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(a) Fosbury Flop – max height=200𝑐𝑚 (b) Western Roll (facing sideways) – max height=195𝑐𝑚

Fig. 1. Two of the eight high jump strategies discovered by our two-stage learning framework, as achieved by physics-based control policies. The first stage is
a sample-efficient Bayesian diversity search algorithm that explores the space of take-off states, as indicated by the black arrows. In the second stage we
explicitly encourage novel policies given a fixed initial state discovered in the first stage.

We present a framework that enables the discovery of diverse and natural-
looking motion strategies for athletic skills such as the high jump. The strate-
gies are realized as control policies for physics-based characters. Given a task
objective and an initial character configuration, the combination of physics
simulation and deep reinforcement learning (DRL) provides a suitable start-
ing point for automatic control policy training. To facilitate the learning
of realistic human motions, we propose a Pose Variational Autoencoder
(P-VAE) to constrain the actions to a subspace of natural poses. In contrast
to motion imitation methods, a rich variety of novel strategies can natu-
rally emerge by exploring initial character states through a sample-efficient
Bayesian diversity search (BDS) algorithm. A second stage of optimization
that encourages novel policies can further enrich the unique strategies dis-
covered. Our method allows for the discovery of diverse and novel strategies
for athletic jumping motions such as high jumps and obstacle jumps with
no motion examples and less reward engineering than prior work.
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1 INTRODUCTION
Athletic endeavors are a function of strength, skill, and strategy. For
the high-jump, the choice of strategy has been of particular historic
importance. Innovations in techniques or strategies have repeatedly
redefined world records over the past 150 years, culminating in
the now well-established Fosbury flop (Brill bend) technique. In
this paper, we demonstrate how to discover diverse strategies, as
realized through physics-based controllers which are trained using
reinforcement learning. We show that natural high-jump strategies
can be learned without recourse to motion capture data, with the
exception of a single generic run-up motion capture clip. We further
demonstrate diverse solutions to a box-jumping task.
Several challenges stand in the way of being able to discover

iconic athletic strategies such as those used for the high jump. The
motions involve high-dimensional states and actions. The task is
defined by a sparse reward, i.e., successfully making it over the bar
or not. It is not obvious how to ensure that the resulting motions
are natural in addition to being physically plausible. Lastly, the
optimization landscape is multimodal in nature.

We take several steps to address these challenges. First, we iden-
tify the take-off state as a strong determinant of the resulting jump
strategy, which is characterized by low-dimensional features such as
the net angular velocity and approach angle in preparation for take-
off. To efficiently explore the take-off states, we employ Bayesian
diversity optimization. Given a desired take-off state, we first train
a run-up controller that imitates a single generic run-up motion
capture clip while also targeting the desired take-off state. The sub-
sequent jump control policy is trained with the help of a curriculum,
without any recourse to motion capture data. We make use of a pose
variational autoencoder to define an action space that helps yield
more natural poses and motions. We further enrich unique strategy
variations by a second optimization stage which reuses the best
discovered take-off states and encourages novel control policies.
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In summary, our contributions include:
• A system which can discover common athletic high jump
strategies, and execute them using learned controllers and
physics-based simulation. The discovered strategies include
the Fosbury flop (Brill bend), Western Roll, and a number of
other styles. We further evaluate the system on box jumps
and on a number of high-jump variations and ablations.
• The use of Bayesian diversity search for sample-efficient ex-
ploration of take-off states, which are strong determinants of
resulting strategies.
• Pose variational autoencoders used in support of learning
natural athletic motions.

2 RELATED WORK
We build on prior work from several areas, including character
animation, diversity optimization, human pose modeling, and high-
jump analysis from biomechanics and kinesiology.

2.1 Character Animation
Synthesizing natural human motion is a long-standing challenge
in computer animation. We first briefly review kinematic methods,
and then provide a more detailed review of physics-based meth-
ods. To the best of our knowledge, there are no previous attempts
to synthesize athletic high jumps or obstacle jumps using either
kinematic or physics-based approaches. Both tasks require precise
coordination and exhibit multiple strategies.

Kinematic Methods. Data-driven kinematic methods have demon-
strated their effectiveness for synthesizing high-quality human mo-
tions based on captured examples. Such kinematic models have
evolved from graph structures [Kovar et al. 2002; Safonova and Hod-
gins 2007], to Gaussian Processes [Levine et al. 2012; Ye and Liu
2010b], and recently deep neural networks [Holden et al. 2017; Lee
et al. 2018; Ling et al. 2020; Starke et al. 2019, 2020; Zhang et al. 2018].
Non-parametric models that store all example frames have limited
capability of generalizing to new motions due to their inherent na-
ture of data interpolation [Clavet 2016]. Compact parametric models
learn an underlying low-dimensional motion manifold. Therefore
they tend to generalize better as new motions not in the train-
ing dataset can be synthesized by sampling in the learned latent
space [Holden et al. 2016]. Completely novel motions and strategies,
however, are still beyond their reach. Most fundamentally, kinematic
models do not take into account physical realism, which is impor-
tant for athletic motions. We thus cannot directly apply kinematic
methods to our problem of discovering unseen strategies for highly
dynamic motions. However, we do adopt a variational autoencoder
(VAE) similar to the one in [Ling et al. 2020] as a means to improve
the naturalness of our learned motion strategies.

Physics-basedMethods. Physics-based control and simulationmeth-
ods generate motions with physical realism and environmental in-
teractions. The key challenge is the design or learning of robust con-
trollers. Conventional manually designed controllers have achieved
significant success for locomotion, e.g., [Coros et al. 2010; Felis and
Mombaur 2016; Geijtenbeek et al. 2013; Jain et al. 2009; Lee et al.
2014; Wang et al. 2009, 2012; Yin et al. 2007]. The seminal work from

Hodgins et al. demonstrated impressive controllers for athletic skills
such as a handspring vault, a standing broad jump, a vertical leap,
somersaults to different directions, and platform dives [Hodgins
et al. 1995; Wooten 1998]. Such handcrafted controllers are mostly
designed with finite state machines (FSM) and heuristic feedback
rules, which require deep human insight and domain knowledge,
and tedious manual trial and error. Zhao and van de Panne [2005]
thus proposed an interface to ease such a design process, and demon-
strated controllers for diving, skiing and snowboarding. Controls
can also be designed using objectives and constraints adapted to
each motion phase, e.g., [de Lasa et al. 2010; Jain et al. 2009], or
developed using a methodology that mimics human coaching [Ha
and Liu 2014]. In general, manually designed controllers remain
hard to generalize to different strategies or tasks.

With the wide availability of motion capture data, many research
endeavors have been focused on tracking-based controllers, which
are capable of reproducing high-qualitymotions by imitatingmotion
examples. Controllers for a wide range of skills have been demon-
strated through trajectory optimization [da Silva et al. 2008; Lee
et al. 2010, 2014; Muico et al. 2009; Sok et al. 2007; Ye and Liu 2010a],
sampling-based algorithms [Liu et al. 2016, 2015, 2010], and deep
reinforcement learning [Liu and Hodgins 2018; Ma et al. 2021; Peng
et al. 2018a, 2017, 2018b; Seunghwan Lee and Lee 2019]. Tracking
controllers have also been combined with kinematic motion genera-
tors to support interactive control of simulated characters [Bergamin
et al. 2019; Park et al. 2019; Won et al. 2020]. Even though tracking-
based methods have demonstrated their effectiveness on achieving
task-related goals [Peng et al. 2018a], the imitation objective inher-
ently restricts them from generalizing to novel motion strategies
fundamentally different from the reference. Most recently, style
exploration has also been demonstrated within a physics-based DRL
framework using spacetime bounds [Ma et al. 2021]. However, these
remain style variations rather than strategy variations. Moreover,
high jumping motion capture examples are difficult to find. We
obtained captures of three high jump strategies, which we use to
compare our synthetic results to.

Our goal is to discover as many strategies as possible, so example-
free methods are most suitable in our case. Various tracking-free
methods have been proposed via trajectory optimization or deep
reinforcement learning. Heess et al. [2017] demonstrate a rich set
of locomotion behaviors emerging from just complex environment
interactions. However, the resulting motions show limited realism
in the absence of effective motion quality regularization. Better mo-
tion quality is achievable with sophisticated reward functions and
domain knowledge, such as sagittal symmetry, which do not directly
generalize beyond locomotion [Coumans and Bai 2019; Mordatch
et al. 2015, 2013; Xie et al. 2020; Yu et al. 2018]. Synthesizing diverse
physics-based skills without example motions generally requires
optimization with detailed cost functions that are engineered specif-
ically for each skill [Al Borno et al. 2013], and often only works for
simplified physical models [Mordatch et al. 2012].

