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Dynamic Graph Processing
Real-time Processing
• Low Latency

Real-time Batch Processing
• High Throughput

Alipay payments unit of Chinese retailer Alibaba [..] 
has 120 billion nodes and over 1 trillion relationships [..]; 

this graph has 2 billion updates each day and was running 
at 250,000 transactions per second on Singles Day [..]

The Graph Database Poised to Pounce on The Mainstream. Timothy Prickett Morgan, The Next Platform. September 19, 2018. 3



KickStarter [ASPLOS’17]

KickStarter: Fast and Accurate Computations on Streaming Graph via Trimmed Approximations. Vora et al., ASPLOS 2017.

... ...

Query

Graph 
Mutations

Incremental Processing
• Adjust results incrementally
• Reuse work that has already been done

Tornado [SIGMOD’16]

GraphIn [EuroPar’16]

KineoGraph [EuroSys’12]

Streaming Graph Processing

Tag Propagation
upon mutation

Over 75% values get thrown out
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KickStarter: Fast and Accurate Computations on Streaming Graph via Trimmed Approximations. Vora et al., ASPLOS 2017.
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Mutations

Incremental Processing
• Adjust results incrementally
• Reuse work that has already been done

Tornado [SIGMOD’16]

GraphIn [EuroPar’16]

KineoGraph [EuroSys’12]
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Streaming Graph Processing

Maintain Value Dependences
Incrementally refine results

Less than 0.0005% values thrown out
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KickStarter: Fast and Accurate Computations on Streaming Graph via Trimmed Approximations. Vora et al., ASPLOS 2017.

... ...

Query

Graph 
Mutations

Incremental Processing
• Adjust results incrementally
• Reuse work that has already been done

Tornado [SIGMOD’16]

GraphIn [EuroPar’16]

KineoGraph [EuroSys’12]

KickStarter [ASPLOS’17]

Streaming Graph Processing

Maintain Value Dependences
Incrementally refine results

Less than 0.0005% values thrown out

Monotonic Graph 
Algorithms
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Streaming Graph Processing

• Belief Propagation
• Co-Training Expectation 

Maximization
• Collaborative Filtering
• Label Propagation
• Triangle Counting
• …
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GraphBolt

I RG
k RG

R?
k+1 R? ≠		RGM

RkGM RGM

Zs (RG
k )

G mutates at k • Dependency-Driven Incremental
Processing of Streaming Graphs

• Guarantee Bulk Synchronous
Parallel Semantics

• Lightweight dependence tracking

• Dependency-aware value refinement
upon graph mutation
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dependencies among intermediate values based on Eq. 1.
Formally, at the end of iteration k :

VD =
–

i 2[0,k ]
ci (�) ED = { (ci�1(u), ci (�), ei (u,�)) :

i 2 [0,k] ^ (u,�) 2 E }

Figure 3a shows the dependency graph for G in Figure 2a
over an execution of 4 iterations. As computation progresses
through iterations, DG increases by |V | vertices and |E |
edges. While saving DG exhaustively captures the entire
execution history such that it enables incremental correction
ofCL for subsequent graph mutations, such tracking of value
dependencies leads to O

�
|E |.t

�
amount of information to be

maintained for t iterations which signi�cantly increases the
memory footprint, making the entire processmemory-bound.
To reduce the amount of dependency information that must
be tracked, we �rst carefully analyze how values �owing
through dependencies participate in computing CL .
Tracking Value Dependencies as Value Aggregations.
Given a vertex � , its value is computed based on values from
its incoming neighbors in two sub-steps: �rst, the incoming
neighbors’ values from previous iteration are aggregated into
a single value; and then, the aggregated value is used to com-
pute vertex value for the current iteration. This computation
can be formulated as 2:

ci (�) =
º

(
 

8e=(u,�)2E
(ci�1(u)) )

where
…

indicates the aggregation operator and
≤
indicates

the function applied on the aggregated value to produce the
�nal vertex value. For example in Algorithm 1,

…
is ������

�A�� on line 6 while
≤

is the computation on line 9. Since
values �owing through edges are e�ectively combined into
aggregated values at vertices, we can track these aggregated
values instead of individual dependency information. By
doing so, value dependencies can be corrected upon graph
mutation by incrementally correcting the aggregated values
and propagating corrections across subsequent aggregations
throughout the graph.

Let �i (�) be the aggregated value for vertex � for iteration
i , i.e., �i (�) =

…
8e=(u,�)2E

(ci�1(u)). We de�ne AG = (VA , EA) as

dependency graph in terms of aggregation values at the end
of iteration k :

VA =
–

i 2[0,k ]
�i (�) EA = { (�i�1(u), �i (�)) :

i 2 [0,k] ^ (u,�) 2 E }

This allows us to separate out the structure of dependencies
(i.e., ut�1 “impacts” �t ) from the values that participate in
satisfying those dependencies (i.e., ct�1(u) and ct (�)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-
gation values. It is interesting to note that the structure of
2Values residing on edges (i.e., edge weights) have been left out from equa-
tions for simplicity since they do not impact dependencies.

Figure 4. Change in vertex values across iterations for
Label Propagation over Wiki graph. Blue pixels indicate

change in vertex values.
dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
iterations indicating that majority of vertex values change in
those iterations; after 5 iterations, values start stabilizing and
the color density decreases sharply. As values stabilize, their
corresponding aggregated values also stabilize. This provides
a useful opportunity to limit the amount of aggregated values
that must be tracked during execution.
We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated
values with recomputation cost during re�nement stage. In
particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across
di�erent dimensions. As values start stabilizing, horizon-
tal pruning is achieved by directly stopping the tracking
of aggregated values after certain iterations. For example,
the horizontal red line in Figure 4 indicates the cut-o� after
which aggregated values won’t be tracked. Vertical pruning,
on the other hand, operates at vertex-level and is performed
by not saving aggregated values that have stabilized. This
eliminates the white regions above the horizontal red line in
Figure 4. Hence, only the values corresponding to blue points
are tracked after horizontal and vertical pruning. This cap-
tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
region where incremental processing will be most e�ective.
It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need
further analysis about whether subset of values need to be
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dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
iterations indicating that majority of vertex values change in
those iterations; after 5 iterations, values start stabilizing and
the color density decreases sharply. As values stabilize, their
corresponding aggregated values also stabilize. This provides
a useful opportunity to limit the amount of aggregated values
that must be tracked during execution.
We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated
values with recomputation cost during re�nement stage. In
particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across
di�erent dimensions. As values start stabilizing, horizon-
tal pruning is achieved by directly stopping the tracking
of aggregated values after certain iterations. For example,
the horizontal red line in Figure 4 indicates the cut-o� after
which aggregated values won’t be tracked. Vertical pruning,
on the other hand, operates at vertex-level and is performed
by not saving aggregated values that have stabilized. This
eliminates the white regions above the horizontal red line in
Figure 4. Hence, only the values corresponding to blue points
are tracked after horizontal and vertical pruning. This cap-
tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
region where incremental processing will be most e�ective.
It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need
further analysis about whether subset of values need to be
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is the computation on line 9. Since
values �owing through edges are e�ectively combined into
aggregated values at vertices, we can track these aggregated
values instead of individual dependency information. By
doing so, value dependencies can be corrected upon graph
mutation by incrementally correcting the aggregated values
and propagating corrections across subsequent aggregations
throughout the graph.

Let �i (�) be the aggregated value for vertex � for iteration
i , i.e., �i (�) =
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This allows us to separate out the structure of dependencies
(i.e., ut�1 “impacts” �t ) from the values that participate in
satisfying those dependencies (i.e., ct�1(u) and ct (�)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-
gation values. It is interesting to note that the structure of
2Values residing on edges (i.e., edge weights) have been left out from equa-
tions for simplicity since they do not impact dependencies.
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dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
iterations indicating that majority of vertex values change in
those iterations; after 5 iterations, values start stabilizing and
the color density decreases sharply. As values stabilize, their
corresponding aggregated values also stabilize. This provides
a useful opportunity to limit the amount of aggregated values
that must be tracked during execution.
We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated
values with recomputation cost during re�nement stage. In
particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across
di�erent dimensions. As values start stabilizing, horizon-
tal pruning is achieved by directly stopping the tracking
of aggregated values after certain iterations. For example,
the horizontal red line in Figure 4 indicates the cut-o� after
which aggregated values won’t be tracked. Vertical pruning,
on the other hand, operates at vertex-level and is performed
by not saving aggregated values that have stabilized. This
eliminates the white regions above the horizontal red line in
Figure 4. Hence, only the values corresponding to blue points
are tracked after horizontal and vertical pruning. This cap-
tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
region where incremental processing will be most e�ective.
It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need
further analysis about whether subset of values need to be

dependencies among intermediate values based on Eq. 1.
Formally, at the end of iteration k :

VD =
–

i 2[0,k ]
ci (�) ED = { (ci�1(u), ci (�), ei (u,�)) :

i 2 [0,k] ^ (u,�) 2 E }

Figure 3a shows the dependency graph for G in Figure 2a
over an execution of 4 iterations. As computation progresses
through iterations, DG increases by |V | vertices and |E |
edges. While saving DG exhaustively captures the entire
execution history such that it enables incremental correction
ofCL for subsequent graph mutations, such tracking of value
dependencies leads to O

�
|E |.t

�
amount of information to be

maintained for t iterations which signi�cantly increases the
memory footprint, making the entire processmemory-bound.
To reduce the amount of dependency information that must
be tracked, we �rst carefully analyze how values �owing
through dependencies participate in computing CL .
Tracking Value Dependencies as Value Aggregations.
Given a vertex � , its value is computed based on values from
its incoming neighbors in two sub-steps: �rst, the incoming
neighbors’ values from previous iteration are aggregated into
a single value; and then, the aggregated value is used to com-
pute vertex value for the current iteration. This computation
can be formulated as 2:

ci (�) =
º

(
 

8e=(u,�)2E
(ci�1(u)) )

where
…

indicates the aggregation operator and
≤
indicates

the function applied on the aggregated value to produce the
�nal vertex value. For example in Algorithm 1,

…
is ������

�A�� on line 6 while
≤

is the computation on line 9. Since
values �owing through edges are e�ectively combined into
aggregated values at vertices, we can track these aggregated
values instead of individual dependency information. By
doing so, value dependencies can be corrected upon graph
mutation by incrementally correcting the aggregated values
and propagating corrections across subsequent aggregations
throughout the graph.

