
OsirisBFT: Say No to Task Replication for Scalable
Byzantine Fault Tolerant Analytics
Kasra Jamshidi

School of Computing Science
Simon Fraser University
British Columbia, Canada

kjamshid@cs.sfu.ca

Keval Vora
School of Computing Science

Simon Fraser University
British Columbia, Canada

keval@cs.sfu.ca

Abstract
We present a verification-based Byzantine Fault Tolerant
processing system, called OsirisBFT, for distributed task-
parallel applications. OsirisBFT treats computation tasks
differently from state update tasks, allowing the applica-
tion to scale independently from number of expected fail-
ures. OsirisBFT captures application-specific verification
semantics via generic verification operators and employs
lightweight verification strategies with little coordination
during graceful execution. Evaluation across multiple appli-
cations and workloads shows that OsirisBFT delivers high
processing throughput and scalability compared to replicated
processing. Importantly, the scalable nature of OsirisBFT en-
ables it to reduce the performance gap compared to baseline
with no fault tolerance by simply scaling out.

CCS Concepts: • Computer systems organization →

Dependable and fault-tolerant systems and networks;
Distributed architectures; • Computing methodolo-
gies→ Distributed computing methodologies.

Keywords: Distributed Computing, Byzantine Fault Toler-
ance, Data Processing Systems, Resilient Systems.

1 Introduction
This paper presents OsirisBFT, a verification-based Byzan-
tine fault tolerant processing architecture for distributed
task-parallel applications.
Task-parallel applications decompose the workload into

independent tasks performed concurrently by different pro-
cesses. Although task-parallel applications are common in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0435-2/24/03
https://doi.org/10.1145/3627535.3638468

various settings, Byzantine failureswhere faulty machines be-
have arbitrarily are seldom considered despite occurring fre-
quently in practice [47, 55, 60]. For instance, task-parallel ap-
plications in settings like cybersecurity [42], business intelli-
gence [71], and fraud detection [73] are open to threats where
adversaries are incentivized to cause failures in order to gain
access to user data, create outages, or commit unchecked
fraud. Similarly, accidental Byzantine failures are also perni-
cious. Physical failures like memory corruption can create
subtle flaws in the output of a computation even despite
the presence of Error-Correcting Codes [53, 55, 67], with
significant humanitarian [56] and legal [22] consequences.
Use Case: Anomaly Detection. Consider the problem of
detecting anomalies in fast-changing networks. The applica-
tion maintains an up-to-date version of the network graph
using a continuous stream of link updates (insertion/dele-
tion of network links), and performs pattern matching on
the updated portion of the network to identify anomalous
substructures [26]. As shown in Figure 1, the updates are
applied to a multiversioned data store and multiple tasks
perform pattern matching in parallel using the appropriate
versions of the network. The pattern matching computation
(detectAnomaly() in Figure 1) is orders of magnitude more
expensive than performing link updates in the data store
(updateNetwork() in Figure 1).

Here, Byzantine failures can affect the network graph in
the data store as well as the pattern matching computation.
In the first situation, faulty workers can apply incorrect/ma-
licious link updates resulting in inconsistent views of the net-
work graph, hence generating unreliable results computed
from inconsistent data. To safeguard against such failures,
various Byzantine fault tolerant protocols for managing state
have been developed, for example Kauri [59], Basil [70] and
others [1, 5, 11, 19, 29, 40, 49, 50, 80]. These protocols tar-
get applications composed of read/write transactions where
ordering requests via BFT consensus is the major bottleneck.

In the second situation, even if the data store is maintained
correctly, faulty workers performing pattern matching on
correct data can result in incorrect output. For this, solutions
like Medusa [28] and others [27, 57, 63, 69] enable BFT for
applications dominated by computation instead of consensus.
Like these works, our paper targets computation scalability.

94

https://doi.org/10.1145/3627535.3638468
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627535.3638468&domain=pdf&date_stamp=2024-02-20

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Kasra Jamshidi and Keval Vora

updateNetwork(network, linkUpdates) {
 for (u in linkUpdates)
 if (u.addition) network.add(u.link);
 else network.delete(u.link);
}

detectAnomaly(network, linkUpdates) {
 result = {}; p = anomalyPattern();
 for (u in linkUpdates)
 result += match(network, u.link, p);
 return result;
}