2.2 Diversity Optimization
Diversity Optimization is a problem of great interest in artificial
intelligence [Coman and Munoz-Avila 2011; Hebrard et al. 2005;
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Lehman and Stanley 2011; Pugh et al. 2016; Srivastava et al. 2007;
Ursem 2002]. It is formulated as searching for a set of configurations
such that the corresponding outcomes have a large diversity while
satisfying a given objective. Diversity optimization has also been uti-
lized in computer graphics applications [Agrawal et al. 2013; Merrell
et al. 2011]. For example, a variety of 2D and simple 3D skills have
been achieved through jointly optimizing task objectives and a di-
versity metric within a trajectory optimization framework [Agrawal
et al. 2013]. Such methods are computationally prohibitive for our
case as learning the athletic tasks involve expensive DRL training
through non-differentiable simulations, e.g., a single strategy takes
six hours to learn even on a high-end desktop. We propose a di-
versity optimization algorithm based on the successful Bayesian
Optimization (BO) philosophy for sample efficient black-box func-
tion optimization.

In BayesianOptimization, objective functions are optimized purely
through function evaluations as no derivative information is avail-
able. A Bayesian statistical surrogate model, usually a Gaussian Pro-
cess (GP) [Rasmussen 2003], is maintained to estimate the value of
the objective function along with the uncertainty of the estimation.
An acquisition function is then repeatedly maximized for fast deci-
sions on where to sample next for the actual expensive function
evaluation. The next sample needs to be promising in terms of max-
imizing the objective function predicted by the surrogate model,
and also informative in terms of reducing the uncertainty in less
explored regions of the surrogate model [Frazier et al. 2009; Jones
et al. 1998; Srinivas et al. 2010]. BO has been widely adopted in
machine learning for parameter and hyperparameter optimizations
[Kandasamy et al. 2018, 2020; Klein et al. 2017; Korovina et al. 2020;
Snoek et al. 2012, 2015]. Recently BO has also seen applications in
computer graphics [Koyama et al. 2020, 2017], such as parameter
tuning for fluid animation systems [Brochu et al. 2007].
We propose a novel acquisition function to encourage discov-

ery of diverse motion strategies. We also decouple the exploration
from the maximization for more robust and efficient strategy dis-
covery. We name this algorithm Bayesian Diversity Search (BDS).
The BDS algorithm searches for diverse strategies by exploring a
low-dimensional initial state space defined at the take-off moment.
Initial states exploration has been applied to find appropriate ini-
tial conditions for desired landing controllers [Ha et al. 2012]. In
the context of DRL learning, initial states are usually treated as
hyperparameters rather than being explored.

Recently a variety of DRL-based learning methods have been pro-
posed to discover diverse control policies in machine learning, e.g.,
[Achiam et al. 2018; Conti et al. 2018; Eysenbach et al. 2019; Haarnoja
et al. 2018; Hester and Stone 2017; Houthooft et al. 2016; Schmid-
huber 1991; Sharma et al. 2019; Sun et al. 2020; Zhang et al. 2019].
These methods mainly encourage exploration of unseen states or
actions by jointly optimizing the task and novelty objectives [Zhang
et al. 2019], or optimizing intrinsic rewards such as heuristically de-
fined curiosity terms [Eysenbach et al. 2019; Sharma et al. 2019]. We
adopt a similar idea for novelty seeking in Stage 2 of our framework
after BDS, but with a novelty metric and reward structure more
suitable for our goal. Coupled with the Stage 1 BDS, we are able to
learn a rich set of strategies for challenging tasks such as athletic
high jumping.

2.3 Natural Pose Space
In biomechanics and neuroscience, it is well known that muscle
synergies, or muscle co-activations, serve as motor primitives for
the central nervous system to simplify movement control of the
underlying complex neuromusculoskeletal systems [Overduin et al.
2015; Zhao et al. 2019]. In character animation, human-like character
models are much simplified, but are still parameterized by 30+ DoFs.
Yet the natural human pose manifold learned from motion capture
databases is of much lower dimension [Holden et al. 2016]. The
movement of joints are highly correlated as typically they are strate-
gically coordinated and co-activated. Such correlations have been
modelled through traditional dimensionality reduction techniques
such as PCA [Chai and Hodgins 2005], or more recently, Variational
AutoEncoders (VAE) [Habibie et al. 2017; Ling et al. 2020].

We rely on a VAE learned from mocap databases to produce
natural target poses for our DRL-based policy network. Search-
ing behaviors in low dimensional spaces has been employed in
physics-based character animation to both accelerate the nonlinear
optimization and improve the motion quality [Safonova et al. 2004].
Throwing motions based on muscle synergies extracted from hu-
man experiments have been synthesized on amusculoskeletal model
[Cruz Ruiz et al. 2017]. Recent DRL methods either directly imitate
mocap examples [Peng et al. 2018a; Won et al. 2020], which makes
strategy discovery hard if possible; or adopt a de novo approach
with no example at all [Heess et al. 2015], which often results in ex-
tremely unnatural motions for human like characters. Close in spirit
to our work is [Ranganath et al. 2019], where a low-dimensional
PCA space learned from a single mocap trajectory is used as the
action space of DeepMimic for tracking-based control. We aim to
discover new strategies without tracking, and we use a large set of
generic motions to deduce a task-and-strategy-independent natural
pose space. We also add action offsets to the P-VAE output poses so
that large joint activation can be achieved for powerful take-offs.
Reduced or latent parameter spaces based on statistical analysis

of poses have been used for grasping control [Andrews and Kry
2013; Ciocarlie 2010; Osa et al. 2018]. A Trajectory Generator (TG)
can provide a compact parameterization that can enable learning of
reactive policies for complex behaviors [Iscen et al. 2018]. Motion
primitives can also be learned from mocap and then be composed
to learn new behaviors [Peng et al. 2019].

2.4 History and Science of High Jump
The high jump is one of the most technically complex, strategically
nuanced, and physiologically demanding sports among all track and
field events [Donnelly 2014]. Over the past 100 years, high jump
has evolved dramatically in the Olympics. Here we summarize the
well-known variations [Donnelly 2014; Jumper 2020], and we refer
readers to our supplemental video for more visual illustrations.

• The Hurdle: the jumper runs straight-on to the bar, raises one
leg up to the bar, and quickly raises the other one over the bar
once the first has cleared. The body clears the bar upright.
• Scissor Kick: the jumper approaches the bar diagonally, throws
first the inside leg and then the other over the bar in a scis-
soring motion. The body clears the bar upright.
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Fig. 2. Overview of our strategy discovery framework. The Stage 1 Bayesian
Diversity Search algorithm explores a low-dimensional feature vector of the
take-off states to discover multiple jumping strategies. The output strategies
from Stage 1 and their corresponding take-off states are taken as input to
warm-start further training in Stage 2, which encourages novel policies that
lead to additional visually distinct strategies. Both stages share the same
DRL training component, which utilizes a P-VAE to improve the motion
quality and a task curriculum to gradually increase the learning difficulty.

• Eastern Cutoff: the jumper takes off like the scissor kick, but
extends his back and flattens out over the bar.
• Western Roll:the jumper also approaches the bar diagonally,
but the inner leg is used for the take-off, while the outer leg
is thrust up to lead the body sideways over the bar.
• The Straddle: similar to Western Roll, but the jumper clears
the bar face-down.
• Fosbury Flop: The jumper approaches the bar on a curved
path and leans away from the bar at the take-off point to
convert horizontal velocity into vertical velocity and angular
momentum. In flight, the jumper progressively arches their
shoulders, back, and legs in a rolling motion, and lands on
their neck and back. The jumper’s Center of Mass (CoM) can
pass under the bar while the body arches and slide above the
bar. It has been the favored high jump technique in Olympic
competitions since used by Dick Fosbury in the 1968 Summer
Olympics. It was concurrently developed by Debbie Brill.

In biomechanics, kinesiology, and physical education, high jumps
have been analyzed to a limited extent. We adopt the force lim-
its reported in [Okuyama et al. 2003] in our simulations. Dapena
simulated a higher jump by making small changes to a recorded
jump [Dapena 2002]. Mathematical models of the Center of Mass
(CoM) movement have been developed to offer recommendations to
increase the effectiveness of high jumps [Adashevskiy et al. 2013].

3 SYSTEM OVERVIEW
We now give an overview of our learning framework as illustrated
in Figure 2. Our framework splits athletic jumps into two phases: a
run-up phase and a jump phase. The take-off state marks the tran-
sition between these two phases, and consists of a time instant
midway through the last support phase before becoming airborne.

The take-off state is key to our exploration strategy, as it is a strong
determinant of the resulting jump strategy. We characterize the
take-off state by a feature vector that captures key aspects of the
state, such as the net angular velocity and body orientation. This
defines a low-dimensional take-off feature space that we can sam-
ple in order to explore and evaluate a variety of motion strategies.
While random sampling of take-off state features is straightforward,
it is computationally impractical as evaluating one sample involves
an expensive DRL learning process that takes hours even on mod-
ern machines. Therefore, we introduce a sample-efficient Bayesian
Diversity Search (BDS) algorithm as a key part of our Stage 1 opti-
mization process.

