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Detail-Preserving Controllable Deformation
from Sparse Examples

Haoda Huang, KangKang Yin, Ling Zhao, Yue Qi, Member , IEEE , Yizhou Yu, and Xin Tong

Abstract—Recent advances in laser scanning technology have made it possible to faithfully scan a real object with tiny geometric
details, such as pores and wrinkles. However, a faithful digital model should not only capture static details of the real counterpart
but also be able to reproduce the deformed versions of such details. In this paper, we develop a data-driven model that has two
components; the first accommodates smooth large-scale deformations and the second captures high-resolution details. Large-scale
deformations are based on a nonlinear mapping between sparse control points and bone transformations. A global mapping, however,
would fail to synthesize realistic geometries from sparse examples, for highly-deformable models with a large range of motion. The
key is to train a collection of mappings defined over regions locally in both the geometry and the pose space. Deformable fine-scale
details are generated from a second nonlinear mapping between the control points and per-vertex displacements. We apply our
modeling scheme to scanned human hand models, scanned face models, face models reconstructed from multiview video sequences,
and manually constructed dinosaur models. Experiments show that our deformation models, learned from extremely sparse training
data, are effective and robust in synthesizing highly-deformable models with rich fine features, for keyframe animation as well as
performance-driven animation. We also compare our results with those obtained by alternative techniques.

Index Terms—Detail-Preserving Deformation, Controllable Skinning, Learning from Sparse Examples, CCA Regression.
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1 INTRODUCTION

Technology for laser range scanning has been signifi-
cantly improved over the last decade in terms of both
precision and speed. It has become possible to faithfully
scan a real object with tiny geometric details, such as
pores and wrinkles. However, many real objects includ-
ing most natural organisms deform. A faithful digital
model should not only capture static details of the real
counterpart but also reproduce the deformed versions
of such details. Data-driven methods are well-suited for
this purpose for two reasons. First, it would be extremely
expensive to physically simulate deformations of such
high-resolution details. Second, fine-scale deformations
of different objects follow different styles. A data-driven
method incorporates the unique characteristics of differ-
ent types of deformation.

There exist two major challenges in building high-
resolution data-driven deformation models. First, only
a limited amount of training data is typically avail-
able due to the amount of time and effort required to
scan high-resolution details. Training data-driven mod-
els with sparse examples can easily result in inaccurate
models that produce poor predictions. Second, from
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an animation perspective, we would like to generate
realistic deformations from a sparse set of markers.
This calls for a data-driven model that can correlate
low-dimensional control signals with high-dimensional
deformation details.

We propose a robust deformation framework, as
shown in Figure 1, to tackle the above challenges. Our
data-driven model has two components; the first ac-
commodates smooth large-scale deformations and the
second captures high-resolution details. Large-scale de-
formations are based on linear blend skinning and non-
linear mappings between sparse control points and bone
transformations, as shown in Figure 1(b). To alleviate
poor fitting caused by training with sparse nonlinear
data, we train a collection of local mappings defined
over the manifold of seen example poses. A pose in
this paper refers to a specific shape of a surface model
or a specific configuration of its control points. Each
of the local mappings takes one of the training poses
as its reference pose, and its nearby poses as training
inputs. The deformation associated with a novel pose
is then predicted using a weighted mixture of local
mappings defined for the pose closest to the target pose.
This training process may, however, mistakenly learn
false coupling among distant control points from sparse
training examples even when constrained within local
pose subspaces. We address this problem by learning
correlations only between control points and deforma-
tion regions geometrically located nearby.

High-resolution deformable details are modeled in a
separate training pass as shown in Figure 1(c), which
learns a per-vertex nonlinear mapping between control
points and per-vertex displacements. Several choices ex-
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Fig. 1: Given sparse training examples (a), we train a collection of deformation models at two layers. Given a new configuration
of the control points, these models can generate smooth large-scale deformations (b) and high resolution displacements (c),
which are then combined to produce deformed models with rich details (d).

ist in terms of input signals for displacement modeling.
We have confirmed that a direct mapping between the
control points and the displacements is more effective
than a cascaded mapping where large-scale deformation
predictions are used to drive the deformation of details.
We prefer 1D displacements along vertex normals to 3D
displacement vectors to increase the robustness to noise
and reduce the memory requirement.

Our deformation modeling scheme is first proposed
in [1]. However, only scanned human hand models are
tested there. In this paper we further test the framework
with scanned face models, face models reconstructed
from video, and artificial data sets. To the best of our
knowledge, few previous works test on both human
hands and human faces. Human hands have large de-
grees of freedom, large ranges of motion, and highly
deformable wrinkles. Human faces pose a stringent re-
quirement for the synthesized results to be deemed real-
istic, because the human perceptual system is extremely
familiar and sensitive to human facial expressions. Our
framework is capable of synthesizing high-quality mesh
animations for both hands and faces with rich and
varying details, from sparse training examples. The ad-
ditional test with artificial data illustrates how animators
can use our framework to reduce their workload in
animating models with existing animation tools. They
now only need to construct a small number of key
examples, and all other frames in an animation sequence
can be automatically generated by inferring both the
large-scale deformation and the small-scale details.

Our experiments use between 8∼26 control points
to control hand, face, and full-body deformation and
animation. If the model to be controlled has an inherent
skeleton structure, we can further reduce the number
of control points with the help of an Inverse Kinematics
(IK) module. Our choice of low-dimensional and easy-to-
manipulate control signals results in intuitive keyframe
animation tools readily adoptable into traditional an-
imation pipelines, and provides a promising way for
performance-driven mesh animation as well.

2 RELATED WORK

Data-driven Mesh Skinning For real-time applications,
Linear Blend Skinning (LBS) is widely used by artists
because of its simplicity and efficiency. However, the
original LBS suffers from ‘candy-wrapper’ artifacts. Pose
Space Deformation (PSD) improves skinning quality by
integrating LBS and RBF-based interpolation [2]. More
advanced example-based techniques [3]–[6] have been
effectively integrated with mesh deformation algorithms
to further improve the quality of skinning. EigenSkin
models the residual errors of LBS using principal com-
ponent analysis [7]. Kurihara and Miyata [8] use a
per-vertex weighting scheme for PSD to animate hand
meshes from sparse examples. DrivenShape [9] exploits
known correspondences between two sets of deforma-
tion examples. These methods, however, do not support
direct manipulations or handle fine-scale features at the
wrinkle level. Most of them require dense example data
as well.

Data-driven methods that support direct manipula-
tion with low-dimensional control signals [10]–[12] are
the closest in spirit to our own. Mesh-based Inverse
Kinematics (MESHIK) adopts a global weighting scheme
where all vertices from the same example mesh are
given the same weight [10], [11]. Such global scheme
produces artifacts when modeling from sparse examples,
for both large-scale and fine-scale deformations. In the
absence of a skeleton, Feng et al. [12] build a global
data-driven mapping between sparse control points and
proxy bone transformations for predicting novel surface
deformations in real time. There are two limitations
with this method. First, prediction errors may increase
significantly when a novel control point configuration
deviates far away from the reference configuration. Sec-
ond, given sparse training examples, false dependencies
between distant object parts may be mistakenly enforced
by the global mapping. Our method addresses these
challenges by learning local deformation models in both
the geometry and the pose space. We compare our results
with respect to those obtained from MESHIK and [12] in
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Section 8.
Lau and colleagues has pointed out as a future direc-

tion to learn region-based models to allow fine-grained
control over local geometry and to improve the general-
ization ability of their models [13]. More recently, Huang
et al. [14] combine high-resolution 3D face scans and
high-speed motion captured markers to produce high-
fidelity 3D facial performances in a blendshape interpo-
lation framework. They report that a region-based fine-
scale mesh registration process produces much better
results than a global registration approach. It is also re-
ported in [15] that region-based PCA models generalize
better than its holistic counterpart, and give the user
intuitive localized control.

Detail Modeling for Mesh Animation Detail mod-
eling for mesh animation has been attracting more and
more research effort in recent years, mainly due to the
advances in acquisition techniques. Several multi-scale
deformation schemes have been proposed for face mod-
eling [16]–[18], and they all represent large-scale defor-
mations with thin shell models. Fine-scale geometric de-
tails such as wrinkles are modeled using 2D splines [16],
pose-space interpolations [17], or polynomial displace-
ment maps [18]. We target highly-deformable models
with larger ranges of motion and deformation, such
as human hands, for which techniques developed for
2.5D surfaces such as faces cannot be applied directly.
Furthermore, these methods require dense markers and
training data for motion tracking and deformation mod-
eling, while our method only needs a sparse set of
control points and a sparse set of training examples.
More recently, body parts or full-body geometries can be
reconstructed from single-view or multiple-view dense
video sequences [19]–[22]. The reconstructed geometries
usually lack fine details, and do not generalize beyond
seen examples. Another line of research, such as [23],
simulates the motion and deformation of muscles and
tendons for human hands. It is not clear how to extend
this physics and biomechanics based approach to incor-
porate wrinkle-level details.

Data Acquisition Generally speaking, acquiring high-
resolution 3D models with fine features is difficult,
expensive, and time-consuming. Structured light and
photometric stereo are commonly used to capture 3D
geometries, especially for facial expressions. The quality
of the models depends on the equipment and reconstruc-
tion algorithms used. A template-based method is em-
ployed in [24] to produce point correspondences across
an entire video sequence without using any markers,
while [18] uses 178 markers for registration. Golovinskiy
and colleagues capture static faces with a commercial
face-scanning system to model aging effects [25] . Defor-
mations, large or small, are not considered there. Park
and Hodgins use a commercial motion capture system
and 350 markers to capture medium-scale muscle defor-
mations for full-body motions [26], but fine-scale skin
movements are hard to capture using motion capture
systems alone.

We use a high-precision commercial 3D scanner to cap-
ture hand models. We would like to emphasize that our
deformation technique is independent of the underlying
geometry acquisition method, and can animate models
obtained by various means. For example, one set of the
face models we use is reconstructed from multiview
video sequences [24]; the dinosaur models we test are
manually constructed by an artist.

3 OVERVIEW
Our system consists of an offline training stage, and
an online synthesis stage, as shown in Figure 2. The
training examples, Pi, are high-resolution meshes with
rich details. We will describe several methods for ob-
taining such examples in Section 4. These examples Pi

are first registered with respect to each other, in terms
of both large-scale and fine-scale features. This model
registration process will be described in Section 5. We
denote the output of model registration as P̃i, which
are a collection of low-resolution smooth meshes of the
same topology. The deformation learning process con-
sists of two layers: bone-based transformation modeling
for large-scale deformations, and displacement modeling
for fine-scale details. The low-resolution meshes P̃i are
used to train the large-scale deformation models. To train
the fine-scale detail models, we extract the differences
between Pi and P̃i as displacement maps hi, which
capture high frequency deformation details.

Both deformation layers learn regression models with
the same set of control knobs, i.e., the control points
c. A global regression models correlations between the
full control point vector c and transformations dj of
bone bj from all example poses, and generates a sin-
gle prediction model dj(c) for each bone. In contrast,
we train a collection of models di

j(cj), where i =
1, . . . ,#poses, j = 1, . . . ,#bones. These models are local
in both the geometry space and the pose space. The
learning methods will be given in Section 6.1, together
with necessary implementation details. Building local
deformation models in both the geometry space and
the pose space effectively eliminates false coupling of
independent object parts and severe model mismatches
for nonlinear sparse training data.

Displacement maps hi are modeled in another pass
of regression as h(c). We will detail this process in
Section 6.2. This pass of vertex-level displacement regres-
sion is to model the myriad of variations of fine details,
such as wrinkles and palm lines, which are beyond the
modeling capability of bone-based linear blend skinning.

At runtime, new control point configurations drive
the learned models di

j(cj) and h(c) to produce new
poses with plausible large-scale deformations as well as
realistic fine features. Section 7 describes the necessary
formulas for deformation synthesis.

4 TRAINING DATA ACQUISITION
We use five sets of training data to demonstrate the
capability of our deformation algorithm: scanned hand
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Fig. 2: The training phase and the runtime phase of our deformation framework. Pi: high-resolution training examples; P̃i:
low-resolution registered meshes; hi: displacement maps; c: control points; di

j(cj): bone-based large-scale deformation models;
h(c): vertex-level models for fine details.

models, scanned face models, reconstructed face models
from multiview videos, and artist-designed dinosaur
models. Figure 3 shows our models at their reference
pose. The control points, represented by the green dots,
are defined on the low-resolution reference pose. The
same set of control points are used to learn and drive
both large-scale deformations and high resolution dis-
placements.

Capturing hand models with fine wrinkles is difficult
due to severe self-occlusions between fingers and the
need of accurate registration for data captured from a
not-entirely-static hand. We thus use the traditional art
of body casting. Negative silicone rubber molds were
first created from various hand poses. Then plaster mod-
els were casted from the silicone molds. These models
contain fine surface details such as finger prints. We
then used a Konica-Minolta Range 7 laser scanner to
scan the plaster hand models. The scanner can scan
one region of a 3D object in about two seconds with
high accuracy (±40um). The scanning software then
processes and merges the point clouds and generates
surface models. Despite the claimed high precision of
our scanner, the finest details such as finger prints were
lost in the scanned models, most likely due to noise
introduced by our hand-held scanning process. Luckily,
there were still enough interesting details present in our
final scans. These scans are at extremely high resolution
of around 900K vertices. Experimentally we found that
downsampling these meshes to about 200K vertices [27]
did not lead to any visually noticeable difference from
the original scans. So we simply used the 200K meshes
as our training examples Pi.

We captured two hands from two male subjects, both
graduate students in their twenties. The upper row of
Figure 3 shows the hand models at their reference pose.
Hereafter we denote the left hand of the first subject
as hand-I, and the right hand of the second subject as
hand-II. For each hand, fourteen highly detailed mesh
models were prepared as training data for deformation
learning. We manually specified fewer than 20 mesh
vertices as control points as shown in Figure 3. There
are two sets of control points defined for each hand:
one set all on the palm, and the other set all on the

Fig. 3: Our testing models and their control points. From top
to bottom and left to right: Hand-I front and back; Hand-II
front and back; Face-I; Face-II; Dinosaur.

back. Our deformation synthesis system works equally
well with both sets of control points. The existence of
two sets was basically the result of moving markers
from the palm side to the back of the hand to drive
our deformation system with motion captured control
points. Finger movements caused severe self-occlusion
in motion capturing the markers on the palm side.

We use face models from two subjects to test our
framework. The first set of face examples, called face-
I models hereafter, were generously shared with us by
the authors of [14]. This data set is called sequence Matt
in [14] and used as their teaser example. It contains 21
high-resolution face scans of about 70K vertices, and
40 seconds of motion captured facial expressions. The
high-resolution face scans contain enough wrinkles and
details for us to test our layered deformation modeling.
The motion capture sequence contains 111 marker tra-
jectories, from which we manually selected 26 markers
as control points as shown in Figure 3.

The second set of face examples, called face-II models
hereafter, were shared with us by the authors of [24].
Their capture system employs synchronized video cam-
eras and structured light projectors to record videos of
a moving face from multiple viewpoints. A spacetime
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stereo technique first derives high-quality depth maps
from the structured light video sequences. A surface
fitting and tracking procedure then combines the depth
maps with optical flow to create face models with vertex
correspondence. Thus model registration is not needed
for this set of face models. We manually selected 6
extreme expressions from the original reconstructed se-
quence as the training examples. 8 vertices around the
head and the mouth regions of the neutral face were
manually specified as the control points, as shown in
Figure 3. These reconstructed faces from video are about
24K in resolution, however, and do not contain fine-
scale details such as wrinkles. Thus we only use this
data set to validate the large-scale deformation modeling
component of our framework.

The dinosaur models were constructed by an artist
in two steps. First, the artist created a smooth dinosaur
mesh of about 34K vertices, and then deformed it into 12
different poses. Next, these meshes were subdivided to
about 136K vertices, and sculpted with geometric details.
The model registration step was not needed for this data
set either. The original 13 low resolution meshes serve as
P̃i, and the subdivided high resolution ones with details
are used as Pi. We manually specified 24 vertices from
smooth regions of the reference mesh as control points,
as shown in Figure 3.

5 MODEL REGISTRATION AND DETAIL EX-
TRACTION

Training models that are independently scanned initially
reside in different coordinate systems. We therefore ro-
tate and translate the training examples Pi, i = 0...n− 1
into the coordinate frame of a chosen reference mesh
P0. More specifically, we interactively identified a small
number of corresponding points between each training
mesh and P0 to resolve the rigid transformations be-
tween them, so that the differences among the rigidly
transformed meshes are the deformations we wish to
model.

We further employ deformation transfer [28] to build
per-vertex correspondences among the training models.
Note that deformation transfer enforces a smoothness
constraint on nearby vertices, and is thus not suitable for
meshes with high-frequency details. Therefore we apply
mesh retiling and Laplacian smoothing techniques [27]
to obtain a collection of smooth meshes, Pi, at a lower
resolution. The smooth reference model P0 is then de-
formed towards each training model Pi, and we denote
the deformed reference models as P̃i. P̃i will be used to
model large-scale deformations, each of which possesses
the shape of Pi, but the topology of P0. A homogeneous
mesh topology also facilitates fine-scale feature extrac-
tion for detail modeling.

To extract the differences between the original high-
resolution meshes Pi and their smoothed low-resolution
version P̃i, we subdivide P̃i to retrieve the resolution of
the original mesh Pi. At each vertex of the subdivided P̃i,

a per-vertex displacement with respect to Pi is calculated
along the vertex normals. We denote these displacement
maps as hi, which will be used to train deformation
models for fine surface features.

6 DEFORMATION MODELING

The modeling component of our deformation framework
consists of two layers: large-scale bone-based deforma-
tion modeling, and fine-scale vertex-based displacement
modeling.

6.1 Large-scale Deformation Modeling

Large-scale low frequency deformations are usually gen-
erated from bone and muscle motions. We therefore fol-
low the conventional bone-based linear blend skinning
to generate large-scale deformation. From the registered
input models P̃i, we obtain transformations of all the
individual triangles. We then cluster triangles of similar
rigid transformations to form abstract bones [12], [29],
as shown in Figure 4(a). Note that the abstract bones
do not conform to the biological bones anatomically. For
instance more than a thousand bones were generated for
the hand models. Each bone acts as an abstract represen-
tation for rigid transformations, and its influence weights
for a vertex are obtained by minimizing the total fitting
error of vertex positions using all the examples. The large
number of abstract bones is to guarantee the accuracy
of the large-scale deformation models. Because they are
automatically generated, no extra work is required from
the user.

Denote the fitted influence bone set for vertex v as
B(v), and its skinning weight from bone bj in B(v) as
wj . The skinned vertex position v is computed using
a weighted average of rigid transformations from its
influence bones:

v =
∑

j∈B(v)

wjTjv
r (1)

where Tj is the transformation matrix of bone bj , and
vr represents the vertex position in the reference pose.

The task of the large-scale deformation modeling is
to learn models of the form Tj(c) to predict bone
transformations from control points c. We choose to use
a quaternion representation for bone rotations dj only,
and solve for bone translations using a Poisson solver.
Predicted bone rotations and solved bone translations
together can then be converted to Tj appropriately for
skinning.

As mentioned in Sections 1 and 3, learning large-
scale deformation models globally from nonlinear sparse
training data suffers from false correlation and poor
fitting. Figure 6(a) previews some artifacts resulted from
such poor global models. In the pursuit of a robust
system for deformation modeling and synthesis, we
found that local learning in both the geometry space and
the pose space is crucial.
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(a)

(b)

Fig. 4: Color-coded abstract bones (a) and regions sharing the same
set of local control points (b).

6.1.1 Local regression in the geometry space

The Degrees of Freedom (DoFs) of human hands are
extremely large. There are at least 21 DoFs associated
with the skeletal structure of a hand, five for the thumb
and four for each of the fingers. There are correlations
between nearby structures, but faraway bones such as
the thumb and the pinky can move relatively indepen-
dently. When the training data is extremely sparse, basic
correlation analysis may, however, enforce unnecessary
constraints on the movement of a bone with respect to
that of a distant control point, and result in severe model
mismatches. We therefore only train prediction models
for bone rotations from spatially close control points,
to decouple the accidental correlations between distant
bones and control points seen from a few examples. To
locate the local control points for a particular bone bj ,
the center location of all the vertices controlled by this
bone is calculated, and its nearest vertex on the mesh
is denoted as vj . The kc nearest control points to vj ,
measured by the geodesic distance, are collected as the
influence control point set cj for bj . Instead of learning
deformation models from the full control point vector c,
we now use cj to learn a geometrically local deformation
model of the form dj(cj). We set kc = 7 in all our
experiments. Figure 4(b) visualizes the bones sharing a
same set of influence control points in the same color.
These maps conform well with anatomical regions such
as fingers.

6.1.2 Local regression in the pose space

The range of motion of human hands, the most dex-
terous part of the human body, is large and highly
nonlinear. Yet we only have 14 training examples in
total. These examples appear extremely distant with
respect to each other inside the huge configuration and
deformation space of human hands. A global fit using all
the sparse examples as so far described results in models
with poor prediction results. Inspired by the success

(a) (b)

Pi

Fig. 5: The similarity graph for the pinky region (a). Distant
example poses in (b) are not used in training the local
deformation models di

j(cj) for bone bj near pose P̃i.

of local model learning and manifold learning meth-
ods, such as kNN (k-nearest neighbours), LWR (locally
weighted regression) [30], and dimensionality reduction
techniques where local proximities are preserved rather
than global proximities [31], we advocate building local
regression models for each pose from their neighboring
poses.

The assumption is that the natural deformation poses
we model reside on a low-dimensional nonlinear mani-
fold embedded in the original high-dimensional config-
uration space. It is from this manifold that our sparse in-
put examples are sampled, and it is within this manifold
that we would like our synthesized new poses to reside.
We propose to use a regression method CCA (Canonical
Correlation Analysis) locally. The local CCA regression
relates to the global CCA regression in a way similar
to how local linear regressions relate to conventional
linear regressions, where local fitting of data points in
the vicinity of the input query can greatly improve the
prediction accuracy [30].

To build local prediction models in the pose space,
we first construct a weighted graph based on the local
similarity [32]. For a particular bone bj , each example
pose is connected with its kp nearest neighbors (kp =
7 in all our experiments), measured by the Euclidean
distance of their influence control point vectors. Each
edge is weighted by a heat kernel:

w(cij , c
l
j) = e−|ci

j−cl
j |

2/2σ2

(2)

where cij represents the control point vector for bone
bj in example pose P̃i. Figure 5 shows such a graph
for the bones in the pinky region. To train the local
model at pose P̃i for bone bj , we compute the relative
rotation di

j of this bone between P̃i and each of its
neighboring pose in the similarity graph. di

j and cj are
then used to train a deformation predictor di

j(cj). These
models, though unable to predict deformations for poses
far away from P̃i, are much more accurate locally than
a global predictor. Again, eager readers can preview a
comparison between global models and local models in
Figure 6.
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(a) (b) 

(c) (d) 

Fig. 6: Large-scale deformations generated from (a) globally
trained models as in [12]; (b) locally trained models in the
geometry space; (c) locally trained models in the pose space;
(d) locally trained models in both spaces.

6.1.3 Implementation details

We perform linear CCA regressions to learn di
j(cj), and

use the kernel trick to establish nonlinear dependencies
between input variables, similar to [12]. That is, di

j(cj) =
Mi

j(ξ(cj)), where Mi
j is a linear operator composed

of several linear mappings, and ξ(cj) is the kernelized
vector of the input cj . We use Gaussian kernels for all
our experiments.

Because of the extremely low number of training
examples in our case, we only train bone rotation pre-
dictors, in the format of quaternions rather than eight-
dimensional dual-quaternions [33], to reduce overfitting.
Bone translations are solved afterwards by the Poisson
translation solver [12], which minimizes a weighted sum
of the edge prediction differences Ee and the control
point positional errors Ec of the form (

∑
Ee + β

∑
Ec).

β is a weighting factor to control how exactly the
surface should follow the control points. We use dif-
ferent weighting schemes for keyframe animation and
performance-driven animation, which will be further ex-
plained in the results section. The Poisson minimization
equates to a linear least-squares problem whose solution
can be written as t = Pf , where t is the vector of bone
translations, P is a precomputed pseudo inverse matrix,
and f contains both the predicted bone rotations d and
the control point positions c. From t and d we can then
easily compute the bone transformation matrices T. We
refer the interested readers to [12] for the remaining

(a) (b) (c)

Fig. 7: Different strategies to model details. (a) The predicted
smooth base mesh. (b) The base mesh plus details trained from
control points. (c) The base mesh plus details trained from
predicted bone transformations. Note the artifacts caused by
error propagation.

details.

6.2 Fine-scale Displacement Modeling
What we have done in the previous section is essentially
linear blend skinning, even though the bone transfor-
mations are predicted from control point configurations
that are local in both the geometry and the pose space.
It is well known that linear blend skinning is ineffective
in modeling high frequency deformation details. Using
more abstract bones would improve the data fitting
quality to some extent, but will eventually run into the
problem of overfitting.

Therefore we train another layer of CCA-based regres-
sion models to account for the differences between Pi

and P̃i. We use the high-resolution displacement maps
hi and their corresponding control points to train a
displacement prediction model h(c) for every vertex.
We have also tried to use the predicted bone trans-
formations T instead of the original control points c
as input for the regression process. Our experiments
show an inferior synthesis quality using such a cascaded
scheme, as indicated by Figure 7(c), because the bone
prediction errors are transferred to and amplified by
the displacement predictor, leading to noticeable visual
artifacts. Both Figure 7(b) and (c) show results after the
Poisson reconstruction.

We use 1D displacements along vertex normals rather
than 3D displacement vectors for detail modeling. Be-
cause the number of our model parameters relates to the
product of the input and output dimensionality, learning
regression models from sparse examples that predict 3D
displacement vectors suffers from overfitting. Predicting
a scalar value per vertex alleviates this problem, and is
also more robust with respect to inaccuracies and noise
in vertex correspondences and displacement maps. In
addition, storage requirement is greatly reduced because
one displacement predictor is trained for every vertex of
the high-resolution model.

When learning per-vertex displacement prediction
models, we simply run CCA-based regression using
all the control points and training poses. The resulting
prediction models are capable of producing satisfactory
visual results without incorrect interferences between
distant regions. This demonstrates that in the context of
learning high-frequency displacement models, CCA can
recognize and extract correct correlations and dependen-
cies from the sparse training data without the assistance
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of any scheme that confines the model learning to local
regions in the geometry space.

7 DEFORMATION SYNTHESIS

At runtime, the control points can either be manipulated
by a user or driven by motion captured markers, and
a new deformed model can be synthesized as follows.
Given a new control point vector c, for each bone bj we
select its precomputed influence control points cj and
look for its kp nearest neighbors among all the example
poses. The chosen poses each have a deformation model
trained locally for bone bj that can independently predict
a bone rotation dl

j(cj), l = 1, . . . , kp. The final bone rota-
tion is computed as a weighted average of the individual
predictions:

dj(cj) =

kp∑
l=1

w(cj , c
l
j)d

l
j(cj)/

kp∑
l=1

w(cj , c
l
j) (3)

The weights w(cj , c
l
j) are calculated by the same heat

kernel as in Equation (2). Note that bone rotations pre-
dicted by a local model dl

j are defined with respect
to the specific example pose P̃l. It is necessary to first
transform them to the reference pose P̃0 before blending
them. For the sake of notation simplicity we omit the
coordinate transformation here and directly write dl

j(cj)
in the above formula. Now from the predicted composite
bone rotations, bone translations tj(cj) can be computed
via the Poisson solver as described in §6.1.3. Bone trans-
formations Tj(cj) are then computed from dj(cj) and
tj(cj). Finally a vertex position is calculated according
to the skinning Equation (1).

The resulting mesh above is a low-resolution smooth
mesh predicted from P̃i and thus only reproduces large-
scale deformations. To add details, we first subdivide
the low-resolution mesh in the same way as in the
subdivision procedure for detail extraction, and we also
re-compute the normal n(v) for each vertex v. Then we
use the trained displacement model h(c) to generate a
high-resolution displacement map that can be added to
the subdivided mesh along n(v). To put it into one single
mathematical form, a vertex position v in a synthesized
model with details can be estimated as follows:

v(c) =
∑

j∈B(v)

wjTj(cj)v
r + h(c)n(v) (4)

where B(v) stands for the influence bone set for vertex
v.

8 EXPERIMENTAL RESULTS

We have implemented our deformation system in C++
on a 2.83GHz Intel Quad core machine with 8GB of
RAM. The deformation results shown in the paper and
the accompanying video are rendered by an OpenGL
renderer with Phong shading.

Performance Table 1 lists the performance statistics
for each testing data set. For the hand models, we also

Model #Cpt #Bone DT(min) Training(min) Synthesis(sec)
bone/disp. bone/disp.

Hand-I-K 17 1355 15 3/19 0.6/3.4
Hand-I-M 15 1355 15 3/19 0.6/3.4
Hand-II-K 19 1239 15 3/19 0.6/3.5
Hand-II-M 15 1239 15 3/19 0.6/3.5

Face-I 26 505 20 1/6 0.2/1.7
Face-II 8 247 NA 0.5/NA 0.1/NA

Dinosaur 24 463 NA 1/11 0.2/2.5

TABLE 1: Performance Statistics. ‘#Cpt’: number of control
points; ‘#Bone’: number of abstract bones; ‘DT’: time spent
on deformation transfer; ‘Training’: training time for the bone
deformation models and the displacement models respectively;
‘Synthesis’: synthesis time for bone transformations and ver-
tex displacements. Hand-*-K: deformation modeling with the
palm-side control points for keyframe animation; Hand-*-
M: deformation modeling with the back-side motion captured
markers for performance-driven animation.

tested two sets of control point configurations, one on the
palm side, and another on the back side of the hands.
The timing of each stage of the deformation system is
given. The model registration and training steps are done
offline, but still within a reasonable time frame of tens of
minutes. Currently the large-scale deformation synthesis
is interactive, and the detail synthesis is several-fold
slower.

Validation and Comparison Figure 8 compares a
mesh with details predicted from our pose-driven dis-
placement models to another mesh with a static dis-
placement map extracted from the rest pose. The same
bone transformation models are used for generating
the deformed base mesh. This comparison shows that
a displacement map extracted from one pose cannot
reproduce the deformed mesh details in other poses.
It also demonstrates that our displacement predictor
captures well the variation of geometric details from the
input examples.

Figure 6 demonstrates the effectiveness of our local
modeling method as compared to the global regression
approach of [12]. Figure 6(a) exhibits large distortions,
while locally learned models in both the geometry space
and the pose space effectively eliminate such artifacts as
shown in Figure 6(d). We also compared against learning
local models in either the geometry or the pose space
alone. Figure 6(b) and (c) show that local models in just
one of the spaces are helpful in reducing the prediction
errors, yet neither alone can completely eliminate all
deformation artifacts.

Figure 9 compares our results with those of
MESHIK [10] using the same control point input. Our
results in Figure 9(a) predict natural novel poses with
clean fine-scale details, while the overall pose and details
synthesized by MESHIK contain visible artifacts. The
close-up in Figure 9(b) further shows that details from
multiple training poses incorrectly mix together, giving
rise to unnecessarily cluttered wrinkles.

We also performed leave-one-out cross-validations for
each example pose of each model, and report the average
RMS errors in Table 2. The largest dimension of the
bounding box of each model is scaled to unit length.
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(a) (b)

Fig. 8: Deformation results with a static displacement map
(a) and our pose-dependent displacements (b).

(a) (b)

Fig. 9: Comparison with MESHIK. (a) Results from our
method. (b) Results from MESHIK under the same control
point configuration. The blue boxes point out one area that
is problematic for MESHIK to synthesize correct large-scale
deformations. The bottom row shows the close-up views of
the area enclosed by the red boxes in the upper row. MESHIK
produces false wrinkles in this case.

In Figure 10 we show visual comparison of two cross-
validations using the hand-I model. Our method not
only generates consistently lower prediction errors than
the method of [12], but also produces significantly better
visual results, in terms of both the large-scale defor-
mations and the fine-scale details. However, note that
some of the veins appear smoother in the bottom of Fig-
ure 10(c). Our deformation framework is fundamentally
data-driven, and cannot synthesize features not present
in the remaining training examples.

Keyframe Animation We developed a Graphical User
Interface (GUI) for editing the position of control points.
To provide fast visual feedback, we only compute and
render the bone-based large-scale deformations during
interactive editing. Once the user is satisfied with the
large-scale deformations, displacement predictions are
added to refine the results. Figure 13(a) and (c) show
some representative frames of keyframe animation se-
quences of Hand-I and Hand-II, respectively. Despite the
sparse examples used in the training phase, our defor-
mation models produce smooth large-scale deformations

(a) (b) (c)

Fig. 10: Two leave-one-out cross-validations with (a) the
method of [12] and (c) our method. The ground truth models,
i.e., the models removed from the training examples, are shown
in column (b).

Model #Example #VertLow #VertHigh RMS Error
[12] Ours

Hand-I 14 49K 195K 0.0435 0.0315
Hand-II 14 49K 196K 0.0332 0.0240
Face-I 21 17K 70K 0.0294 0.0281
Face-II 6 24K NA 0.0291 0.0279

Dinosaur 13 34K 136K 0.0338 0.0270

TABLE 2: Comparison of cross-validations between our
method and [12]. The RMS errors are the averaged results of
the leave-one-out validation for each example pose. ‘#VertLow’:
vertex number of the low-res meshes P̃i; ‘#VertHigh’: vertex
number of the high-res meshes Pi.

of the whole hand as well as plausible deformations of
detailed wrinkles for various gestures.

For the dinosaur model, the artist generated a motion
sequence from the 13 low-resolution reference meshes
using Maya skeletal animation. We then extracted the
trajectories of control points and fed them into our sys-
tem to generate animated dinosaurs with deformation
details, of which some representative frames are shown
in Figure 14(e). Note that geometric details designed by
the artist on the 13 example meshes have been well
learned and then synthesized for new poses of the
animation sequence. The hand-animated low-resolution
mesh sequence without details is only used to extract
control point trajectories, and is not used in the synthesis
of Figure 14(d) or (e).

Performance-driven Animation We also tested our
system with motion capture data. We placed 18 motion
capture markers on the back side of the hands, of
which 15 were used to train deformation models. The
remaining three markers plus one of the 15 markers
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used for deformation training were used for control
point alignment. The 3D marker positions were then
captured at 120Hz using a Vicon optical motion capture
system, and then downsampled to 30Hz to drive our
deformation models. Some selected frames are shown in
Figure 13(b) and (d), although the results are best seen
in the accompanying video. Our framework essentially
provides a performance-driven animation system that
can produce high-quality mesh animations with fine-
scale details, using just a handful of captured marker
trajectories. We showed our results to two artists, and
some of their comments include:“The dynamic wrinkles
look very realistic and consistent. Such quality is very
hard to achieve manually”; “It would take us days to
make one of such animation sequences using currently
available commercial software packages”.

For the face-I model, we used a subset of 26 markers
among the full set of 111 markers available from the Matt
face motion capture sequence as the control points, and
fed their trajectories into our system to synthesize the
mesh deformation sequence, of which some representa-
tive frames are shown in Figure 14(b). The synthesized
quality is comparable to that of [14], but we use fewer
markers, which can greatly reduce the workload in
deformation editing and motion capture. For illustrating
the effect of our two-layer deformation models, we also
show the results of large-scale deformation synthesis
without details in Figure 14(a).

For the face-II model, we extracted 8 control point
trajectories from the original face mesh sequence re-
constructed from multiview videos, and fed them into
our system as virtual markers to regenerate the defor-
mation sequence, of which some representative frames
are shown in Figure 14(c). Note that geometric details
were not present in the original examples, so we only
ran the large-scale deformation modeling and synthesis
component of our framework for this experiment. The
control point trajectories were extracted from the original
full sequence but we did not use any mesh other than
the 6 chosen examples, although we have access to the
full mesh sequence. The sequence shown in Figure 14(c)
and the accompanying video is re-synthesized from our
framework.

There is one key difference in working with motion
captured marker trajectories instead of manually edited
control point positions. In an interactive editing setup,
users generally want the pose to exactly follow their
control points, and would otherwise feel frustrated. Yet
the motion captured marker positions, if taken literally,
can produce large deformation artifacts, such as shown
in Figure 11(a). There are many error sources degrading
animations driven by captured markers. First, we cannot
guarantee that the markers on the live hand and the con-
trol points on the hand mesh are located at exactly the
same spots. Second, the markers should be aligned with
the reference model to eliminate rigid transformations
between them. Currently we use four markers placed at
the back of the hand to estimate these transformations,

Fig. 11: Comparison of different weighting scheme for the
control point constraint in the Poisson solver for noisy control
points: (a) β=3.0, (b) β=0.3.

Fig. 12: The manually ex-
tracted skeleton on the ref-
erence pose of the hand-
I model. End-effectors and
internal joints are repre-
sented by spheres and boxes
respectively. For deforma-
tion control only the end-
effectors are exposed as con-
trol points.

but anatomically the back of the hand consists of many
small bones and is not literally a rigid body. Third, there
are noise and even missing markers caused by occlusions
in the captured data. Lastly, to make our performance-
driven animation system practical, we cannot assume
that we can always motion capture the same hand from
which we scanned and learned our deformation models.
Indeed, both our human hand models were unable to
participate in our motion capture sessions, and we had to
capture the marker motions from a third subject to drive
the virtual hand-I and hand-II models. Due to all the
error factors above, for performance-driven animation
we use a lower weight for the control point positional
constraint term in the Poisson translation solver. Fig-
ure 11 illustrates this effect.

End-effector-driven Animation Keyframe editing or
motion capturing 15∼20 control points may still be
overwhelming for novice users. We can further bring
down the required number of control points by utilizing
Inverse Kinematics (IK) for models that have a clear
skeletal structure. We first manually label a set of points
on the surface of the reference mesh to define a skeleton,
as shown in Figure 12. Note that two joints co-locate at
the root position, to allow the base of the thumb and the
palm to move independently. If only one joint is used,
the base of the thumb and the palm will be treated as
a single rigid body by the IK solver, which reduces the
range of motion of the thumb. The 6 green spheres at
the finger tips and the center of the palm are the control
points exposed to the user. The 14 green boxes roughly
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corresponding to joint locations for each finger are con-
trol points hidden from the user. At runtime, users
only need to edit or capture the 6 end-effector points.
We then use a numerical IK method called Damped
Least Squares [34] to compute the positions of the other
14 internal control points. Then the 20 control points
together will drive the deformation models pre-learnt
from all the control points and the example meshes.

Note that our manually extracted skeleton does not
necessarily align with the anatomical skeleton of human
hands. In addition, we use only ball-and-socket 3DoF
joints to model the finger joints in our IK solver. Despite
these approximations and simplifications, the results
generated are comparable to those synthesized with a
full set of explicitly specified control points, as shown in
Figure 13(e) for the hand-I model. Building regression
models directly from an anatomically correct skeleton
and the example meshes remains a future work, but
should be straightforward.

9 CONCLUSIONS AND DISCUSSION
Generating user-controllable mesh animation with rich
details from sparse examples is a challenging open
problem. Our main contribution is a robust framework
that can produce fine-scale details as well as large-
scale deformations by learning from extremely sparse
training data. CCA-based regressions are used to model
deformations of both layers, which not only makes the
framework simple and clean, but also allows end-users
to directly manipulate control points for interactive mesh
animation. We demonstrate the effectiveness and robust-
ness of our method using both scanned and manually
constructed example models, with either hand-edited or
motion-captured control point trajectories.

Our method by far outperforms some of the global
methods we have tested. Local fitting in both the geom-
etry space and the pose space is the key to our success,
which constrains models within the manifold of natu-
ral poses and effectively decouples independent object
parts. Note, however, when there are more example
poses available, a global method can usually generate
better results than what is shown in Figure 6(a). For
example, [12] reports that using 80 example poses, a pair
of pants, which can be thought as two fingers, can be
animated with acceptable quality.

The input training examples should be carefully de-
signed to span the configuration space as much as possi-
ble, and extrapolation should generally be avoided, sim-
ilar to all data-driven methods. In extreme cases where
the user insists on dragging a control point outside of the
spanned subspace, such as to make a closed fist which
our current hand acquisition method cannot cast, the
synthesized deformation will stop following the control
points, unless we make the control point error term in
Section 6.1.3 a hard constraint.

There are several limitations of the proposed method
that deserve future investigation. First, we need to man-
ually specify feature correspondences to initialize the

deformation transfer algorithm for model registration.
To ensure good registration for both large-scale and fine-
scale features, we used 120 feature correspondences for
the hand models. We have experimented with adapting
an image-space optical flow algorithm to 3D surfaces to
register example models automatically. Our initial results
indicate that registering features for highly deformable
models with rich details is a challenging problem. On a
side note, 178 feature points are used for face registration
in [18]. The registration method of [21] requires dense
scans and would fail for cases where only sparse scans
are available.

Our method is general in the sense that it does not re-
quire rigged example meshes. This enables direct utiliza-
tion of scanned data. However, to better integrate with
traditional skeletal animation tools and utilize legacy
animations, it would be useful to drive deformable
models using anatomically-based bone transformations
for models that have inherent skeleton structures such
as hands. Our end-effector-driven animation illustrates
the feasibility of skeleton-driven deformation to a certain
extent.

Another topic for future research concerns dynamic
deformations. In this paper we primarily focus on pose-
driven static deformations, which means there is a
unique deformation associated with each pose. It would
be interesting to investigate mechanisms to carry over
deformation dynamics from previous instants of time.
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(a)

(b)

(c)

(d)

(e)

Fig. 13: Results of keyframe animation (a) and performance-driven animation (b) for the hand-I model; keyframe animation
(c) and performance-driven animation (d) for the hand-II model; and end-effector-driven deformation (e) of the hand-I model.
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(a)

(b)

(c)

(d)

(e)

Fig. 14: Results of performance-driven animation for the face-I model with only large-scale deformations (a) and with details
(b); performance-driven animation for the face-II model (c); and keyframe animation for the dinosaur model with only large-scale
deformations (d) and with details (e).