Updates

Computations

Multiversioned
Data Store

Input
Tasks

Output
Records

W
or

ke
rs

Figure 1. Anomaly Detection. Update tasks modify the
network graph in data store and computation tasks perform

pattern matching on the modified graph.
At the heart of these BFT solutions are replicated state ma-

chine protocols (RSM) that replicate both application state
and task execution [65]. Specifically, workers are divided into
independent subsets of replicas that all maintain the same
application state and execute the same tasks, such that differ-
ent subsets maintain distinct partitions of application state
and execute different tasks in parallel. In such an approach,
safety and liveness are guaranteed if all subsets containO(f)
workers and at most f workers in each subset are faulty, as
a majority of replicas will compute the correct result.
Limits on Scalability. Replicating application tasks in such
RSM-based systems significantly limits scalability and pro-
cessing throughput. Specifically, a cluster of n workers can
execute at most ⌊n/(2f + 1)⌋1 tasks in parallel using RSM.
This means even with minimum fault tolerance f = 1, pro-
cessing with RSM requires 3× the computation resources as a
regular execution. Figure 2a shows the number of tasks that
can be executed in parallel with RSM as a function of clus-
ter size, and we corroborate this analysis by measuring the
processing throughput in terms of number of result records
generated per second for Anomaly Detection in Figure 2b. As
seen, RSM-based processing on 32 nodes with f = 1 achieves
similar throughput to only 8 nodes without fault tolerance.
Observation. The computation in task-parallel applications
often involves multiple steps that are performed iteratively
(e.g., matching the pattern step-by-step, computing until
error converges, etc.). Hence, computations are often orders
of magnitude more expensive than state updates since the
latter only involve agreement on the ordering of updates and
modifying the underlying data structures.
Although computation in task-parallel applications is

time-consuming, verifying results is often much less ex-
pensive. This is because verification simply involves check-
ing whether the results satisfy application semantics (e.g.,
whether the reported anomalies indeed match the pattern)
which is much simpler than computing the solution itself.
Hence, with verification being much faster than the original
computation, BFT executions can be guaranteed without repli-
cating the computation by judiciously verifying results.

1 ⌊n/(2f + 1)⌋ using non-equivocation from modern RDMA networks [3]
or trusted hardware [52]; otherwise the bound degrades to ⌊n/(3f + 1)⌋.

f=0 f=1 f=2

1

1 25 50 75 100125
n

25

75

125

Pa
ra
lle

lT
as
ks

1
(a) Tasks

1 2 4 8 16 32
n

0

50M

100M

R
ec
or
ds

/s
ec

1
(b) Throughput

Figure 2. Scaling of RSM-based processing for Anomaly
Detection (i.e., with detectAnomaly() replicated).

OurApproach. In this paper, we separate state management
from expensive computation and explore the possibility of
BFT without replicating expensive computation. We develop
OsirisBFT, a distributed BFT architecture for task-parallel
applications backed by two components: a BFT data store
for managing global state, and verification-based processing
for application computation. Prior solutions [3, 14, 49, 80]
already provide efficient BFT state management as discussed
above. We incorporate an existing RSM-based BFT design [3]
for our data store, and primarily focus on developing an
efficient verification-based processing architecture.
OsirisBFT. OsirisBFT decouples task computation from
fault tolerance by offloading the responsibility of detecting
faults to a special subset of workers called verifiers. Reg-
ular workers execute computation tasks, and their results
are analyzed by verifiers to protect against failures. Hence,
workers executing computation tasks need not be replicated
to ensure safety, enabling scalable task-parallel execution.
Furthermore, verifiers check the generated results indepen-
dently, and only perform consensus to linearize input tasks.
Hence, OsirisBFT can execute n −O(f) parallel tasks in a
cluster with n workers, as opposed to n/O(f) in RSM.
While such verification-based BFT processing seems

promising, realizing it in practice poses several challenges.
The first challenge is how to distinguish Byzantine exe-

cutions from graceful executions that are not impacted by
Byzantine failures? Byzantine failures can impact the execu-
tion and violate the application semantics in various ways
(e.g., partially executing tasks, repeatedly executing the same
task, simply outputting results that appear valid but do not
satisfy the task requirements, etc.). Developing custom veri-
fication protocols to identify these different behaviors can
easily become intractable, especially since several of these
issues require understanding the application semantics to
distinguish a Byzantine behavior from a correct one.
To address this, we develop an output failure model that

captures how Byzantine failures impact the application re-
sults. Our model groups all possible application failures into
three classes of output failures. We then formalize properties
required to detect each class of output failures, and develop
generic verification operators that allow our processing archi-
tecture to capture the required application semantics so that
verifiers can safeguard against all classes of output failures.

95

OsirisBFT: Say No to Task Replication for Scalable Byzantine Fault Tolerant Analytics PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

The second challenge is how to perform verification ro-
bustly and efficiently? While verification operators capture
faults that are observable from application results, verifiers
themselves can be faulty, which can in turn cause complex
failures even if workers correctly execute their tasks.
For verification that is both efficient and resilient, we de-

velop robust and lightweight protocols. Verifiers certify the
application results using the verification operators, with zero
coordination among the verifiers during graceful executions.
To achieve robustness in our verification pipeline, we rely on
redundancy in communication between verifiers and other
actors in OsirisBFT. Our careful use of cryptography, time-
outs, and limited use of heavy communication primitives like
non-equivocating multicast capture complex failure cases
while retaining efficiency when processes are well-behaved.

