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Figure 1: Our system can capture and model deformation behavior of generic soft objects from kinematic data alone. We can then synthesize
new motions that satisfy user-specified constraints and respond to dynamic perturbations. Top: left - a dinosaur walking; middle - a pot
holder jumping; right - a coat hanger skipping. Bottom: lotus leaves moving in an artificial wind field.

Abstract

We present a data-driven method for deformation capture and mod-
eling of general soft objects. We adopt an iterative framework that
consists of one component for physics-based deformation tracking
and another for spacetime optimization of deformation parameters.
Low cost depth sensors are used for the deformation capture, and
we do not require any force-displacement measurements, thus mak-
ing the data capture a cheap and convenient process. We augment
a state-of-the-art probabilistic tracking method to robustly handle
noise, occlusions, fast movements and large deformations. The
spacetime optimization aims to match the simulated trajectories
with the tracked ones. The optimized deformation model is then
used to boost the accuracy of the tracking results, which can in turn
improve the deformation parameter estimation itself in later iter-
ations. Numerical experiments demonstrate that the tracking and
parameter optimization components complement each other nicely.

Our spacetime optimization of the deformation model includes not
only the material elasticity parameters and dynamic damping coef-
ficients, but also the reference shape which can differ significantly
from the static shape for soft objects. The resulting optimization
problem is highly nonlinear in high dimensions, and challenging
to solve with previous methods. We propose a novel splitting al-
gorithm that alternates between reference shape optimization and
deformation parameter estimation, and thus enables tailoring the
optimization of each subproblem more efficiently and robustly.
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Our system enables realistic motion reconstruction as well as syn-
thesis of virtual soft objects in response to user stimulation. Valida-
tion experiments show that our method not only is accurate, but also
compares favorably to existing techniques. We also showcase the
ability of our system with high quality animations generated from
optimized deformation parameters for a variety of soft objects, such
as live plants and fabricated models.
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1 Introduction

Physics-based deformable models enable realistic animation of a
wide range of objects and phenomena [Nealen et al. 2006]. Es-
timating model parameters, however, still heavily relies on either
manual tuning or tedious measurements [Terzopoulos et al. 1987].
Such approaches can hardly scale to complex models with nonlin-
ear or heterogeneous material distributions. Moreover, these meth-
ods usually employ static shapes, i.e., the static equilibrium under
gravity that can be easily observed, as the original reference shapes
of the deformation models. This approximation does not work for
very soft objects, for instance long plant leaves, as they deform
significantly due to gravity. In addition, dynamic properties such
as damping coefficients have seldom been considered previously,
even though they play a critical role in achieving realistic behavior,
in particular for soft objects.

Data-driven methods have recently been quite successful in con-
structing physics-based deformable models for cloth, human organs
and faces [Otaduy et al. 2012]. However, they often require mea-
suring the dense force-displacement relationships. Such measuring
processes and hardware have to be tailored to specific types of ob-
jects being modeled, and thus are hard to generalize. We wish to
build a system that can learn from real-world measurements as well,
and is applicable to generic objects without requiring any expensive
or specialized hardware for force actuation or measurement.

In this paper, we propose a novel data-driven deformation cap-
ture and modeling framework for generic soft objects. Our system
builds deformable models from pure kinematic motion trajectories,
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Figure 2: Schematic overview of our data-driven framework that iterates between deformation tracking and parameter optimization.

triggered by simple user interactions and captured by cheap depth
sensors. The elimination of force measurement and employment
of cheap sensors call for algorithms that can robustly deal with low
quality kinematic input. We thus first employ a physics-based prob-
abilistic tracking method that is robust to noise, occlusions, fast
movements and large deformations. Then we formulate the defor-
mation parameter estimation as a spacetime optimization problem,
aiming to match the simulated trajectories with the tracked ones up
to noise and modeling inaccuracies.

Our deformable models include not only the material elasticity pa-
rameters and the dynamic damping coefficients, but also the refer-
ence shape which introduces high dimensionality into the spacetime
optimization problem. When coupled with significant nonlinearity
and noisy input, our problem becomes too challenging for previ-
ous methods to solve effectively. We thus propose a novel splitting
algorithm that divides the large optimization problem into subprob-
lems that are solved separately and iteratively. Then the reference
shape optimization can take advantage of the dynamics simulation
by applying virtual forces, resulting in a much faster solver than
conventional optimization methods.

We further employ an iterative scheme that alternates between the
physics-based deformation tracking and physics-based parameter
estimation, yielding a maximum-likelihood solution that converges
at a reasonable speed. This scheme not only makes the final re-
sults less dependent on the initial tracking accuracy with default
deformation parameters, but also facilitates motion inference of un-
observable parts of the deformable objects and in turn improves the
fidelity of parameter identification.

In summary, our main contributions include:

• an iterative tracking and parameter estimation framework that
only requires kinematic motion capture with simple user in-
teractions and cheap depth sensors;

• a novel splitting scheme that can solve the high-dimensional
and non-convex spacetime optimization for both the deforma-
tion parameters and the reference shape;

• an augmented physics-based probabilistic tracking method
that can reconstruct fast and highly deformable movements
from extremely noisy and incomplete point clouds.

2 Related Work

Animation Capture We use “animation capture” to refer to sev-
eral terminologies introduced in different application context and
research communities, including performance capture, object track-
ing and animation reconstruction. With the recent advances in
commercial-grade scanners, depth sensors and video cameras, and
the cohort research efforts on data-driven animation, the robustness
of such animation capture methods and systems has been improving

steadily. Such capture systems often take multi-view video record-
ings as input [Bradley et al. 2008; de Aguiar et al. 2008; Vlasic
et al. 2008; Li et al. 2012], but single-view capture systems are also
gaining more popularity due to their low cost and simple setups [Li
et al. 2009; Wei and Chai 2010; Tevs et al. 2012; Wei et al. 2012;
Helten et al. 2013; Schulman et al. 2013].

These methods demonstrate various ways of dealing with partial
observation, occlusion, noise and outliers, such as involving users
in the loop [Wei and Chai 2010], using geometry templates [Li
et al. 2009; Schulman et al. 2013], coupling tracking with detec-
tion [Wei et al. 2012], utilizing physics constraints [Choi and Szym-
czak 2009], or fusing measurements from multiple sensors [Helten
et al. 2013]. We have been particularly inspired by the probabilistic
tracking method proposed by Schulman et al. [2013]. It can deal
with highly noisy point clouds captured using cheap sensors. Fur-
thermore, our finite element method (FEM) simulator can be easily
plugged into such a physics-based tracking framework. Wuhrer et
al. [2013] also used linear FEM for template-based tracking of de-
forming surfaces. However, they use earlier tracking frames as the
reference shapes for the later frames, and thus their estimated ma-
terial parameters are not physically meaningful. By contrast, we
stress that our total estimation process will also recover a reference
shape rather than assume one is observed or known.

Deformation Modeling It is a common challenge in computer
animation and physics-based simulation to assign material parame-
ters accurately in order to yield desired deformation behavior. Man-
ual parameter tuning cannot scale to complex models with nonlin-
ear or inhomogeneous material distributions. With recent improve-
ments in sensing technologies, the data-driven approach of mod-
eling and reconstructing deformation parameters from real world
measurements has offered great potential for computer graphics
applications, such as fabrics, soft objects, and human organs and
faces [Pai et al. 2001; Schoner et al. 2004; Becker and Teschner
2007; Wang et al. 2011; Miguel et al. 2012; Bickel et al. 2009].
Bickel et al. [2009] fit material parameters with an incremental
loading strategy to better approximate the nonlinear strain-stress re-
lationships. Wang et al. [2011] proposed a piecewise linear elastic
model to reproduce the nonlinear, anisotropic stretching and bend-
ing of cloth. Miguel et al. [2012] directly optimized the nonlinear
stress-strain curves based on measurements. A common weakness
with previous methods is they require a dense force displacement
field and known reference shapes. While Bhat et al. [2003] avoided
the need for force capture by using video tracking of cloth, they still
assumed a trivial cloth reference shape. By contrast, our method
requires neither force displacement capture nor a priori reference
shapes, making it significantly more convenient.

The spacetime optimization framework has been utilized quite of-
ten for editing and control of deformable animations [Barbič et al.
2012; Hildebrandt et al. 2012; Li et al. 2014], and occasionally for



material estimation as well [Lee et al. 2012; Li et al. 2014]. Model
reduction techniques are needed to achieve interactive rates. Our
problem is too challenging for these methods to solve effectively as
we also wish to recover the reference shape, which introduces many
more unknowns that depend nonlinearly on the dynamic positions,
and our input point cloud data is much nosier than key frames or
medical images. We propose a novel splitting scheme to efficiently
and robustly solve our spacetime optimization problem.

Fabrication-oriented Deformation Design Fabrication-
oriented design has recently been gaining attention in the computer
graphics community. In such design scenarios, physical objects
are not always available for measurements, and specific and strict
fabrication constraints must be respected. Bickel et al. [2010]
used a spatial combination of basis material layers to achieve
anisotropic, inhomogeneous and nonlinear deformation behavior.
Chen et al. [2014] and Derouet et al. [2013] optimized for the
reference shapes to attain desired static shapes. They require either
known material properties [Chen et al. 2014] or known boundary
conditions [Derouet-Jourdan et al. 2013]. Similar techniques are
also effective in controlling deformable characters [Coros et al.
2012] and balloon shapes when inflated [Skouras et al. 2012]. In
addition to material distributions, mechanical actuation can also
be optimized to control the deformable motions [Skouras et al.
2013]. Our work shares the same goal of reproducing desired
deformation behavior. However, we directly optimize for both
material properties and reference shape, which to the best of our
knowledge no existing work has attempted so far.

3 Overview

Figure 2 shows our data-driven deformation capture and model-
ing framework. The system starts from capturing both the static
shape and the deformable motion of a soft object. The static shape,
the equilibrium geometry under gravity, is first scanned and recon-
structed as a triangular mesh (Figure 2(a)). Then the dynamic mo-
tion, introduced by an initial deformation, is captured in real time
using three depth sensors from different viewpoints (Figure 3(a))
and stored as a time sequence of point clouds (Figure 2(b)).

The core of our algorithm is an iterative scheme that alternates be-
tween a deformation tracking component and a parameter optimiza-
tion component. Using the static shape as a template, a physics-
based probabilistic method is employed to track the dynamic point
cloud sequence (Figure 2(c)). The output of this component is rep-
resented as 3D coordinates of a tetrahedral mesh, which tightly en-
closes the surface template in the static shape. Next the parameter
estimation component optimizes for the elastic material parameters,
the damping coefficients, and the reference shape as well. The ref-
erence shape refers to the geometry subject to zero external forces
and can be significantly different from the static shape, especially
for soft objects (see Figure 4). Furthermore, the optimized defor-
mation parameters can in turn enhance the accuracy of the physics-
based tracking component (see Figure 8), which can consequently
improve the deformation parameter estimation in the next iteration.

We emphasize that here we have two distinctive sets of unknowns.
The first is the dynamic set of deformed positions, i.e., volumetric
mesh vertex coordinates that move in a time sequence. The second
is the static set of parameters that vary in space, viz. the material
distribution and the reference shape. These unknowns are fewer
in number, but they are not as well structured as the dynamic po-
sitions. Importantly, they are the ones that cause the nonlinearity
difficulties in our optimization problem. Therefore the reconstruc-
tion of unknowns is optimized in space and time separately and
iteratively (Figure 2(c-e)). The static set of parameters can be fur-

ther divided into two subsets, the material parameters and damping
coefficients, and the reference shape. Due to the different nature
of these two subsets of static unknowns, we again split the opti-
mization routine into two solvers that can thus take advantage of
different techniques in order to achieve better robustness and over-
all performance. These solvers are alternated in an iterative fashion
(Figure 2(d-e)), just like the outer optimization loop.

4 Elastic Deformation Modeling

We employ the widely adopted co-rotated linear FEM to handle
large deformations of soft objects [Müller et al. 2002]. To speed
up the computation, we use coarse volumetric tetrahedral meshes
to conduct the FEM simulation in both tracking and optimiza-
tion tasks. The low-resolution volumetric mesh and the high-
resolution surface mesh are coupled through a mesh embedding
technique [Kim and Pollard 2011].

Throughout this article we denote the nodal positions in the refer-
ence shape by X . The material parameters will be denoted by p
once they are defined below. The dynamic, deformed positions at a
time instant t are denoted by x = x(t). We use the subscript−e to
refer to quantities associated with each tetrahedral element. Then
the element-wise stress-strain relationship using Hooke’s law and
Cauchy’s linear strain tensor is as follows:

σ = Eε = EBe(xe −Xe),

where Be = Be(Xe) is a 6 × 12 matrix that depends on Xe

nonlinearly. The 6×6 matrixE only depends on Young’s modulus
E and Poisson’s ratio ν for isotropic materials.

Denoting the per-element rotation matrix obtained from polar de-
composition by Re = Re(xe(t),Xe), the element-wise elastic
forces using the co-rotated linear model [Müller and Gross 2004]
can then be expressed as

fe(E, ν,Xe,xe(t)) = ReKe(RT
e xe(t)−Xe), (1)

where
Ke = VeB

T
e EBe (2)

is the 12 × 12 element stiffness matrix and Ve is the element vol-
ume. Note that fe depends nonlinearly on Xe through both Ke

andRe. We discuss in the Appendix how to calculate the Jacobian
of fe with respect to Xe, as this is needed for the reference shape
optimization described in Section 6.

Next, we construct the equations of motion by assembling contri-
butions from all the FEM elements. The motion of our deformable
objects is described by Newton’s 2nd law, which relates forces to
accelerations. Assembling the element-wise force contributions fe
given in Eq (1), we obtain the following ordinary differential equa-
tions in time t:

Mẍ+Dẋ+RK(RTx−X) = fext. (3)

Here the sparse stiffness matrix K is assembled from the element-
wiseKe defined in Eq (2). The non-zero components for each row
of Ke are determined by the underlying topology structure of the
volumetric model. The mass matrixM reflects the lumped mass at
each node [Kim and Pollard 2011], which is derived from a uniform
density estimated by measuring the total mass and volume of the
object in advance. We use Rayleigh damping D = αM + βK to
model the effects of friction and air drag. Finally, fext stands for
external forces and equals gravity in our simulation. The solution
x of Eq (3) depends on the unknown parameters p = (E, ν, α, β),
as well as onX .
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Figure 3: Our capture and tracking setup: three Kinect sensors
are placed around the object (a) and the deformation point cloud
sequence (b) is captured at 30Hz; a surface mesh S with 15368
vertices (c) is used as a template to track captured point clouds and
its corresponding volumetric mesh T with 9594 nodes (d) is used
for FEM simulations.

5 Physics-based Probabilistic Tracking

The tracking algorithm needs to handle noisy input with occlusions,
fast movements, and large deformations. We thus augment a robust
physics-based tracking algorithm [Schulman et al. 2013] that for-
mulates the deformation tracking as a maximum a posteriori (MAP)
estimation problem, and solves it with the expectation maximiza-
tion (EM) algorithm. Physics-based tracking of deformable objects
offers three main advantages in our context:

• physical constraints, e.g., elasticity and collisions, can be han-
dled by the simulation implicitly and efficiently;

• the incorporation of soft body simulation is essentially free
here as we need it for the modeling and synthesis anyway;

• physical parameters, e.g., material configuration, can be opti-
mized to improve the tracking in an iterative fashion.

More specifically, a fine surface mesh S (Figure 3(c)) of the ob-
ject is constructed first. Subsequently, it is used as a template for
the tracking from point clouds in time, i.e., the assimilation of the
point cloud observations with the dynamics described by appropri-
ate equations of motion. A coarser version of this surface mesh is
passed to TETGEN [Si 2011] to generate a lower resolution volu-
metric mesh T (Figure 3(d)), which encloses S for the FEM simu-
lation. To deform the triangular surface mesh S from the simulated
tetrahedral elements of T, we employ the mesh embedding tech-
nique proposed in [Capell et al. 2002; Kim and Pollard 2011].

We use three Kinect sensors (Figure 3(a)) to capture the point
clouds of the deformation sequence (Figure 3(b)). For a frame
consisting of N points at a given time instant, we denote by
c = c1:N , 1 ≤ n ≤ N the point coordinates in the point cloud,
and by s = s1:K , 1 ≤ k ≤ K the vertex positions in the surface
mesh S. Our task is to infer the values of s given the point cloud

c. We enforce a prior on s that penalizes potential energy of the
deformable objects. The correspondence between the point cloud
and the mesh vertices, however, is not known and is treated as latent
variables zkn, which indicate if nodal value sk of the surface mesh
has contributed to the observation cn. Assuming that cn is nor-
mally distributed around sk as cn ∼ N (sk,Σk) with an isotropic
covariance matrix Σk = σ2I , we seek the most probable vertex
positions given the measurements:

s = arg max
s
p(s|c).

To solve this MAP estimation problem, the EM algorithm is em-
ployed. In the first (E) half-step, the total log joint probability lower
bound log p(s, c) is computed based on the expectation over the
latent variables p(zkn|s, c). In the second (M) half-step, the lower
bound is maximized with respect to the vertex positions:

s = arg max
s

[log p(c|s) + log p(s)]. (4)

The second term in Eq (4) corresponds to the potential energy of
the deformable object, which can be optimized through simulating
the physics-based deformable model. The first term reflects how
well the model explains the measurements. To reduce the error, we
introduce an artificial external force on each mesh vertex to move
them closer to their corresponding sample points in the point cloud:

fk = η
∑
n

p(zkn)Σ−1
k (cn − sk). (5)

Here η is a scaling factor to control the magnitude of the artifi-
cial force, similar to the stiffness of virtual springs. Thus, our de-
formable object simulation in the context of tracking consists of
solving Eq (3) with the external forces fext given by the vector as-
sembled from the contributions fk defined in Eq (5). Hereafter we
denote the resulting solution s at time instance t by x̂t.

Interested readers are referred to [Schulman et al. 2013] for more
derivation details. The main difference in our implementation is
that we simulate the volumetric mesh using co-rotated linear FEM,
while Schulman et al. [2013] simulate mass-spring systems with
the Bullet engine. More specifically, we use mesh embedding to
transfer the virtual forces from the surface mesh to the tetrahedral
mesh, and map the displacements from the tetrahedral mesh back
to the surface mesh. Multiple EM iterations are required to align
the mesh template and the point cloud sufficiently well when large
discrepancy appears between them, therefore we run the motion
simulation until convergence for each EM iteration.

6 Deformation Parameter Estimation

We propose a data-driven method to estimate the unknown static
physical parameters p = (E, ν, α, β) and the reference shape X .
Our problem is formulated as a spacetime optimization, where the
following objective function F measures the deviation between the
simulated and captured trajectories:

min
p,X

F (p,X) =
∑
t

‖xt − x̂t‖2. (6)

Here we use the sum of squared distances across all frames t as a
fitting measure, where x̂t is the output of the tracking component,
and xt is the simulated positions at frame t in Eq (3).

This spacetime optimization problem is large, nonlinear and non-
convex. The evaluation of the objective function is expensive, and
the evaluation of gradients is far worse still, with all the frames from
the motion trajectories. Conventional techniques simply cannot
solve it effectively. Therefore we propose a novel splitting scheme
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Figure 4: Reference shape optimization for a taro plant example: (a) the static shape (textured) and its optimized reference shape (gray); (b)
captured static shape (textured) and simulated static shape (pink) with optimized reference shape; (c) simulated static shape without using
optimized reference shape; (d) and (e) are another view of (b) and (c), respectively.

Algorithm 1 Splitting Optimization

Warm start p0 = (E0, ν0, α0, β0); . (§6.3)
repeat

FindX that satisfies static equilibrium; . (§6.1)
Update p to decrease trajectory deviation ; . (§6.2)

until Minimization of F converges.

which alternately and iteratively optimizesX and p. The first half-
step solves for the high-dimensional variable X given the material
parameters p and the captured trajectories; this can be carried out
rapidly using physics-based simulation with a simpler objective to
maintain equilibrium for the static shape. Then the subsequent half-
step computes the material parameters p (whose dimension is much
smaller than that of X) as the minimizer of the least squares prob-
lem Eq (6) withX fixed. The advantage of the splitting scheme lies
essentially in the utilization of a far simpler and more efficient pro-
cedure for solving for the large number of unknowns inX alone.

The overall splitting scheme is described in Algorithm 1. Within
each iteration of the algorithm, we first run the reference shape op-
timization (Section 6.1) to guarantee that the current deformation
parameters p and their corresponding reference shape X satisfy
the physical constraints. Then we simulate the whole trajectory
and update the parameters p along the direction which can further
decrease the trajectory deviation, using a standard downhill search
method (Section 6.2). We run the scheme iteratively until it con-
verges sufficiently. A crucial procedure for obtaining a good initial
guess is described in Section 6.3.

6.1 Reference Shape Optimization

Taking the static shape as the reference shape is quite common in
modeling and simulation of deformable objects. For objects with
soft material or thin-long features, however, the difference between
the two simply cannot be neglected if faithful reconstruction is de-
sired. We choose static shapes with no external contacts or self-
contacts, hence the gravity is the only factor that causes the dif-
ference between the static shape and the reference shape. We then
simplify Eq (3) accordingly to optimize for the reference shape that
best explains the observed static shape.

More specifically, we denote the static shape as xs and drop the
first two terms of Eq (3):

RK(RTxs −X) = Mg. (7)

This suggests an objective to achieve the least force residual:

min F (X) = min
X

∥∥∥RK(RTxs −X)−Mg
∥∥∥2 . (8)

For a volumetric model with N nodes, the dimension of the search
space forX is 3N . Conventional optimization techniques are sim-
ply not fast enough for this high dimensional problem in our con-
text, thus we adopt the virtual force idea again [Schulman et al.
2013], which has led to Eq (5), to approximate the optimization of
X by an artificial-time simulation. Specifically, we apply the cur-
rent force residual as virtual forces to each node, and rely on the
mock-physics simulation to update the reference shape. The sim-
ulation is stopped when the force residual is sufficiently small in
norm and the simulation stabilizes around an equilibrium. Read-
ers can also draw similarity between the virtual force idea and the
well-known active contours method from the computer vision com-
munity [Kass et al. 1988]. The major advantage of the simulation-
based method is its robustness and speed. Furthermore, since opti-
mizing Eq (6) alone cannot guarantee the equilibrium constraint of
Eq (7), we need to optimize for the reference shape for each itera-
tion of the splitting optimization algorithm.

Figure 4(a) presents the reference shape we recovered from a taro
plant model: it looks intuitive and reasonable. The simulated stable
state under gravity using our derived reference shape can match the
captured static shape with high accuracy; see both Figures 4(b) and
4(d). In contrast, upon comparing Figures 4(b) vs. 4(c) and Fig-
ures 4(c) vs. 4(e), obvious sagging is observed when directly using
the captured static shape as the reference shape to do the simulation.

To achieve fast and stable simulation for the above physics-based
optimization method, we use an implicit ODE solver when updating
the reference shape. To this end we need to compute the Jacobian
of the elastic forces with respect to the reference shape ∂f

∂X
. The

derivation of this Jacobian is quite involved; see Appendix.

6.2 Deformation Parameter Fitting

We require motion trajectories of the soft object to estimate its de-
formation parameters p that includes the elasticity parameters and
damping coefficients. We trigger the motion by simple interactions
such as twisting and pulling, after which the soft object typically os-
cillates around and gradually settles down at its initial static equilib-
rium. Such motion and deformation can be reproduced by simulat-
ing the fitted deformable model with appropriate material properties
starting from the same initial state. Considering that the reference
shape X can be separately obtained by the method introduced in
the previous section, the objective function in Eq (6) can be rewrit-
ten as:

F (p) =
∑
t,k

‖xtk − x̂tk‖2 (9)

where t is the frame index and k is the node index.

To minimize F (p), we employ the gradient-free Nelder-Mead



E

2.20e+04

1.63e+05

1.20e+06

8.89e+06

6.57e+07

(a) (b)

Figure 5: Visualization of Young’s moduliE for a taro plant (a) and
a synthetic dinosaur model (b), obtained by blending the estimated
values at the marked control points.

algorithm, a.k.a., the downhill simplex method [Nocedal and
Wright 2006]. Gradient-based optimization methods require a
rather complicated calculation of derivatives, involving the adjoint
method [Giles and Pierce 2000; McNamara et al. 2004]. This in
turn depends on the noisy trajectories x̂ that do not strictly satisfy
physical constraints.

For a homogeneous material, the vector p = (E, ν, α, β) is only
four dimensional. However, homogeneous materials typically can-
not faithfully model real world soft objects, as their material dis-
tributions are usually more complex. Our optimization algorithm
above can handle multiple materials without much change, al-
though the more material parameters we use (i.e., the larger p is),
the slower the convergence. Xu et al. [2015] tackled this problem
by introducing a reduced material space. We adopt a different ap-
proach that strategically places a few control points on the geome-
try, and then linearly blends the material parameters of these control
points to obtain the material specification for each tetrahedron. Fig-
ure 5 illustrates the control point placements and Young’s moduli
E for two models. For the taro example, control points are placed
along the axial direction and the normalized axial distances are used
as blending weights. For the synthetic dinosaur model, we manu-
ally placed seven control points on the extremities, and the blending
weights are calculated using harmonic coordinates. Similar to skin-
ning, we could also involve artists in placing the control points and
painting the blending weights for more complex structures.

6.3 Warm Start

Figure 6 shows a typical landscape of our objective function F (p),
which contains degenerated areas, large plateaus, and narrow val-
leys with multiple local minima. Searching for the true solution of
the Young moduli E on such a landscape is extremely costly and
error prone, especially for models of multiple materials, due to the
curse of dimensionality. The efficiency and robustness of the pa-
rameter estimation can be greatly improved, if it starts from a good
initial guess in the vicinity of the solution valley. Here we propose
an effective warm start strategy that utilizes modal analysis.

In modal analysis, small deformation displacements u = x−X ∈
Rn are represented using linear combinations of natural vibration
modes of the structure as u = Φz, where each column of Φ =
[φ1,φ2, . . . ,φk] represents one deformation mode and z ∈ Rk

are their corresponding amplitudes. The modes can be obtained by
solving the generalized eigenvalue problem Kφi = λiMφi, and
represent the natural characteristic displacements that the elastic
object can undergo [Sifakis and Barbic 2012]. The natural vibra-
tion frequency

√
λi is implicitly determined by Young’s modulus

through the stiffness matrix K. Intuitively speaking, softer mate-
rials vibrate slower. Figure 7 illustrates the frequency

√
λ1 of the

first mode for a synthetic bar with three different E values.
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Figure 7: Frequency comparison using the synthetic bar example
with Young’s modulus set to 6.8e+05 (ground truth), 4.0e+06 and
5.0e+ 04, respectively. The red dashed lines represent the natural
frequency of the first eigen mode, while the other lines show three
captured trajectories projected onto the first mode.

Therefore, if the estimatedE value is closer to the ground truth, the
frequency

√
λ1 derived from modal analysis should be close to that

of the captured data. We uniformly sample a total of fifty E values
in the range of [1e4, 1e7], and compute their corresponding refer-
ence shape X as described in Section 6.1. With known E and X ,
we can derive K and perform the general eigen-decomposition to
estimate

√
λ1 and φ1. Then we extract the displacements from the

captured trajectories and project them onto the estimated first mode
φ1, as depicted by the solid lines in Figure 7. The corresponding vi-
bration frequency of the real data ω1 is then estimated by averaging
the periods of multiple cycles of the projected displacements. We
use the value E that produces the best match between

√
λ1 and ω1

as the initial guess to further improve upon using the optimization
method described in Section 6.2. Interestingly, Li et al. [2014] re-
cently exploited a related frequency matching idea to directly con-
struct the stiffness matrix by uniformly scaling the eigenvalues to
match the first non-zero eigenmode frequency with a user-defined
animation period.

To handle cases of multiple materials, we utilize coordinate descent
to sequentially and cyclically update the estimation for each mate-
rial parameter. Furthermore, as linear modal coordinates are inade-
quate for large deformations, we perform the eigen-analysis in the
rotation-strain space. Interested readers are referred to [Huang et al.
2011] for more implementation details.



E α β
Bar ground truth 6.8e+5 - - - - - - - 2.0e-2 1.0e-3

(1 ctrl pts) estimated(1 ctrl pts) 6.7e+5 - - - - - - - 1.9e-2 1.6e-3
estimated(8 ctrl pts) 7.2e+5 7.2e+5 6.3e+5 6.7e+5 6.5e+5 6.6e+5 7.0e+5 6.8e+5 2.0e-2 1.3e-3

Bar ground truth 1.0e+5 1.0e+6 1.0e+4 6.8e+5 2.0e+6 7.0e+4 1.0e+7 3.0e+4 2.0e-2 1.0e-3
(8 ctrl pts) estimated(8 ctrl pts) 1.0e+5 1.0e+6 1.2e+4 6.6e+5 2.1e+6 6.6e+4 1.0e+7 1.9e+4 1.9e-2 6.0e-4

Dinosaur ground truth 2.0e+5 1.0e+4 1.0e+5 1.0e+6 1.0e+6 1.0e+6 1.0e+6 - 2.0e-2 1.0e-3
estimated(7 ctrl pts) 2.0e+5 9.9e+3 9.5e+4 1.0e+6 1.0e+6 1.0e+6 1.0e+6 - 1.9e-2 0.4e-3

Table 1: Material optimization and damping coefficients estimation for three synthetic examples: the bar in Figure 9 with one and eight
material control points, and the dinosaur in Figure 5(b) with seven control points.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Comparison of tracking results using user-specified ma-
terial properties vs. optimized ones. (a-c) soft, hard and optimized
heterogeneous material distribution as input; (d-f) stress distribu-
tion for a frame with large deformation from the output; (g-i) track-
ing result overlaid with the point cloud data.

7 Results

Deformation Capture and Tracking We use one Artec Eva scan-
ner (http://www.artec3d.com/) to firstly construct the static surface
geometry of an object of interest. Then we use three Kinect sen-
sors, synchronized and calibrated by the Artec Studio, to capture
the point clouds of the object’s motion and deformation at 30Hz,
as shown in Figure 3(a). We introduce an initial deformation to the
soft object by simple manipulations, and then capture the subse-
quent motion as the object oscillates and returns to its static equi-
librium. The captured point clouds are noisy and incomplete due to
occlusions and limited sensory coverage of the sensors.

For the first iteration, we simply use the static shape as the reference
shape and user-specified material properties for the simulation-

Model
Plant Beam Phone holder

∆X Mean(m) 8.88e-5 2.59e-4 1.70e-3
∆xs Mean(m) 6.35e-5 2.22e-5 2.25e-9
ANM Time(s) 9.27 3.25 17.99
Ours Time(s) 12.51 6.03 21.94

Table 2: Comparison of our reference shape optimization with the
ANM solver of Chen et al. [2014], in terms of both accuracy and
performance. The 3D models were normalized first before we com-
pute the average differences between the shapes. Courtesy of [Chen
et al. 2014] for the images and data.

based point cloud tracking. The subsequent iterations of tracking
use the result of the deformation parameter optimization from the
previous iteration. We compare the tracking results in Figures 8
(g)–(i), using a uniformly soft material, a uniformly hard mate-
rial, and the nonuniform optimized material, as shown in Figures 8
(a)–(c) respectively. This example demonstrates that the tracking
algorithm can generate visually good tracking results for a large
range of the elasticity parameters, e.g., at the first iteration with
user-specified materials. However, harder materials may not track
the data well in certain regions, as shown in Figure 8(g); while
softer materials tend to over-fit to noise, as shown in Figure 8(h).
This example also clearly demonstrates the advantage of the itera-
tive scheme that alternates the tracking and parameter estimation.
Using the optimized elastic parameters for tracking, both the defor-
mation and the stress field can be reconstructed more reliably.

Reference Shape Optimization We validate our reference shape
optimization method by comparing its results with those of the
state-of-the-art method of Chen et al. [2014]. They used an Asymp-
totic Numerical Method (ANM) to solve for the reference shape that
can generate a desired target shape under known external forces.
We compare the difference between the reference shapes ∆X de-
rived from the ANM method and ours, and also the difference be-
tween the simulated static shapes ∆xs, as shown in Table 2. We
also compare the performance of our simulation-based optimization
to the ANM method, and the computation timing is comparable.
This is rather satisfactory as we do not require any specialized opti-
mization solver, given that our mock-physics simulation is needed
for the modeling and simulation and thus comes essentially free. It
is also much easier to incorporate other physical constraints, such
as avoiding interpenetrations, using our method.

Material Parameter Estimation To validate the accuracy of our
material parameter estimation algorithm, we first use synthetic data
generated by forward simulations with known elasticity parameters.
The first is a dinosaur model with seven material control points as
shown in Figure 5(b). The second is a bar model as shown in Fig-
ure 9. We fix one end of the bar on the wall and extend the bar
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Figure 9: Convergence characteristics of our deformation pa-
rameter estimation algorithm for a synthetic bar example with
three material configurations (one, two and eight material control
points). The trajectories contain 750 frames and the volumetric
mesh has 756 nodes.

horizontally. Three initial deformed configurations, i.e., twisting,
bending, and stretching, are used to generate simulated motion tra-
jectories, which are subsequently used as input to our optimization
algorithm. Figure 9 shows the convergence characteristics of three
tests with the ground truth trajectories generated using one, two and
eight material control points randomly placed, respectively. Table 1
further shows the numerical values of the estimated parameters with
respect to the ground truth. Generally speaking, the more material
control points we use in generating the ground truth, the more itera-
tions it takes to estimate the parameters, but our solutions are all in
the right order of magnitude as the ground truth. We also perform
a test to see if our algorithm may overfit homogeneous materials
and result in bogus heterogeneity. We deliberately fit eight mate-
rial control points to a bar of homogeneous material, i.e., a bar with
only one control point. The result in the third row of Table 1 shows
all the eight fitted values are within ±7% of the ground truth.

We also test our algorithm with two real-world objects shown in
Figure 10: a silicon pot holder, and an elastomer hanger. The val-
ues for E obtained from our method are 7.0e + 6 and 5.6e + 6,
respectively. The results are validated through both static loading
tests and dynamic load releasing tests. More specifically, we fix
the objects on one end either horizontally or vertically, and attach
different weights on the other end as shown in Figure 10. Table 3
lists the averaged node distances between the captured and the sim-
ulated equilibrium states upon loading of the external weights. For
the dynamic test, the external weights are suddenly released and the
vibrations of the soft objects are simulated and compared with the
ground truth video. We encourage the readers to watch this side by
side comparison in the accompanying video.

We have learned material parameters for a few live plants from in-
duced natural vibrations after being pulled and then released by a
user. As the ground truth values of elasticity parameters for plants
are typically not available [Barbič and Zhao 2011], we evaluate
our results by simulating the learned models from estimated ini-
tial state of the captured motions. Side-by-side comparisons show
high fidelity of the simulated motions with respect to the captured
motions. We have also synthesized a series of plant motions and de-
formations subject to novel external perturbations. The first row of
Figure 11 and the second row of Figure 1 show a lotus leaf respond-
ing to falling raindrops and swinging in an artificial wind field, re-
spectively. The estimated Young moduli smoothly decrease from
the center of the leaf to the edge, thus resulting in realistic folding
of the leaves. The second row of Figure 11 shows a taro plant dis-
turbed by user interactions. And the last row of Figure 11 shows a
dracaena fragrans plant moving in an artificial wind field. Note that
dracaena fragrans leaves actually demonstrate anisotropic proper-

ties which we currently do not model. However, the synthesized
motions still convey the characteristic deformation of the plant to a
certain extent. We model all the plants with multiple material con-
trol points. Modeling plants as homogeneous material also works
but will result in larger objective function values when the opti-
mization converges and larger discrepancies between the tracked
and reconstructed trajectories.

Performance Table 4 shows the statistics of our deformable mod-
els and a breakdown of the computational cost as measured on an
8-core 3.50GHz Intel Xeon E5-2637 desktop. The performance of
the parameter estimation component correlates with the number of
tetrahedral elements, the number of material control points, and the
number of frames in the motion trajectory. Considering the high
dimensionality of the parameter space and the inherent difficulty of
the spacetime optimization tasks, we deem our optimization algo-
rithm robust and reasonably fast.

8 Discussion

We have presented the first complete system that can (i) capture
deformation of generic soft objects in high fidelity with low-cost
depth sensors; and (ii) estimate plausible deformation parameters
from these pure kinematic motion trajectories, without requiring
any force-displacement measurements as is common in traditional
methods. Using the learned deformation models, new motion and
deformation can be synthesized at interactive rates to respond to
dynamic perturbations or satisfy user-specified constraints.

The two main components of our framework are the physics-based
deformation tracking and the spacetime optimization of deforma-
tion parameters. The tracking component builds upon a state-
of-the-art tracking algorithm that implicitly handles physical con-
straints and thus is robust to noisy and partial point cloud mea-
surements. Our motion-based parameter estimation strategy re-
quires no tedious force-displacement measurement procedures, and
is able to reconstruct dynamic properties such as damping coeffi-
cients as well. We run these two components in an iterative fashion
so that the results of parameter optimization can in turn enhance the
tracking performance. Due to self-occlusions and hardware limita-
tions, the captured point clouds typically are partial and noisy. The
learned elastic model facilitates more faithful inference of the miss-
ing part of the soft objects, such as the thin stem of the lotus leaf. It
also helps eliminate over-fitting and achieve better stress distribu-
tion for large deformations.

Our system’s ability to recover both reference shape and deforma-
tion parameters simultaneously is a major novelty of our method.
Estimating either the rest shape or material properties alone is dif-
ficult, and doing both together is even more difficult. We were in-
spired by the reduced model reference shape optimization of Coros
et al. [2012], but we wanted to optimize the full geometry of the ref-
erence shape while simultaneously optimizing material parameters.
We solve the spacetime optimization problem by a novel splitting
scheme that separates the reference shape optimization and the ma-
terial fitting. The reference shape optimization takes advantage of
the dynamics simulation by applying virtual forces, which is not
only fast but also robust to noisy data. We reduce the dimensional-
ity of the material fitting problem by introducing a user-in-the-loop
skinning scheme, where users manually mark out a few material
control points. The results clearly show that both our captured and
synthesized deformations are accurate and realistic.

Limitations and Future Work Our template-based tracking re-
quires a high quality surface mesh as the initial shape, which we
manually create from scanned point clouds. Automatic surface re-
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Figure 10: Static loading tests: a silicon pot holder is bent (a) and pulled (b) by external weights; the holder is fixed at one end horizontally
in (a) and vertically in (b). An elastomer hanger (c) is tilted on one side by external weights.

Pot Holder (Vertical) Pot Holder (Horizontal) Hanger (Vertical)
Weight (g) 0 20 10 0 500 200 0 100 (L) 100 (R)
Mean (m) 1.9e-2 5.6e-2 4.0e-2 7.0e-5 2.8e-2 7.9e-3 1.2e-4 3.3e-2 3.5e-2

Table 3: Averaged node distances between the captured and the simulated equilibrium upon loading of different external weights. Models
were normalized first before the distance computation.

Model #verts. #tets. #nodes #frames track (m) #ctrls #iter optimization (h)
Bar 452 3000 756 250 / 250 / 250 - 1 / 2 / 8 - 0.2 / 0.5 / 1.5

Dinosaur 19537 16270 4867 523 - 7 - 3
Pot holder 12212 7488 2316 81 13 1 2 0.7

Hanger 12837 3445 1314 44 9 1 2 0.5
Lotus 10802 6174 2197 234 25 2 3 1.0

Dracaena fragrans 1876 3244 1203 269 7 3 3 0.2
Taro plant 5832 6218 2397 239 38 13 3 2.0

Table 4: Performance statistics measured on an 8-core 3.50GHz Intel Xeon E5-2637 desktop. From left to right, the number of mesh vertices
(#verts), the number of tetrahedral elements (#tets), the number of volumetric mesh nodes (#nodes), the number of frames of the captured
point cloud data (#frames), tracking time in minutes (track), the number of material control points (#ctrls), the number of iterations of
tracking and parameter estimation (#iter), and parameter optimization timing in hours (optimization). For Lotus and Dracaena fragrans, we
only modeled a single leaf; while for Taro we modeled the whole plant with three leaves.

construction methods, such as Poisson reconstruction, can be used
in the future. The corresponding volumetric mesh is built by TetGen
automatically, on which we manually specify boundary conditions
such as attachment points.

Methods using kinematic input rather than force measurements are
fundamentally constrained by the capture frequency in handling
stiff materials. Due to the limitations of our low-cost hardware
that operates at 30Hz, high frequency vibrations of stiff objects
cannot be captured faithfully. Thus our tracking and simulation
results will miss high frequency vibrations presented in some of
the ground truth videos, such as the dynamic load releasing test.
The reconstruction accuracy of the mass damping coefficient in the
Rayleigh damping model can be affected. Nevertheless, commonly
tested previous examples like pillows, cloth and human organs are
well-within the stiffness range that our method handles well.

The coarser volumetric meshes employed in our FEM simulation
introduces artificial stiffness due to lack of degrees of freedom,

which causes the optimization to favor softer materials. This prob-
lem is more severe when the relative volume difference between
the surface mesh and the enclosing tetrahedral mesh becomes lager.
Thus, a finer discretization can easily return more accurate estima-
tion of the parameters. In the future, it would be interesting to ex-
plore non-linear FEM models to reduce this dependency of the es-
timation accuracy on discretization resolution as well as to enhance
the robustness of the system. Since we have not noticed visual de-
ficiency, we have favored coarse meshes, even though it may be
important to use a finer tetrahedral discretizations for medical ap-
plications. But for medical applications where accuracy is more
important, we would recommend using a finer tetrahedral mesh.

Recovering dynamic models from pure kinematic data is challeng-
ing. At this stage we choose a simple and popular elasticity model,
which is adequate to produce realistic results that are visually in-
distinguishable from our capture. More advanced elastic models,
such as those presented in [Bickel et al. 2009; Bickel et al. 2010;
Wang et al. 2011; Miguel et al. 2012], would likely produce more



Figure 11: Top: A single lotus leaf responds to falling raindrops. Second row: A taro plant responds to user interactions. Bottom: A
dracaena fragrans shrub moving in wind.

accurate results on more examples.

Currently, we use a gradient-free downhill simplex method for pa-
rameter fitting. Even though the Nelder-Mead algorithm occasion-
ally performs better than gradient-based methods on problems such
as ours that contain many local minima, it is worthwhile to experi-
ment with gradient-based methods in the future.

In addition, we would like to extend our parameter optimization al-
gorithm to accommodate more complicated situations, such as mo-
tion trajectories that are rich in contacts and collisions. Derouet
et al. [2013] is a good starting point to investigate this problem.
Finding an automatic skinning method for choosing material con-
trol point locations and weights is also an interesting area of future
work. James and Twigg [2005] investigated this problem for mod-
els with underlying skeletal structures and one would need to extend
it to deal with general soft objects. We also wish to re-derive the
Reference Shape Jacobian to handle anisotropic materials.
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Appendix: Reference Shape Jacobian

Exact computation of the stiffness matrix K = ∂f
∂x

for co-rotated
linear FEM has been described in the literature [Barbič and Zhao
2011; McAdams et al. 2011; Barbič 2012]. The Jacobian of
the elastic forces with respect to the undeformed reference shape
K = ∂f

∂X
, however, is quite complicated and not studied before.

We therefore detail its derivation in this appendix. All the calcu-
lations are performed with respect to each tetrahedral element, but

we omit the subscript −e to avoid messy notations. Let

X = [XT
1 , X

T
2 , X

T
3 , X

T
4 ]T ∈ R12 (10)

be the nodal position of a tetrahedral element in the undeformed
shape, and x = [xT1 , x

T
2 , x

T
3 , x

T
4 ]T ∈ R12 be the nodal position

in the deformed shape. The corotated linear model formulates the
nodal elastic force f = [fT

1 , f
T
2 , f

T
3 , f

T
4 ]T ∈ R12 as

f = VRBTEB(RTx−X).

Here V is the volume of the element, and E is a constant 6 × 6
matrix that corresponds to the material’s elastic parameters.

The matrix R = diag(R,R,R,R) is a block-diagonal matrix.
R is the rigid rotation of the element computed by the polar-
decomposition of the deformation gradient F (= ∂x/∂X), which
is just the top-left 3× 3 block of

F̄ = VsV
−1
m = VsBm

Vs =

[
x1 x2 x3 x4
1 1 1 1

]
Vm =

[
X1 X2 X3 X4

1 1 1 1

]
(11)

and Bm = V −1
m are all 4× 4 matrices. The 6× 12 matrixB only

depends on X and is just a rearrangement of Bm. Denoting the
(i, j)th element of Bm as Bij , we have:

B =
[
B̄1 B̄2 B̄3 B̄4

]

B̄i =


Bi1 0 0
0 Bi2 0
0 0 Bi3

Bi2 Bi1 0
0 Bi3 Bi2

Bi3 0 Bi1


Now we are ready to derive the reference shape jacobian

K =
∂f

∂X
.



The q-th column of K, represented by kq , is the derivative with
respect to the q-th component of X . According to Eq (10), it is
actually the i-th component of node j, which we denote as Xij ,
with i and j satisfying q = 3(j − 1) + i, 1 ≤ i ≤ 3, 1 ≤ j ≤ 4.
By applying the chain rule, we have:

k3(j−1)+i =
∂f

∂Xij

= V ′RBTEB(Rx−X) + VR′BTEB(Rx−X)

+ VRB′TEB(Rx−X) + VRBTEB′(Rx−X)

+ VRBTEB(R′x− e3(j−1)+i)

Here the prime symbol (′) represents the derivative (∂/∂Xij), eq ∈
R12 is the q-th standard basis vector of R12.

We assume that the nodes of an element are sorted to satisfy
det(Vm) > 0; then the element volume can be computed by
V = 1

6
det(Vm). From the derivative of a determinant [Petersen

and Pedersen 2006]:

∂V

∂Vm
= 1

6
∂ det(Vm)

∂Vm
= 1

6
det(Vm)V −T

m = V BT
m.

According to the definition of Vm in Eq (11), we have

V ′ =
∂V

∂Xij
=

∂V

∂(Vm)ij
= V Bji

The matrix B is a rearrangement of Bm, which is the inverse of
Vm. From the derivative of an inverse:

∂Bkl

∂Xij
= −BkiBjl

we have

B′ =
[
B̄′1 B̄

′
2 B̄
′
3 B̄
′
4

]

B̄′k =
∂B̄k

∂Xij
= −


BkiBj1 0 0

0 BkiBj2 0
0 0 BkiBj3

BkiBj2 BkiBj1 0
0 BkiBj3 BkiBj2

BkiBj3 0 BkiBj1


The computation of R′ is much more involved. By applying the
chain rule again, we have:

R′ =
∂R

∂Xij
=
∑
k,l

∂R

∂Fkl

∂Fkl

∂Xij
(12)

Gradients of polar decomposition have been derived in [Barbič and
Zhao 2011; McAdams et al. 2011; Barbič 2012]. We refer the
reader to [Barbič 2012] for more details.

Finally, to calculate the second term of the right hand side of
Eq (12), we need

F̄ ′ =
∂F̄

∂(Vm)ij
= Vs

∂Bm

∂(Vm)ij

= −Vs

 B1iBj1 B1iBj2 B1iBj3 B1iBj4

B2iBj1 B2iBj2 B2iBj3 B2iBj4

B3iBj1 B3iBj2 B3iBj3 B3iBj4

B4iBj1 B4iBj2 B4iBj3 B4iBj4


Then

∂Fkl

∂Xij
=

∂F̄kl

∂(Vm)ij
= (F̄ ′)kl
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