Given a specific sampled take-off state, we then need to produce
an optimized run-up controller and a jump controller that result
in the best possible corresponding jumps. This process has several
steps. We first train a run-up controller, using deep reinforcement
learning, that imitates a single generic run-up motion capture clip
while also targeting the desired take-off state. For simplicity, the run-
up controller and its training are not shown in Figure 2. These are
discussed in Section 6.1.1. The main challenge lies with the synthesis
of the actual jump controller which governs the remainder of the
motion, and for which we wish to discover strategies without any
recourse to known solutions.
The jump controller begins from the take-off state and needs

to control the body during take-off, over the bar, and to prepare
for landing. This poses a challenging learning problem because of
the demanding nature of the task, the sparse fail/success rewards,
and the difficulty of also achieving natural human-like movement.
We apply two key insights to make this task learnable using deep
reinforcement learning. First, we employ an action space defined
by a subspace of natural human poses as modeled with a Pose
Variational Autoencoder (P-VAE). Given an action parameterized
as a target body pose, individual joint torques are then realized
using PD-controllers. We additionally allow for regularized offset
PD-targets that are added to the P-VAE targets to enable strong
takeoff forces. Second, we employ a curriculum that progressively
increases the task difficulty, i.e., the height of the bar, based on
current performance.
A diverse set of strategies can already emerge after the Stage 1

BDS optimization. To achieve further strategy variations, we reuse
the take-off states of the existing discovered strategies for another
stage of optimization. The diversity is explicitly incentivized during
this Stage 2 optimization via a novelty reward, which is focused
specifically on features of the body pose at the peak height of the
jump. As shown in Figure 2, Stage 2 makes use of the same overall
DRL learning procedure as in Stage 1, albeit with a slightly different
reward structure.

4 LEARNING NATURAL STRATEGIES
Given a character model, an environment, and a task objective, we
aim to learn feasible natural-looking motion strategies using deep
reinforcement learning. We first describe our DRL formulation in
Section 4.1. To improve the learned motion quality, we propose
a Pose Variational Autoencoder (P-VAE) to constrain the policy
actions in Section 4.2.
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4.1 DRL Formulation
Our strategy learning task is formulated as a standard reinforcement
learning problem, where the character interacts with the environ-
ment to learn a control policy which maximizes a long-term reward.
The control policy 𝜋𝜃 (𝑎 |𝑠) parameterized by 𝜃 models the condi-
tional distribution over action 𝑎 ∈ A given the character state 𝑠 ∈ S.
At each time step 𝑡 , the character interacts with the environment
with action 𝑎𝑡 sampled from 𝜋 (𝑎 |𝑠) based on the current state 𝑠𝑡 .
The environment then responds with a new state 𝑠𝑡+1 according to
the transition dynamics 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ), along with a reward signal
𝑟𝑡 . The goal of reinforcement learning is to learn the optimal policy
parameters 𝜃∗ which maximizes the expected return defined as

𝐽 (𝜃 ) = E𝜏∼𝑝𝜃 (𝜏)

[
𝑇∑
𝑡=0

𝛾𝑡𝑟𝑡

]
, (1)

where 𝑇 is the episode length, 𝛾 ≤ 1 is a discount factor, and 𝑝𝜃 (𝜏)
is the probability of observing trajectory 𝜏 = {𝑠0, 𝑎0, 𝑠1, ..., 𝑎𝑇−1, 𝑠𝑇 }
given the current policy 𝜋𝜃 (𝑎 |𝑠).

States. The state 𝑠 describes the character configuration. We use a
similar set of pose and velocity features as those proposed in Deep-
Mimic [Peng et al. 2018a], including relative positions of each link
with respect to the root, their rotations parameterized in quater-
nions, along with their linear and angular velocities. Different from
DeepMimic, our features are computed directly in the global frame
without direction-invariant transformations for the studied jump
tasks. The justification is that input features should distinguish states
with different relative transformations between the character and
the environment obstacle such as the crossbar. In principle, we could
also use direction-invariant features as in DeepMimic, and include
the relative transformation to the obstacle into the feature set. How-
ever, as proved in [Ma et al. 2019], there are no direction-invariant
features that are always singularity free. Direction-invariant fea-
tures change wildly whenever the character’s facing direction ap-
proaches the chosen motion direction, which is usually the global
up-direction or the 𝑌 -axis. For high jump techniques such as the
Fosbury flop, singularities are frequently encountered as the athlete
clears the bar facing upward. Therefore, we opt to use global features
for simplicity and robustness. Another difference from DeepMimic
is that time-dependent phase variables are not included in our fea-
ture set. Actions are chosen purely based on the dynamic state of
the character.

Initial States. The initial state 𝑠0 is the state in which an agent
begins each episode in DRL training. We explore a chosen low-
dimensional feature space (3 ∼ 4𝐷) of the take-off states for learning
diverse jumping strategies. As shown by previous work [Ma et al.
2021], the take-off moment is a critical point of jumping motions,
where the volume of the feasible region of the dynamic skill is the
smallest. In another word, bad initial states will fail fast, which in
a way help our exploration framework to find good ones quicker.
Alternatively, we could place the agent in a fixed initial pose to start
with, such as a static pose before the run-up. This is problematic
for several reasons. First, different jumping strategies need different
length for the run-up. The planar position and facing direction of
the root is still a three dimensional space to be explored. Second,

the run-up strategies and the jumping strategies do not correlate in
a one-to-one fashion. Visually, the run-up strategies do not look as
diverse as the jumping strategies. Lastly, starting the jumps from a
static pose lengthens the learning horizon, and makes our learning
framework based on DRL training even more costly. Therefore we
choose to focus on just the jumping part of the jumps in this work,
and leave the run-up control learning to DeepMimic, which is one
of the state-of-the-art imitation-based DRL learning methods. More
details are given in Section 6.1.1.

Actions. The action 𝑎 is a target pose described by internal joint
rotations. We parameterize 1D revolute joint rotations by scalar
angles, and 3D spherical joint rotations by exponential maps [Gras-
sia 1998]. Given a target pose and the current character state, joint
torques are computed through the Stable Proportional Derivative
(SPD) controllers [Tan et al. 2011]. Our control frequency 𝑓control
ranges from 10 𝐻𝑧 to 30 𝐻𝑧 depending on both the task and the
curriculum. For challenging tasks like high jumps, it helps to quickly
improve initial policies through stochastic evaluations at early train-
ing stages. A low-frequency policy enables faster learning by reduc-
ing the needed control steps, or in another word, the dimensionality
and complexity of the actions (𝑎0, ..., 𝑎𝑇 ). This is in spirit similar to
the 10 𝐻𝑧 control fragments used in SAMCON-type controllers [Liu
et al. 2016]. Successful low-frequency policies can then be gradually
transferred to high-frequency ones according to a curriculum to
achieve finer controls and thus smoother motions. We discuss the
choice of control frequency in more detail in Section 6.1.3.

Reward. We use a reward function consisting of the product of
two terms for all our strategy discovery tasks as follows:

𝑟 = 𝑟task · 𝑟naturalness (2)

where 𝑟task is the task objective and 𝑟naturalness is a naturalness
reward term computed from the P-VAE to be described in Section
4.2. For diverse strategy discovery, a simple 𝑟task which precisely
captures the task objective is preferred. For example in high jumping,
the agent receives a sparse reward signal at the end of the jump after
it successfully clears the bar. In principle, we could transform the
sparse reward into a dense reward to reduce the learning difficulty,
such as to reward CoM positions higher than a parabolic trajectory
estimated from the bar height. However in practice, such dense
guidance reward can mislead the training to a bad local optimum,
where the character learns to jump high in place rather than clears
the bar in a coordinated fashion. Moreover, the CoM height and
the bar height may not correlate in a simple way. For example, the
CoM passes underneath the crossbar in Fosbury flops. As a result,
a shaped dense reward function could harm the diversity of the
learned strategies. We will discuss reward function settings for each
task in more details in Section 6.1.2.

Policy Representation. We use a fully-connected neural network
parameterized by weights 𝜃 to represent the control policy 𝜋𝜃 (𝑎 |𝑠).
Similar to the settings in [Peng et al. 2018a], the network has two
hidden layers with 1024 and 512 units respectively. ReLU activations
are applied for all hidden units. Our policy maps a given state 𝑠 to
a Gaussian distribution over actions 𝑎 = N(𝜇 (𝑠), Σ). The mean
𝜇 (𝑠) is determined by the network output. The covariance matrix
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Σ = 𝜎𝐼 is diagonal, where 𝐼 is the identity matrix and 𝜎 is a scalar
variable measuring the action noise. We apply an annealing strategy
to linearly decrease 𝜎 from 0.5 to 0.1 in the first 1.0× 107 simulation
steps, to encourage more exploration in early training and more
exploitation in late training.

Training. We train our policies with the Proximal Policy Optimiza-
tion (PPO) method [Schulman et al. 2017]. PPO involves training
both a policy network and a value function network. The value
network architecture is similar to the policy network, except that
there is only one single linear unit in the output layer. We train
the value network with TD(𝜆) multi-step returns. We estimate the
advantage of the PPO policy gradient by the Generalized Advantage
Estimator GAE(𝜆) [Schulman et al. 2016].