The final challenge is how to maintain resource utiliza-
tion and processing throughput as processing workload varies
over time? As processing workload changes over time, tasks
demanding high computation can keep workers busy even
though the verification workload remains low. On the other
hand, failedworkers leaving the system can result in through-
put drops that can persist in the remaining execution. We de-
sign a dynamic role-switching strategy to improve resource
utilization and processing throughput across different pro-
cessing conditions.
Results. To the best of our knowledge, this paper provides
the first treatment of enabling Byzantine fault tolerance for
task-parallel applications without replicating application
computation. OsirisBFT is backed by safety and liveness
proofs to ensure correctness under all circumstances and
progress even in presence of Byzantine failures. We evalu-
ated OsirisBFT with three distributed task-parallel applica-
tions and across different processing workloads. Our results
show that OsirisBFT delivers high processing throughput
and better scalability compared to replicated processing, and
it scales comparably to a baseline without any fault toler-
ance. Importantly, OsirisBFT overcomes the performance
gap from ensuring fault tolerance by simply scaling out.

2 Overview of OsirisBFT
The system is modeled as a pipeline with three steps: (i) input
processes IP generate or ingest tasks and distribute them
downstream; (ii) worker processes WP execute the tasks
and output a sequence of records; and, (iii) output processes
OP receive the results. IP and OP can overlap. Tasks can
involve state updates (e.g., updateNetwork() in Figure 1),
computation (e.g., detectAnomaly() in Figure 1), or both.

Figure 3 shows the verifiable processing architecture.WP
is divided into two sub-clusters: the execution cluster EP
and the verifier clusters VP . The execution processes (or
simply, executors) execute computation tasks and output
records, whereas the verifier processes (or simply, verifiers)
deal with verification of the generated records. A compu-
tation task is executed on each input exactly once by an

VPCO

WP

EP

IP OP
2f+1

Tasks Verified
Records

Linearized
Tasks Records

VPi

VPj

Figure 3. Verification-based processing architecture.

executor in EP (i.e., no task replication).VP is partitioned fur-
ther into k independent Byzantine fault tolerant sub-clusters
VP0...VPk−1 with each |VPi | ≥ 2f +1 (0 ≤ i < k). One of the
verifier sub-clusters is arbitrarily chosen to be responsible
for performing consensus to linearize tasks and coordinating
the remaining processes throughout the entire execution;
we refer to this sub-cluster as the coordinator VPCO .
State Management. The state management layer resembles
the learner architecture [39]. For simplicity and maximal use
of hardware resources, the application state is colocated with
WP . As we discuss later, we make no assumptions about fail-
ures in EP . To safely perform concurrent state updates, the
coordinator sub-cluster VPCO linearizes tasks to enforce a
global order on state updates, and keeps the rest ofWP ap-
praised so correct processes can maintain fresh, globally
consistent copies of their state. This design avoids inflating
the cost of queries with read requests to a disaggregated stor-
age system or cross-shard transactions in a sharded solution
by ensuring all processes maintain a local copy of the state,
since analytics queries frequently perform reads.
Verifiable Processing. OsirisBFT enables scalability by
placing all responsibility for Byzantine fault tolerance on
VP , freeing EP to execute tasks without overheads. Tasks
flow from IP to the coordinator VPCO . VPCO linearizes the
tasks and broadcasts state updates toWP while distributing
computation tasks among EP . State updates mutate local
application state, and computation tasks operate on the local
state to produce output records. While every state update
is sent to all ofWP , each computation task is assigned to a
single executor at a time and reassigned only if a failure is
suspected. Then, the results of computation tasks flow from
EP toVP toOP . Each output record is sent to 2f +1 verifiers
in a Byzantine fault tolerant sub-cluster VPi for verification
to ensure output processes only observe correct records.
Since only verifiers interact with the downstream and

upstream processes, correct processes in IP and OP never
observe failures in EP , even though computation tasks are
never replicated.
Computation-Communication Tradeoff. Table 1 shows
the computation redundancy, the communication redun-
dancy, the fault tolerance, and the computation scalability
provided by OsirisBFT, compared with the RSM-based repli-
cated computation strategy (RCP) whereWP is divided into

96

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Kasra Jamshidi and Keval Vora

Computation
Replication

Computation
Scalability

Communication
Replication

Faults
Tolerated

ZFT 1 |WP | 1 0
RCP 2f + 1 |WP |/O (f) 1

∑
WPi f

OsirisBFT 1 |WP | −O (f) 2f + 1 |EP | +
∑
V Pi f

Table 1. Performance and fault tolerance of OsirisBFT
compared to replicated computation strategy (RCP) and a

baseline with no fault tolerance (ZFT).

sub-clustersWPi of 2f + 1 processes each, and computation
is replicated in all processes in a sub-cluster.
OsirisBFT optimizes for application computations. It fa-

vors replicating communication rather than computation
when possible, leveraging ample bandwidth in high perfor-
mance networks to maximize utilization of cluster resources.
Each output record is replicated over the network to 2f + 1
verifiers in VPi , and in exchange, computation tasks are not
replicated in graceful executions.
Hence, O(f) processes verify records while |WP | −O(f)

processes execute tasks. The number of verifier sub-clusters
can be kept small relative to |WP |, hence achieving higher
performance than RCP by not replicating the expensive appli-
cation computation, and only replicating the lightweight ver-
ification. Moreover, OsirisBFT tolerates faults more freely,
since no executor is assumed correct. Each VPi tolerates
f failures (similar toWPi in RCP); in addition, OsirisBFT
tolerates complete failure of EP . Hence executors, and the
application, can scale independently of f .

