
PnP: Pruning and Prediction for

Point-To-Point Iterative Graph Analytics

Chengshuo Xu

Univ. of California, Riverside

cxu009@ucr.edu

Keval Vora

Simon Fraser University

keval@cs.sfu.edu

Rajiv Gupta

Univ. of California, Riverside

gupta@cs.ucr.edu

Abstract

Frequently used parallel iterative graph analytics algorithms

are computationally expensive. However, researchers have

observed that applications often require point-to-point ver-
sions of these analytics algorithms that are less demanding.

In this paper we introduce the PnP parallel framework for

iterative graph analytics that processes a stream of point-

to-point queries with each involving a single source and

destination vertex pair. The efficiency of our framework is

derived from the following two novel features: online Prun-

ing of graph exploration that eliminates propagation from

vertices that are determined to not contribute to a query’s

final solution; and dynamic direction Prediction for solv-

ing the query in either forward (from source) or backward

(from destination) direction as their costs can differ greatly.

PnP employs a two-phase algorithm where, Phase 1 briefly

traverses the graph in both directions to predict the faster

direction and enable pruning; then Phase 2 completes query

evaluation by running the algorithm for the chosen direction

till it converges. Our experiments show that PnP responds

to queries rapidly because of accurate direction selection and

effective pruning that often offsets the runtime overhead of

direction prediction. PnP substantially outperforms Quegel,

the only other point-to-point query evaluation framework.

Our experiments on multiple benchmarks and graphs show

that PnP on a single machine is 8.2× to 3116× faster than

Quegel on a cluster of four machines.

CCS Concepts • Information systems→ Social netwo-

rks; • Computing methodologies → Shared memory

algorithms.

Keywords point-to-point graph queries; computation prun-

ing; direction prediction

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00

https://doi.org/10.1145/3297858.3304012

ACM Reference Format:

Chengshuo Xu, Keval Vora, and Rajiv Gupta. 2019. PnP: Pruning

and Prediction for Point-To-Point Iterative Graph Analytics. In Pro-
ceedings of 2019 Architectural Support for Programming Languages
and Operating Systems (ASPLOS’19). ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3297858.3304012

1 Introduction

Parallel iterative frameworks are used to compute important

properties for large real-world graphs. Such frameworks

have been developed for both shared-memory platforms

(Ligra [31], Galois [26], GRACE [39], GridGraph [45], X-

Stream [30] etc.) and distributed clusters (PowerGraph [10],

KickStarter [36], CoRAL [35] etc.). Even though iterative

graph analytics algorithms are highly parallel, for large graphs

they are expensive due to their exhaustive nature (e.g., short-
est path algorithm starts from a single source and computes

shortest paths to all destination vertices).

Recently Yan et al. [41] observed that many applications

on large graphs simply require computing point-to-point
variants of heavyweight computations. As an example, when

analyzing a graph that represents online shopping history

of shoppers, a business may be interested in point-to-point

queries over pairs of certain important shoppers. Thus, given

a pair of distinct vertices (s,d) in a graph, we are interested in
computing point-to-point versions of standard computations

such as, shortest path from s to d , widest path from s to d
and number of paths from s to d . Yan et al. developed the

Quegel [41] framework to solve point-to-point queries.

Although Quegel presents a solution for evaluating point-

to-point queries, it is far from optimized. First, Quegel does

a significant level of wasteful work as it does not prune tra-

ditional one source to all destinations computation to achieve

point-to-point subcomputation. Second, it does not recog-

nize that evaluation times of point-to-point queries in back-

ward and forward directions can greatly differ. In contrast

we present PnP that addresses the above drawbacks and

delivers significant speedups over Quegel.

Quegel supports Hub
2
[14] precomputation to speedup

evaluation of individual queries. However, this approach has

multiple drawbacks that limits its utility. The experimental

data reported in [41] shows that Hub
2
precomputation is

expensive. Moreover, in the common scenario where graph

structure mutates, the Hub
2
precomputation must be re-

peated making Quegel unsuitable for streaming (changing)

https://doi.org/10.1145/3297858.3304012
https://doi.org/10.1145/3297858.3304012

graphs. While KickStarter’s value-dependence based trim-

ming strategies [36] can be used to accelerate Hub
2
compu-

tation, the repetitive trimming of Hub
2
information does not

justify separating it out as a preprocessing step for relatively-

inexpensive queries. Finally the Hub
2
[14] precomputation

is specifically designed for accelerating shortest path queries

on graphs where all edge weights are the same. This limits its

use both in terms of types of queries and graphs.
In this paper we present PnP framework that avoids all

the limitations of Quegel and efficiently computes point-to-

point versions of wide range of queries on weighted and

unweighted graphs. PnP does not require any precompu-

tation thus allowing graph changes in between queries. To

quickly respond to queries PnP uses dynamic techniques for

optimizing query evaluation. In particular, it uses two general
dynamic techniques: online Pruning of graph exploration

that eliminates propagation from vertices determined to not

contribute to a query’s final solution; and dynamic direc-
tion Prediction method for choosing between solving the

query in forward (from source) or backward (from destina-

tion) direction as their costs can differ significantly based on

the graph structure and computation behavior.

We carry out an experimental study (§2) that shows how

query characteristics and the direction of evaluation impact

runtime. Guided by the observations, we propose PnP’s

two-phase algorithm (§3) that delivers fast evaluation times

across queries with differing characteristics. Phase 1 briefly

traverses the graph in both forward and backward directions

originating from source and destination vertices. By monitor-

ing progress in both directions during this phase we are able

to predict the faster direction highly accurately and compute

information that enables pruning. Phase 2 completes the

point-to-point computation by running the algorithm, with

pruning enabled, in the chosen direction to convergence.

There is prior work on graph based query languages (e.g.,

Gremlin [29]) and query support in graph databases (e.g.,

Neo4J and DEX [2, 9, 20]) that enable graph traversals and

joins via lower-level graph primitives (e.g., vertices, edges,

etc.). The strength of these systems is their versatility. They

are widely used for solving neighborhood queries and look-

ing for patterns in graphs [22, 27, 28, 38, 40, 42]. However, the

generality comes at a cost – they are not optimized for per-

formance for iterative graph analytics whose scope extends

across the entire graph. For example, although Neo4J sup-

ports point-to-point shortest path queries, as shown in [41],

Neo4J runs out of memory for large graphs (e.g., Twitter-

TT [5] used in this paper) and although it can handle small

graphs (e.g., LiveJournal-LJ [3] used in this paper) it runs

extremely slowly taking tens of thousands of seconds in

comparison to just few seconds required by PnP.

The key contributions of this paper are as follows:

(sPr) We introduce simple Pruning based point-to-point

query evaluation in either direction. We study the impact of

query characteristics and evaluation direction on execution

time for multiple algorithms on graphs. (§2)

(2Ph) Guided by observations from the study of sPr al-

gorithm, we develop a two-phase algorithm that in Phase

1 quickly identifies preferable direction and basis for prun-

ing and then in Phase 2 evaluates the query in the predicted
direction with greatly enhanced pruning. (§3)
(PnP framework) that is easy to use. It requires user to

simply provide two functions for the computation and three

for pruning. It has been implemented as an extension of the

Ligra [31] framework. (§2 & §3)

(Evaluation) PnP responds to expensive queries rapidly

(few seconds) because direction selection is accurate and

pruning is effective. When direction is mispredicted, it is for

queries where direction has relatively small impact on per-

formance. Alsi pruning often offsets the overhead of Phase

1. Finally, PnP greatly outperforms Quegel. (§4)

2 Simple Pruning (sPr) Based Study of

Point-to-Point Query Characteristics

In this section we present an algorithm for computing point-

to-point queries with simple pruning (sPr) and then analyze

the runtime characteristics of the algorithm on 10,000 queries

each for four input graphs and multiple analytics problems.

This large scale study allows us to uncover runtime charac-

teristics that enable us to develop a new two-phase algorithm

that dynamically predicts and adapts execution to deliver

highly optimized performance across all types of queries.

Note that prior work has been limited in its scope – Quegel

uses 1000 shortest path queries [41]; thus, the observations

exploited in this work eluded prior work on Quegel.

Each point-to-point query is of the form Q(s { d,G)
where G is a directed graph, s is the chosen source vertex,

and d is the chosen destination vertex. Thus, we compute the

desired propertyQ with respect to s { d (e.g., Shortest Path

from s to d , Widest Path from s to d etc.). To avoid negative-

weight cycles, edge weights are assumed to be positive. In

comparison to standard iterative algorithms, the iterative

algorithm for point-to-point query has two distinct features:

it employs pruning and it provides direction choice.
The online pruning of graph exploration is enabled by

the observation that point-to-point evaluation algorithm

only needs to achieve convergence for s { d as opposed

to all possible (destination) vertices. Pruning dynamically

eliminates wasteful computation and propagation that is

determined not to contribute to the final solution for the

query. Pruning leads to early termination relative to the

standard iterative algorithm. The pruning strategy is easily

identifiable for monotonic problems, i.e. the solution for the

property value being computed monotonically increases or

decreases through the iterations of the algorithm before

stabilizing to its final value.

In evaluating the query we have direction choice. That is,
we can either computeQ(s { d,G) in forward direction (i.e.,

Algorithm 1 Point-to-Point with Simple Pruning (sPr).

1: function Evaluate (Q (s { d , Graph))

2: ▷ Initialize active set of vertices

3: Active← Initialize (Q (s { d))

4: ▷ Iterate

5: while Active , ϕ do

6: Active← Process (Active, d , Graph)

7: end while

8: end function

9:

10: function Process (Active , dest, Graph)

11: newActive← ϕ
12: ▷ Compute new property values

13: for all v ∈ Active do
14: for all e ∈ Graph.outEdges(v) do
15: chanдed ← edgeFunction (e)
16: if chanдed and donotPrune (e .dest , dest) then
17: newActive← newActive ∪ {e .dest}
18: end if

19: end for all

20: end for all

21: return newActive

22: end function

starting from s and propagating forward along the directed

edges in G), or alternatively, we can compute the query in

backward direction as Q(d { s, Ĝ) where we start at d and

propagate forward in Ĝ , the edge reversed graph correspond-

ing to G (i.e., Ĝ is obtained by reversing the direction of all

edges in G). We show that direction impacts execution time.

It is crucial to note that point-to-point queries can also

be formulated on undirected graphs. While the techniques

presented in this paper work for undirected graphs as well,

we present them using directed graphs for simpler exposi-

tion. In particular, our direction monitoring and selection

techniques are primarily based on the direction of value

propagation from/to source/destination vertices, and hence,

remains oblivious to the graph being directed or undirected.

In Algorithm 1 Evaluate carries out push-style evaluation
of a query for vertex pair (s { d) starting at the source

vertex s by iteratively processing active vertices by calling

Process till the set of active vertices becomes empty and

propagation ceases. In contrast to standard algorithm, it con-

structs a pruned active set. Pruning is achieved by comparing

the newly computed value of each vertex v with that of

destination vertex d (line 16). If it is determined that propa-

gating v’s current value through the graph cannot cause a

change in d’s value, then propagation of v’s value is pruned.
Consider the evaluation of shortest path from s to d . At any
execution point, d’s current value represents the length of

the shortest path from s to d that has been found so far. Ifv’s
value, that represents the length of the shortest path from s
to v , is greater than or equal to d’s value then it need not be

propagated as it can only discover longer paths to d .

Figure 1. Shortest path evaluation SP(S { D).

Active A B C D E F G H

– ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

S (= 0) 2 1 1 ∞ ∞ ∞ ∞ ∞

A,B,C 2 1 1 3 ∞ 3 3 3

Early Termination
D,F,G,H 2 1 1 3 5 3 3 3

E 2 1 1 3 5 3 3 3

ϕ Normal Termination

Table 1. Shortest Path Query: Forward sPr.

Active S A B C E F G H

– ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

D (=0) ∞ ∞ 2 ∞ 2 1 2 ∞

B,E,F,G 3 2 2 3 2 1 2 4

A 3 2 2 3 2 1 2 4

ϕ Early Termination

Table 2. Shortest Path Query: Backward sPr.

The above framework relies upon the user to provide two

essential functions for each algorithm: edgeFunction is

the main computation function that updates the property

value of a destination vertex and returns whether the update

succeeded or not (casMin(a, b) sets a = b if b < a atomi-

cally using compare-and-swap); and donotPrune which

determines whether the propagation can be pruned. For illus-

tration, the two functions for the shortest path point-to-point

query SP(s { d,G) are given below.

edgeFunction (e): casMin(e .dest .value ,
e .source .value + e .weiдht)

donotPrune (v, d): v.value < d.value
To solve the query in backward direction we can instead

compute SP(d { s, Ĝ).

The example in Figure 1 illustrates the above algorithm

and the early termination it achieves via pruning. Table 1

shows the progress of the shortest path computation from

S to D, iteration by iteration. In each row the set of active

vertices that are processed is presented along with the up-

dated values following their processing. The values marked

in green are those that have changed requiring further prop-

agation while at the same time are not pruned; thus they are

used to compute the Active set for the following iteration.

The values marked in red are those that have changed but

pruned because they are greater than or equal to the value of

the D, the destination vertex. Therefore pruning of vertices

F, G, H in row three leads to early termination. If pruning is

Graphs #Edges #Vertices #Queries
Twitter (TTW) [16] 1.5B 41.7M 10K

LiveJournal (LJ) [3] 69M 4.8M 10K

Twitter (TT) [5] 2.0B 52.6M 10K

PokeC (PK) [32] 31M 1.6M 10K

Table 3. Real world input graphs.

G Queries WP SP NP BFS
TTW FwdR 49.26% 44.55% 15.24% 31.07%

BwdR 13.30% 18.01% 47.32% 31.49%

FwdNR 20.41% 20.41% 20.41% 20.41%

BwdNR 17.03% 17.03% 17.03% 17.03%

LJ FwdR 10.81% 13.23% 12.84% 7.89%

BwdR 37.41% 34.99% 35.38% 40.33%

FwdNR 24.75% 24.75% 24.75% 24.75%

BwdNR 27.03% 27.03% 27.03% 27.03%

TT FwdR 41.86% 10.61% 28.86% 29.23%

BwdR 12.40% 43.65% 25.40% 25.03%

FwdNR 35.02% 35.02% 35.02% 35.02%

BwdNR 10.72% 10.72% 10.72% 10.72%

PK FwdR 3.60% 5.27% 1.65% 6.69%

BwdR 17.30% 15.63% 19.25% 14.21%

FwdNR 38.55% 38.55% 38.55% 38.55%

BwdNR 40.55% 40.55% 40.55% 40.55%

Table 4. Characteristics of 10,000 queries used in

experiments: Fwd – Forward faster; Bwd – Backward faster;

R – Reachable; and NR – Non-reachable.

not performed the algorithm takes two additional iterations

to terminate. Note that during these iterations the value for

vertex D does not change further confirming that the pro-

cessing of vertices that were pruned does not contribute to

the query solution. Table 2 illustrates backward evaluation of

the shortest path from S to D . When we compare the results

of Table 2 with that of Table 1 we observe that cost of the

two algorithms vary. In this case we find that the forward

algorithm processes fewer active vertices (and edges) and

takes fewer iterations.

Next we present results of our study. We first describe the

experimental setup below.

Experimental setup – For this study we implemented our

framework using Ligra [31] which uses the Bulk Synchro-

nous Model [33] and provides a shared memory abstraction

for vertex algorithms which is particularly good for graph

traversal. The study is based upon four algorithms – Short-

est Path (SP), Widest Path (WP), Number of Paths (NP), and

Breadth First Search (BFS). We use four input graphs listed

in Table 3 – two are billion edge graphs (TTW, TT) and two

have tens of millions of edges (LJ, PK). For each input graph,

we generated 10,000 queries and used them to evaluate all

algorithms. No vertex appears more than once, either as a

source or destination, in these queries. Moreover, the vertices

chosen as sources and destinations are selected by sampling

all the vertices ordered by their degrees. All experiments

were performed on a 64 core (8 sockets, each with 8 cores)

machine with AMD Opteron 2.3 GHz processor 6376, 512

GB memory, and running CentOS Linux release 7.4.1708.

In this study, the 10,000 queries used are classified into

four distinct categories based upon combination of two prop-

erties: (Fwd vs. Bwd) queries for which forward evaluation

is faster belong to Fwd and those for which backward evalu-

ation is faster belong to Bwd; (NR vs. R) queries that reveal

that destination is non-reachable from the source belong to

NR and queries where destination is reachable from source

belong to R. Therefore, the queries on a given workload can

be divided into four categories: FwdNR, BwdNR, FwdR, and

BwdR. The distribution of the 10,000 queries based upon

faster/slower direction and reachability/non-reachability is

shown in Table 4. We observe there are a good number of

queries of all four types. Note that numbers for NR queries

are same for different benchmarks as they are mainly influ-

enced by graph structure.

Analysis of execution times – We ran all 10,000 queries for

each input on sPr versions of all four graph algorithms

and collected their forward and backward evaluation times.

For reachable queries sPr carries out pruning once it finds

the first approximation of query solution while for non-

reachable queries pruning never takes place as query has no

result. Average execution times of all queries by category

are given in Tables 5 (Non-Reachable) and 6 (Reachable).

Figure 2 shows a representative scatter plot of the execution

times (all plots are shown in later section) – the times of

queries in order of FwdNR FwdR, BwdR, and BwdNR from

left to write are plotted. Based upon the data we make two

key observations.

Figure 2. Forward and Backward Evaluation Times.

Observation 1 – Fwd vs. Bwd: direction is important. Pick-
ing the right direction for solving a query is important. From

Figure 2 we can easily see that for non-reachable queries
the difference in forward and backward execution times is

consistently high and the time in the faster direction is very

small; and for reachable queries the difference between for-

ward and backward evaluation times varies from very large

to very small. This observation holds across all algorithms

and all input graphs as shown by the average times in the

faster direction in Tables 5 and 6. Each table also presents

Graph Queries WP SP NP BFS
TTW FwdNR 0.0130s 1096.52 × 0.0129s 1137.57 × 0.0268s 128.17 × 0.0058s 3.42 ×

BwdNR 0.0365s 318.25 × 0.0258s 562.79 × 0.0303s 145.08 × 0.0089s 105.18 ×

LJ FwdNR 0.0009s 484.40 × 0.0010s 875.85 × 0.0055s 40.90 × 0.00096s 79.90 ×

BwdNR 0.0009s 666.86 × 0.0013s 620.39 × 0.0071s 34.58 × 0.00123s 67.12 ×

TT FwdNR 0.0191s 772.85 × 0.1771s 88.69 × 0.0551s 124.26 × 0.0170s 65.68 ×

BwdNR 0.0282s 620.53 × 0.0154s 1560.24 × 0.0595s 117.32 × 0.0299s 44.69 ×

PK FwdNR 0.0005s 250.34 × 0.0004s 458.73 × 0.0024s 72.98 × 0.0004s 76.02 ×

BwdNR 0.0004s 478.72 × 0.0006s 263.00 × 0.0023s 73.24 × 0.0004s 75.67 ×

Table 5. (sPr on NR queries) Avg. Execution Times in Faster Direction (seconds); and Avg. Slowdown Factor in Slower Direction.

Graph Queries WP SP NP BFS
TTW FwdR 5.5598s 2.21 × 9.5778s 1.33 × 2.2778s 1.21 × 0.2546s 2.12 ×

BwdR 7.5349s 1.51 × 11.177s 1.16 × 2.4258s 1.37 × 0.4611s 1.43 ×

LJ FwdR 0.2480s 2.36 × 0.7036s 1.18 × 0.1316s 1.16 × 0.0437s 1.20 ×

BwdR 0.1645s 4.90 × 0.5869s 1.38 × 0.1205s 1.32 × 0.0355s 1.60 ×

TT FwdR 7.2006s 1.94 × 11.8350s 1.27 × 3.8697s 1.30 × 0.4501s 1.46 ×

BwdR 9.5975s 1.74 × 14.7070s 1.36 × 4.2492s 1.27 × 0.6047s 1.29 ×

PK FwdR 0.0742s 1.87 × 0.1319s 1.16 × 0.0683s 1.10 × 0.0175s 1.26 ×

BwdR 0.0481s 3.68 × 0.1125s 1.31 × 0.0607s 1.31 × 0.0125s 1.47 ×

Table 6. (sPr on R queries) Avg. Execution Times in Faster Direction (seconds); and Avg. Slowdown Factor in Slower Direction.

the factor by which the average execution time increases if

a query is solved in the slower direction as opposed to faster

direction. From Table 6 for NR queries not only is the execu-

tion in faster direction very small (tens of milliseconds), in

the slower direction it is orders of magnitude slower (around

a second). From Table 6 for reachable queries the average

execution time in faster direction is higher (several seconds

for large graphs) and the slowdown factor is lower.

Observation 2 – NR vs. R: reachability is important. Pick-
ing the right direction alone is not enough to achieve the

best performance. We need a strategy for handling both

non-reachable and reachable queries effectively. In partic-

ular, we note that FwdNR/BwdNR queries can be evalu-

ated significantly faster than FwdR/BwdR queries – well

over two and often over three orders of magnitude faster.

For example, for SP on TTW, average times for FwdNR/B-

wdNR are 0.0129s/0.0258s while for FwdR/BwdR they are

9.5778s/11.177s. In other words, since at the start of a query

evaluation we do not know whether it is NR or R, we need

to design a strategy that quickly classifies it as NR or R and

then appropriately handles them to get fast execution times.

Next we develop a two-phase algorithm that exploits the

above observations in delivering fast evaluation of all four

types of queries.

3 PnP Two-Phase Framework

The goal of this section is to develop a general algorithm that

delivers execution times that are close to the execution times

in the faster direction for all types of queries. Based upon

the observations in the preceding section, we can set the

requirements that must be met by the point-to-point query

evaluation algorithm as follows:

• RQ1: effectively handle both non-reachable and reach-
able queries (follows from first observation);

• RQ2: identify the faster direction and use it for query
evaluation (follows from second observation); and
• RQ3: maximize the use of pruning for reachable queries
for quickly responding to each query.

In this work we develop an algorithm that by design meets

RQ1, predicts direction to meet RQ2, and embodies a signifi-

cantly enhanced pruning strategy to meet RQ3.
In general, both reachability (RQ1) and direction (RQ2)

requirements must be handled dynamically as queries con-

structed from sampling of vertices were found to fall in all

four categories (see Table 4). Clearly reachability is function

of the graph structure and thus without exploring the graph

at runtime we cannot determine whether a query is a NR

query or R query. The choice of direction matters because

the cost of forward evaluation is high if forward propagation

encounters many high outdegree vertices while backward

evaluation is high if backward propagation encounters many

high indegree vertices. We cannot simply statically look at

the graph and select the same preferred direction for all

queries as the overall characteristics of G and Ĝ are similar.

In Figure 3 we plot the in-degree and out-degree distributions

for the LiveJournal graph. As we can see, both in-degrees

and out-degrees have similar power-law distributions. Thus,

for a given query, without dynamically exploring the graph

in both directions we cannot establish a basis for selecting

the preferred direction. Finally for meeting requirement RQ3

we need to quickly find the first approximation of the query

result as soon as possible so that pruning is enabled early

and greater fraction of execution is optimized via pruning.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

N
u
m

b
e
r

o
f

V
e
rt

ic
e
s

Degree

'LJ_InMinusOutDegree > 0'

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

N
u
m

b
e
r

o
f

V
e
rt

ic
e
s

Degree

'LJ_OutMinusInDegree > 0'

Figure 3. In- and Out-Degree Distribution of LiveJournal.

Therefore, to simultaneously meet all three requirements,

we propose a two-phase algorithm such that Phase 1 dynam-

ically and very quickly finds a suitable configuration (for

NR vs. R; choose Fwd vs. Bwd) for evaluating a given query

and then execution transitions to Phase 2 that evaluates the

query under the selected configuration. More specifically,

Phase 1 classifies the query as non-reachable or reachable

(RQ1), selects preferable direction for query evaluation as

forward or backward (RQ2), and enables pruning by finding

a safe estimate of query’s result value (RQ3). That is, Phase 1

sets the stage for requirements stated above to be met. Upon

completion of Phase 1 execution moves to Phase 2 that solves

the query in the preferable direction using the safe estimate

of query’s result to prune graph exploration. Next we discuss

the design of phases in greater detail.

Phase 1: Bidirectional Exploration for Identifying Con-
figuration. At the start we are faced with two questions:

NR vs. R? and Fwd vs Bwd?. Thus, Phase 1 must decide which

one to target first. Recall that in the previous section we ob-

served that for NR queries typically one direction solves the

query very quickly than any other case, i.e. for NR query in

opposite direction or R query in any direction. The reason

for this behavior is that typically, NR query evaluation in

faster direction examines only a small fraction of the graph

that is examined for its evaluation in slower direction, or

evaluation of a R query examines a very large fraction of the

graph. For example, for a sample of 10 NR and 10 R queries

for WP on LiveJournal, we found that average percentage of

vertices visited in Fwd (Bwd) direction was < 1% (87%) for

NR queries and 84% (84.4%) R queries.

Given the above observation, to answerNR queries quickly

we design Phase 1 to first distinguish between NR and R

queries by attempting to identify a directed path from the

source vertex and the destination vertex. Since we do not

know which direction, forward or backward, is preferable,

Phase 1 uses bidirectional exploration in both directions: for-

ward from the source vertex; and backward from the destina-

tion vertex. During bidirectional exploration, the exploration

in the fast direction quickly establishes that the query is of

NR kind while relatively little time is expended in exploring

the graph in the slower direction. In other words, NR queries

will be identified and answered very quickly without even

having to predict the preferable direction.

On the other hand, if the query is a R query, the bidirec-

tional exploration runs a bit longer till Phase 1 determines

the existence of a path from source to destination. This hap-

pens when bidirectional exploration causes some vertex to

be visited from both forward and backward directions. As

soon as this occurs, we know that we have a R query. The

extra time spent executing allows us to observe the progress

in both directions and make a choice of direction. Moreover,

since a path has been fully traversed we can generate our

first estimate of query’s result that can be used for prun-

ing. Now the execution transitions to Phase 2 by continuing

propagation in the chosen direction while terminating prop-

agation in the other direction, with pruning turned on right

from start of Phase 2. Phase 1 is fast, pruning is maximized.

The above approach meets all the requirements as follows:

(RQ1) it optimizes evaluation of both NR and R queries; (RQ2)

it addresses direction problem by avoiding it for NR queries

that can be quickly solved using bidirectional exploration

and by predicting the preferable direction for R queries; and

(RQ3) it guarantees that pruning is turned on for Phase 2.

Next we explain the details of how the desirable direction

is predicted and safe approximation of query solution is

computed to enable pruning at the start of Phase 2.

Direction prediction – To predict the faster direction we

considered a number of measures: (Work remaining) as esti-
mated by number of active vertices in each direction; (Work
performed) as estimated by tracking the number of vertices

processed in each direction; and (Hybrid) method that uses

a combination of preceding two measures giving more im-

portance to the first measure. Our experience showed that

the first measure provides the highest prediction rate and

thus, the direction for which there are fewer active vertices

is predicted as the faster direction and used in Phase 2. An

advantage of this measure is that it does not incur extra

tracking overhead involved in the other measures.

Safe approximation of query solution – Since for some ver-

tex v we have at least found a path from source to v in the

forward direction and a path from v to destination in the

backward direction, we can compute an estimate for query’s

result. When multiple vertices are visited from both direc-

tions we select the best approximation provided across all

these vertices. Tomake use of the two-phase algorithm of our

PnP framework, the user must provide two additional func-

tions: one for the estimation of query result, estimateAp-

prox, from a single vertex; and another for safe approxi-

mation for a query, safeApprox, from estimateApprox

values of all vertices that are visited in both directions. We

illustrate these by providing the functions for the shortest

path query SSSP(s { d).

estimateApprox(v) v.
−−−−→
value(s) + v.

←−−−−
value(d)

safeApprox ∀ v min (estimateApprox(v))

Phase 2: Query Evaluation. Upon termination of Phase 1,

the execution transitions into Phase 2 where the propagation

in the predicted direction is run to completion while the

Algorithm 2 Two-Phase PnP Evaluation (2Phase).

1: function 2Phase(Query (s { d,G))

2: ▷ Initialization
3: VisitF (*)← VisitB (*)← False

4: FActive← Initialize (Query (s { d,G))

5: BActive← Initialize (Query (d { s, Ĝ))

6: safeApprox← Query.Initialize

7: ▷ Phase 1
8: while true do

9: ▷ Process active vertices
10: Processed← FActive ∪ BActive

11: FActive← Process (FActive, d , G)

12: BActive← Process (BActive, s , Ĝ)

13: ▷ Update Visit Flags of processed vertices
14: VisitF (v)← True, ∀ v ∈ FActive
15: VisitB (v)← True, ∀ v ∈ BActive
16: ▷ Case I: Non-Reachable Query
17: if FActive = ϕ ∨ BActive = ϕ then

18: return (Not-Reachable)

19: end if

20: ▷ Case II: Reachable Query
21: for all v ∈ Processed do

22: if VisitF (v) ∧ VisitB (v) then
23: Reachable← true

24: newValue← estimateApprox(v)
25: safeApprox←

26: fapprox (newValue, safeApprox)

27: end if

28: end for all

29: if Reachable then

30: Prediction←

31: |FActive| > |BActive|

32: ? Backward : Forward

33: break
34: end if

35: end while

36: ▷ Phase 2
37: if Prediction = Forward then

38: ▷ Initialize destination d vertex value
39: d.value = safeApprox

40: ▷ Continue iterating: forward direction only
41: while FActive , ϕ do

42: FActive← Process (FActive, d , G)

43: end while

44: return (Reachable, d.value)

45: else ▷ Prediction is Backward
46: ▷ Initialize source s vertex value
47: s.value = safeApprox

48: ▷ Continue iterating: backward direction only
49: while BActive , ϕ do

50: BActive← Process (BActive, s , Ĝ)

51: end while

52: return (Reachable, s.value)

53: end if

54: end function

execution in the non-predicted direction is discontinued.

Note that all the processing performed in Phase 1 for the

predicted direction is not wasted as computation continues

from where it was for the predicted direction. At the start of

Phase 2, if the predicted direction is forward the initial value

for destination vertex d is set to safeApprox produced by

Phase 1 and if the predicted direction is backward the initial

value for the source vertex s is set to safeApprox.

Algorithm 2 summarizes the two-phase algorithm. The

iterative loop (lines 7–35) representing Phase 1 processes

active vertices and identifies active vertices for the next itera-

tion. Phase 1 terminates under two conditions. First is when

the query is found to be non-reachable because the active set
in one of the directions becomes empty and thus the algo-

rithm terminates (see lines 16–19). Second is when the query

is found to be reachable in which case safe approximation

is computed and direction for Phase 2 is predicted (see lines

20–34). The Phase 2 (lines 36–53) simply continues process-

ing in the predicted direction, using the safe approximation,

and terminates when the algorithm converges. During pro-

cessing of active vertices in Phase 1 pruning is always off

while in Phase 2 pruning is always on.

Note that the proposed algorithm satisfied all three re-

quirements. Our approach handles both non-reachable and

reachable queries (RQ1). For non-reachable queries our ex-

ecution time is expected to be close to the faster direction

time which is much smaller than the slower direction time.

For reachable queries since Phase 1 is fast, Phase 2 is highly

optimized as our algorithm accurately predicts the faster di-

rection (RQ2) and maximizes the use of pruning by ensuring

that it is enabled right from the start of Phase 2 (RQ3).

Applicability of PnP. The PnP two phase algorithm min-

imizes computations by limiting propagation of values via

direction selection and safe pruning. We further understand

how direction selection and pruning can be applied to a

wide variety of graph algorithms. Graph algorithms are typi-

cally convergence based iterative algorithms wherein vertex

values propagate as they change across iterations. These

propagations happen across the structure of the input graph,

and hence, they can be viewed as occurring in certain pat-

tern or direction. At an elementary level, propagation of a

vertex value occurs in the “outward” direction through out-

neighbors of the vertex; for example, in Algorithm 1, the

out-neighbors of vertices get processed (line 14) as values

propagate across the graph. However, an important charac-

teristic of point-to-point queries is the two special vertices

(a source and a destination) that concretely define an ex-

pected direction for propagation: forward direction from

source to destination. PnP further extracts the hidden re-

verse direction to leverage the disparity in propagation and

limits overall computations via pruning. Path based algo-

rithms naturally fit this class of point queries where values

G Algorithm WP SP NP BFS
TTW 2Phase 0.1438s (99.1%) 0.1447s (99.1%) 0.1397s (97.1%) 0.1007s (89.2%)

sPr:FastNR 0.0237s 0.0188s 0.0283s 0.0072s

sPr:SlowNR 13.0250s 14.6090s 3.8500s 0.8727s

LJ 2Phase 0.0191s (96.6%) 0.0188s (77.8%) 0.0271s (91.0%) 0.0188s (77.5%)

sPr:FastNR 0.0009s 0.0011s 0.0064s 0.0011s

sPr:SlowNR 0.5337s 0.8200s 0.2365s 0.0796s

TT 2Phase 0.1744s (99.0%) 0.1991s (99.7%) 0.2672s (96.9%) 0.1486s (88.8%)

sPr:FastNR 0.0212s 0.1392s 0.0562s 0.0200s

sPr:SlowNR 15.3860s 17.6580s 6.8800s 1.1686s

PK 2Phase 0.0084s (94.3%) 0.0085s (94.8%) 0.0122s (94.1%) 0.0085s (71.6%)

sPr:FastNR 0.0004s 0.0005s 0.0023s 0.0004s

sPr:SlowNR 0.1410s 0.1553s 0.1708s 0.0289s

Vertices Visited
0.1767%

0.0000029%

90.62%

0.38 %

0.0299 %

88.95 %

0.47%

0.0000024%

84.60%

0.0688%

0.000066%

80.77%

Table 7. NR Queries 2Ph vs. sPr: Average Execution Times (seconds); and % of Vertices Visited.

are expected to be propagated from source to destination.

For general algorithms like PageRank, every vertex acts like

a source; thus, it is difficult to deduce a single direction of

flow of values that can be leveraged by PnP.

On the other hand, pruning of value propagation occurs

when we know (a) what to prune; and, (b) how to prune it.

— What to prune? While PnP prunes value propagations

(or edge computations) in a broader sense, the semantics

of each graph algorithm needs to be carefully analyzed to

identify the exact propagation paths across which values

will never be transferred. These semantics can be captured

by characterizing the aggregation function used to compute

vertex values. The most common aggregation functions used

across graph algorithms are shown in Table 8. Since selec-

tion based aggregation functions (min, max, or) effectively
select values coming from a single incoming path to a given

vertex, PnP can safely prune values coming from other in-

coming paths to a vertex, hence supporting several graph

algorithms, some of which are listed in Table 8. Complete ag-

gregations (sum, product) on the other hand combine values

coming from multiple incoming edges into a single value.

This means the value contributions from individual incoming

paths cannot be discarded throughout the computation, and

hence, PnP does not prune value propagations but instead

only performs direction selection. In our experiments (§4),

we use NumPaths as an example for complete aggregation

to show that PnP is very useful even without pruning.

Aggregation Type Graph Algorithms

min, max, or Selection

Shortest Paths, Widest Paths,

Connected Components, Reachability

Minimum Spanning Tree

Betweenness Centrality

sum, product Complete

NumPaths, PageRank, SpMV,

Belief Propagation

Table 8. Applicability of PnP.

— How to prune? Once we have identified the propaga-

tion paths to prune, we rely on the algorithmic semantics to

perform pruning. Vertex values for path based algorithms

that rely on selection functions often progress in a mono-

tonic fashion, i.e., subsequent values of vertices are either

non-increasing (e.g., shortest paths) or non-decreasing (e.g.,

widest paths). For such algorithms, PnP monitors the desti-

nation vertex’s values and performs numerical comparison

(≥, ≤) to safely prune out propagations that can never con-

tribute to final result. For algorithms beyond monotonic con-

vergence (e.g., PageRank), other algorithm-specific pruning

conditions can be formulated by the user.

4 Evaluation of PnP Two-Phase

We evaluate the two-phase algorithm with four input graphs

and four graph analytics benchmarks. We use four input

graphs from Table 3. Four types of queries are considered

– Widest Path (WP), Shortest Path (SP), Number of Paths

(NP), and Breadth First Search (BFS). We first evaluate the

two-phase algorithm for non-reachable queries and then for

reachable queries. The algorithms compared are as follows:

• 2Phase (2Ph) – our two-phase algorithm (from §3); &

• sPr – simple Pruning algorithm that can be run in

forward or backward direction (from §2).

4.1 Evaluation for Non-Reachable (NR) Queries

The execution times for 2Phase as well as sPr in forward

and backward directions for all non-reachable queries are

shown in the scatter plots of Figure 4. As we can see, for vast

majority of queries the execution time of 2Phase algorithm
is very close to the time for the faster direction which is

significantly smaller that the time in the slower direction.

The average times across all queries for sPr in the faster

direction (sPr:FastNR) and slower direction (sPr:SlowNR)
as well as 2Phase algorithm can be found in Table 7. The

effectiveness of 2Phase algorithm is computed as

sPr : SlowNR − 2Phase

sPr : SlowNR − sPr : FastNR
× 100

which computes actual benefit of two-phase as a percentage
of available benefit – this number is shown in parenthesis in

Table 7. This number is often over 90%. The last column in

the table (Vertices Visited) indicates the fraction of vertices

in the entire graph that are visited by each algorithm. The

numbers for sPr:FastNR and sPr:SlowNR confirm that a tiny

Figure 4. Execution Times of NR Queries: [Left] sPr Forward (Green) & sPr Backward (Gold); and [Right] 2Ph (Red).

Figure 5. Execution Times of R Queries: [Left] sPr Forward (Green) & sPr Backward (Gold); and [Right] 2Ph Direction

Correctly Predicted (Blue) & 2Ph Direction Mispredicted (Red).

G Algorithm WP SP NP BFS
TTW 2Ph 3.5116s 10.827s 2.9134s 0.5396s

2Ph100% 3.2826s 10.466s 2.6813s –

sPr:FastR 5.9797s 10.038s 2.3898s 0.3585s

sPr:SlowR 12.0750s 12.793s 3.1887s 0.6007s

LJ 2Ph 0.1998s 0.6928s 0.1179s 0.0781s

2Ph100% 0.1572s 0.6543s 0.1169s –

sPr:FastR 0.1832s 0.6190s 0.1234s 0.0369s

sPr:SlowR 0.7569s 0.8168s 0.1575s 0.0560s

TT 2Ph 4.3782s 16.727s 4.7800s 0.8338s

2Ph100% 3.8370s 15.049s 4.5825s –

sPr:FastR 7.7483s 14.145s 4.0473s 0.5214s

sPr:SlowR 14.6030s 19.041s 5.2159s 0.7136s

PK 2Ph 0.0705s 0.1392s 0.0980s 0.0342s

2Ph100% 0.0631s 0.1361s 0.0968s –

sPr:FastR 0.0526s 0.1174s 0.0613s 0.0141s

sPr:SlowR 0.1705s 0.1492s 0.0789s 0.0195s

Table 9. R Queries: Avg. Execution Time Per Query (secs).

fraction of the vertices are visited (< 0.03%) in the fast direc-

tion while vast majority of vertices are visited (80-90%) in

the slower direction. Finally, two-phase algorithm visits less

than 0.5% percent of the vertices explaining its effectiveness

for non-reachable queries.

4.2 Evaluation for Reachable Queries

Let us analyze the performance of the two-phase algorithm

for reachable queries. We again compare its performance

with that of the limits of performance of the sPr algorithm
(i.e., in faster and slower directions for all queries). The scat-

ter plots for reachable queries are shown in Figure 5.

Average execution times across all reachable queries for al-
gorithms sPr and 2Phase are given in Table 9. As we see

in most cases execution times of algorithms are related as

follows: sPr:FastR < 2Phase < sPr:SlowR. This is to be ex-

pected as sPr:FastR is in a sense ideal time where overhead

of prediction is nil and prediction rate is 100%. In comparison

2Phase algorithm involves overhead of direction prediction

and has less than perfect prediction rate. However, as we

can see 2Phase is frequently far closer to sPr:FastR than

sPr:SlowR. This indicates that 2Phase is highly effective. To

further demonstrate its effectiveness, we also present the

average execution time 2Phase100% which is computed as-

suming perfect 100% prediction rate. We can see that 2Phase
is only slightly greater than 2Phase100%. Finally, it should be
noted that in some cases 2Phase < sPr:FastR (WP on TTW,

NP on LJ) or at least 2Phase100% < sPr:FastR (WP on LJ).

This is because the 2Phase pruning strategy significantly

outperforms the pruning carried out by sPr and thus more

than offsets the cost of prediction. Note that for BFS no times

for 2Phase100% are provided as BFS terminates at the end

of Phase 1. Next we further analyze prediction and pruning.

Prediction effectiveness of 2Phase algorithm is analyzed in

Table 10. The prediction rates (PR) of the 2Phase algorithm
are presented – on an average the prediction rates exceed

G Pred WP SP NP
TTW PR 92.74% 87.69% 56.51%

∆P 11.64s 5.67s 0.90s

∆MP 3.16s 2.93s 0.53s

LJ PR 86.35% 71.67% 90.17%

∆P 0.61s 0.22s 0.04s

∆MP 0.31s 0.14s 0.01s

TT PR 88.32% 57.24% 58.39%

∆P 12.75s 4.84s 0.45s

∆MP 4.63s 3.92s 0.48s

PK PR 87.99% 87.80% 81.67%

∆P 0.13s 0.06s 0.015s

∆MP 0.06s 0.026s 0.003s

Table 10. 2Ph Prediction Effectiveness: (PR) Prediction Rate

of 2Phase Algorithm; and Difference Between Average

Execution Times (seconds) in Faster and Slower Directions

for Predicted Queries (∆P); and Mispredicted Queries

(∆MP). BFS is omitted as it does not require Phase 2.

G Algorithm WP SP NP
TTW 2Ph 28% 1.6% 6.1%

2Ph100% 30% 1.7% 6.1%

sPr:FastR 54% 31% 64%

sPr:SlowR 45% 36% 74%

LJ 2Ph 21% 3.7% 22%

2Ph100% 22% 3.1% 22%

sPr:FastR 32% 8.3% 45%

sPr:SlowR 42% 18% 86%

TT 2Ph 16% 1.2% 3.3%

2Ph100% 14% 1.0% 2.6%

sPr:FastR 29% 17% 28%

sPr:SlowR 41% 27% 49%

PK 2Ph 2.6% 1.1% 2.9%

2Ph100% ≈ 0% ≈ 0% ≈ 0%

sPr:FastR ≈ 0% ≈ 0% ≈ 0%

sPr:SlowR 41% 25% 49%

Table 11. R Queries: % of Execution Time for which

Pruning is Inactive. BFS is omitted because it does not

require Phase 2 as it terminates at the end of Phase 2.

80%. For the two cases where 2Phase < sPr:FastR we can see

that the prediction rates exceed 90% (92.74% forWP on TTW;

90.17% for NP on LJ). Additional data in Table 10 shows that

for queries where predictions are correct, on average, the

difference in execution times in two directions (∆P) is typi-
cally greater than for queries where missprediction occurs

(∆MP). That is, benefit of correct predictions is higher than
the loss due to incorrect predictions.

Pruning effectiveness of 2Phase algorithm is analyzed in

Table 11. We present the percentage of execution time over

which pruning is not enabled – lower numbers are better. For

2Phase algorithm this time is the percentage of execution

time spent in Phase 1. For sPr algorithm we found this time

by noting the point at which the first approximation of query

G Algorithm WP SP NP BFS
TTW 2Ph 5.82m 22.17m 27.86m 6.93m

2Ph100% 5.17m 21.80m 15.27m –

sPr:FastR 14.65m 32.46m 54.13m 11.54m

sPr:SlowR 51.16m 55.34m 48.06m 13.46m

LJ 2Ph 1.58m 6.12m 0.32m 0.80m

2Ph100% 1.24m 6.31m 0.29m –

sPr:FastR 1.98m 6.85m 3.50m 0.85m

sPr:SlowR 8.47m 12.15m 5.72m 2.13m

TT 2Ph 7.56m 30.56m 42.13m 7.51m

2Ph100% 6.27m 39.07m 42.13m –

sPr:FastR 16.74m 59.87m 54.10m 12.04m

sPr:SlowR 60.03m 50.34m 63.87m 17.77m

PK 2Ph 0.61m 1.38m 0.39m 0.28m

2Ph100% 0.56m 1.37m 0.77m –

sPr:FastR 0.81m 1.70m 2.57m 0.37m

sPr:SlowR 2.70m 2.99m 3.46m 0.67m

Table 12. R Queries: Average Active Vertex Count Per

Query (in millions).

result is generated for use in pruning during remainder of the

execution. From the results we can see that for the 2Phase
algorithm this time is often significantly smaller than for

sPr:FastR algorithm. That is, 2Phase pruning is substantially
better than simple pruning performed by sPr.

Tables 12 and 13 present the work performed in terms of

total number of active vertices encountered and number of

iterations for convergence. As we can see, the number of

active vertices is significantly smaller for 2Phase in compari-

son to sPr:FastR. This reduction is the highest for NP because
the SafeApprox is computed by multiplying the NP values

in forward and backward direction causing pruning to be

highly effective. This is another indicator of the enhanced

pruning strategy of 2Phase algorithm being significantly

superior than that of sPr. On the other hand, the average

number of iterations for 2Phase and sPr:FastR are fairly close.

Note that even though the 2Phase algorithm for BFS termi-

nates at end of Phase 1, its vertex computations count is

consistently lower than that for sPr:FastR indicating that the

bidirectional traversal is more effective that unidirectional

traversal. Finally, occasionally 2Phase performs fewer active

vertices than 2Phase100% (e.g., SP on LJ). This is because the

runtime cost depends upon additional factors (e.g., number

of edges associated with active vertices, cache misses etc.),

i.e. the direction in which fewer active vertices are processed

can have higher execution time.

Beamer’s Bidirectional BFS [4] vs. Two-Phase PnP.Recently
bidirectional BFS was proposed by Beamer that switches

directions at iteration boundaries to minimize the work per-

formed – the frontier sizes in two directions are compared to

select the cheaper direction for the next iteration. Although

this is an effective algorithm, PnP relies upon direction se-

lection over bidirectional search. First, PnP is general which

solves problems besides BFS while Beamer’s algorithm only

G Algorithm WP SP NP BFS
TTW 2Ph 5 9 5 4

2Ph100% 4 9 4 –

sPr:FastR 5 9 5 4

sPr:SlowR 16 12 5 4

LJ 2Ph 10 28 4 6

2Ph100% 6 27 4 –

sPr:FastR 7 27 7 6

sPr:SlowR 47 29 7 6

TT 2Ph 5 9 5 4

2Ph100% 4 10 5 –

sPr:FastR 5 11 5 4

sPr:SlowR 17 10 5 4

PK 2Ph 8 14 4 5

2Ph100% 6 14 4 –

sPr:FastR 6 14 7 5

sPr:SlowR 20 16 7 5

Table 13. R Queries: Average Number of Iterations Per

Query (rounded).

G Algorithm WP SP NP BFS
#Iter. #Iter. #Iter. #Iter.

TTW 2Ph 5 9 5 4

noPr:FastR 20 21 23 19

noPr:SlowR 21 21 27 20

LJ 2Ph 10 28 4 6

noPr:FastR 20 30 15 14

noPr:SlowR 46 32 16 15

Table 14. No-pruning (nPr) vs. Pruning in Two-Phase.

applies to BFS. Second, due to PnP’s aggressive pruning, the

number of iterations in the two-phase algorithm are greatly

reduced and this limits the potential benefits of bidirectional

approach. Table 14 shows that the number of iterations of

two-phase are much smaller than for no-pruning (noPr) sce-
nario considered in bidirectional BFS. Thus, bidirectional

approach is not expected to yield significant additional ben-

efit in the presence of pruning.

4.3 Quegel vs. PnP

Finally we compare the performance of PnP with Quegel,

that is aimed at point-to-point iterative graph analytics. Ta-

ble 15 shows the average execution times of PnP for 50

queries of each of four kinds on a single 8-core machine, and

the average relative speedups achieved by PnP over Quegel

on 1 and 4 machines (8-cores per machine). Quegel’s opti-

mization that combines messages with the same destination

vertex is turned on, and results are shown for Quegel’s bidi-

rectional BFS (BiBFS) as well as unidirectional BFS. On an

average across all types of queries, PnP on a single machine

outperforms Quegel on four (one) machines by 8.2× to 3116×

(7× to 1517×). Furthermore, it was interesting to observe that

Quegel’s BFS performed better than it’s BiBFS in few cases;

nevertheless our prediction and pruning strategies allowed

PnP to greatly outperform both Quegel’s BiBFS and BFS.

Q G PnP :: 1 machine
WP SP NP BFS

Fw
dN

R LJ 0.020s 0.020s 0.037s 0.030s

PK 0.007s 0.009s 0.011s 0.013s

B
w
dN

R LJ 0.027s 0.028s 0.045s 0.034s

PK 0.007s 0.007s 0.012s 0.013s

Fw
dR LJ 0.035s 0.198s 0.200s 0.136s

PK 0.013s 0.081s 0.151s 0.054s

B
w
dR LJ 0.042s 0.169s 0.214s 0.152s

PK 0.012s 0.071s 0.148s 0.055s

Quegel :: 1 machine
WP SP NP BiBFS BFS
12.9× 13.1× 7.02× 11.0× 8.63×

62.5× 45.2× 23.0× 22.9× 31.0×

679.4× 644.5× 877.3× 24.5× 521.1×

1082.9× 1050.9× 1516.8× 22.8× 611.0×

557.9× 97.7× 192.0× 17.5× 115.6×

630.3× 99.5× 114.7× 22.3× 129.6×

438.0× 110.6× 169.7× 19.3× 101.5×

629.6× 113.2× 112.3× 23.8× 122.2×

Quegel :: 4 machines
WP SP NP BiBFS BFS
14.9× 15.1× 8.20× 12.0× 10.2×

58.2× 41.9× 97.1× 24.7× 28.0×

364.8× 344.2× 427.5× 19.2× 290.8×

618.7× 596.1× 3116.1× 23.4× 297.4×

320.8× 56.5× 98.4× 12.0× 67.5×

353.9× 55.2× 229.0× 14.5× 64.4×

262.8× 58.3× 83.0× 13.5× 61.2×

356.6× 63.1× 233.9× 15.5× 61.3×

Table 15. PnP average execution times in seconds for 50 queries of each kind on one 8-core 32 GB machine; and

PnP average speedups over Quegel for the same queries on one and four machines.

5 Related Work

Graph Databases and Query Systems. The work closely re-

lated to ours is Quegel [41]. However, as discussed earlier,

it relies upon offline Hub
2
computation that is limited to

shortest path queries on unweighted graphs and does not

allow graphs to change between queries. All these problems

are addressed by PnP using dynamic pruning and dynamic

direction prediction. Quegel also supports another scenario

where on a distributed system a batch of queries are simulta-

neously solved by efficiently sharingmemory and computing

resources among the queries. This is different from the sce-

nario we consider – solving a stream of queries on a single

machine, and answering each query as quickly as possible.

In contrast while batching improves throughput, it does not

improve latency of query responses. Moreover, the batch-

ing algorithm also relies on Hub
2
pre-computation. Note

that our technique can benefit from connected components

precomputation but we prefer dynamic techniques to avoid

disadvantages of precomputation. There are works that im-

prove performance of specific algorithms (e.g., delta stepping

for SSSP [23]); however, our goal is to develop optimizations

that apply to multiple iterative graph algorithms.

There has been a great deal of work on graph based query

languages (e.g., Gremlin [29]) and query support in graph

databases (e.g., Neo4J and DEX [2, 9, 20]) that enable graph

traversals and joins via lower-level graph primitives (e.g.,

vertices, edges, etc.). However, they are not efficient for iter-

ative graph algorithms over large graphs. Their strength lies

in their ability to program wide range of queries. They are

more suitable neighborhood queries [22, 27, 28, 38] including

query decomposition and incremental processing devoted to

pattern matching [40, 42]. In [27] authors develop algorithms

for efficiently answering k-nearest neighbor queries (k-NN)

that prunes the search to limit the graph that is explored.

In [38] authors develop a fast neighborhood graph search

algorithm using a new data structure called the bridge graph

constructed from a large number of bridge vectors. In [22] a

compressed representation of social networks is proposed

to facilitate computation of neighbor queries. NScale [28] is

another system for neighborhood-centric analytics on large

graphs including analysis tasks such as ego network analysis,

social circles, personalized recommendations, link predic-

tion, influence cascades, and motif [24] counting. Although

GraphX [11] supports both kinds of graph operators (i.e.,

neighborhood aggregation as well as join and structural op-

erators) and can be used for iterative algorithms, it does not

support iterative point-to-point queries.

Graph Processing Frameworks. There are a number of single

machine shared-memory frameworks [1, 15, 26, 31]. Ligra [31]
provides a shared memory abstraction for vertex algorithms

which is particularly good for graph traversal and we build

PnP using Ligra. [26] presents a shared-memory based im-

plementations of these DSLs on a generalized Galois system
and compares its performance with the original implementa-

tions. These frameworks are based on the Bulk Synchronous

Parallel (BSP) [33] model. GRACE [39], a shared memory

graph processing system, uses message passing and provides

asynchronous execution. To efficiently process large graphs

our prior work has employed Graph Reduction [15] and

built a system on top of Galois. On a single machine large

graphs may not fit in memory. Therefore other methods have

been proposed for processing extremely large graphs. For a

single multicore machine a number of out-of-core process-

ing systems have been recently proposed (GraphChi [17],

X-Stream [30], GridGraph [45], DynamicShards [37], Tur-

bograph [12], Flashgraph [44], Bishard [25]). Alternately

distributed systems that combine memories of multiple ma-

chines to handle large graphs can be used (Pregel [21], Pow-

erLyra [7], PowerGraph [10], GraphLab [19], ASPIRE [34],

CoRAL [35]). Asynchronous algorithms are more capable

of tolerating communication latencies of distributed sys-

tems [13, 34, 37, 43].

6 Conclusions

We have developed PnP that incorporates a two-phase algo-

rithm for evaluating iterative point-to-point queries involv-

ing a single source and destination vertex pair. The algorithm

derives its efficiency from selecting the faster direction for

evaluating the query and pruning the computation to achieve

early termination. Our solution is applicable to streaming

graphs. Finally, PnP substantially outperforms Quegel, the

only framework prior for computing point-to-point queries.

Acknowledgments

This work is supported by NSF grants CCF-1524852 and

CCF-1813173 to University of California Riverside.

References

[1] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable graph

exploration on multicore processors. In ACM/IEEE International Conf.
for High Performance Computing, Networking, Storage and Analysis
(SC), pages 1-11, 2010.

[2] A.B. Ammar. Query Optimization Techniques in Graph Databases. In

International Journal of Database Management Systems, Vol.8, No.4,
August 2016.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group for-

mation in large social networks: Membership, growth, and evolution.

In ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), pages 44-54, 2006.

[4] S. Beamer, K. Asanovic, and D. Patterson. Direction-Optimizing

Breadth-First Search. In ACM/IEEE International Conf. for High Per-
formance Computing, Networking, Storage and Analysis (SC), 10 pages,
November 2012.

[5] M. Cha, H. Haddadi, F. Benevenuto, and P.K. Gummadi. Measuring

user influence in twitter: The million follower fallacy. International
AAAI Conference on Web and Social Media (ICWSM), 10(10-17):30, 2010.

[6] D. Chen, C. Tang, B. Sanders, S. Dwarkadas, and M. L. Scott. Exploiting

high-level coherence information to optimize distributed shared state.

InNinth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 131-142, 2003.

[7] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra: Differentiated

Graph Computation and Partitioning on Skewed Graphs. In European
Conference on Computer Systems (EuroSys), Article 1, 15 pages, 2015.

[8] H. Cui, J. Cipar, Q. Ho, J.K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G.R.

Ganger, P.B. Gibbons, G.A. Gibson, and E.P. Xing. Exploiting Bounded

Staleness to Speed Up Big Data Analytics. In USENIX Annual Technical
Conf. (ATC), pages 37-48, 2014.

[9] Developers. Neo4J. Graph NoSQL Database, 2012.

[10] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:

Distributed graph-parallel computation on natural graphs. In USENIX
Symp. on Operating Systems Design and Implementation (OSDI), pages

17-30, October 2012.

[11] J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, and I.

Stoica. GraphX: Graph processing in a distributed dataflow framework.

In USENIX Symp. on Operating Systems Design and Implementation
(OSDI), pages 599-613, 2014.

[12] W-S. Han, S. Lee, K. Park, J-H. Lee, and M-S. Kim, and J. Kim and H. Yu.

TurboGraph: A Fast Parallel Graph Engine Handling Billion-scale

Graphs in a Single PC. In 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 77-85, 2013.

[13] A.F. Harshvardhan, N. M. Amato, and L. Rauchwerger. Kla: A new

algorithmic paradigm for parallel graph computations. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 27-38, 2014.

[14] R. Jin, N. Ruan, B. You, and H. Wang. Hub-accelerator: Fast and

exact shortest path computation in large social networks. CoRR,

abs/1305.0507, 2013.

[15] A. Kusum, K. Vora, R. Gupta, and I. Neamtiu. Efficient Processing of

Large Graphs via Input Reduction. InACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC), pages
245-257, May-June 2016.

[16] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social

network or a news media? In WWW , pages 591-600, 2010.

[17] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi : Large-scale graph

computation on just a PC. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 31-46, 2012.

[18] J. Leskovec. Stanford large network dataset collection.

http://snap.stanford.edu/data/index.html, 2011.

[19] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-

stein. Distributed GraphLab: A framework for machine learning and

data mining in the cloud. Proceedings of the VLDB Endowment 5, 8
(2012), 716-727.

[20] P. Macko, D. Margo, and M. Seltzer. Performance Introspection of

Graph Databases. In ACM International Systems and Storage Confer-
ences (SYSTOR), 10 pages, 2013.

[21] G. Malewicz, M.H. Austern, A.J.C Bik, J.C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski. Pregel: a system for large-scale graph processing.

In ACM SIGMOD International Conference on Management of Data,
pages 135-146, 2010.

[22] H. Maserrat and J. Pie. Neighbor Query Friendly Compression of Social

Networks. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), 9 pages, 2010.

[23] U. Meyer and P. Sanders. ∆-Stepping: A Parallelizable Shortest Path

Algorithm. In Journal of Algorithms, 49:114-152, 2003.

[24] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U.

Alon. Network motifs: simple building blocks of complex networks.

Science, 298.5594, pages 824-827, 2002.

[25] K. Najeebullah, K. U. Khan, W. Nawaz and Y-K. Lee. BiShard Parallel

Processor: A Disk-Based Processing Engine for Billion-Scale Graphs.

In International Journal of Multimedia and Ubiquitous Engineering,
9(2):199-212, 2014.

[26] D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight Infrastruc-

ture for Graph Analytics. In ACM Symposium on Operating Systems
Principles (SOSP), pages 456-471, 2013.

[27] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. k-Nearest Neighbors

in Uncertain Graphs. In Proceedings of the VLDB, VLDB Endowment,

pages 997-1008, 2010.

[28] A. Quamar, A. Deshpande, and J. Lin. NScale: Neighborhood-centric

Analytics on Large Graphs. In International Conference on Very Large
Data Bases (VLDB), VLDB Endowment, Vol. 7, No. 13, pages 1673-1676,

2014.

[29] M. A. Rodriguez. The gremlin graph traversal machine and language

(invited talk). In 15th Symposium on Database Programming Languages
(DBPL), pages 1-10, 2015.

[30] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric

graph processing using streaming partitions. In 24th ACM Symposium
on Operating Systems Principles (SOSP), pages 472-488, 2013.

[31] J. Shun and G. Blelloch. Ligra: a lightweight graph processing frame-

work for shared memory. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages 135-146, 2013.

[32] L. Takac and M. Zabovsky. Data analysis in public social networks. In

International Scientific Conference and International Workshop Present
Day Trends of Innovations, pages 1-6, 2012.

[33] L. G. Valiant. A bridging model for parallel computation. Communica-
tions of the ACM (CACM), 33(8):103-111, 1990.

[34] K. Vora, S-C. Koduru, and R. Gupta. ASPIRE: Exploiting Asynchronous

Parallelism in Iterative Algorithms using a Relaxed Consistency based

DSM. In SIGPLAN International Conf. on Object Oriented Program-
ming Systems, Languages and Applications (OOPSLA), pages 861-878,
October 2014.

[35] K. Vora, C. Tian, R. Gupta, and Z. Hu. CoRAL: Confined Recovery

in Distributed Asynchronous Graph Processing. ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 223-236, April 2017.

[36] K. Vora, R. Gupta, and G. Xu. KickStarter: Fast and Accurate Com-

putations on Streaming Graphs via Trimmed Approximations. ACM
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 237-251, April 2017.

[37] K. Vora, G. Xu, and R. Gupta. Load the Edges You Need: A Generic I/O

Optimization for Distributive Disk-based Graph Algorithms. USENIX
Annual Technical Conference (ATC), pages 507-522, June 2016.

[38] J. Wang, J. Wang, G. Zeng, R. Gan, S. Li, and B. Guo. “Fast Neighbor-

hood Graph Search using Cartesian Concatenation,” In International
Conference on Computer Vision (ICCV), pages 2128-2135, 2013.

[39] G. Wang, W. Xie, A. Demers, and J. Gehrke. Asynchronous large-scale

graph processing made easy. In Conference on Innovative Data Systems
Research (CIDR), pages 3-6, 2013.

[40] F. Wenfei , L. Jianzhong, L. Jizhou , T. Zijing , W. Xin and W. Yinghui.

Incremental Graph Pattern Matching. In ACM SIGMOD International

Conference on Management of Data, pages 925-936, 2011.

[41] D. Yan, J. Cheng, M.T. Ozsu, F. Yang, Y. Lu, J.C.S. Lui, Q. Zheng and W.

Ng. A General-Purpose Query-Centric Framework for Querying Big

Graphs. In Proceedings of the VLDB Endowment, Vol. 9, No. 7, pages
564-575, 2016.

[42] S. Yang, X. Yan, B. Zong and A. Khan. Towards effective partition man-

agement for large graphs. In ACM SIGMOD International Conference
on Management of Data, pages 517-528, 2012.

[43] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. SYNC or ASYNC:

time to fuse for distributed graph-parallel computation. In SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 194-204, 2015.

[44] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A.

S. Szalay. FlashGraph: Processing Billion-Node Graphs on an Array

of Commodity SSDs. In 13th USENIX Conference on File and Storage
Technologies (FAST), pages 45-58, 2015.

[45] X. Zhu, W. Han, and W. Chen. GridGraph: Large-Scale Graph Process-

ing on a Single Machine Using 2-Level Hierarchical Partitioning. In

USENIX Annual Technical Conference (ATC), pages 375-386, 2015.

	Abstract
	1 Introduction
	2 Simple Pruning (sPr) Based Study of Point-to-Point Query Characteristics
	3 PnP Two-Phase Framework
	4 Evaluation of PnP Two-Phase
	4.1 Evaluation for Non-Reachable (NR) Queries
	4.2 Evaluation for Reachable Queries
	4.3 Quegel vs. PnP

	5 Related Work
	6 Conclusions
	References