Let �i (�) be the aggregated value for vertex � for iteration
i , i.e., �i (�) =

…
8e=(u,�)2E

(ci�1(u)). We de�ne AG = (VA , EA) as

dependency graph in terms of aggregation values at the end
of iteration k :

VA =
–

i 2[0,k ]
�i (�) EA = { (�i�1(u), �i (�)) :

i 2 [0,k] ^ (u,�) 2 E }

This allows us to separate out the structure of dependencies
(i.e., ut�1 “impacts” �t ) from the values that participate in
satisfying those dependencies (i.e., ct�1(u) and ct (�)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-
gation values. It is interesting to note that the structure of
2Values residing on edges (i.e., edge weights) have been left out from equa-
tions for simplicity since they do not impact dependencies.

Figure 4. Change in vertex values across iterations for
Label Propagation over Wiki graph. Blue pixels indicate

change in vertex values.
dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
iterations indicating that majority of vertex values change in
those iterations; after 5 iterations, values start stabilizing and
the color density decreases sharply. As values stabilize, their
corresponding aggregated values also stabilize. This provides
a useful opportunity to limit the amount of aggregated values
that must be tracked during execution.
We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated
values with recomputation cost during re�nement stage. In
particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across
di�erent dimensions. As values start stabilizing, horizon-
tal pruning is achieved by directly stopping the tracking
of aggregated values after certain iterations. For example,
the horizontal red line in Figure 4 indicates the cut-o� after
which aggregated values won’t be tracked. Vertical pruning,
on the other hand, operates at vertex-level and is performed
by not saving aggregated values that have stabilized. This
eliminates the white regions above the horizontal red line in
Figure 4. Hence, only the values corresponding to blue points
are tracked after horizontal and vertical pruning. This cap-
tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
region where incremental processing will be most e�ective.
It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need
further analysis about whether subset of values need to be

• Dependency relations translate 
across aggregation points

• Structure of dependencies 
inferred from input graphs v = (    )

dependencies among intermediate values based on Eq. 1.
Formally, at the end of iteration k :

VD =
–

i 2[0,k ]
ci (�) ED = { (ci�1(u), ci (�), ei (u,�)) :

i 2 [0,k] ^ (u,�) 2 E }

Figure 3a shows the dependency graph for G in Figure 2a
over an execution of 4 iterations. As computation progresses
through iterations, DG increases by |V | vertices and |E |
edges. While saving DG exhaustively captures the entire
execution history such that it enables incremental correction
ofCL for subsequent graph mutations, such tracking of value
dependencies leads to O

�
|E |.t

�
amount of information to be

maintained for t iterations which signi�cantly increases the
memory footprint, making the entire processmemory-bound.
To reduce the amount of dependency information that must
be tracked, we �rst carefully analyze how values �owing
through dependencies participate in computing CL .
Tracking Value Dependencies as Value Aggregations.
Given a vertex � , its value is computed based on values from
its incoming neighbors in two sub-steps: �rst, the incoming
neighbors’ values from previous iteration are aggregated into
a single value; and then, the aggregated value is used to com-
pute vertex value for the current iteration. This computation
can be formulated as 2:

ci (�) =
º

(
 

8e=(u,�)2E
(ci�1(u)) )

where
…

indicates the aggregation operator and
≤
indicates

the function applied on the aggregated value to produce the
�nal vertex value. For example in Algorithm 1,

…
is ������

�A�� on line 6 while
≤

is the computation on line 9. Since
values �owing through edges are e�ectively combined into
aggregated values at vertices, we can track these aggregated
values instead of individual dependency information. By
doing so, value dependencies can be corrected upon graph
mutation by incrementally correcting the aggregated values
and propagating corrections across subsequent aggregations
throughout the graph.

Let �i (�) be the aggregated value for vertex � for iteration
i , i.e., �i (�) =

…
8e=(u,�)2E

(ci�1(u)). We de�ne AG = (VA , EA) as

dependency graph in terms of aggregation values at the end
of iteration k :

VA =
–

i 2[0,k ]
�i (�) EA = { (�i�1(u), �i (�)) :

i 2 [0,k] ^ (u,�) 2 E }

This allows us to separate out the structure of dependencies
(i.e., ut�1 “impacts” �t ) from the values that participate in
satisfying those dependencies (i.e., ct�1(u) and ct (�)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-
gation values. It is interesting to note that the structure of
2Values residing on edges (i.e., edge weights) have been left out from equa-
tions for simplicity since they do not impact dependencies.

Figure 4. Change in vertex values across iterations for
Label Propagation over Wiki graph. Blue pixels indicate

change in vertex values.
dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
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Figure 4. Hence, only the values corresponding to blue points
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tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
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recomputed to be able to re�ne values upon graph mutation.
While aggressive pruning can be performed (e.g., dropping
certain vertices altogether), it would require backpropagation
from values that get changed during re�nement to recom-
pute the correct old values for incremental computation.
3.3 Dependency-Driven Value Re�nement
Let Ea and Ed be the set of edges to be added to G and
deleted from G respectively to transform it to GT . Hence,
GT = G [ Ea \ Ed . Given Ea , Ed and the dependence graph
AG , we ask two questions that help us transform CL to CT

L .
(A) What to Re�ne?
Wedynamically transform aggregation values inAG tomake
them consistent with GT under synchronous semantics. To
do so, we start with aggregation values in �rst iteration, i.e.,
�0(�) 2 VA , and progress forward iteration by iteration.
At each iteration i , we re�ne �i (�) 2 VA that fall under
two categories: �rst, values corresponding to end points of
Ea and Ed which are directly impacted by edge mutations;
and second, values corresponding to outgoing neighbors of
vertices whose values got re�ned in the previous iteration
i � 1, which captures the transitive impact of mutation. This
means, we dynamically identify the aggregation values in
VA that need to be re�ned as the process of re�nement
progresses. Note that performing incremental changes cor-
responding to transitive impact of edge mutations requires
information about the structure of dependencies, i.e., EA ,
which we directly infer by looking at the graph structure.

Figure 5 shows how the re�nement process selects values
to be incrementally computed for our dependency graph
from Figure 3b upon addition of new edge (1, 2). In step 1,
�T1 (2) is incrementally computed from �1(2) based on contri-
bution of �T0 (1) (iteration 0 represents initial value) �owing
from the new edge (solid edge). In step 2, the change in contri-
bution of �T1 (2) (i.e., e�ect of �T1 (2)��1(2)) gets propagated to
vertex 2’s outgoing neighbors 0 and 1 (dotted edges), which
e�ectively allows �T2 (0) and �T2 (1) to compute based on �T1 (2).
Since contribution of �1(1) was never propagated to �2(2),
the contribution of �T1 (1) is also propagated to incremen-
tally compute �T2 (2) (similar to in step 1). Similarly, �T3 (0),
�T3 (1), �T3 (2) and �T3 (3) are incrementally computed in step 3
based on direct and transitive impact of the edge addition.
As we can see, changes unroll dynamically based on: (a) the
structure of AG ; and, (b) the change in aggregation values
resulting from edge mutations. Furthermore, computations
during re�nement process are far lesser than that involved
while processing the original graph (as indicated by fewer
edges in Figure 5 compared to Figure 3b) which showcases
the e�cacy of dependency-driven incremental processing.
(B) How to Re�ne?
As aggregation values in VA get identi�ed to be re�ned,
we incrementally update them based on change in values
coming from incoming neighbors. Speci�cally, with L being
the latest iteration before which graph mutates, we aim to

update �i (�) =
…

8e=(u,�)2E
(ci�1(u)) to �Ti (�) =

…
8e=(u,�)2ET

(cTi�1(u)) for

0  i  L. This is incrementally achieved as:

�Ti (�) = �i (�)
⁄

8e=(u,�)2Ea
(cTi�1(u))

ÿ
–

8e=(u,�)2Ed
(ci�1(u))

ÿ
4

8e=(u,�)2ET
s .t .ci�1(u),cTi�1(u)

(cTi�1(u))

where
“
,
–
- and

–
4 are incremental aggregation operators

that add new contributions (for edge additions), remove old
contributions (for edge deletions), and update existing con-
tributions (for transitive e�ects of mutations) respectively.
While

“
often is similar to

…
,
–
- and

–
4 require undoing

aggregation to eliminate or update previous contributions.
We focus our discussion on incremental

–
4 since its logic

subsumes that for
–
- . We generalize

–
4 by modeling it as:ÿ

4
8e=(u,�)2ET

s .t .ci�1(u),cTi�1(u)

=
ÿ
–

8e=(u,�)2ET
s .t .ci�1(u),cTi�1(u)

(ci�1(u))
⁄

8e=(u,�)2ET
s .t .ci�1(u),cTi�1(u)

(cTi�1(u))

= 8
e=(u,�)2ET

s .t .ci�1(u),cTi�1(u)

⇣ 
(cTi�1(u)) �

 
(ci�1(u))

⌘

The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
Least Squares, the computation involving complex aggrega-
tion is:

ci (�) =
⇣ ’

8e=(u,�)2E
ci (u).ci (u)tr + �Ik

⌘�1
⇥

’
8e=(u,�)2E

ci (u).wei�ht(u,�)

Ignoring the inverse operation and addition of identity ma-
trix, the computation gets decomposed into a pair of sub-
aggregations:

�i (�) = h
’

8e=(u,�)2E
ci (u).ci (u)tr ,

’
8e=(u,�)2E

ci (u).wei�ht(u,�) i

+ ?
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resulting from edge mutations. Furthermore, computations
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while processing the original graph (as indicated by fewer
edges in Figure 5 compared to Figure 3b) which showcases
the e�cacy of dependency-driven incremental processing.
(B) How to Re�ne?
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
Least Squares, the computation involving complex aggrega-
tion is:
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recomputed to be able to re�ne values upon graph mutation.
While aggressive pruning can be performed (e.g., dropping
certain vertices altogether), it would require backpropagation
from values that get changed during re�nement to recom-
pute the correct old values for incremental computation.
3.3 Dependency-Driven Value Re�nement
Let Ea and Ed be the set of edges to be added to G and
deleted from G respectively to transform it to GT . Hence,
GT = G [ Ea \ Ed . Given Ea , Ed and the dependence graph
AG , we ask two questions that help us transform CL to CT
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(A) What to Re�ne?
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them consistent with GT under synchronous semantics. To
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two categories: �rst, values corresponding to end points of
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and second, values corresponding to outgoing neighbors of
vertices whose values got re�ned in the previous iteration
i � 1, which captures the transitive impact of mutation. This
means, we dynamically identify the aggregation values in
VA that need to be re�ned as the process of re�nement
progresses. Note that performing incremental changes cor-
responding to transitive impact of edge mutations requires
information about the structure of dependencies, i.e., EA ,
which we directly infer by looking at the graph structure.
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to be incrementally computed for our dependency graph
from Figure 3b upon addition of new edge (1, 2). In step 1,
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the contribution of �T1 (1) is also propagated to incremen-
tally compute �T2 (2) (similar to in step 1). Similarly, �T3 (0),
�T3 (1), �T3 (2) and �T3 (3) are incrementally computed in step 3
based on direct and transitive impact of the edge addition.
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during re�nement process are far lesser than that involved
while processing the original graph (as indicated by fewer
edges in Figure 5 compared to Figure 3b) which showcases
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change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
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ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
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and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
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Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
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based on direct and transitive impact of the edge addition.
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during re�nement process are far lesser than that involved
while processing the original graph (as indicated by fewer
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aggregation by directly capturing the change in contribu-
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tors require careful extraction of old values since di�erences
cannot be directly formulated.
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and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
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Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
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VA that need to be re�ned as the process of re�nement
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responding to transitive impact of edge mutations requires
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the contribution of �T1 (1) is also propagated to incremen-
tally compute �T2 (2) (similar to in step 1). Similarly, �T3 (0),
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3.3 Dependency-Driven Value Re�nement
Let Ea and Ed be the set of edges to be added to G and
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
Least Squares, the computation involving complex aggrega-
tion is:
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recomputed to be able to re�ne values upon graph mutation.
While aggressive pruning can be performed (e.g., dropping
certain vertices altogether), it would require backpropagation
from values that get changed during re�nement to recom-
pute the correct old values for incremental computation.
3.3 Dependency-Driven Value Re�nement
Let Ea and Ed be the set of edges to be added to G and
deleted from G respectively to transform it to GT . Hence,
GT = G [ Ea \ Ed . Given Ea , Ed and the dependence graph
AG , we ask two questions that help us transform CL to CT

L .
(A) What to Re�ne?
Wedynamically transform aggregation values inAG tomake
them consistent with GT under synchronous semantics. To
do so, we start with aggregation values in �rst iteration, i.e.,
�0(�) 2 VA , and progress forward iteration by iteration.
At each iteration i , we re�ne �i (�) 2 VA that fall under
two categories: �rst, values corresponding to end points of
Ea and Ed which are directly impacted by edge mutations;
and second, values corresponding to outgoing neighbors of
vertices whose values got re�ned in the previous iteration
i � 1, which captures the transitive impact of mutation. This
means, we dynamically identify the aggregation values in
VA that need to be re�ned as the process of re�nement
progresses. Note that performing incremental changes cor-
responding to transitive impact of edge mutations requires
information about the structure of dependencies, i.e., EA ,
which we directly infer by looking at the graph structure.

Figure 5 shows how the re�nement process selects values
to be incrementally computed for our dependency graph
from Figure 3b upon addition of new edge (1, 2). In step 1,
�T1 (2) is incrementally computed from �1(2) based on contri-
bution of �T0 (1) (iteration 0 represents initial value) �owing
from the new edge (solid edge). In step 2, the change in contri-
bution of �T1 (2) (i.e., e�ect of �T1 (2)��1(2)) gets propagated to
vertex 2’s outgoing neighbors 0 and 1 (dotted edges), which
e�ectively allows �T2 (0) and �T2 (1) to compute based on �T1 (2).
Since contribution of �1(1) was never propagated to �2(2),
the contribution of �T1 (1) is also propagated to incremen-
tally compute �T2 (2) (similar to in step 1). Similarly, �T3 (0),
�T3 (1), �T3 (2) and �T3 (3) are incrementally computed in step 3
based on direct and transitive impact of the edge addition.
As we can see, changes unroll dynamically based on: (a) the
structure of AG ; and, (b) the change in aggregation values
resulting from edge mutations. Furthermore, computations
during re�nement process are far lesser than that involved
while processing the original graph (as indicated by fewer
edges in Figure 5 compared to Figure 3b) which showcases
the e�cacy of dependency-driven incremental processing.
(B) How to Re�ne?
As aggregation values in VA get identi�ed to be re�ned,
we incrementally update them based on change in values
coming from incoming neighbors. Speci�cally, with L being
the latest iteration before which graph mutates, we aim to
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
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ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
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two categories: �rst, values corresponding to end points of
Ea and Ed which are directly impacted by edge mutations;
and second, values corresponding to outgoing neighbors of
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VA that need to be re�ned as the process of re�nement
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information about the structure of dependencies, i.e., EA ,
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
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i � 1, which captures the transitive impact of mutation. This
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VA that need to be re�ned as the process of re�nement
progresses. Note that performing incremental changes cor-
responding to transitive impact of edge mutations requires
information about the structure of dependencies, i.e., EA ,
which we directly infer by looking at the graph structure.
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vertex 2’s outgoing neighbors 0 and 1 (dotted edges), which
e�ectively allows �T2 (0) and �T2 (1) to compute based on �T1 (2).
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aggregation by directly capturing the change in contribu-
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While aggressive pruning can be performed (e.g., dropping
certain vertices altogether), it would require backpropagation
from values that get changed during re�nement to recom-
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3.3 Dependency-Driven Value Re�nement
Let Ea and Ed be the set of edges to be added to G and
deleted from G respectively to transform it to GT . Hence,
GT = G [ Ea \ Ed . Given Ea , Ed and the dependence graph
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(A) What to Re�ne?
Wedynamically transform aggregation values inAG tomake
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�0(�) 2 VA , and progress forward iteration by iteration.
At each iteration i , we re�ne �i (�) 2 VA that fall under
two categories: �rst, values corresponding to end points of
Ea and Ed which are directly impacted by edge mutations;
and second, values corresponding to outgoing neighbors of
vertices whose values got re�ned in the previous iteration
i � 1, which captures the transitive impact of mutation. This
means, we dynamically identify the aggregation values in
VA that need to be re�ned as the process of re�nement
progresses. Note that performing incremental changes cor-
responding to transitive impact of edge mutations requires
information about the structure of dependencies, i.e., EA ,
which we directly infer by looking at the graph structure.
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As we can see, changes unroll dynamically based on: (a) the
structure of AG ; and, (b) the change in aggregation values
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during re�nement process are far lesser than that involved
while processing the original graph (as indicated by fewer
edges in Figure 5 compared to Figure 3b) which showcases
the e�cacy of dependency-driven incremental processing.
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
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i � 1, which captures the transitive impact of mutation. This
means, we dynamically identify the aggregation values in
VA that need to be re�ned as the process of re�nement
progresses. Note that performing incremental changes cor-
responding to transitive impact of edge mutations requires
information about the structure of dependencies, i.e., EA ,
which we directly infer by looking at the graph structure.

Figure 5 shows how the re�nement process selects values
to be incrementally computed for our dependency graph
from Figure 3b upon addition of new edge (1, 2). In step 1,
�T1 (2) is incrementally computed from �1(2) based on contri-
bution of �T0 (1) (iteration 0 represents initial value) �owing
from the new edge (solid edge). In step 2, the change in contri-
bution of �T1 (2) (i.e., e�ect of �T1 (2)��1(2)) gets propagated to
vertex 2’s outgoing neighbors 0 and 1 (dotted edges), which
e�ectively allows �T2 (0) and �T2 (1) to compute based on �T1 (2).
Since contribution of �1(1) was never propagated to �2(2),
the contribution of �T1 (1) is also propagated to incremen-
tally compute �T2 (2) (similar to in step 1). Similarly, �T3 (0),
�T3 (1), �T3 (2) and �T3 (3) are incrementally computed in step 3
based on direct and transitive impact of the edge addition.
As we can see, changes unroll dynamically based on: (a) the
structure of AG ; and, (b) the change in aggregation values
resulting from edge mutations. Furthermore, computations
during re�nement process are far lesser than that involved
while processing the original graph (as indicated by fewer
edges in Figure 5 compared to Figure 3b) which showcases
the e�cacy of dependency-driven incremental processing.
(B) How to Re�ne?
As aggregation values in VA get identi�ed to be re�ned,
we incrementally update them based on change in values
coming from incoming neighbors. Speci�cally, with L being
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
Least Squares, the computation involving complex aggrega-
tion is:
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
Least Squares, the computation involving complex aggrega-
tion is:
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ci (u).ci (u)tr + �Ik

⌘�1
⇥

’
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Ignoring the inverse operation and addition of identity ma-
trix, the computation gets decomposed into a pair of sub-
aggregations:

�i (�) = h
’
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ci (u).ci (u)tr ,

’
8e=(u,�)2E

ci (u).wei�ht(u,�) i

recomputed to be able to re�ne values upon graph mutation.
While aggressive pruning can be performed (e.g., dropping
certain vertices altogether), it would require backpropagation
from values that get changed during re�nement to recom-
pute the correct old values for incremental computation.
3.3 Dependency-Driven Value Re�nement
Let Ea and Ed be the set of edges to be added to G and
deleted from G respectively to transform it to GT . Hence,
GT = G [ Ea \ Ed . Given Ea , Ed and the dependence graph
AG , we ask two questions that help us transform CL to CT

L .
(A) What to Re�ne?
Wedynamically transform aggregation values inAG tomake
them consistent with GT under synchronous semantics. To
do so, we start with aggregation values in �rst iteration, i.e.,
�0(�) 2 VA , and progress forward iteration by iteration.
At each iteration i , we re�ne �i (�) 2 VA that fall under
two categories: �rst, values corresponding to end points of
Ea and Ed which are directly impacted by edge mutations;
and second, values corresponding to outgoing neighbors of
vertices whose values got re�ned in the previous iteration
i � 1, which captures the transitive impact of mutation. This
means, we dynamically identify the aggregation values in
VA that need to be re�ned as the process of re�nement
progresses. Note that performing incremental changes cor-
responding to transitive impact of edge mutations requires
information about the structure of dependencies, i.e., EA ,
which we directly infer by looking at the graph structure.

Figure 5 shows how the re�nement process selects values
to be incrementally computed for our dependency graph
from Figure 3b upon addition of new edge (1, 2). In step 1,
�T1 (2) is incrementally computed from �1(2) based on contri-
bution of �T0 (1) (iteration 0 represents initial value) �owing
from the new edge (solid edge). In step 2, the change in contri-
bution of �T1 (2) (i.e., e�ect of �T1 (2)��1(2)) gets propagated to
vertex 2’s outgoing neighbors 0 and 1 (dotted edges), which
e�ectively allows �T2 (0) and �T2 (1) to compute based on �T1 (2).
Since contribution of �1(1) was never propagated to �2(2),
the contribution of �T1 (1) is also propagated to incremen-
tally compute �T2 (2) (similar to in step 1). Similarly, �T3 (0),
�T3 (1), �T3 (2) and �T3 (3) are incrementally computed in step 3
based on direct and transitive impact of the edge addition.
As we can see, changes unroll dynamically based on: (a) the
structure of AG ; and, (b) the change in aggregation values
resulting from edge mutations. Furthermore, computations
during re�nement process are far lesser than that involved
while processing the original graph (as indicated by fewer
edges in Figure 5 compared to Figure 3b) which showcases
the e�cacy of dependency-driven incremental processing.
(B) How to Re�ne?
As aggregation values in VA get identi�ed to be re�ned,
we incrementally update them based on change in values
coming from incoming neighbors. Speci�cally, with L being
the latest iteration before which graph mutates, we aim to
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
Least Squares, the computation involving complex aggrega-
tion is:
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recomputed to be able to re�ne values upon graph mutation.
While aggressive pruning can be performed (e.g., dropping
certain vertices altogether), it would require backpropagation
from values that get changed during re�nement to recom-
pute the correct old values for incremental computation.
3.3 Dependency-Driven Value Re�nement
Let Ea and Ed be the set of edges to be added to G and
deleted from G respectively to transform it to GT . Hence,
GT = G [ Ea \ Ed . Given Ea , Ed and the dependence graph
AG , we ask two questions that help us transform CL to CT
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(A) What to Re�ne?
Wedynamically transform aggregation values inAG tomake
them consistent with GT under synchronous semantics. To
do so, we start with aggregation values in �rst iteration, i.e.,
�0(�) 2 VA , and progress forward iteration by iteration.
At each iteration i , we re�ne �i (�) 2 VA that fall under
two categories: �rst, values corresponding to end points of
Ea and Ed which are directly impacted by edge mutations;
and second, values corresponding to outgoing neighbors of
vertices whose values got re�ned in the previous iteration
i � 1, which captures the transitive impact of mutation. This
means, we dynamically identify the aggregation values in
VA that need to be re�ned as the process of re�nement
progresses. Note that performing incremental changes cor-
responding to transitive impact of edge mutations requires
information about the structure of dependencies, i.e., EA ,
which we directly infer by looking at the graph structure.

Figure 5 shows how the re�nement process selects values
to be incrementally computed for our dependency graph
from Figure 3b upon addition of new edge (1, 2). In step 1,
�T1 (2) is incrementally computed from �1(2) based on contri-
bution of �T0 (1) (iteration 0 represents initial value) �owing
from the new edge (solid edge). In step 2, the change in contri-
bution of �T1 (2) (i.e., e�ect of �T1 (2)��1(2)) gets propagated to
vertex 2’s outgoing neighbors 0 and 1 (dotted edges), which
e�ectively allows �T2 (0) and �T2 (1) to compute based on �T1 (2).
Since contribution of �1(1) was never propagated to �2(2),
the contribution of �T1 (1) is also propagated to incremen-
tally compute �T2 (2) (similar to in step 1). Similarly, �T3 (0),
�T3 (1), �T3 (2) and �T3 (3) are incrementally computed in step 3
based on direct and transitive impact of the edge addition.
As we can see, changes unroll dynamically based on: (a) the
structure of AG ; and, (b) the change in aggregation values
resulting from edge mutations. Furthermore, computations
during re�nement process are far lesser than that involved
while processing the original graph (as indicated by fewer
edges in Figure 5 compared to Figure 3b) which showcases
the e�cacy of dependency-driven incremental processing.
(B) How to Re�ne?
As aggregation values in VA get identi�ed to be re�ned,
we incrementally update them based on change in values
coming from incoming neighbors. Speci�cally, with L being
the latest iteration before which graph mutates, we aim to
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
Least Squares, the computation involving complex aggrega-
tion is:
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While aggressive pruning can be performed (e.g., dropping
certain vertices altogether), it would require backpropagation
from values that get changed during re�nement to recom-
pute the correct old values for incremental computation.
3.3 Dependency-Driven Value Re�nement
Let Ea and Ed be the set of edges to be added to G and
deleted from G respectively to transform it to GT . Hence,
GT = G [ Ea \ Ed . Given Ea , Ed and the dependence graph
AG , we ask two questions that help us transform CL to CT
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(A) What to Re�ne?
Wedynamically transform aggregation values inAG tomake
them consistent with GT under synchronous semantics. To
do so, we start with aggregation values in �rst iteration, i.e.,
�0(�) 2 VA , and progress forward iteration by iteration.
At each iteration i , we re�ne �i (�) 2 VA that fall under
two categories: �rst, values corresponding to end points of
Ea and Ed which are directly impacted by edge mutations;
and second, values corresponding to outgoing neighbors of
vertices whose values got re�ned in the previous iteration
i � 1, which captures the transitive impact of mutation. This
means, we dynamically identify the aggregation values in
VA that need to be re�ned as the process of re�nement
progresses. Note that performing incremental changes cor-
responding to transitive impact of edge mutations requires
information about the structure of dependencies, i.e., EA ,
which we directly infer by looking at the graph structure.

Figure 5 shows how the re�nement process selects values
to be incrementally computed for our dependency graph
from Figure 3b upon addition of new edge (1, 2). In step 1,
�T1 (2) is incrementally computed from �1(2) based on contri-
bution of �T0 (1) (iteration 0 represents initial value) �owing
from the new edge (solid edge). In step 2, the change in contri-
bution of �T1 (2) (i.e., e�ect of �T1 (2)��1(2)) gets propagated to
vertex 2’s outgoing neighbors 0 and 1 (dotted edges), which
e�ectively allows �T2 (0) and �T2 (1) to compute based on �T1 (2).
Since contribution of �1(1) was never propagated to �2(2),
the contribution of �T1 (1) is also propagated to incremen-
tally compute �T2 (2) (similar to in step 1). Similarly, �T3 (0),
�T3 (1), �T3 (2) and �T3 (3) are incrementally computed in step 3
based on direct and transitive impact of the edge addition.
As we can see, changes unroll dynamically based on: (a) the
structure of AG ; and, (b) the change in aggregation values
resulting from edge mutations. Furthermore, computations
during re�nement process are far lesser than that involved
while processing the original graph (as indicated by fewer
edges in Figure 5 compared to Figure 3b) which showcases
the e�cacy of dependency-driven incremental processing.
(B) How to Re�ne?
As aggregation values in VA get identi�ed to be re�ned,
we incrementally update them based on change in values
coming from incoming neighbors. Speci�cally, with L being
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The right-hand side of the above equation is referred to as
change in contribution for each respective edge. Several ag-
gregations like sum, product, etc. often simplify incremental
aggregation by directly capturing the change in contribu-
tions; however, complex aggregations like operations on vec-
tors require careful extraction of old values since di�erences
cannot be directly formulated.
Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-
ten involve complex aggregations that intricately transform
vertex values, making them di�cult to be computed incre-
mentally. For example, algorithms like Belief Propagation
and Alternating Least Squares operate on vectors or multi-
valued variables that interact with elements of other com-
plex variables during aggregations. We present a generalized
incremental technique by explaining how such complex ag-
gregations become incremental in two steps:
1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-
ple simple aggregations that act as sub-operations to perform
the original complex aggregation. For example in Alternating
Least Squares, the computation involving complex aggrega-
tion is:
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dependencies among intermediate values based on Eq. 1.
Formally, at the end of iteration k :

VD =
–

i 2[0,k ]
ci (�) ED = { (ci�1(u), ci (�), ei (u,�)) :

i 2 [0,k] ^ (u,�) 2 E }

Figure 3a shows the dependency graph for G in Figure 2a
over an execution of 4 iterations. As computation progresses
through iterations, DG increases by |V | vertices and |E |
edges. While saving DG exhaustively captures the entire
execution history such that it enables incremental correction
ofCL for subsequent graph mutations, such tracking of value
dependencies leads to O

�
|E |.t

�
amount of information to be

maintained for t iterations which signi�cantly increases the
memory footprint, making the entire processmemory-bound.
To reduce the amount of dependency information that must
be tracked, we �rst carefully analyze how values �owing
through dependencies participate in computing CL .
Tracking Value Dependencies as Value Aggregations.
Given a vertex � , its value is computed based on values from
its incoming neighbors in two sub-steps: �rst, the incoming
neighbors’ values from previous iteration are aggregated into
a single value; and then, the aggregated value is used to com-
pute vertex value for the current iteration. This computation
can be formulated as 2:

ci (�) =
º

(
 

8e=(u,�)2E
(ci�1(u)) )

where
…

indicates the aggregation operator and
≤
indicates

the function applied on the aggregated value to produce the
�nal vertex value. For example in Algorithm 1,

…
is ������

�A�� on line 6 while
≤

is the computation on line 9. Since
values �owing through edges are e�ectively combined into
aggregated values at vertices, we can track these aggregated
values instead of individual dependency information. By
doing so, value dependencies can be corrected upon graph
mutation by incrementally correcting the aggregated values
and propagating corrections across subsequent aggregations
throughout the graph.

Let �i (�) be the aggregated value for vertex � for iteration
i , i.e., �i (�) =

…
8e=(u,�)2E

(ci�1(u)). We de�ne AG = (VA , EA) as

dependency graph in terms of aggregation values at the end
of iteration k :

VA =
–

i 2[0,k ]
�i (�) EA = { (�i�1(u), �i (�)) :

i 2 [0,k] ^ (u,�) 2 E }

This allows us to separate out the structure of dependencies
(i.e., ut�1 “impacts” �t ) from the values that participate in
satisfying those dependencies (i.e., ct�1(u) and ct (�)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-
gation values. It is interesting to note that the structure of
2Values residing on edges (i.e., edge weights) have been left out from equa-
tions for simplicity since they do not impact dependencies.

Figure 4. Change in vertex values across iterations for
Label Propagation over Wiki graph. Blue pixels indicate

change in vertex values.
dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
iterations indicating that majority of vertex values change in
those iterations; after 5 iterations, values start stabilizing and
the color density decreases sharply. As values stabilize, their
corresponding aggregated values also stabilize. This provides
a useful opportunity to limit the amount of aggregated values
that must be tracked during execution.
We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated
values with recomputation cost during re�nement stage. In
particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across
di�erent dimensions. As values start stabilizing, horizon-
tal pruning is achieved by directly stopping the tracking
of aggregated values after certain iterations. For example,
the horizontal red line in Figure 4 indicates the cut-o� after
which aggregated values won’t be tracked. Vertical pruning,
on the other hand, operates at vertex-level and is performed
by not saving aggregated values that have stabilized. This
eliminates the white regions above the horizontal red line in
Figure 4. Hence, only the values corresponding to blue points
are tracked after horizontal and vertical pruning. This cap-
tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
region where incremental processing will be most e�ective.
It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need
further analysis about whether subset of values need to be

(   ).(   )

(   )  - Transform

y

Vertex aggregation
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Incremental refinement

Algorithm 2 PageRank - Complex Aggregation
1: function �����������(e = (u,�), i)
2: ������A��(&sum[�][i + 1], oldpr [u][i]

old_de�ree[u] )
3: end function
4: function �������(e = (u,�), i)
5: ������S��(&sum[�][i + 1], oldpr [u][i]

old_de�ree[u] )
6: end function
7: function ���������(e = (u,�), i)
8: ������A��(&sum[�][i + 1], newpr [u][i]

new_de�ree[u] )
9: end function
10: function P�������( )
11: for i 2 [0...k] do
12: ����M��(E_add , �����������, i)
13: ����M��(E_delete , �������, i)
14: end for
15: V _updated = ���S������(E_add [ E_delete)
16: V _chan�e = ���T������(E_add [ E_delete)
17: for i 2 [0...k] do
18: E_update = {(u,�) : u 2 V _updated}
19: ����M��(E_update , �������, i)
20: ����M��(E_update , ���������, i)
21: V _dest = ���T������(E_update)
22: V _chan�e = V _chan�e [V _dest
23: V _updated = ������M��(V _chan�e , �������, i)
24: end for
25: 8s 2 S :

Œ
8e=(u,�)2E

( Õ
8s 0 2S

�(u, s 0) ⇥� (u,�, s 0, s) ⇥ c(u, s 0) )

26: 8s 2 S :
Œ

8e=(u,�)2E
( Õ
8s 0 2S

�(u, s 0) ⇥� (u,�, s 0, s) ⇥ c(u,s 0)
c(�,s 0) )

27: end function
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dependencies among intermediate values based on Eq. 1.
Formally, at the end of iteration k :

VD =
–

i 2[0,k ]
ci (�) ED = { (ci�1(u), ci (�), ei (u,�)) :

i 2 [0,k] ^ (u,�) 2 E }

Figure 3a shows the dependency graph for G in Figure 2a
over an execution of 4 iterations. As computation progresses
through iterations, DG increases by |V | vertices and |E |
edges. While saving DG exhaustively captures the entire
execution history such that it enables incremental correction
ofCL for subsequent graph mutations, such tracking of value
dependencies leads to O

�
|E |.t

�
amount of information to be

maintained for t iterations which signi�cantly increases the
memory footprint, making the entire processmemory-bound.
To reduce the amount of dependency information that must
be tracked, we �rst carefully analyze how values �owing
through dependencies participate in computing CL .
Tracking Value Dependencies as Value Aggregations.
Given a vertex � , its value is computed based on values from
its incoming neighbors in two sub-steps: �rst, the incoming
neighbors’ values from previous iteration are aggregated into
a single value; and then, the aggregated value is used to com-
pute vertex value for the current iteration. This computation
can be formulated as 2:

ci (�) =
º

(
 

8e=(u,�)2E
(ci�1(u)) )

where
…

indicates the aggregation operator and
≤
indicates

the function applied on the aggregated value to produce the
�nal vertex value. For example in Algorithm 1,

…
is ������

�A�� on line 6 while
≤

is the computation on line 9. Since
values �owing through edges are e�ectively combined into
aggregated values at vertices, we can track these aggregated
values instead of individual dependency information. By
doing so, value dependencies can be corrected upon graph
mutation by incrementally correcting the aggregated values
and propagating corrections across subsequent aggregations
throughout the graph.

Let �i (�) be the aggregated value for vertex � for iteration
i , i.e., �i (�) =

…
8e=(u,�)2E

(ci�1(u)). We de�ne AG = (VA , EA) as

dependency graph in terms of aggregation values at the end
of iteration k :

VA =
–

i 2[0,k ]
�i (�) EA = { (�i�1(u), �i (�)) :

i 2 [0,k] ^ (u,�) 2 E }

This allows us to separate out the structure of dependencies
(i.e., ut�1 “impacts” �t ) from the values that participate in
satisfying those dependencies (i.e., ct�1(u) and ct (�)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-
gation values. It is interesting to note that the structure of
2Values residing on edges (i.e., edge weights) have been left out from equa-
tions for simplicity since they do not impact dependencies.

Figure 4. Change in vertex values across iterations for
Label Propagation over Wiki graph. Blue pixels indicate

change in vertex values.
dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
iterations indicating that majority of vertex values change in
those iterations; after 5 iterations, values start stabilizing and
the color density decreases sharply. As values stabilize, their
corresponding aggregated values also stabilize. This provides
a useful opportunity to limit the amount of aggregated values
that must be tracked during execution.
We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated
values with recomputation cost during re�nement stage. In
particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across
di�erent dimensions. As values start stabilizing, horizon-
tal pruning is achieved by directly stopping the tracking
of aggregated values after certain iterations. For example,
the horizontal red line in Figure 4 indicates the cut-o� after
which aggregated values won’t be tracked. Vertical pruning,
on the other hand, operates at vertex-level and is performed
by not saving aggregated values that have stabilized. This
eliminates the white regions above the horizontal red line in
Figure 4. Hence, only the values corresponding to blue points
are tracked after horizontal and vertical pruning. This cap-
tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
region where incremental processing will be most e�ective.
It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need
further analysis about whether subset of values need to be
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• Retract      : Old value 
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Algorithm 2 PageRank - Complex Aggregation
1: function �����������(e = (u,�), i)
2: ������A��(&sum[�][i + 1], oldpr [u][i]

old_de�ree[u] )
3: end function
4: function �������(e = (u,�), i)
5: ������S��(&sum[�][i + 1], oldpr [u][i]

old_de�ree[u] )
6: end function
7: function ���������(e = (u,�), i)
8: ������A��(&sum[�][i + 1], newpr [u][i]

new_de�ree[u] )
9: end function
10: function P�������( )
11: for i 2 [0...k] do
12: ����M��(E_add , �����������, i)
13: ����M��(E_delete , �������, i)
14: end for
15: V _updated = ���S������(E_add [ E_delete)
16: V _chan�e = ���T������(E_add [ E_delete)
17: for i 2 [0...k] do
18: E_update = {(u,�) : u 2 V _updated}
19: ����M��(E_update , �������, i)
20: ����M��(E_update , ���������, i)
21: V _dest = ���T������(E_update)
22: V _chan�e = V _chan�e [V _dest
23: V _updated = ������M��(V _chan�e , �������, i)
24: end for
25: 8s 2 S :

Œ
8e=(u,�)2E

( Õ
8s 0 2S

�(u, s 0) ⇥� (u,�, s 0, s) ⇥ c(u, s 0) )

26: 8s 2 S :
Œ

8e=(u,�)2E
( Õ
8s 0 2S

�(u, s 0) ⇥� (u,�, s 0, s) ⇥ c(u,s 0)
c(�,s 0) )

27: end function

2

Belief Propagation

TransformAggregation Vertex Value

(   ).(   ) (   ).(   )

(   ).(   )  - Combine

dependencies among intermediate values based on Eq. 1.
Formally, at the end of iteration k :

VD =
–

i 2[0,k ]
ci (�) ED = { (ci�1(u), ci (�), ei (u,�)) :

i 2 [0,k] ^ (u,�) 2 E }

Figure 3a shows the dependency graph for G in Figure 2a
over an execution of 4 iterations. As computation progresses
through iterations, DG increases by |V | vertices and |E |
edges. While saving DG exhaustively captures the entire
execution history such that it enables incremental correction
ofCL for subsequent graph mutations, such tracking of value
dependencies leads to O

�
|E |.t

�
amount of information to be

maintained for t iterations which signi�cantly increases the
memory footprint, making the entire processmemory-bound.
To reduce the amount of dependency information that must
be tracked, we �rst carefully analyze how values �owing
through dependencies participate in computing CL .
Tracking Value Dependencies as Value Aggregations.
Given a vertex � , its value is computed based on values from
its incoming neighbors in two sub-steps: �rst, the incoming
neighbors’ values from previous iteration are aggregated into
a single value; and then, the aggregated value is used to com-
pute vertex value for the current iteration. This computation
can be formulated as 2:

ci (�) =
º

(
 

8e=(u,�)2E
(ci�1(u)) )

where
…

indicates the aggregation operator and
≤
indicates

the function applied on the aggregated value to produce the
�nal vertex value. For example in Algorithm 1,

…
is ������

�A�� on line 6 while
≤

is the computation on line 9. Since
values �owing through edges are e�ectively combined into
aggregated values at vertices, we can track these aggregated
values instead of individual dependency information. By
doing so, value dependencies can be corrected upon graph
mutation by incrementally correcting the aggregated values
and propagating corrections across subsequent aggregations
throughout the graph.

Let �i (�) be the aggregated value for vertex � for iteration
i , i.e., �i (�) =

…
8e=(u,�)2E

(ci�1(u)). We de�ne AG = (VA , EA) as

dependency graph in terms of aggregation values at the end
of iteration k :

VA =
–

i 2[0,k ]
�i (�) EA = { (�i�1(u), �i (�)) :

i 2 [0,k] ^ (u,�) 2 E }

This allows us to separate out the structure of dependencies
(i.e., ut�1 “impacts” �t ) from the values that participate in
satisfying those dependencies (i.e., ct�1(u) and ct (�)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-
gation values. It is interesting to note that the structure of
2Values residing on edges (i.e., edge weights) have been left out from equa-
tions for simplicity since they do not impact dependencies.

Figure 4. Change in vertex values across iterations for
Label Propagation over Wiki graph. Blue pixels indicate

change in vertex values.
dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
iterations indicating that majority of vertex values change in
those iterations; after 5 iterations, values start stabilizing and
the color density decreases sharply. As values stabilize, their
corresponding aggregated values also stabilize. This provides
a useful opportunity to limit the amount of aggregated values
that must be tracked during execution.
We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated
values with recomputation cost during re�nement stage. In
particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across
di�erent dimensions. As values start stabilizing, horizon-
tal pruning is achieved by directly stopping the tracking
of aggregated values after certain iterations. For example,
the horizontal red line in Figure 4 indicates the cut-o� after
which aggregated values won’t be tracked. Vertical pruning,
on the other hand, operates at vertex-level and is performed
by not saving aggregated values that have stabilized. This
eliminates the white regions above the horizontal red line in
Figure 4. Hence, only the values corresponding to blue points
are tracked after horizontal and vertical pruning. This cap-
tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
region where incremental processing will be most e�ective.
It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need
further analysis about whether subset of values need to be
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PageRank
Graphs Edges Vertices

Wiki (WK) [47] 378M 12M
UKDomain (UK) [7] 1.0B 39.5M
Twitter (TW) [21] 1.5B 41.7M
TwitterMPI (TT) [8] 2.0B 52.6M
Friendster (FT) [14] 2.5B 68.3M
Yahoo (YH) [49] 6.6B 1.4B

Table 2. Input graphs used in evaluation.
System A System B

Core Count 32 (1 ⇥ 32) 96 (2 ⇥ 48)
Core Speed 2GHz 2.5GHz

Memory Capacity 231GB 748GB
Memory Speed 9.75 GB/sec 7.94 GB/sec

Table 3. Systems used in evaluation.

Algorithm Aggregation (
…

)

PageRank (PR)
Õ

8e=(u,� )2E
c (u)

out_de�r ee (u)

Belief Propagation (BP) 8s 2 S :
Œ

8e=(u,� )2E
( Õ
8s02S

�(u, s0) ⇥� (u, �, s0, s) ⇥ c(u, s0) )

Label Propagation (LP) 8f 2 F :
Õ

8e=(u,� )2E
c(u, f ) ⇥wei�ht (u, �)

Co-Training Expectation Õ
8e=(u,� )2E

c (u)⇥wei�ht (u,� )Õ
8e=(w,� )2E

wei�ht (w,� )Maximization (CoEM)

Collaborative Filtering (CF) h Õ8e=(u,� )2E ci (u).ci (u)tr ,
Õ

8e=(u,� )2E ci (u).wei�ht (u, �) i

Triangle Counting (TC)
Õ

8e=(u,� )2E
|in_nei�hbors(u) \ out_nei�hbors(�) |

Table 4. Graph algorithms used in evaluation and their aggregation functions.
is a learning algorithm while Co-Training Expectation Max-
imization (CoEM) [28] is a semi-supervised learning algo-
rithm for named entity recognition. Collaborative Filtering
(CF) [52] is a context-based approach to identify related
items for recommendation systems. Triangle Counting (TC)
computes frequencies of di�erent triangles.
Table 2 lists the six real-world graphs used in our evalu-

ation. Similar to [38, 44], we obtained an initial �xed point
and streamed in a set of edge insertions and deletions for
the rest of the computation. After 50% of the edges were
loaded, the remaining edges were treated as edge additions
that were streamed in. Edges to be deleted were selected from
the loaded graph and deletion requests were mixed with ad-
dition requests in the update stream. In our experiments, we
varied the rate of the update stream to thoroughly evaluate
the e�ectiveness of incremental processing and scalability of
GraphBolt. Unless otherwise stated, each algorithm (except
TC which gets computed in a single iteration) was run for
10 iterations on all inputs except YH, and algorithms on YH
were run for 5 iterations.

Table 3 describes the machines used in our evaluation. We
used System A for all graphs except YH, and to further evalu-
ate how GraphBolt scales, we used System B (r5.24xlarge
on Amazon EC2) which has 3⇥ the amount of memory and
cores compared to that in System A. Both systems ran 64-bit
Ubuntu 16.04 and programs were compiled using GCC 5.4,
optimization level -O3.
To thoroughly evaluate GraphBolt, we compare the fol-

lowing three versions:
• Ligra: is the Ligra system [39] which restarts compu-
tation upon graph mutations.

• GB-Reset: is our GraphBolt system based on incre-
mental computation during processing (i.e., propagates
changes to enable selective scheduling), but restarts
computation upon graph mutations. The processing
model is similar to PageRankDelta in [39].

• GraphBolt: is our GraphBolt system based on
dependency-driven incremental computation upon
graph mutations as proposed in this paper.

To ensure a fair comparison among the above versions, ex-
periments were run such that each algorithm version had
the same number of pending edge mutations to be processed
(similar to methodology in [44]). Unless otherwise stated,
100K edge mutations were applied before the processing of
each version. While Theorem 4.1 guarantees correctness of
results via synchronous processing semantics, we validated
correctness for each run by comparing �nal results.

5.2 Performance
Table 5 shows the execution times for Ligra, GB-Reset and
GraphBolt across 1K, 10K and 100K edge mutations. As we
can see, both GB-Reset and GraphBolt outperform Ligra
across all cases except TC where Ligra and GraphBolt-Reset
are same (recall TC takes only single iteration to compute
results). This is mainly due to selective scheduling that pro-
cesses only those edges whose source vertex values change
across iterations by propagating changes across aggregations.
Furthermore, GraphBolt outperforms GB-Reset in all cases
which indicates the e�ectiveness of our dependency-driven
incremental computation to quickly react to changes in graph
structure, even at a scale of 100K edge mutations. Figure 6
compares the amount of work performed by GraphBolt v/s
GB-Reset in terms of number of edges processed. GraphBolt
performs less than 50% edge computations compared to that
in GB-Reset in most of the cases; while GraphBolt often per-
forms 60-80% edge computations for PR (except UK), and
for TT/TW on CoEM, the reduction in edge computations
directly results in savings in Table 5.
It is interesting to observe that speedups are di�erent

across di�erent algorithms; for example GraphBolt v/s GB-
Reset for BP on TW is 10.48-14.39⇥, while for CF on TW
is 6.17-8.79⇥ even though Figure 6 shows that latter per-
forms lesser edge computations compared to the former.
This di�erence is because the remaining factors beyond edge
computations (like vertexMap times, managing local copies,
etc.) that had minor impact on GB-Reset’s performance be-
come signi�cant enough in GraphBolt since edge work gets
drastically reduced; nevertheless, this time is very low and

TransformAggregation Vertex Value
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dependencies among intermediate values based on Eq. 1.
Formally, at the end of iteration k :

VD =
–

i 2[0,k ]
ci (�) ED = { (ci�1(u), ci (�), ei (u,�)) :

i 2 [0,k] ^ (u,�) 2 E }

Figure 3a shows the dependency graph for G in Figure 2a
over an execution of 4 iterations. As computation progresses
through iterations, DG increases by |V | vertices and |E |
edges. While saving DG exhaustively captures the entire
execution history such that it enables incremental correction
ofCL for subsequent graph mutations, such tracking of value
dependencies leads to O

�
|E |.t

�
amount of information to be

maintained for t iterations which signi�cantly increases the
memory footprint, making the entire processmemory-bound.
To reduce the amount of dependency information that must
be tracked, we �rst carefully analyze how values �owing
through dependencies participate in computing CL .
Tracking Value Dependencies as Value Aggregations.
Given a vertex � , its value is computed based on values from
its incoming neighbors in two sub-steps: �rst, the incoming
neighbors’ values from previous iteration are aggregated into
a single value; and then, the aggregated value is used to com-
pute vertex value for the current iteration. This computation
can be formulated as 2:

ci (�) =
º

(
 

8e=(u,�)2E
(ci�1(u)) )

where
…

indicates the aggregation operator and
≤
indicates

the function applied on the aggregated value to produce the
�nal vertex value. For example in Algorithm 1,

…
is ������

�A�� on line 6 while
≤

is the computation on line 9. Since
values �owing through edges are e�ectively combined into
aggregated values at vertices, we can track these aggregated
values instead of individual dependency information. By
doing so, value dependencies can be corrected upon graph
mutation by incrementally correcting the aggregated values
and propagating corrections across subsequent aggregations
throughout the graph.

Let �i (�) be the aggregated value for vertex � for iteration
i , i.e., �i (�) =

…
8e=(u,�)2E

(ci�1(u)). We de�ne AG = (VA , EA) as

dependency graph in terms of aggregation values at the end
of iteration k :

VA =
–

i 2[0,k ]
�i (�) EA = { (�i�1(u), �i (�)) :

i 2 [0,k] ^ (u,�) 2 E }

This allows us to separate out the structure of dependencies
(i.e., ut�1 “impacts” �t ) from the values that participate in
satisfying those dependencies (i.e., ct�1(u) and ct (�)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-
gation values. It is interesting to note that the structure of
2Values residing on edges (i.e., edge weights) have been left out from equa-
tions for simplicity since they do not impact dependencies.

Figure 4. Change in vertex values across iterations for
Label Propagation over Wiki graph. Blue pixels indicate

change in vertex values.
dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
iterations indicating that majority of vertex values change in
those iterations; after 5 iterations, values start stabilizing and
the color density decreases sharply. As values stabilize, their
corresponding aggregated values also stabilize. This provides
a useful opportunity to limit the amount of aggregated values
that must be tracked during execution.
We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated
values with recomputation cost during re�nement stage. In
particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across
di�erent dimensions. As values start stabilizing, horizon-
tal pruning is achieved by directly stopping the tracking
of aggregated values after certain iterations. For example,
the horizontal red line in Figure 4 indicates the cut-o� after
which aggregated values won’t be tracked. Vertical pruning,
on the other hand, operates at vertex-level and is performed
by not saving aggregated values that have stabilized. This
eliminates the white regions above the horizontal red line in
Figure 4. Hence, only the values corresponding to blue points
are tracked after horizontal and vertical pruning. This cap-
tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
region where incremental processing will be most e�ective.
It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need
further analysis about whether subset of values need to be
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Wiki (WK) [47] 378M 12M
UKDomain (UK) [7] 1.0B 39.5M
Twitter (TW) [21] 1.5B 41.7M
TwitterMPI (TT) [8] 2.0B 52.6M
Friendster (FT) [14] 2.5B 68.3M
Yahoo (YH) [49] 6.6B 1.4B

Table 2. Input graphs used in evaluation.
System A System B

Core Count 32 (1 ⇥ 32) 96 (2 ⇥ 48)
Core Speed 2GHz 2.5GHz

Memory Capacity 231GB 748GB
Memory Speed 9.75 GB/sec 7.94 GB/sec

Table 3. Systems used in evaluation.

Algorithm Aggregation (
…

)

PageRank (PR)
Õ

8e=(u,� )2E
c (u)

out_de�r ee (u)

Belief Propagation (BP) 8s 2 S :
Œ

8e=(u,� )2E
( Õ
8s02S

�(u, s0) ⇥� (u, �, s0, s) ⇥ c(u, s0) )

Label Propagation (LP) 8f 2 F :
Õ

8e=(u,� )2E
c(u, f ) ⇥wei�ht (u, �)

Co-Training Expectation Õ
8e=(u,� )2E

c (u)⇥wei�ht (u,� )Õ
8e=(w,� )2E

wei�ht (w,� )Maximization (CoEM)

Collaborative Filtering (CF) h Õ8e=(u,� )2E ci (u).ci (u)tr ,
Õ

8e=(u,� )2E ci (u).wei�ht (u, �) i

Triangle Counting (TC)
Õ

8e=(u,� )2E
|in_nei�hbors(u) \ out_nei�hbors(�) |

Table 4. Graph algorithms used in evaluation and their aggregation functions.
is a learning algorithm while Co-Training Expectation Max-
imization (CoEM) [28] is a semi-supervised learning algo-
rithm for named entity recognition. Collaborative Filtering
(CF) [52] is a context-based approach to identify related
items for recommendation systems. Triangle Counting (TC)
computes frequencies of di�erent triangles.
Table 2 lists the six real-world graphs used in our evalu-

ation. Similar to [38, 44], we obtained an initial �xed point
and streamed in a set of edge insertions and deletions for
the rest of the computation. After 50% of the edges were
loaded, the remaining edges were treated as edge additions
that were streamed in. Edges to be deleted were selected from
the loaded graph and deletion requests were mixed with ad-
dition requests in the update stream. In our experiments, we
varied the rate of the update stream to thoroughly evaluate
the e�ectiveness of incremental processing and scalability of
GraphBolt. Unless otherwise stated, each algorithm (except
TC which gets computed in a single iteration) was run for
10 iterations on all inputs except YH, and algorithms on YH
were run for 5 iterations.

Table 3 describes the machines used in our evaluation. We
used System A for all graphs except YH, and to further evalu-
ate how GraphBolt scales, we used System B (r5.24xlarge
on Amazon EC2) which has 3⇥ the amount of memory and
cores compared to that in System A. Both systems ran 64-bit
Ubuntu 16.04 and programs were compiled using GCC 5.4,
optimization level -O3.
To thoroughly evaluate GraphBolt, we compare the fol-

lowing three versions:
• Ligra: is the Ligra system [39] which restarts compu-
tation upon graph mutations.

• GB-Reset: is our GraphBolt system based on incre-
mental computation during processing (i.e., propagates
changes to enable selective scheduling), but restarts
computation upon graph mutations. The processing
model is similar to PageRankDelta in [39].

• GraphBolt: is our GraphBolt system based on
dependency-driven incremental computation upon
graph mutations as proposed in this paper.

To ensure a fair comparison among the above versions, ex-
periments were run such that each algorithm version had
the same number of pending edge mutations to be processed
(similar to methodology in [44]). Unless otherwise stated,
100K edge mutations were applied before the processing of
each version. While Theorem 4.1 guarantees correctness of
results via synchronous processing semantics, we validated
correctness for each run by comparing �nal results.

5.2 Performance
Table 5 shows the execution times for Ligra, GB-Reset and
GraphBolt across 1K, 10K and 100K edge mutations. As we
can see, both GB-Reset and GraphBolt outperform Ligra
across all cases except TC where Ligra and GraphBolt-Reset
are same (recall TC takes only single iteration to compute
results). This is mainly due to selective scheduling that pro-
cesses only those edges whose source vertex values change
across iterations by propagating changes across aggregations.
Furthermore, GraphBolt outperforms GB-Reset in all cases
which indicates the e�ectiveness of our dependency-driven
incremental computation to quickly react to changes in graph
structure, even at a scale of 100K edge mutations. Figure 6
compares the amount of work performed by GraphBolt v/s
GB-Reset in terms of number of edges processed. GraphBolt
performs less than 50% edge computations compared to that
in GB-Reset in most of the cases; while GraphBolt often per-
forms 60-80% edge computations for PR (except UK), and
for TT/TW on CoEM, the reduction in edge computations
directly results in savings in Table 5.
It is interesting to observe that speedups are di�erent

across di�erent algorithms; for example GraphBolt v/s GB-
Reset for BP on TW is 10.48-14.39⇥, while for CF on TW
is 6.17-8.79⇥ even though Figure 6 shows that latter per-
forms lesser edge computations compared to the former.
This di�erence is because the remaining factors beyond edge
computations (like vertexMap times, managing local copies,
etc.) that had minor impact on GB-Reset’s performance be-
come signi�cant enough in GraphBolt since edge work gets
drastically reduced; nevertheless, this time is very low and

TransformAggregation Vertex Value

Propagate : Change in vertex value
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dependencies among intermediate values based on Eq. 1.
Formally, at the end of iteration k :

VD =
–

i 2[0,k ]
ci (�) ED = { (ci�1(u), ci (�), ei (u,�)) :

i 2 [0,k] ^ (u,�) 2 E }

Figure 3a shows the dependency graph for G in Figure 2a
over an execution of 4 iterations. As computation progresses
through iterations, DG increases by |V | vertices and |E |
edges. While saving DG exhaustively captures the entire
execution history such that it enables incremental correction
ofCL for subsequent graph mutations, such tracking of value
dependencies leads to O

�
|E |.t

�
amount of information to be

maintained for t iterations which signi�cantly increases the
memory footprint, making the entire processmemory-bound.
To reduce the amount of dependency information that must
be tracked, we �rst carefully analyze how values �owing
through dependencies participate in computing CL .
Tracking Value Dependencies as Value Aggregations.
Given a vertex � , its value is computed based on values from
its incoming neighbors in two sub-steps: �rst, the incoming
neighbors’ values from previous iteration are aggregated into
a single value; and then, the aggregated value is used to com-
pute vertex value for the current iteration. This computation
can be formulated as 2:

ci (�) =
º

(
 

8e=(u,�)2E
(ci�1(u)) )

where
…

indicates the aggregation operator and
≤
indicates

the function applied on the aggregated value to produce the
�nal vertex value. For example in Algorithm 1,

…
is ������

�A�� on line 6 while
≤

is the computation on line 9. Since
values �owing through edges are e�ectively combined into
aggregated values at vertices, we can track these aggregated
values instead of individual dependency information. By
doing so, value dependencies can be corrected upon graph
mutation by incrementally correcting the aggregated values
and propagating corrections across subsequent aggregations
throughout the graph.

Let �i (�) be the aggregated value for vertex � for iteration
i , i.e., �i (�) =

…
8e=(u,�)2E

(ci�1(u)). We de�ne AG = (VA , EA) as

dependency graph in terms of aggregation values at the end
of iteration k :

VA =
–

i 2[0,k ]
�i (�) EA = { (�i�1(u), �i (�)) :

i 2 [0,k] ^ (u,�) 2 E }

This allows us to separate out the structure of dependencies
(i.e., ut�1 “impacts” �t ) from the values that participate in
satisfying those dependencies (i.e., ct�1(u) and ct (�)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-
gation values. It is interesting to note that the structure of
2Values residing on edges (i.e., edge weights) have been left out from equa-
tions for simplicity since they do not impact dependencies.

Figure 4. Change in vertex values across iterations for
Label Propagation over Wiki graph. Blue pixels indicate

change in vertex values.
dependencies in AG is directly based on the structure of
input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in
Figure 2a. Since we are no longer tracking the values �owing
through those dependency edges, we don’t need to track the
dependency structure as it can be later reconstructed during
the re�nement stage using the input graph structure. Hence,
we only need to track aggregated values, i.e., VA , which
reduces the amount of dependency information to O

�
|V |.t

�
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause
synchronous graph algorithms to behave such that most
vertex values keep on changing during the initial iterations
and then the number of changing vertices decrease as iter-
ations progress. For example, Figure 4 shows how vertex
values change across iterations in Label Propagation over
Wiki graph (graph details in Table 2) for a 10-iteration win-
dow. As we can see, the color density is higher during �rst 5
iterations indicating that majority of vertex values change in
those iterations; after 5 iterations, values start stabilizing and
the color density decreases sharply. As values stabilize, their
corresponding aggregated values also stabilize. This provides
a useful opportunity to limit the amount of aggregated values
that must be tracked during execution.
We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated
values with recomputation cost during re�nement stage. In
particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across
di�erent dimensions. As values start stabilizing, horizon-
tal pruning is achieved by directly stopping the tracking
of aggregated values after certain iterations. For example,
the horizontal red line in Figure 4 indicates the cut-o� after
which aggregated values won’t be tracked. Vertical pruning,
on the other hand, operates at vertex-level and is performed
by not saving aggregated values that have stabilized. This
eliminates the white regions above the horizontal red line in
Figure 4. Hence, only the values corresponding to blue points
are tracked after horizontal and vertical pruning. This cap-
tures the important region where changes in vertex values
result in larger impact across their neighborhoods, i.e., the
region where incremental processing will be most e�ective.
It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need
further analysis about whether subset of values need to be

(   )  - Transform
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Algorithm 1 PageRank - Simple Aggregation
1: function �����������(e = (u,�), i)
2: ������A��(&sum[�][i + 1], oldpr [u][i]

old_de�ree[u] )
3: end function
4: function �������(e = (u,�), i)
5: ������S��(&sum[�][i + 1], oldpr [u][i]

old_de�ree[u] )
6: end function
7: function ���������D����(e = (u,�), i)
8: ������A��(&sum[�][i + 1], newpr [u][i]

new_de�ree[u] �
oldpr [u][i]

old_de�ree[u] )
9: end function
10: function P�������( )
11: for i 2 [0...k] do
12: ����M��(E_add , �����������, i)
13: ����M��(E_delete , �������, i)
14: end for
15: V _updated = ���S������(E_add [ E_delete)
16: V _chan�e = ���T������(E_add [ E_delete)
17: for i 2 [0...k] do
18: E_update = {(u,�) : u 2 V _updated}
19: ����M��(E_update , ���������D����, i)
20: V _dest = ���T������(E_update)
21: V _chan�e = V _chan�e [V _dest
22: V _updated = ������M��(V _chan�e , �������, i)
23: end for
24: ������M��(V _chan�e , �������B�����, k)
25: end function
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23: end for
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GraphBolt Details …

• Aggregation properties & non-decomposable aggregations

• Pruning dependencies for light-weight tracking
• Vertical pruning

• Horizontal pruning

• Hybrid incremental execution
• With & without dependency information

• Graph data structure & parallelization model
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Graphs Edges Vertices
Wiki (WK) [47] 378M 12M

UKDomain (UK) [7] 1.0B 39.5M
Twitter (TW) [21] 1.5B 41.7M
TwitterMPI (TT) [8] 2.0B 52.6M
Friendster (FT) [14] 2.5B 68.3M
Yahoo (YH) [49] 6.6B 1.4B

Table 2. Input graphs used in evaluation.
System A System B

Core Count 32 (1 ⇥ 32) 96 (2 ⇥ 48)
Core Speed 2GHz 2.5GHz

Memory Capacity 231GB 748GB
Memory Speed 9.75 GB/sec 7.94 GB/sec

Table 3. Systems used in evaluation.

Algorithm Aggregation (
…

)

PageRank (PR)
Õ

8e=(u,� )2E
c (u)

out_de�r ee (u)

Belief Propagation (BP) 8s 2 S :
Œ

8e=(u,� )2E
( Õ
8s02S

�(u, s0) ⇥� (u, �, s0, s) ⇥ c(u, s0) )

Label Propagation (LP) 8f 2 F :
Õ

8e=(u,� )2E
c(u, f ) ⇥wei�ht (u, �)

Co-Training Expectation Õ
8e=(u,� )2E

c (u)⇥wei�ht (u,� )Õ
8e=(w,� )2E

wei�ht (w,� )Maximization (CoEM)

Collaborative Filtering (CF) h Õ8e=(u,� )2E ci (u).ci (u)tr ,
Õ

8e=(u,� )2E ci (u).wei�ht (u, �) i

Triangle Counting (TC)
Õ

8e=(u,� )2E
|in_nei�hbors(u) \ out_nei�hbors(�) |

Table 4. Graph algorithms used in evaluation and their aggregation functions.
is a learning algorithm while Co-Training Expectation Max-
imization (CoEM) [28] is a semi-supervised learning algo-
rithm for named entity recognition. Collaborative Filtering
(CF) [52] is a context-based approach to identify related
items for recommendation systems. Triangle Counting (TC)
computes frequencies of di�erent triangles.
Table 2 lists the six real-world graphs used in our evalu-

ation. Similar to [38, 44], we obtained an initial �xed point
and streamed in a set of edge insertions and deletions for
the rest of the computation. After 50% of the edges were
loaded, the remaining edges were treated as edge additions
that were streamed in. Edges to be deleted were selected from
the loaded graph and deletion requests were mixed with ad-
dition requests in the update stream. In our experiments, we
varied the rate of the update stream to thoroughly evaluate
the e�ectiveness of incremental processing and scalability of
GraphBolt. Unless otherwise stated, each algorithm (except
TC which gets computed in a single iteration) was run for
10 iterations on all inputs except YH, and algorithms on YH
were run for 5 iterations.

Table 3 describes the machines used in our evaluation. We
used System A for all graphs except YH, and to further evalu-
ate how GraphBolt scales, we used System B (r5.24xlarge
on Amazon EC2) which has 3⇥ the amount of memory and
cores compared to that in System A. Both systems ran 64-bit
Ubuntu 16.04 and programs were compiled using GCC 5.4,
optimization level -O3.
To thoroughly evaluate GraphBolt, we compare the fol-

lowing three versions:
• Ligra: is the Ligra system [39] which restarts compu-
tation upon graph mutations.

• GB-Reset: is our GraphBolt system based on incre-
mental computation during processing (i.e., propagates
changes to enable selective scheduling), but restarts
computation upon graph mutations. The processing
model is similar to PageRankDelta in [39].

• GraphBolt: is our GraphBolt system based on
dependency-driven incremental computation upon
graph mutations as proposed in this paper.

To ensure a fair comparison among the above versions, ex-
periments were run such that each algorithm version had
the same number of pending edge mutations to be processed
(similar to methodology in [44]). Unless otherwise stated,
100K edge mutations were applied before the processing of
each version. While Theorem 4.1 guarantees correctness of
results via synchronous processing semantics, we validated
correctness for each run by comparing �nal results.

5.2 Performance
Table 5 shows the execution times for Ligra, GB-Reset and
GraphBolt across 1K, 10K and 100K edge mutations. As we
can see, both GB-Reset and GraphBolt outperform Ligra
across all cases except TC where Ligra and GraphBolt-Reset
are same (recall TC takes only single iteration to compute
results). This is mainly due to selective scheduling that pro-
cesses only those edges whose source vertex values change
across iterations by propagating changes across aggregations.
Furthermore, GraphBolt outperforms GB-Reset in all cases
which indicates the e�ectiveness of our dependency-driven
incremental computation to quickly react to changes in graph
structure, even at a scale of 100K edge mutations. Figure 6
compares the amount of work performed by GraphBolt v/s
GB-Reset in terms of number of edges processed. GraphBolt
performs less than 50% edge computations compared to that
in GB-Reset in most of the cases; while GraphBolt often per-
forms 60-80% edge computations for PR (except UK), and
for TT/TW on CoEM, the reduction in edge computations
directly results in savings in Table 5.
It is interesting to observe that speedups are di�erent

across di�erent algorithms; for example GraphBolt v/s GB-
Reset for BP on TW is 10.48-14.39⇥, while for CF on TW
is 6.17-8.79⇥ even though Figure 6 shows that latter per-
forms lesser edge computations compared to the former.
This di�erence is because the remaining factors beyond edge
computations (like vertexMap times, managing local copies,
etc.) that had minor impact on GB-Reset’s performance be-
come signi�cant enough in GraphBolt since edge work gets
drastically reduced; nevertheless, this time is very low and
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optimization level -O3.
To thoroughly evaluate GraphBolt, we compare the fol-

lowing three versions:
• Ligra: is the Ligra system [39] which restarts compu-
tation upon graph mutations.

• GB-Reset: is our GraphBolt system based on incre-
mental computation during processing (i.e., propagates
changes to enable selective scheduling), but restarts
computation upon graph mutations. The processing
model is similar to PageRankDelta in [39].

• GraphBolt: is our GraphBolt system based on
dependency-driven incremental computation upon
graph mutations as proposed in this paper.

To ensure a fair comparison among the above versions, ex-
periments were run such that each algorithm version had
the same number of pending edge mutations to be processed
(similar to methodology in [44]). Unless otherwise stated,
100K edge mutations were applied before the processing of
each version. While Theorem 4.1 guarantees correctness of
results via synchronous processing semantics, we validated
correctness for each run by comparing �nal results.

5.2 Performance
Table 5 shows the execution times for Ligra, GB-Reset and
GraphBolt across 1K, 10K and 100K edge mutations. As we
can see, both GB-Reset and GraphBolt outperform Ligra
across all cases except TC where Ligra and GraphBolt-Reset
are same (recall TC takes only single iteration to compute
results). This is mainly due to selective scheduling that pro-
cesses only those edges whose source vertex values change
across iterations by propagating changes across aggregations.
Furthermore, GraphBolt outperforms GB-Reset in all cases
which indicates the e�ectiveness of our dependency-driven
incremental computation to quickly react to changes in graph
structure, even at a scale of 100K edge mutations. Figure 6
compares the amount of work performed by GraphBolt v/s
GB-Reset in terms of number of edges processed. GraphBolt
performs less than 50% edge computations compared to that
in GB-Reset in most of the cases; while GraphBolt often per-
forms 60-80% edge computations for PR (except UK), and
for TT/TW on CoEM, the reduction in edge computations
directly results in savings in Table 5.
It is interesting to observe that speedups are di�erent

across di�erent algorithms; for example GraphBolt v/s GB-
Reset for BP on TW is 10.48-14.39⇥, while for CF on TW
is 6.17-8.79⇥ even though Figure 6 shows that latter per-
forms lesser edge computations compared to the former.
This di�erence is because the remaining factors beyond edge
computations (like vertexMap times, managing local copies,
etc.) that had minor impact on GB-Reset’s performance be-
come signi�cant enough in GraphBolt since edge work gets
drastically reduced; nevertheless, this time is very low and

Server: 32-core / 2 GHz / 231 GB
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• Varying workload type

• Mutations affecting majority of the values v/s affecting small values

• Varying graph mutation rate

• Single edge update (reactiveness) v/s 1 million edge updates (throughput)

• Scaling to large graph (Yahoo) over large system (96 core/748 GB)

Detailed Experiments …
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GraphBolt v/s Differential Dataflow
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Summary

• Efficient incremental processing of streaming graphs

• Guarantee Bulk Synchronous Parallel semantics

• Lightweight dependence tracking at aggregation level

• Dependency-aware value refinement upon graph mutation
• Programming model to support incremental complex aggregation types
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