3 System Model
Service Guarantees. We adopt the Byzantine failure model,
where processes can behave arbitrarily, including crashes,
adversarial failures, and coordination between malicious pro-
cesses. We define safety and liveness to limit the impact of
Byzantine faults inWP . For all i , if at most f processes in
VPi fail, and VPi contains 2f + 1 processes that can verify
output records from other workers,OsirisBFT is linearizable
(safety): all correct OP observe records corresponding to a
legal sequential execution of correct tasks submitted by IP .
Furthermore, all correct OP eventually observe results for
every task submitted by IP (liveness). Note that safety is not
compromised even if all processes in EP are faulty. However,
the system is also bound by assumptions made by its state
management layer. As mentioned above, we assume the state
is managed by the Byzantine fault tolerantVP processes, and
EP learn of state updates from VP . If state must be safely
stored on EP using a different approach then additional as-
sumptions about failures in EP may be necessary. We make
no assumptions about the number of failures in IP or OP .

We assume that adversaries have finite resources propor-
tionate to correct processes, and cannot overwhelm correct
processes with network traffic or break cryptographic prim-
itives like digital signatures. Hence by authenticating all
communication, correct processes cannot be impersonated.

Safety can be guaranteed if the system is asynchronous,
and we make the standard assumptions from previous
work [19, 59, 70, 80] regarding partial synchrony for liveness:
there is some known ∆ and unknown global synchronization
time (GST) such that after GST, all messages between correct
processes arrive with maximum latency ∆ [33].
Communication Primitives. To achieve fault tolerance
with 2f + 1 processes in a sub-cluster instead of the well-
known lower bound of 3f + 1 processes [16], our tech-
niques rely on a multicast primitive that guarantees non-
equivocation of certain messages (e.g., Reliable Broadcast
using RDMA [3] or trusted hardware [52]). In conjunction
with digital signatures, non-equivocating multicast enables
atomic delivery of a message to 2f + 1 processes where f
are faulty [23]. Such primitives are relatively heavyweight,
and hence they are used sparingly. For situations where
non-equivocating multicast is not available, OsirisBFT can
operate with 3f + 1 processes in each sub-cluster. All other
messages use reliable links that guarantee messages are not
dropped or reordered (e.g., using RDMA RC protocol [46]).

4 Identifying Application Faults
OsirisBFT detects violations due to Byzantine failures by
verifying the output records produced by executors. In this
section, we model the impact of Byzantine failures on appli-
cation results and develop verification operators to efficiently
validate the records returned by executors.

4.1 Modeling Task-Parallel Applications
Task-parallel applications consume a stream of tasks as input
and produce a stream of records as output. Formally, appli-
cations operate on global states drawn from a set S, possible
output records from a set R, and tasks from a set T , using
a pair of functions ⟨U,A⟩. Here, U(s, t) updates a global
state s ∈ S based on task t ∈ T and returns a new state;
and A(s, t) executes an application-specific computation on
a global state s ∈ S and task t ∈ T and returns a sequence
of records R = [r0, r1, ...] such that ∀ri ∈R ri ∈ R.
Records in R are application-defined, while tasks in T

consist of an opcode describing whether to executeU,A, or
both, along with the application-defined data passed as the
input toU/A. For example in the Anomaly Detection use
case (Figure 1), each version of the network graph is a global
state s ∈ S, records in R represent subgraphs, T consists of
link updates to be applied to the network, stateUpdate() is
U, and computeMatch() is A.

This model captures common use cases such as: (i) event-
driven analytics where computation occurs in response to an
update (i.e., tasks call for both a state updateU and a compu-
tation A); (ii) time-based analytics where computation and
updates are decoupled (i.e., some tasks define only U and
appear whenever updates arrive, others define only A and
appear periodically to compute analytics logic); (iii) batch
processing where the state is static (i.e., tasks never define

97

OsirisBFT: Say No to Task Replication for Scalable Byzantine Fault Tolerant Analytics PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

U); as well as (iv) classic state management applications (i.e.,
tasks never define A).

4.2 Output Failure Model
A faulty worker can impact the output generated by task-
parallel applications in various ways. We categorize the im-
pact of arbitrary faults as three types of output failures.

[Mismatch] An output record r corresponding to task t is
a mismatch if it does not satisfy the problem statement of
t (i.e., r < R or r < A(s, t)). A faulty process inWP can
invalidate downstream computations by generating correct
records for the wrong task, or simply random records.

[Duplication] A faulty process inWP can perform a re-
play attack by outputting a record r multiple times. An
output record r corresponding to task t is a duplication
if it has been output previously in the result stream for t .
Duplication can skew the output distribution and hence
break applications.

[Omission] A faulty process inWP can omit portions of the
output (i.e., produce a strict subset of A(s, t)). For exam-
ple, a malicious process can hide suspicious records from
downstream analysis in a cybersecurity application.

The output failuremodel is completewith respect to Byzan-
tine failures from the perspective of application output: if a
certain sequence of records is expected, incorrect results can
only arise due to mismatch, duplication, or omission.

Lemma 4.1. All invalid records produced by an executor cor-
respond to an output failure.

Proof. We proceed by contradiction. If an executor neglects
to produce any records, it will be classified as Omission. So
suppose that an executor produces an invalid record r which
does not qualify as an output failure. To avoid Mismatch,
r ∈ R and r ∈ A(st , t), for some valid task t ∈ T and
corresponding state st ∈ S. But then either r repeats in
A(st , t) (classified as Duplication), or r is valid since it
follows all application semantics. □

Lemma 4.2. Correct processes executing A do not generate
output failures. Faithfully executing A with correct tasks does
not generate output failures.

Proof. Given a valid task t ∈ T and corresponding state st ∈
S, A(st , t) does not result in an output failure by definition.
Therefore the only way for a correct process to produce an
output failure is if A is executed with an invalid task t < T
or a state s such that s < S or s does not correspond to t . But
this is impossible by Lemma 6.1, which proves that correct
processes share the same view of the global application state,
corresponding to a consistently ordered sequence of valid
tasks. Therefore, no correct process will observe an incorrect
state or invalid task while executing A. □

4.3 Properties for Verification
An application is verifiable if it satisfies the following four
properties:
[Task-Validity] For an arbitrary object t , it is possible to
determine whether t ∈ T (i.e., whether A(s, t) is defined
for arbitrary s ∈ S).

[Task-Scope] For an arbitrary record r , it is possible to
determine whether r ∈ R (i.e., whether A can produce r).

[Task-Ordered] For every t ∈ T and s ∈ S, A(s, t) is
totally ordered.

[Task-Bounded] For every task t ∈ T and s ∈ S, A(s, t)
is finite.
The Task-Validity property prevents mismatch failures

where Byzantine input processes submit invalid tasks to be
executed. A worker executing a task it was not assigned
implies either mismatch (i.e., no input process generated
the task) or duplication (i.e., a different worker was as-
signed the task). The Task-Scope property distinguishes
valid and invalid records, so that mismatch failures involv-
ing incorrect or nonsensical records can be identified. The
Task-Ordered property represents the process-local pro-
gram order of the executing worker. A worker executing
a task in a Task-Ordered application produces records in
a specific order, and hence out-of-order output would im-
ply duplication or mismatch. Finally, the Task-Bounded
property requires that applications guarantee termination.
Without this property, it is impossible to detect omission
because observed output from a worker process cannot nec-
essarily be comparedwith the expected output ofA (i.e., they
can both be infinite), which makes it impossible to identify
whether a record is missing.

4.4 Output Verification Model
Depending on the nature of the failures, they can be detected
by: (a) employing generic protocols in the underlying system;
or, (b) verifying output records against application semantics.
Generic verification will be discussed in Section 5.2.2. Here
we enable application-specific verification.
Verification Operators. We model application-specific ver-
ification operators that analyze output records. Verifiable
applications implement these operators, which are invoked
by verifiers (explained later in Section 5.2.1).
Algorithm 1 shows the three verification operators.

isValid() checkswhether a record r is valid (i.e., r ∈ R) and
is generated by the given task t . happensBefore() captures
the process-local program order of the executing worker by
checking whether a record a is ordered before record b. Fi-
nally, outputSize() returns the number of output records
for a task t . The verification operators are also complete, i.e.,
they combine to detect all types of output failures (see proof
in Section 6.1). Mismatch is detected by isValid() and
outputSize() that together ensure the output records are
the ones expected from the tasks. Duplication is detected

98

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Kasra Jamshidi and Keval Vora

Algorithm 1 API for verification operators.
Bool isValid(Record r, Task t);
Bool happensBefore(Record a, Record b);
Int outputSize(Task t);

using happensBefore() and outputSize() that identify
repeated records arriving from the correct task. Omission is
detected using outputSize().
Example. Algorithm 2 illustrates the verification operators
for our Anomaly Detection use case from Section 1, where
the computation primarily involves pattern matching on
the network graph. isValid() ensures that each subgraph
record is indeed a subgraph of the network graph, matches
the pattern, and contains the updated link that resulted in
the task to compute that record. happensBefore() deter-
mines the order between two subgraph records based on their
prefix-ordering (prefix-ordering is guaranteed by most pat-
tern matching systems [44, 68]). Finally, outputSize() sim-
ply returns the true number of subgraphs using efficient and
exact counting optimizations (e.g., inclusion-exclusion [68]
or subgraph morphing [45]) which are orders of magnitude
faster than matching each individual subgraph.