4.2 Pose Variational Autoencoder
The dimension of natural human poses is usually much lower than
the true degrees of freedom of the character model. We propose a
generative model to produce natural PD target poses at each control
step. More specifically, we train a Pose Variational Autoencoder
(P-VAE) from captured natural human poses, and then sample its
latent space to produce desired PD target poses for control. Here a
pose only encodes internal joint rotations without the global root
transformations. We use publicly available human motion capture
databases to train our P-VAE. Note that none of these databases
consist of high jumps or obstacle jumps specifically, but they al-
ready provide enough poses for us to learn the natural human pose
manifold successfully.

P-VAE Architecture and Training. Our P-VAE adopts the standard
Beta Variational Autoencoder (𝛽-VAE) architecture [Higgins et al.
2017]. The encoder maps an input feature 𝑥 to a low-dimensional
latent space, parameterized by a Gaussian distribution with a mean
𝜇𝑥 and a diagonal covariance Σ𝑥 . The decoder maps a latent vector
sampled from the Gaussian distribution back to the original feature
space as 𝑥 ′. The training objective is to minimize the following loss
function:

L = LMSE (𝑥, 𝑥 ′) + 𝛽 · KL(N (𝜇𝑥 , Σ𝑥 ),N(0, 𝐼 )), (3)
where the first term is the MSE (Mean Squared Error) reconstruction
loss, and the second term shapes the latent variable distribution to a
standard Gaussian by measuring their Kulback-Leibler divergence.
We set 𝛽 = 1.0×10−5 in our experiments, so that the two terms in the
loss function are within the same order of magnitude numerically.
We train the P-VAE on a dataset consisting of roughly 20, 000

poses obtained from the CMU and SFUmotion capture databases.We
include a large variety of motion skills, including walking, running,
jumping, breakdancing, cartwheels, flips, kicks, martial arts, etc.
The input features consist of all link and joint positions relative
to the root in the local root frames, and all joint rotations with
respect to their parents. We parameterize joint rotations by a 6D
representation for better continuity, as described in [Ling et al. 2020;
Zhou et al. 2019].
We model both the encoder and the decoder as fully connected

neural networks with two hidden layers, each having 256 units with
𝑡𝑎𝑛ℎ activation. We perform PCA (Principal Component Analysis)
on the training data and choose 𝑑latent = 13 to cover 85% of the

training data variance, where 𝑑latent is the dimension of the latent
variable. We use the Adam optimizer to update network weights
[Kingma and Ba 2014], with the learning rate set to 1.0 × 10−4.
Using a mini-batch size of 128, the training takes 80 epochs within
2 minutes on an NVIDIA GeForce GTX 1080 GPU and an Intel i7-
8700k CPU. We use this single pre-trained P-VAE for all our strategy
discovery tasks to be described.

Composite PD Targets. PD controllers provide actuation based on
positional errors. So in order to reach the desired pose, the actual
target pose needs to be offset by a certain amount. Such offsets are
usually small to just counter-act the gravity for free limbs. However,
for joints that interact with the environment, such as the lower
body joints for weight support and ground takeoff, large offsets are
needed to generate powerful ground reaction forces to propel the
body forward or into the air. Such complementary offsets combined
with the default P-VAE targets help realize natural poses during
physics-based simulations. Our action spaceA is therefore 𝑑latent +
𝑑offset dimensional, where 𝑑latent is the dimension of the P-VAE
latent space, and 𝑑offset is the dimension of the DoFs that we wish
to apply offsets for. We simply apply offsets to all internal joints
in this work. Given 𝑎 = (𝑎latent, 𝑎offset) ∈ A sampled from the
policy 𝜋𝜃 (𝑎 |𝑠), where 𝑎latent and 𝑎offset correspond to the latent
and offset part of 𝑎 respectively, the final PD target is computed by
𝐷pose (𝑎latent) + 𝑎offset. Here 𝐷pose (·) is a function that decodes the
latent vector 𝑎latent to full-body joint rotations. We minimize the
usage of rotation offsets by a penalty term as follows:

𝑟naturalness = 1 − Clip
((
| |𝑎offset | |1
𝑐offset

)2
, 0, 1

)
, (4)

where 𝑐offset is the maximum offset allowed. For tasks with only
a sparse reward signal at the end, | |𝑎offset | |1 in Equation 4 is re-
placed by the average offset norm 1

𝑇

∑𝑇
𝑡=0 | |𝑎

(𝑡 )
offset | |1 across the en-

tire episode. We use 𝐿1-norm rather than the commonly adopted
𝐿2-norm to encourage sparse solutions with fewer non-zero com-
ponents [Chen et al. 2001; Tibshirani 1996], as our goal is to only
apply offsets to essential joints to complete the task while staying
close to the natural pose manifold prescribed by the P-VAE.

5 LEARNING DIVERSE STRATEGIES
Given a virtual environment and a task objective, we would like to
discover as many strategies as possible to complete the task at hand.
Without human insights and demonstrations, this is a challenging
task. To this end, we propose a two-stage framework to enable
stochastic DRL to discover solution modes such as the Fosbury flop.
The first stage focuses on strategy discovery by exploring the

space of initial states. For example in high jump, the Fosbury flop
technique and the straddle technique require completely different
initial states at take-off, in terms of the approaching angle with
respect to the bar, the take-off velocities, and the choice of inner or
outer leg as the take-off leg. A fixed initial state may lead to success
of one particular strategy, but can miss other drastically different
ones. We systematically explore the initial state space through a
novel sample-efficient Bayesian Diversity Search (BDS) algorithm
to be described in Section 5.1.
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The output of Stage 1 is a set of diverse motion strategies and
their corresponding initial states. Taken such a successful initial
state as input, we then apply another pass of DRL learning to further
explore more motion variations permitted by the same initial state.
The intuition is to explore different local optima while maximizing
the novelty of the current policy, compared to previously found
ones. We describe our detailed settings for the Stage 2 novel policy
seeking algorithm in Section 5.2.

5.1 Stage 1: Initial States Exploration with Bayesian
Diversity Search

In Stage 1, we perform diverse strategy discovery by exploring ini-
tial state variations, such as pose and velocity variations, at the
take-off moment. We first extract a feature vector 𝑓 from a mo-
tion trajectory to characterize and differentiate between different
strategies. A straightforward way is to compute the Euclidean dis-
tance between time-aligned motion trajectories, but we hand pick
a low-dimensional visually-salient feature set as detailed in Sec-
tion 6.1.4. We also define a low-dimensional exploration space X
for initial states, as exploring the full state space is computation-
ally prohibitive. Our goal is to search for a set of representatives
𝑋𝑛 = {𝑥1, 𝑥2, ..., 𝑥𝑛 |𝑥𝑖 ∈ X}, such that the corresponding feature set
𝐹𝑛 = {𝑓1, 𝑓2, ..., 𝑓𝑛 |𝑓𝑖 ∈ F } has a large diversity. Note that as DRL
training and physics-based simulation are involved in producing
the motion trajectories from an initial state, the computation of
𝑓𝑖 = 𝑔(𝑥𝑖 ) is a stochastic and expensive black-box function. We
therefore design a sample-efficient Bayesian Optimization (BO) al-
gorithm to optimize for motion diversity in a guided fashion.

Our BDS (Bayesian Diversity Search) algorithm iteratively selects
the next sample to evaluate fromX, given the current set of observa-
tions 𝑋𝑡 = {𝑥1, 𝑥2, ..., 𝑥𝑡 } and 𝐹𝑡 = {𝑓1, 𝑓2, ..., 𝑓𝑡 }. More specifically,
the next point 𝑥𝑡+1 is selected based on an acquisition function
𝑎(𝑥𝑡+1) to maximize the diversity in 𝐹𝑡+1 = 𝐹𝑡 ∪ {𝑓𝑡+1}. We choose
to maximize the minimum distance between 𝑓𝑡+1 and all 𝑓𝑖 ∈ 𝐹𝑡 :

𝑎(𝑥𝑡+1) = min
𝑓𝑖 ∈𝐹𝑡

| |𝑓𝑡+1 − 𝑓𝑖 | |. (5)

Since evaluating 𝑓𝑡+1 through 𝑔(·) is expensive, we employ a sur-
rogate model to quickly estimate 𝑓𝑡+1, so that the most promising
sample to evaluate next can be efficiently found through Equation 5.

We maintain the surrogate statistical model of 𝑔(·) using a Gauss-
ian Process (GP) [Rasmussen 2003], similar to standard BO methods.
A GP contains a prior mean𝑚(𝑥) encoding the prior belief of the
function value, and a kernel function 𝑘 (𝑥, 𝑥 ′) measuring the cor-
relation between 𝑔(𝑥) and 𝑔(𝑥 ′). More details of our specific𝑚(𝑥)
and 𝑘 (𝑥, 𝑥 ′) are given in Section 6.1.5. Hereafter we assume a one-
dimensional feature space F . Generalization to a multi-dimensional
feature space is straightforward as multi-output Gaussian Process
implementations are readily available, such as [van der Wilk et al.
2020]. Given𝑚(·), 𝑘 (·, ·), and current observations {𝑋𝑡 , 𝐹𝑡 }, poste-
rior estimation of 𝑔(𝑥) for an arbitrary 𝑥 is given by a Gaussian
distribution with mean 𝜇𝑡 and variance 𝜎2

𝑡 computed in closed forms:

𝜇𝑡 (𝑥) = 𝑘 (𝑋𝑡 , 𝑥)𝑇 (𝐾 + 𝜂2𝐼 )−1 (𝐹𝑡 −𝑚(𝑥)) +𝑚(𝑥),

𝜎2
𝑡 (𝑥) = 𝑘 (𝑥, 𝑥) + 𝜂2 − 𝑘 (𝑋𝑡 , 𝑥)𝑇 (𝐾 + 𝜂2𝐼 )−1𝑘 (𝑋𝑡 , 𝑥),

(6)

where 𝑋𝑡 ∈ R𝑡×dim(X) , 𝐹𝑡 ∈ R𝑡 , 𝐾 ∈ R𝑡×𝑡 , 𝐾𝑖, 𝑗 = 𝑘 (𝑥𝑖 , 𝑥 𝑗 ), and
𝑘 (𝑋𝑡 , 𝑥) = [𝑘 (𝑥, 𝑥1), 𝑘 (𝑥, 𝑥2), ...𝑘 (𝑥, 𝑥𝑡 )]𝑇 . 𝐼 is the identity matrix,
and 𝜂 is the standard deviation of the observation noise. Equation 5
can then be approximated by

𝑎(𝑥𝑡+1) = E𝑓𝑡+1∼N(𝜇𝑡 (𝑥𝑡+1),𝜎2
𝑡 (𝑥𝑡+1))

[
min
𝑓𝑖 ∈𝐹𝑡

| |𝑓𝑡+1 − 𝑓𝑖 | |
]
. (7)

Equation 7 can be computed analytically for one-dimensional fea-
tures, but gets more and more complicated to compute analytically
as the feature dimension grows, or when the feature space is non-
Euclidean as in our case with rotational features. Therefore, we
compute Equation 7 numerically with Monte-Carlo integration for
simplicity.
The surrogate model is just an approximation to the true func-

tion, and has large uncertainty where observations are lacking.
Rather than only maximizing the function value when picking the
next sample, BO methods usually also take into consideration the
estimated uncertainty to avoid being overly greedy. For example,
GP-UCB (Gaussian Process Upper Confidence Bound), one of the
most popular BO algorithms, adds a variance term into its acqui-
sition function. Similarly, we could adopt a composite acquisition
function as follows:

𝑎′(𝑥𝑡+1) = 𝑎(𝑥𝑡+1) + 𝛽𝜎𝑡 (𝑥𝑡+1), (8)

where 𝜎𝑡 (𝑥𝑡+1) is the heuristic term favoring candidates with large
uncertainty, and 𝛽 is a hyperparameter trading off exploration and
exploitation (diversity optimization in our case). Theoretically well
justified choice of 𝛽 exists for GP-UCB, which guarantees opti-
mization convergence with high probability [Srinivas et al. 2010].
However in our context, no such guarantees hold as we are not
optimizing 𝑓 but rather the diversity of 𝑓 , the tuning of the hy-
perparameter 𝛽 is thus not trivial, especially when the strategy
evaluation function 𝑔(·) is extremely costly. To mitigate this prob-
lem, we decouple the two terms and alternate between exploration
and exploitation following a similar idea proposed in [Song et al.
2019]. During exploration, our acquisition function becomes:

𝑎exp (𝑥𝑡+1) = 𝜎𝑡 (𝑥𝑡+1) . (9)

The sample with the largest posterior standard deviation is chosen
as 𝑥𝑡+1 to be evaluated next:

𝑥𝑡+1 = arg max
𝑥

𝜎𝑡 (𝑥) . (10)

Under the condition that 𝑔(·) is a sample from GP function distribu-
tion GP(𝑚(·), 𝑘 (·, ·)), Equation 10 can be shown to maximize the
Information Gain 𝐼 on function 𝑔(·):

𝑥𝑡+1 = arg max
𝑥

𝐼 (𝑋𝑡 ∪ {𝑥}, 𝐹𝑡 ∪ {𝑔(𝑥)};𝑔) , (11)

where 𝐼 (𝐴;𝐵) = 𝐻 (𝐴) − 𝐻 (𝐴|𝐵), and 𝐻 (·) = E [− log𝑝 (·)] is the
Shannon entropy [Cover 1999].

We summarize our BDS algorithm in Algorithm 1. The alternation
of exploration and diversity optimization involves two extra hyper-
parameters 𝑁exp and 𝑁opt, corresponding to the number of samples
allocated for exploration and diversity optimization in each round.
Compared to 𝛽 in Equation 8,𝑁exp and𝑁opt are muchmore intuitive
to tune. We also found that empirically the algorithm performance
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ALGORITHM 1: Bayesian Diversity Search
Input: Strategy evaluation function 𝑔 ( ·) , exploration count 𝑁exp

and diversity optimization count 𝑁opt, total sample count 𝑛.
Output: Initial states 𝑋𝑛 = {𝑥1, 𝑥2, ..., 𝑥𝑛 } for diverse strategies.

1 𝑡 = 0; 𝑋0 ← ∅; 𝐹0 ← ∅;
2 Initialize GP surrogate model with random samples;
3 while 𝑡 < 𝑛 do
4 if 𝑡%(𝑁exp + 𝑁opt) < 𝑁exp then
5 𝑥𝑡+1 ← arg max𝑎exp ( ·) by L-BFGS; // Equation 9

6 else
7 𝑥𝑡+1 ← arg max𝑎 ( ·) by DIRECT; // Equation 7

8 end
9 𝑓𝑡+1 ← 𝑔 (𝑥𝑡+1) ;

10 𝑋𝑡+1 ← 𝑋𝑡 ∪ {𝑥𝑡+1 }; 𝐹𝑡+1 ← 𝐹𝑡 ∪ {𝑓𝑡+1 };
11 Update GP surrogate model with 𝑋𝑡+1, 𝐹𝑡+1; // Equation 6

12 𝑡 ← 𝑡 + 1;
13 end
14 return 𝑋𝑛

is insensitive to the specific values of 𝑁exp and 𝑁opt. The exploita-
tion stage directly maximizes the diversity of motion strategies. We
optimize 𝑎(·) with a sampling-based method DIRECT (Dividing
Rectangle) [Jones 2001], since derivative information may not be
accurate in the presence of function noise due to the Monte-Carlo
integration. This optimization does not have to be perfectly accu-
rate, since the surrogate model is an approximation in the first place.
The exploration stage facilitates the discovery of diverse strategies
by avoiding repeated queries on well-sampled regions. We opti-
mize 𝑎exp (·) using a simple gradient-based method L-BFGS [Liu and
Nocedal 1989].

5.2 Stage 2: Novel Policy Seeking
In Stage 2 of our diverse strategy discovery framework, we explore
potential strategy variations given a fixed initial state discovered
in Stage 1. Formally, given an initial state 𝑥 and a set of discovered
policies Π = {𝜋1, 𝜋2, ..., 𝜋𝑛}, we aim to learn a new policy 𝜋𝑛+1
which is different from all existing 𝜋𝑖 ∈ Π. This can be achieved
with an additional policy novelty reward to be jointly optimized
with the task reward during DRL training. We measure the novelty
of policy 𝜋𝑖 with respect to 𝜋 𝑗 by their correspondingmotion feature
distance | |𝑓𝑖 − 𝑓𝑗 | |. The novelty reward function is then given by

𝑟novelty (𝑓 ) = Clip
(min𝜋𝑖 ∈Π | |𝑓𝑖 − 𝑓 | |

𝑑threshold
, 0.01, 1

)
, (12)

which rewards simulation rollouts showing different strategies to
the ones presented in the existing policy set. 𝑑threshold is a hyper-
parameter measuring the desired policy novelty to be learned next.
Note that the feature representation 𝑓 here in Stage 2 can be the
same as or different from the one used in Stage 1 for initial states
exploration.
Our novel policy search is in principle similar to the idea of

[Sun et al. 2020; Zhang et al. 2019]. However, there are two key
differences. First, in machine learning, policy novelty metrics have
been designed and validated only on low-dimensional control tasks.
For example in [Zhang et al. 2019], the policy novelty is measured by

the reconstruction error between states from the current rollout and
previous rollouts encapsulated as a deep autoencoder. In our case of
high-dimensional 3D character control tasks, however, novel state
sequences do not necessarily correspond to novel motion strategies.
We therefore opt to design discriminative strategy features whose
distances are incorporated into the DRL training reward.

Second, we multiply the novelty reward with the task reward as
the training reward, and adopt a standard gradient-based method
PPO to train the policy. Additional optimization techniques are not
required for learning novel strategies, such as the Task-Novelty
Bisector method proposed in [Zhang et al. 2019] that modifies the
policy gradients to encourage novelty learning. Our novel policy
seeking procedure always discovers novel policies since the char-
acter is forced to perform a different strategy. However, the novel
policies may exhibit unnatural and awkward movements, when the
given initial state is not capable of multiple natural strategies.

6 TASK SETUP AND IMPLEMENTATION
We demonstrate diverse strategy discovery for two challenging
motor tasks: high jumping and obstacle jumping. We also tackle
several variations of these tasks. We describe task specific settings
in Section 6.1, and implementation details in Section 6.2.

6.1 Task Setup
The high jump task follows the Olympics rules, where the simulated
athlete takes off with one leg, clears the crossbar, and lands on a
crash mat. We model the landing area as a rigid block for simplicity.
The crossbar is modeled as a rigid wall vertically extending from the
ground to the target height to prevent the character from cheating
during early training, i.e., passing through beneath the bar. A rollout
is considered successful and terminated when the character lands
on the rigid box with all body parts at least 20 𝑐𝑚 away from the
wall. A rollout is considered as a failure and terminated immediately,
if any body part touches the wall, or any body part other than the
take-off foot touches the ground, or if the jump does not succeed
within two seconds after the take-off.

The obstacle jump shares most of the settings of the high jump.
The character takes off with one leg, clears a box-shaped obstacle
of 50 𝑐𝑚 in height with variable widths, then lands on a crash mat.
The character is required to complete the task within two seconds
as well, and not allowed to touch the obstacle with any body part.

6.1.1 Run-up Learning. A full high jump or obstacle jump consists
of three phases: run-up, take-off and landing. Our framework de-
scribed so far can discover good initial states at take-off that lead to
diverse jumping strategies. What is lacking is the matching run-up
control policies that can prepare the character to reach these good
take-off states at the end of the run. We train the run-up controllers
with DeepMimic [Peng et al. 2018a], where the DRL learning reward
consists of a task reward and an imitation reward. The task reward
encourages the end state of the run-up to match the desired take-off
state of the jump. The imitation reward guides the simulation to
match the style of the reference run. We use a curved sprint as
the reference run-up for high jump, and a straight sprint for the
obstacle jump run-up. For high jump, the explored initial state space
is four-dimensional: the desired approach angle 𝛼 , the 𝑋 and 𝑍
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Table 1. Curriculum parameters for learning jumping tasks. 𝑧 parameterizes
the task difficulty, i.e., the crossbar height in high jumps and the obstacle
width in obstacle jumps. 𝑧min and 𝑧max specify the range of 𝑧, and Δ𝑧 is the
increment when moving to a higher difficulty level. 𝑅𝑇 is the accumulated
reward threshold to move on to the next curriculum difficulty.

Task 𝑧min(cm) 𝑧max(cm) Δ𝑧(cm) 𝑅𝑇
High jump 50 200 1 30

Obstacle jump 5 250 5 50

components of the root angular velocity 𝜔 , and the magnitude of
the 𝑍 component of the root linear velocity 𝑣𝑧 in a facing-direction
invariant frame. We fix the desired root𝑌 angular velocity to 3rad/s,
which is taken from the reference curved sprint. In summary, the
task reward 𝑟G for the run-up control of a high jump is defined as

𝑟G = exp
(
−1

3 · | |𝜔 − �̄� | |1 − 0.7 · (𝑣𝑧 − 𝑣𝑧)2
)
, (13)

where �̄� and 𝑣𝑧 are the corresponding targets for 𝜔 and 𝑣𝑧 . 𝛼 does
not appear in the reward function as we simply rotate the high jump
suite in the environment to realize different approach angles. For the
obstacle jump, we explore a three-dimensional take-off state space
consisting of the root angular velocities along all axes. Therefore
the run-up control task reward 𝑟G is given by

𝑟G = exp(−1
3 · | |𝜔 − �̄� | |1). (14)

6.1.2 Reward Function. We use the same reward function structure
for both high jumps and obstacle jumps, where the character gets a
sparse reward only when it successfully completes the task. The full
reward function is defined as in Equation 2 for Stage 1. For Stage 2,
the novelty bonus 𝑟novelty as discussed in Section 5.2 is added:

𝑟 = 𝑟task · 𝑟naturalness · 𝑟novelty . (15)

𝑟naturalness is the motion naturalness term discussed in Section 4.2.
For both stages, the task reward consists of three terms:

𝑟task = 𝑟complete · 𝑟𝜔 · 𝑟safety . (16)

𝑟complete is a binary reward precisely corresponding to task comple-
tion. 𝑟𝜔 = exp(−0.02| |𝜔 | |) penalizes excessive root rotations where
| |𝜔 | | is the average magnitude of the root angular velocities across
the episode. 𝑟safety is a term to penalize unsafe head-first landings.
We set it to 0.7 for unsafe landings and 1.0 otherwise. 𝑟safety can
also be further engineered to generate more landing styles, such as
a landing on feet as shown in Figure 9.

6.1.3 Curriculum and Scheduling. The high jump is a challenging
motor skill that requires years of training even for professional
athletes. We therefore adopt curriculum-based learning to gradually
increase the task difficulty 𝑧, defined as the crossbar height in high
jumps or the obstacle width in obstacle jumps. Detailed curriculum
settings are given in Table 1, where 𝑧min and 𝑧max specify the range
of 𝑧, and Δ𝑧 is the increment when moving to a higher difficulty
level.

We adaptively schedule the curriculum to increase the task diffi-
culty according to the DRL training performance. At each training

Table 2. Model parameters of our virtual athlete and the mocap athlete.

Parameter Simulated Athlete Mocap Athlete
Weight (kg) 60 70
Height (cm) 170 191

hip height (cm) 95 107
knee height (cm) 46 54

iteration, the average sample reward is added to a reward accumula-
tor. We increase 𝑧 by Δ𝑧 whenever the accumulated reward exceeds
a threshold 𝑅𝑇 , and then reset the reward accumulator. Detailed
settings for Δ𝑧 and 𝑅𝑇 are listed in Table 1. The curriculum could
also be scheduled following a simpler scheme adopted in [Xie et al.
2020], where task difficulty is increased when the average sample
reward in each iteration exceeds a threshold. We found that for
athletic motions, such average sample reward threshold is hard to
define uniformly for different strategies in different training stages.

Throughout training, the control frequency 𝑓control and the P-VAE
offset penalty coefficient 𝑐offset in Equation 4 are also scheduled
according to the task difficulty, in order to encourage exploration
and accelerate training in early stages. We set 𝑓control = 10 + 20 ·
Clip(𝜌, 0, 1) and 𝑐offset = 48 − 33 · Clip(𝜌, 0, 1), where 𝜌 = 2𝑧 −
1 for high jumps and 𝜌 = 𝑧 for obstacle jumps. We find that in
practice the training performance does not depend sensitively on
these hyperparameters.

6.1.4 Strategy Features. We choose low-dimensional and visually
discriminate features 𝑓 of learned strategies for effective diversity
measurement of discovered strategies. In the sports literature, high
jump techniques are usually characterized by the body orientation
when the athlete clears the bar at his peak position. The rest of the
body limbs are then coordinated in the optimal way to clear the
bar as high as possible. Therefore we use the root orientation when
the character’s CoM lies in the vertical crossbar plane as 𝑓 . This
three-dimensional root orientation serves well as a Stage 2 feature
for high jumps. For Stage 1, this feature can be further reduced to
one dimension, as we will show in Section 7.1. More specifically, we
only measure the angle between the character’s root direction and
the global up vector, which corresponds to whether the character
clears the bar facing upward or downward. Such a feature does not
require a non-Euclidean GP output space that we need to handle in
Stage 1. We use the same set of features for obstacle jumps, except
that root orientations are measured when the character’s CoM lies
in the center vertical plane of the obstacle.

Note that it is not necessary to train to completion, i.e., the max-
imum task difficulty, to evaluate the feature diversity, since the
overall jumping strategy usually remains unchanged after a given
level of difficulty, which we denote by 𝑧freeze. Based on empirical ob-
servations, we terminate the training after reaching 𝑧freeze = 100𝑐𝑚
for both high jump and obstacle jump tasks for strategy discovery.

6.1.5 GP Priors and Kernels. We set GP prior𝑚(·) and kernel 𝑘 (·, ·)
for BDS based on common practices in the Bayesian optimization
literature. Without any knowledge on the strategy feature distribu-
tion, we set the prior mean𝑚(·) to be the mean of the value range
of a feature. Among the many common choices for kernel functions,
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we adopt the Matérn5/2 kernel [Klein et al. 2017; Matérn 1960],
defined as:

𝑘5/2 (𝑥, 𝑥
′) = 𝜃 (1 +

√
5𝑑𝜆 (𝑥, 𝑥 ′) +

5
3𝑑

2
𝜆
(𝑥, 𝑥 ′))𝑒−

√
5𝑑𝜆 (𝑥,𝑥 ′) (17)

where 𝜃 and 𝜆 are learnable parameters of the GP. 𝑑𝜆 (𝑥, 𝑥 ′) = (𝑥 −
𝑥 ′)𝑇 diag(𝜆) (𝑥 − 𝑥 ′) is the Mahalanobis distance.

6.2 Implementation
We implemented our system in PyTorch [PyTorch 2018] and PyBul-
let [Coumans and Bai 2019]. The simulated athlete has 28 internal
DoFs and 34 DoFs in total. We run the simulation at 600 𝐻𝑧. Torque
limits for the hips, knees and ankles are taken from Biomechanics es-
timations for a human athlete performing a Fosbury flop [Okuyama
et al. 2003]. Torque limits for other joints are kept the same as [Peng
et al. 2018a]. Joint angle limits are implemented by penalty forces.
We captured three standard high jumps from a university athlete,
whose body measurements are given in Table 2. For comparison,
we also list these measurements for our virtual athlete.

For DRL training, we set 𝜆 = 0.95 for both TD(𝜆) and GAE(𝜆).
We set the discounter factor 𝛾 = 1.0 since our tasks have short
horizon and sparse rewards. The PPO clip threshold is set to 0.02.
The learning rate is 2.5× 10−5 for the policy network and 1.0× 10−2

for the value network. In each training iteration, we sample 4096
state-action tuples in parallel and perform five policy updates with
a mini-batch size of 256. For Stage 1 diverse strategy discovery, we
implement BDS using GPFlow [van der Wilk et al. 2020] with both
𝑁exp and 𝑁opt set to three. 𝑑threshold in Stage 2 novel policy seeking
is set to 𝜋/2. Our experiments are performed on a Dell Precision
7920 Tower workstation, with dual Intel Xeon Gold 6248R CPUs (3.0
GHz, 48 cores) and an Nvidia Quadro RTX 6000 GPU. Simulations
are run on the CPUs. One strategy evaluation for a single initial
state, i.e. Line 9 in Algorithm 1, typically takes about six hours.
Network updates are performed on the GPU.

7 RESULTS
We demonstrate multiple strategies discovered through our frame-
work for high jumping and obstacle jumping in Section 7.1. We
validate the effectiveness of BDS and P-VAE in Section 7.2. Compar-
ison with motion capture examples, and interesting variations of
learned policies are given in Section 7.3. All results are best seen
in the supplementary videos in order to judge the quality of the
synthesized motions.

7.1 Diverse Strategies
7.1.1 High Jumps. In our experiments, six different high jump
strategies are discovered during the Stage 1 initial state exploration
within the first ten BDS samples: Fosbury Flop, Western Roll (fac-
ing up), Straddle, Front Kick, Side Jump, Side Dive. The first three
are high jump techniques standard in the sports literature. The
last three strategies are not commonly used in sporting events, but
still physically valid so we name them according to their visual
characteristics. The other four samples generated either repetitions
or failures. Strategy repetitions are generally not avoidable due to
model errors and large flat regions in the motion space. Since the
evaluation of one BDS sample takes about six hours, the Stage 1

(a) Straddle – max height=190𝑐𝑚

(b) Front Kick – max height=180𝑐𝑚

(c) Western Roll (facing up) – max height=160𝑐𝑚

(d) Scissor Kick – max height=150𝑐𝑚

(e) Side Dive – max height=130𝑐𝑚

(f) Side Jump – max height=110𝑐𝑚

Fig. 3. Six of the eight high jump strategies discovered by our learning
framework, ordered by their maximum cleared height. Fosbury Flop and
Western Roll (facing sideways) are shown in Figure 1. Note that Western
Roll (facing up) and Scissor Kick differ in the choice of inner or outer leg as
the take-off leg. The Western Roll (facing sideways) and the Scissor Kick
are learned in Stage 2. All other strategies are discovered in Stage 1.

exploration takes about 60 hours in total. The discovered distinct
strategies at 𝑧freeze = 100𝑐𝑚 are further optimized separately to
reach their maximum difficulty level, which takes another 20 hours.
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(a) Front Kick – max width=150𝑐𝑚

(b) Side Kick – max width=150𝑐𝑚

(c) Twist Jump (clockwise) – max width=150𝑐𝑚

(d) Straddle – max width=215𝑐𝑚

(e) Twist Jump (counterclockwise) – max width=250𝑐𝑚

(f) Dive Turn – max width=250𝑐𝑚

Fig. 4. Six obstacle jump strategies discovered by our learning framework
in Stage 1, ordered by their maximum cleared obstacle width. For some of
the strategies, the obstacle is split into two parts connected with dashed
lines to enable better visualization of the poses over the obstacle.

(a) Twist Turn – max width=250𝑐𝑚

(b) Western Roll – max width=250𝑐𝑚

Fig. 5. Two obstacle jump strategies discovered in Stage 2 of our learning
framework.

Fig. 6. Diverse strategies discovered in each stage of our framework.

Representative take-off state feature values of the discovered strate-
gies can be found in Appendix A. We also show the DRL learning
and curriculum scheduling curves for two strategies in Appendix B.

In Stage 2, we perform novel policy search for five DRL iterations
from each good initial state of Stage 1. Training is warm started
with the associated Stage 1 policy for efficient learning. The total
time required for Stage 2 is roughly 60 hours. More strategies are
discovered in Stage 2, but most are repetitions and only two of
them are novel strategies not discovered in Stage 1: Western Roll
(facing sideways) and Scissor Kick. Western Roll (sideways) shares
the same initial state with Western Roll (up). Scissor Kick shares
the same initial state with Front Kick. The strategies discovered
in each stage are summarized in Figure 6. We visualize all eight
distinct strategies in Figure 1 and Figure 3. We also visualize their
peak poses in Figure 7.
While the final learned control policies are stochastic in nature,

the majority of the results shown in our supplementary video are
the deterministic version of those policies, i.e., using the mean of
the learned policy action distributions. In the video we further show
multiple simulations from the final stochastic policies, to help give
insight into the true final endpoint of the optimization. As one might
expect for a difficult task such as a maximal-height high jump, these
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(a) Fosbury Flop (b) Western Roll (c) Straddle (d) Front Kick (e) Western Roll* (f) Scissor (g) Side Dive (h) Side Jump

Fig. 7. Peak poses of discovered high jump strategies, ordered by their maximum cleared height. First row: look-up views; Second row: look-down views.

(a) Fosbury Flop. First row: synthesized – max height=200𝑐𝑚; Second row: motion capture – capture height=130𝑐𝑚.

(b) Straddle. First row: synthesized – max height=195𝑐𝑚; Second row: motion capture – capture height=130𝑐𝑚.

Fig. 8. Comparison of our synthesized high jumps with those captured from a human athlete.

stochastic control policies will also fail for many of the runs, similar
to a professional athlete.

7.1.2 Obstacle Jumps. Figure 4 shows the six different obstacle
jump strategies discovered in Stage 1 within the first 17 BDS sam-
ples: Front Kick, Side Kick, Twist Jump (clockwise), Twist Jump
(counterclockwise), Straddle and Dive Turn. More strategies are
discovered in Stage 2, but only two of them are novel as shown
in Figure 5: Western Roll and Twist Turn. Western Roll shares the
initial state with Twist Jump (clockwise). Twist Turn shares the
initial state with Dive Turn. The two stages together take about 180

hours. We encourage readers to watch the supplementary video for
better visual perception of the learned strategies.
Although our obstacle jump task is not an Olympic event, it is

analogous to a long jump in that it seeks to jump a maximum-length
jumped. Setting the obstacle height to zero yields a standard long
jump task. The framework discovers several strategies, including
one similar to the standard long jump adopted in competitive events,
with the strong caveat that the distance achieved is limited by the
speed of the run up. Please refer to the supplementary video for the
long jump results.
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(a) Fosbury Flop – max height=160𝑐𝑚, performed by a character with a
weaker take-off leg, whose take-off hip, knee and ankle torque limits are
set to 60% of the normal values.

(b) Fosbury Flop – max height=150𝑐𝑚, performed by a character with an
inflexible spine that does not permit arching backwards.

(c) Scissor Kick – max height=130𝑐𝑚, learned by a character with a cast on
its take-off leg.

(d) Front Kick – max height=120𝑐𝑚, performed with an additional con-
straint requiring landing on feet.

Fig. 9. High jump variations. The first three policies are trained from the
initial state of the Fosbury Flop discovered in Stage 1, and the last policy is
trained from the initial state of the Front Kick discovered in Stage 1.

7.2 Validation and Ablation Study
7.2.1 BDS vs. Random Search. We validate the sample efficiency of
BDS compared with a random search baseline. Within the first ten
samples of initial states exploration in the high jump task, BDS dis-
covered six distinct strategies as discussed in Section 7.1.1. Given the
same computational budget, random search only discovered three
distinct strategies: Straddle, Side Jump, and one strategy similar to
Scissor Kick. Most samples result in repetitions of these three strate-
gies, due to the presence of large flat regions in the strategy space
where different initial states lead to the same strategy. In contrast,
BDS largely avoids sampling the flat regions thanks to the acquisi-
tion function for diversity optimization and guided exploration of
the surrogate model.

7.2.2 MotionQuality with/without P-VAE. We justify the usage of
P-VAE for improving motion naturalness with results shown in
Figure 10. Without P-VAE, the character can still learn physically
valid skills to complete the tasks successfully, but the resulting
motions usually exhibit unnatural behavior. In the absence of a
natural action space constrained by the P-VAE, the character can
freely explore any arbitrary pose during the course of the motion to
complete the task, which is unlikely to be within the natural pose
manifold all the time.

7.3 Comparison and Variations
7.3.1 Synthesized High Jumps vs. Motion Capture. We capture mo-
tion capture examples from a university athlete in a commercial
motion capture studio for three well-known high jump strategies:
Scissor Kick, Straddle, and Fosbury Flop. We retarget the mocap
examples onto our virtual athlete, which is shorter than the real ath-
lete as shown in Table 2. We visualize keyframes sampled from our
simulated jumps and the retargeted mocap jumps in Figure 8. Note
that the bar heights are set to the maximum heights achievable by
our trained policies, while the bar heights for the mocap examples
are just the bar heights used at the actual capture session. We did
not set the mocap bar heights at the athlete’s personal record height,
as we wanted to ensure his safety and comfort while jumping in a
tight mocap suit with a lot of markers on.

7.3.2 High Jump Variations. In addition to discovering multiple
motion strategies, our framework can easily support physically
valid motion variations. We show four high jump variations gener-
ated from our framework in Figure 9. We generate the first three
variations by taking the initial state of the Fosbury Flop strategy
discovered in Stage 1, and retrain the jumping policy with additional
constraints starting from a random initial policy. Figure 9a shows a
jump with a weaker take-off leg, where the torque limits are reduced
to 60% of its original values. Figure 9b shows a character jumping
with a spine that does not permit backward arching. Figure 9c shows
a character jumping with a fixed knee joint. All these variations
clear lower maximum heights, and are visually different from the
original Fosbury Flop in Figure 1a. For the jump in Figure 9d, we
take the initial state of the Front Kick, and train with an additional
constraint that requires landing on feet. In Figure 11 we also show
a high jump trained on Mars, where the gravity 𝑔 = 3.711𝑚/𝑠2 is
lower, from the initial state of the Fosbury flop discovered on Earth.

8 CONCLUSION AND DISCUSSION
We have presented a framework for discovering and learning mul-
tiple natural and distinct strategies for highly challenging athletic
jumping motions. A key insight is to explore the take-off state,
which is a strong determinant of the jump strategy that follows
once airborne. In a second phase, we additionally use explicit re-
wards for novel motions. Another crucial aspect is to constrain the
action space inside the natural human pose manifold. With the pro-
posed two-stage framework and the pose variational autoencoder,
natural and physically-nuanced jumping strategies emerge auto-
matically without any reference to human demonstrations. Within
the proposed framework, the take-off state exploration is specific to
jumping tasks, while the diversity search algorithms in both stages
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(a) High jumps trained without P-VAE, given the initial state of Fosbury Flop and Straddle respectively. Please compare with Figure 1a and Figure 3a.

(b) Obstacle jumps trained without P-VAE, given the initial state of Straddle and Twist Jump (cc) respectively. Please compare with Figure 4d and Figure 4e.

Fig. 10. Jumping strategies learned without P-VAE. Although the character can still complete the tasks, the poses are less natural.

Fig. 11. High jump policy trained on Mars with a lower gravity (𝑔 = 3.711𝑚/𝑠2), given the initial state of the Fosbury Flop discovered on Earth.

and the P-VAE are task independent. We leave further adaptation of
the proposed framework to additional motor skills as future work.
We believe this work demonstrates a significant advance by being
able to learn a highly-technical skill such as high-jumping.

We note that the current world record for men’s high jump as of
year 2021 is 245𝑐𝑚, set in year 1993 by an athlete of 193𝑐𝑚 in height.
Our high jump record is 200𝑐𝑚 for a virtual athlete 170𝑐𝑚 tall. The
performance and realism of our simulated jumps are bounded by
many simplifications in our modeling and simulation. We simplify
the athlete’s feet and specialized high jump shoes as rigid rectangular
boxes, which reduces the maximum heights the virtual athlete can
clear. We model the high jump crossbar as a wall at training time
and as a rigid bar at run time, while real bars are made from more
elastic materials such as fiberglass. We use a rigid box as the landing
surface, while real-world landing cushions protect the athlete from
breaking his neck and back, and also help him roll and get up in a
fluid fashion.

The run-up phase of both jump tasks imitates reference motions,
one single curved run for all the high jumps and one single straight
run for all the obstacle jumps. The quality of the two reference runs
affect the quality of not only the run-up controllers, but also the
learned jump controllers. This is because the jump controllers couple
with the run-up controllers through the take-off states, for which
we only explore a low-dimensional feature space. The remaining
dimensions of the take-off states stay the same as in the original
reference run. As a result, the run-up controllers for our obstacle
jumps remain in medium speed, and the swing leg has to kick

backward sometimes in order for the body to dive forward. If we
were to use a faster sprint withmore forward leaning as the reference
run, the discovered jumps could potentially be more natural and
more capable to clear wider obstacles. Similarly, we did not find the
Hurdle strategy for high jumping, likely due to the reference run
being curved rather than straight. In both reference runs, there is a
low in-place jump after the last running step. We found this jumping
intention successfully embedded into the take-off states, which
helped both jump controllers to jump up naturally. Using reference
runs that anticipate the intended skills is definitely recommended,
although retraining the run-up controller and the jump controller
together in a post-processing stage may be helpful as well.

We were able to discover most well-known high-jump strategies,
and some lesser-known variations. There remains a rich space of
further parameters to consider for optimization, with our current
choices being a good fit for our available computational budget. It
would be exciting to discover a better strategy than the Fosbury
flop, but a better strategy may not exist. We note that Stage 1 can
discover most of the strategies shown in Figure 6. Stage 2 is only
used to search for additional unique strategies and not to fine tune
the strategies already learned in Stage 1. We also experimented with
simply running Stage 1 longer with three times more samples for
the BDS. However, this could not discover any new strategies that
can be discovered by Stage 2. In summary, Stage 2 is not absolutely
necessary for our framework to work, but it complements Stage 1
in terms of discovering additional visually distinctive strategies. We
also note that our Stage 2 search for novel policies is similar in spirit
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to the algorithm proposed in [Zhang et al. 2019]. An advantage of
our approach is its simplicity and the demonstration of its scalability
to the discovery of visually distinct strategies for athletic skills.
There are many exciting directions for further investigations.

First, we have only focused on strategy discovery for the take-off
and airborne parts of jumping tasks. For landing, we only required
not to land on head first. We did not model get-ups at all. How to
seamlessly incorporate landing and get-ups into our framework
is a worthy problem for future studies. Second, there is still room
to further improve the quality of our synthesized motions. The
P-VAE only constrains naturalness at a pose level, while ideally
we need a mechanism to guarantee naturalness on a motion level.
This is especially helpful for under-constrained motor tasks such as
crawling, where feasible regions of the tasks are large and system
dynamics cannot help prune a large portion of the state space as
for the jumping tasks. Lastly, our strategy discovery is computa-
tionally expensive. We are only able to explore initial states in a
four dimensional space, limited by our computational resources. If
more dimensions could be explored, more strategies might be dis-
covered. Parallel implementation is trivial for Stage 2 since searches
for novel policies for different initial states are independent. For
Stage 1, batched BDS where multiple points are queried together,
similar to the idea of [Azimi et al. 2010], may be worth exploring.
The key challenge of such an approach is how to find a set of good
candidates to query simultaneously.
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Table 3. Representative take-off state features for discovered high jumps.
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A REPRESENTATIVE TAKE-OFF STATE FEATURES
We list representative take-off state features discovered through
BDS in Table 3 for high jumps and Table 4 for obstacle jumps. The
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Fig. 12. Stage 1 DRL learning and curriculum scheduling curves for two
high jump strategies. As DRL learning is stochastic, the curves shown are
the average of five training runs. The shaded regions indicates the standard
deviation.

approach angle 𝛼 for high jumps is defined as the wall orientation
in a facing-direction invariant frame. The orientation of the wall is
given by the line 𝑥sin𝛼 − 𝑧cos𝛼 = 0.

B LEARNING CURVES
We plot Stage 1 DRL learning and curriculum scheduling curves for
two high jump strategies in Figure 12. An initial solution for the
starting bar height 0.5𝑚 can be learned relatively quickly. After a
certain bar height has been reached (around 1.4𝑚), the return starts
to drop because larger action offsets are needed to jump higher,
which decreases the 𝑟𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑛𝑒𝑠𝑠 in Equation 4 and therefore the
overall return in Equation 2. Subjectively speaking, the learned
motions remain as natural for high crossbars, as the lower return is
due to the penalty on action offsets.
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