TAOZ12] and see which extracted skeleton captures more geometry
structure. As shown in Figure 12, we applied AVD and PBMH

c© 2017 The Authors
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Figure 9: Consistency analysis of �Mf on uniformly sampled fold-
ing square with 70◦. The curves allow to compare the AVD-based
method against BSW [BSW09] and PBMH [LPG12], using average
error in l2 (larger graphs) and l∞ (top right) norms.

separately to extract skeletons, which are represented with the same
number of points. Figures 12(a) and (c) show that skeletons extracted
with PBMH mainly captured the straight line branch and miss a
few structures, such as the ankles of the horse model (Figure 12a).
Figures 12(b) and (d) show that skeletons extracted with AVD can
capture more geometry structures with sharp features, such as the

Figure 10: The comparison of errors of reconstructed surfaces with
PBMH and our AVD. (a) The max errors of the reconstructed surface
with different numbers of base vectors, the bigger the eigenvalue
corresponding to the base is, the earlier the base is used for surface
reconstruction; (b) the mean errors of reconstructed surface with
all base vectors; (c) the max errors of reconstructed surface with
all base vectors.

curve branch of the skeleton in Figure 12, than with PBMH. This
further proved that our approach is more effective in high level
understanding of point clouds data than PBMH [LPG12], and it
especially better encodes sharp features in our �M.

Finally, we applied our approach to estimate the �M of the
scanned point clouds. Multi-scale models were reconstructed with
a different number of base vectors of the estimated �M shown in
Figure 13. Although the scanned point clouds are full of holes, noise
and irregular points, we found that our approach for the estimation
of the �M is effective.

c© 2017 The Authors
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Figure 11: The reconstruction of point clouds data based on bases. From left to right, we show the original hand model (7k points), the
reconstruction results with 2k bases corresponding to the largest eigenvalues on BSW, PBMH and our AVD, and corresponding errors between
the reconstructed models and the original model in BSW, PBMH and our AVD.

Figure 12: The comparison of the extracted skeleton. (a) and (c)
are the extracted skeletons with PBMH [LPG12], respectively; (b)
and (d) are the extracted skeletons with our AVD, respectively.

4.6. Comparison with mesh-free �M

Recently, Petronetto et al. [PPH*13] proposed another
�M, SPH, which is a mesh-free version. In addition to

the fact that different kernel func-
tions are used to define contin-
uous functions on surfaces, the
main difference with our approach
lies in the area estimation. They
regarded the area estimation as
a global optimization problem,
which is quite slow for large data.
Figure 14 shows the comparison of
estimated areas and running times
between SPH [PPH*13] and our ap-

proach. It can be noticed that the accuracy of the estimated area in
our approach is comparable with SPH, while the advantage of our
approach in time cost is more obvious than SPH with the increasing
of the number of points. Finally, SPH is not as stable under noise
perturbations as our �M. By comparing the eigenvalues of the �M
with the analytic solutions over the noisy sphere shown in Figure 7,
our �M is the most robust to noise compared to SPH and PBMH
(see inset).

5. Conclusion and Future Work

To approximate the �M over point clouds, we propose to use an
anisotropic Voronoi diagram to estimate the volume element for
every sampled point. In order to facilitate the local Voronoi cell
computation, we introduce an approximate method that converts an
anisotropic Voronoi cell to an isotropic one. Compared to existing
approaches, the proposed �M not only provides more accurate
estimation for the volume element but also is less sensitive to noise
and prevents the degeneration at sharp edges or spikes. Finally, we
demonstrate its effectiveness and usefulness with several spectral
analysis and processing applications.

There are also limitations with our current approach. First, our
approach is based on Voronoi cell estimation. It is a challenging
problem to accurately estimate the Voronoi cell area near the bound-
ary when there is a boundary on the surface. Thus, the convergence
of our approach is the same as PBMH [LPG12] degrades at the

Figure 13: The representation of real scanned point clouds (311k points) based on different numbers of bases. (a) Original point clouds;
(b)–(e) The reconstruction based on different number of bases: 100 (b), 500 (c), 1000 (d) and 1500 (e).

c© 2017 The Authors
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Model

Points 12k 15k 20k

Area

Triangles 3.98 5.56 5.52

SPH 4.03 5.50 5.37

AVD 4.06 5.60 5.59

Error
SPH 1.26% 1.08% 2.72%

AVD 2.01% 0.72% 1.27%

Times
SPH 31s 151s 505s

AVD 38s 55s 88s

Figure 14: Comparisons of estimated areas and running times for
calculating the area element between SPH [PPH*13] and our AVD.

boundary points. The duplicate points are singularities for the
Voronoi cell estimation, and resampling is a necessary preprocess-
ing to estimate �M at the case. Second, accurate normal estimation
also plays an important role in our approach. When there are out-
lier points or too much noise in point clouds, the accuracy of the
proposed �M is affected by the error of estimated normal. In the
future, we will investigate more robust algorithms to improve the
accuracy of the �M for these cases. We would also like to extend
this �M to high-dimensional data and investigate more interesting
applications.
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Appendix A: Convergence Proof

In construction of our LBO, the assumption is that we have a
continuous differentiable Riemannian manifold M on which the
sample set P lies. We are going to prove that our estimation of the
Voronoi cell area vol(Vorani(p))) is converging to the real Voronoi
cell area vol(VorM(p)) as point clouds get denser.

Lemma. (Voronoi cell approximation). Consider the Voronoi cell
of the point p ∈ P where P is a (ε, sε)-sample of the manifold
VorM(p), the Voronoi cell on the tangent space Tp Vorani(p) built
by our algorithm, and the Voronoi cell on the tangent space Tp

Vor(p) built with Liu et al.’s algorithm [LPG12],

∣∣∣∣
∣∣∣∣vol(Vorani(p))

vol(Vor(p))
− 1

∣∣∣∣
∣∣∣∣ ≤ O(ε/ρ), (A.1)

∣∣∣∣
∣∣∣∣ vol(VorM(p)

vol(Vorani(p))
− 1

∣∣∣∣
∣∣∣∣ ≤ O(ε/ρ) (A.2)

holds when ε is small enough.

Proof. Suppose p ∪ qi
p, qi ∈ p(δ) be influencing points of the

Voronoi cells Vor(p), where qi is the orthogonal projection of the
point qi on the tangent space Tp . qi

p can be represented as:

qi
p = p + || �pq|| cos αi

�pqi
p

|| �pqi
p||

. (A.3)

In terms of construction of the Voronoi cell Vorani(p), influencing
points of the Voronoi cell Vorani(p) are p ∪ q̂ i

p:

q̂ i
p = p + || �pq||

2
(cos αi + cos βi)

�pqi
p

|| �pqi
p||

, (A.4)

where αi is the angle between the vector �pqi and the tangent spaces
Tp , βi is the angle between the vector �pqi and the tangent spaces
T i

q , and 0 ≤ αi, βi ≤ π

2 . By subtracting Equation (A.3) from Equa-
tion (A.4), we can have

t = q̂ i
p − qi

p

= || �pq||
2

(cos βi − cos αi)
�pqi

p

|| �pqi
p||

= −|| �pq|| sin

(
αi + βi

2

)
sin

(
βi − αi

2

) �pqi
p

|| �pqi
p||

. (A.5)

When βi ≥ αi , we have

t ≥ −|| �pq|| sin

(
βi − αi

2

)
(A.6)

on Equation (A.5). According to Lemma 2.1 in the supplementary
appendices of [LPG12], we have βi − αi ≤ O(ε/ρ). Thus, we have

t ≥ −|| �pq||O(ε/ρ). (A.7)

When βi < αi , we can obtain

t ≤ || �pq||O(ε/ρ) (A.8)

in a similar way.

Let q̂ = p + (qi
p − p)t ′. By combining Equation (A.3) with

Equation (A.7) and Equation (A.8), we have

1 − O(ε/ρ)

cos αi

≤ t ′ ≤ 1 + O(ε/ρ)

cos αi

. (A.9)
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According to lemmas 3.1, 3.2 and 3.3 in the supplementary ap-
pendix of [LPG12], we have

(
min

(
1 − O(ε/ρ)

cos αi

))2

≤ vol(V orani(p))

vol(V or(p)

≤
(

max

(
1 + O(ε/ρ)

cos αi

))2

.

(A.10)

When point clouds get denser, we have αi < π/4, βi < π/4. Thus,

∣∣∣∣
∣∣∣∣vol(V orani(p))

vol(V or(p))
− 1

∣∣∣∣
∣∣∣∣ ≤ O(ε/ρ). (A.11)

According to theorem 4.1 in [LPG12],

∣∣∣∣
∣∣∣∣vol(V orM(p))

vol(V or(p))
− 1

∣∣∣∣
∣∣∣∣ ≤ O(ε2/ρ2). (A.12)

By combining Equation (A.11) and Equation (A.12), we have

∣∣∣∣
∣∣∣∣vol(V orani(p))

volM(V or(p))
− 1

∣∣∣∣
∣∣∣∣ ≤ O(ε/ρ). (A.13)

�
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