5 Verifiable Processing with OsirisBFT
We present the verifiable processing architecture. We first
summarize how tasks, records and state are managed, and
then describe the normal execution followed by verification
protocols and strategies for workload management.
State Management. Guaranteeing linearizability of com-
putations on concurrently updating state requires efficient
mechanisms for isolating state snapshots. Modern data ana-
lytics systems [18, 54, 81] employ multiversioning in their
data stores to enable concurrent computations over well-
defined deterministic snapshots. Specifically, both the state
and updates to the state are associated with a logical times-
tamp, and computations are restricted to specific states based
on time intervals or windows. We replicate the timestamped
state across allWP to ensure consistency despite failures.
Processes which incorrectly update state are caught because
they output incorrect results (executor), or ignored as most
processes in each sub-cluster operate correctly (verifier).

Algorithm 2 Verification operators for Anomaly Detection.
// Network is network graph. Pattern is pattern to match.
// PatternMatcher contains the matching logic.
Bool isValid(Record r, Task t) {
return isSubgraph(Network, r) && isMatch(Pattern, r)
&& r.links().contains(link(t));

}
Bool happensBefore(Record a, Record b) {
for(int i=0; i<a.length(); ++i) {
if(a[i] < b[i]) return true;
if(a[i] > b[i]) return false;
// if(a[i] == b[i]) continue;

}
return false;

}
Int outputSize(Task t) {
PatternMatcher.count(Network, Pattern, t);

}

퐼�/
푂�

 Receive f + 1
Record Copies

Submit
Tasks

푉��� Multicast Task
Assignments

Broadcast
State

Updates

Linearize
Tasks

퐸� Execute
Computation

Multicast
Records
to 푉��

Apply
State

Updates

푉��
Apply
State

Updates

Send
Records
to 푂�

Verify
Records

[P1] [P2] [P3] [P4]

Figure 4. Overview of verification-based processing.

Replication & Communication. To retain efficiency dur-
ing normal execution, we develop optimistic protocols that
optimize for low replication and fast communication. These
decisions lead to graceful executions similar to a system
without fault tolerance, but create a larger threat surface.
Task Batches & Record Chunks. To reduce communica-
tion overheads, tasks are streamed in batches. Likewise, the
sequence of records generated by a single computation task
is split into disjoint subsequences called chunks. Executors
output a stream of chunks, allowing verifiers to proceed in
parallel instead of waiting for the entire sequence of records.
5.1 Normal Execution
Figure 4 shows the behavior of the system during graceful
executions, divided across four phases (marked [P1]-[P4]).
5.1.1 Task Flow: IP 7→ VPCO 7→ {VP, EP }. Algorithm 3
shows the protocols for this flow. The input processes send
task batches to VPCO [P1]. VPCO performs consensus to
linearize the tasks, assigning monotonically increasing ids
to state updates, which serve as logical timestamps (line 4
in Algorithm 3). Tasks with only computations are given
the timestamp of the most recent state update. Since ids are
unique throughout the execution, faulty executors comput-
ing incorrect tasks can be identified. In the same consensus,
VPCO assigns computations to executors. The tasks are then
distributed among the cluster [P2]: computations are sent to
assigned executors and state updates are broadcast toWP .
Coordination-Free TaskAssignment. Each task has: (a) an
assigned executor which computes the task and generates
records; and, (b) an assigned verifier sub-cluster to verify
those records. While task messages are smaller than the
record chunks produced by those tasks, communicating these
two assignments separately creates a race condition; the
executor may send record chunks to its assigned verifiers
before the coordinator can inform them of the assignment,
causing them to falsely believe they are faulty.

To avoid this, tasks are assigned using a coordination-free
scheme (lines 8-10 in Algorithm 3). VPCO sends signed task
assignment messages to both executors and verifiers of the
form ⟨t, E, i⟩, where t is the task to be executed by E ∈ EP
and verified by VPi . The executor E receives f + 1 signed
assignments for task t from different verifiers in the coordi-
nator before executing t . As record chunks are generated for

99

OsirisBFT: Say No to Task Replication for Scalable Byzantine Fault Tolerant Analytics PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

Algorithm 3 Task Flow protocol.
1 // [P1] Coordinator receives task from input process
2 Void onRecvTask(Task t) {
3 if (!validTask(t)) return; // t < T
4 t.timestamp = consensus(t, getTimestamp())// Linearize
5 // [P2] Broadcast state updates and assign computations
6 if (hasStateUpdate(t)) broadcast(t);
7 if (hasComputation(t)) {
8 <e, vpi> = getNextExecutorAndVP();
9 send(e, <t, e, vpi>);
10 multicast(vpi, <t, e, vpi>);
11 startReassignmentTimeout(t);
12 }
13 }
14 // [P2] All other workers receive f+1 copies from V PCO
15 Void onRecvStateUpdate(Task t) { applyStateUpdate(t); }
16 //[P2] Verifier in V Pi receives f+1 copies from V PCO
17 Void onRecvAssignment(TaskAssignment <t, e, vpi>) {
18 if (!validAssignment(<t,e,vpi>) || !hasComputation(t))

return;
19 numRecords[t] = outputSize(t);
20 // report back for workload balancing
21 multicast(VPco, <t.id, numRecords[t]>);
22 }
23 // [P2] Executor receives f+1 copies from V PCO
24 Void onRecvAssignment(TaskAssignment <t, e, vpi>) {
25 if (!validAssignment(<t,e,vpi>) || !hasComputation(t))

return;
26 // [P3] Send output to assigned verifiers
27 for (chunk in compute(t)) {
28 multicast(vpi, chunk);
29 nonEquivocatingMulticast(vpi, σ (chunk));
30 }
31 }

t , the task assignment messages (signed originally by veri-
fiers in VPCO) are prepended to each chunk and sent to VPi .
Likewise, verifiers in VPi begin computing outputSize(t)
upon receiving f + 1 assignment messages, in order to over-
lap verification and execution. Verifiers in VPi each ensure
the assignment messages were signed by VPCO processes.

5.1.2 Output Flow: EP 7→ VP 7→ OP . As an executor
computes a task, it sends each record chunk C to the as-
signed verifiersVPi , alongside a digest σ (C) [P3] using non-
equivocating multicast (lines 27-30 in Algorithm 3). The final
chunk for a task is tagged to signal its completion.
Verifiers independently check that they received a valid

digest for C and verify the records in C are correct. Chunks
are buffered until verification is complete before forwarding
to downstream processes. To reduce message sizes, the leader
verifier sends ⟨C,σ (C)⟩ to the process in OP , while every
other verifier sends only σ (C). An output process accepts C
if it receives f + 1 matching digests (including the one that
accompanied C) from the same verifier sub-cluster [P4].

5.2 Detecting Failures
Failures manifest where messages flow between fault toler-
ant verifiers and processes without fault tolerance.

5.2.1 Application-Specific Failures. Algorithm 3 and Al-
gorithm 4 show the verification protocols run by the verifiers
in the Task Flow and Output Flow, respectively.

Task Verification. mismatch caused by Byzantine IP in
[P1] is handled by validating input tasks before distributing

Algorithm 4 Verifier Output Flow protocol.
32 // [P3] Verifier receives from executor
33 Void onRecvRecords(RecordMessage msg, String digest) {
34 TaskAssignment <t, e, vpi> = msg.getAssignment();
35 Executor sender = msg.getSender();
36 RecordList chunk = msg.getChunk();
37 if (!validAssignment(<t, e, vpi>, sender)
38 || digest != computeDigest(chunk)
39 || !verify(chunk, t, e)) {
40 markByzantineExecutor(sender);
41 allChunks[t].clear();
42 reassignAllTasks(sender);
43 } else if (chunk.taskFinished()) {
44 cancelReassignmentTimeout(t);
45 sendDownStream(t, allChunks[t].append(chunk));
46 } else {
47 resetReassignmentTimeout(t);
48 seenRecords[t] += chunk.size();
49 allChunks[t].append(chunk);
50 }
51 }
52 Bool verify(RecordList chunk, Task t, Executor e) {
53 // ensure t is ongoing and chunks are sorted
54 RecordList prevChunk = allChunks[t][-1];
55 if (prevChunk != null && (prevChunk.taskFinished()
56 || !happensBefore(prevChunk[-1], chunk[0])))
57 return false;
58 for (r in chunk) // ensure all chunks are valid
59 if (!isValid(r, t) || !happensBefore(r, next(r)))
60 return false;
61 if (chunk.taskFinished()) // ensure nothing is missing
62 if (seenRecords[t] + chunk.size() != numRecords[t])
63 return false;
64 return true;
65 }

them (isValid() on line 3 in Algorithm 3). Byzantine ex-
ecutors can also cause mismatch failures in [P3] by sending
chunks that correspond to invalid tasks. Verifiers check that
the task corresponding to every chunk has been assigned to
that executor and verifier sub-cluster (line 37 in Algorithm 4).

Record Chunk Verification. Records in every chunk are
verified against mismatch and duplication (lines 58-60 in
Algorithm 4). Each record is checked for validity andwhether
it originates from the correct task. Finally, the records are
verified to be in sorted order by applying happensBefore()
to every adjacent pair of records.

Inter-Chunk Ordering. A Byzantine executor can attempt
to hide duplication across chunk boundaries, for example
by sending a correct chunk twice. Verifiers protect against
this by comparing the last record in the previous chunk
with the first record of the newly received chunk, using the
happensBefore() operator (lines 54-57 in Algorithm 4).

Missing Records. Finally, omission is detected by compar-
ing the number of records sent by an executor with the
true number of records corresponding to the task when its
final chunk is received. The true count is available from
outputSize() which runs asynchronously while the execu-
tor produces records (line 19 in Algorithm 3).

5.2.2 Generic Protocol Failures. Generic failures range
from impersonating processes to sophisticated attacks by
different Byzantine processes cooperating across multiple
phases in order to prevent output and compromise liveness.

100

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Kasra Jamshidi and Keval Vora

Speculative Task Reassignment. Byzantine executors can
cause omission faults and compromise liveness by respond-
ing to most messages but neglecting to send a final chunk,
making them indistinguishable from a correct executor work-
ing on a difficult task. We address this issue using a specula-
tive reassignment scheme. In the case where the final chunk
is not marked or no output is received at all, when sufficient
time passes after ∆, the task times out (line 11 in Algorithm 3)
and VPCO assigns the task to another executor. Verifiers ac-
cept results from whichever executor finishes first. To avoid
tying up all of EP on one large task, the timeout duration for
a given task is increased using exponential backoff.

Faulty Verifiers & Output Processes. A faulty verifier can
compromise liveness by never forwarding chunks to OP
when it serves as leader of its sub-cluster. If an output process
receives f + 1 digests σ (C) from VPi but does not receive
a matching chunk C in some time after ∆ has passed, it
multicasts messages toVPi to report a negligent leader. When
verifiers receive a negligent leader report, they initiate an
election for a new leader, and the new leader sendsC instead.
However, a negligent leader report is not sufficient to

conclude a verifier is faulty due to the possibility of faulty
output processes. Since there can only be f failures in VPi ,
verifiers track which leaders have been reported and assume
an output process is Byzantine if it reports f + 1 different
leaders in the same sub-cluster. Finally, to avoid spurious
reports due to innocent network delays in communicating
chunks, correct output processes apply exponential backoff
to their timeout duration after each negligent leader report.

Limited Equivocation. Equivocation occurs if a faulty pro-
cess sends different messages to different verifiers in a sub-
cluster when it was expected to send identical messages. This
is expected in three situations: (1) In [P1] when an input
process sends tasks to VPCO ; (2) In [P3] when an executor
sends record chunks to assigned verifiers of a task; and, (3) In
[P4] when an output process sends negligent leader reports
to all verifiers in the sub-cluster that sent chunk digests.

In [P1], equivocation by an input process does not affect
the system because VPCO performs a Byzantine agreement
protocol to linearize tasks, and conflicting task messages will
simply not be agreed upon. Similarly in [P4], equivocation
by an output process has no effect since f + 1 verifiers must
initiate a leader election.

Finally, equivocation in [P3] is avoided by requiring execu-
tors to send chunk digests using non-equivocating multicast,
and having correct output processes that receive at least one
but fewer than f + 1 digests σ (C) send a report containing
σ (C) to the verifiers, similar to negligent leader reports. Upon
receiving the report, correct verifiers which have chunk C
broadcast it to the rest of the sub-cluster. The verifier that
had not previously received C but had received σ (C) now
processes C as if it were sent from the original executor,
eventually forwarding a digest to the output process.

5.3 Dynamic Role-Switching
The task execution workload and the verification workload
can remain incongruous across various scenarios, impacting
processing throughput. For example, tasks producing few
results can leave verifiers idle despite executors being busy.
Moreover, executors failing and leaving the system can drop
processing throughput until new executors join the cluster.
To maintain throughput in such situations, verifiers can

switch roles. When verifier resource utilization is low and
there are many outstanding computation tasks, VPCO as-
signs tasks to verifiers from an underutilized sub-clusterVPi
as if they were executors, and their output is routed through
another sub-clusterVPj . Verifiers inVPi finish their verifica-
tion work and then execute assigned tasks. In the meantime,
VPCO avoids assigning VPi as verifiers of tasks.

6 Safety and Liveness
This section proves correctness guarantees of OsirisBFT.

6.1 Safety
OsirisBFT satisfies safety; every correct output process ob-
serves records corresponding to a legal sequential execution
of correct tasks submitted by input processes.
Lemma 6.1. The Task Flow results in a globally consistent
ordering of tasks and task assignments to executors.

Proof. In [P1], input processes act as clients to VPCO in a
Byzantine agreement protocol (correct by [3]), hence the
tasks are safely linearized and correct verifiers agree on
which executor is assigned the task in [P2]. A correct ex-
ecutor only accepts task assignments accompanied by f + 1
signatures, hence it can never be fooled into performing in-
correct tasks. Correct executors and verifiers have a consis-
tent view of task ordering and assignment, because network
messages cannot be reordered and reassignment does not
occur until after ∆ has passed, so initial task assignment
messages are received strictly before reassignment messages.
Furthermore, correct processes inWP have a consistent view
of the state. Monotonic timestamps mean that if a correct
process receives f + 1 copies of a task with timestamp k
before receiving sufficient copies of a task with timestamp
k−1, the process simply waits to receive tasks in order before
executing. A correct process receiving f + 1 correctly times-
tamped task assignments before the corresponding state
update simply applies the state update before performing
the computation. □

Lemma 6.2. Let t1, t2, . . . be the global (linearized) ordering
of tasks submitted by IP , where ∀i, ti ∈ T . Let st ