

GraphBolt: Dependency-Driven Synchronous Processing of Streaming Graphs

Mugilan Mariappan and Keval Vora Simon Fraser University

> EuroSys'19 – Dresden, Germany March 27, 2019

Graph Processing

Dynamic Graph Processing

Real-time Processing

• Low Latency

Real-time **Batch** Processing

• High Throughput

Alipay payments unit of Chinese retailer Alibaba [..] has 120 billion nodes and over 1 trillion relationships [..]; this graph has 2 billion updates each day and was running at 250,000 transactions per second on Singles Day [..]

Incremental Processing

- Adjust results **incrementally**
- Reuse work that has already been done

Tornado [SIGMOD'16] GraphIn [EuroPar'16] KineoGraph [EuroSys'12]

Tag Propagationupon mutationOver 75% values get thrown out

KickStarter [ASPLOS'17]

Incremental Processing

- Adjust results **incrementally**
- Reuse work that has already been done

Tornado [SIGMOD'16] GraphIn [EuroPar'16] KineoGraph [EuroSys'12]

KickStarter [ASPLOS'17]

Maintain Value Dependences Incrementally refine results

Less than 0.0005% values thrown out

Incremental Processing

- Adjust results **incrementally**
- Reuse work that has already been done

KickStarter [ASPLOS'17]

Maintain Value Dependences Incrementally refine results

Less than 0.0005% values thrown out

- Belief Propagation
- Co-Training Expectation Maximization
- Collaborative Filtering
- Label Propagation
- Triangle Counting

• ...

GraphBolt

- **Dependency-Driven Incremental** Processing of Streaming Graphs
- Guarantee Bulk Synchronous
 Parallel Semantics

- Lightweight dependence tracking
- Dependency-aware value refinement upon graph mutation

Bulk Synchronous Processing (BSP)

Streaming Graph

Upon Edge Deletion

Streaming Graph

Ideal Scenario

Ideal Scenario

Streaming Graph

GraphBolt: Dependency Tracking

GraphBolt: Dependency Tracking

• Structure of dependencies inferred from input graphs

$$c_i(v) = \oint_{\forall e=(u,v) \in E} (\underbrace{c_{i-1}(u)}_{\forall e=(u,v) \in E})$$

$$g_i(v) = \bigoplus_{\forall e = (u, v) \in E} (c_{i-1}(u))$$

GraphBolt: Incremental Refinement

 $g_i^T(v) = g_i(v) + ?$

GraphBolt: Incremental Refinement

GraphBolt: Incremental Refinement

Refinement: Transitive Changes

Refinement: Transitive Changes

Refinement: Transitive Changes

Refinement: Aggregation Types

Refinement: Aggregation Types

GraphBolt: Programming Model

function REPROPAGATE(e = (u, v), i) ATOMICADD(&sum[v][i + 1], $\frac{oldpr[u][i]}{old_degree[u]}$) end function

function RETRACT(
$$e = (u, v)$$
, i)
ATOMICSUB(∑[v][$i + 1$], $\frac{oldpr[u][i]}{old_degree[u]}$)
end function

function PROPAGATE
$$(e = (u, v), i)$$

ATOMICADD $(\∑[v][i + 1], \frac{newpr[u][i]}{new_degree[u]})$
end function

function PAGERANK() Direct changes
for
$$i \in [0...k]$$
 do
EDGEMAP(E_add, REPROPAGATE, i)
EDGEMAP(E_delete, RETRACT, i)
end for
 $V_updated = GETSOURCES(E_add \cup E_delete)$
 $V_change = GETTARGETS(E_add \cup E_delete)$
for $i \in [0...k]$ do
 $E_update = \{(u, v) : u \in V_updated\}$
EDGEMAP(E_update , RETRACT, i)
EDGEMAP(E_update , PROPAGATE, i)
 $V_dest = GETTARGETS(E_update)$
 $V_change = V_change \cup V_dest$
 $V_updated = VERTEXMAP(V_change, COMPUTE, i)$
end for
end function

GraphBolt: Programming Model - Complex aggregations

function REPROPAGATE(e = (u, v), i)ATOMICADD $(\&sum[v][i + 1], \frac{oldpr[u][i]}{old_degree[u]})$ end function

function RETRACT(
$$e = (u, v)$$
, i)
ATOMICSUB(∑[v][$i + 1$], $\frac{oldpr[u][i]}{old_degree[u]}$)
end function

function PROPAGATE(
$$e = (u, v)$$
, i)
ATOMICADD(∑[v][$i + 1$], $\frac{newpr[u][i]}{new_degree[u]}$)
end function

function PAGERANK() for $i \in [0...k]$ do EDGEMAP(E_add , REPROPAGATE, i) EDGEMAP(E delete, RETRACT, i) end for $V_updated = GETSOURCES(E_add \cup E_delete)$ $V_{change} = \text{GetTArgets}(E_{add} \cup E_{delete})$ for $i \in [0...k]$ do $E_update = \{(u, v) : u \in V_updated\}$ Transitive changes EDGEMAP(E_update , RETRACT, i) EDGEMAP(E_update , propagate, i) $V_dest = GETTARGETS(E_update)$ V change = V change $\cup V$ dest $V_updated = VERTEXMAP(V_change, COMPUTE, i)$ end for end function

GraphBolt: Programming Model - Simple aggregations

function REPROPAGATE(e = (u, v), i)ATOMICADD $(\&sum[v][i + 1], \frac{oldpr[u][i]}{old_degree[u]})$ end function

function RETRACT(
$$e = (u, v)$$
, i)
ATOMICSUB(∑[v][$i + 1$], $\frac{oldpr[u][i]}{old_degree[u]}$)
end function

function PROPAGATEDELTA(
$$e = (u, v)$$
, i)
ATOMICADD(∑[v][$i + 1$], $\frac{newpr[u][i]}{new_degree[u]} - \frac{oldpr[u][i]}{old_degree[u]}$)
end function

function PAGERANK() for $i \in [0...k]$ do EDGEMAP(E add, REPROPAGATE, i) EDGEMAP(E delete, RETRACT, i) end for $V_updated = GETSOURCES(E_add \cup E_delete)$ $V_change = GETTARGETS(E_add \cup E_delete)$ for $i \in [0...k]$ do $E_update = \{(u, v) : u \in V_updated\}$ Transitive changes EDGEMAP(E_update , propagateDelta, i) $V_dest = GetTarGets(E_update)$ $V_{change} = V_{change} \cup V_{dest}$ V updated = VERTEXMAP(V change, COMPUTE, i) end for end function

GraphBolt Details ...

- Aggregation properties & non-decomposable aggregations
- **Pruning dependencies** for light-weight tracking
 - Vertical pruning
 - Horizontal pruning
- Hybrid incremental execution
 - With & without dependency information
- Graph data structure & parallelization model

Experimental Setup

Algorithm	Aggregation (\bigoplus)	Graphs	Edges
PageRank (PR)	$\sum_{\substack{\forall e = (u, v) \in E}} \frac{c(u)}{out_degree(u)}$	Wiki (WK) [47]	378M
		UKDomain (UK) [7]	1.0B
Belief Propagation (BP)	$\forall s \in S : \prod_{\forall o = (u, v) \in E} \left(\sum_{\forall o' \in S} \phi(u, s') \times \psi(u, v, s', s) \times c(u, s') \right)$	Twitter (TW) [21]	1.5B
Label Propagation (LP)	$\forall f \in F : \sum_{\forall e=(u,v) \in E} c(u,f) \times weight(u,v)$	TwitterMPI (TT) [8]	2.0B
		Friendster (FT) [14]	2.5B
Co-Training Expectation Maximization (CoEM)	$\sum_{\substack{\forall e = (u, v) \in E}} \frac{c(u) \times weight(u, v)}{\sum\limits_{\substack{\forall e = (w, v) \in E}} weight(w, v)}}$	Yahoo (YH) [49]	6.6B
Collaborative Filtering (CF)	$\langle \sum_{\forall e=(u,v)\in E} c_i(u).c_i(u)^{tr}, \sum_{\forall e=(u,v)\in E} c_i(u).weight(u,v) \rangle$		
Triangle Counting (TC)	$\sum_{\substack{\forall e=(u,v)\in E}} in_neighbors(u) \cap out_neighbors(v) $	Server: 32-core	/ 2 GH

Vertices

12M

39.5M

41.7M

52.6M

68.3M

1.4B

2 GHz / 231 GB

GraphBolt-Reset GraphBolt

GraphBolt-Reset GraphBolt

GraphBolt-Reset GraphBolt

Detailed Experiments ...

- Varying workload type
 - Mutations affecting majority of the values v/s affecting small values
- Varying graph mutation rate
 - Single edge update (reactiveness) v/s 1 million edge updates (throughput)
- Scaling to large graph (Yahoo) over large system (96 core/748 GB)

GraphBolt v/s Differential Dataflow

Differential Dataflow. McSherry et al., CIDR 2013.

Summary

- Efficient **incremental processing** of **streaming graphs**
- Guarantee Bulk Synchronous Parallel semantics
- Lightweight **dependence tracking** at aggregation level
- **Dependency-aware value refinement** upon graph mutation
 - Programming model to support **incremental complex aggregation** types

Acknowledgements

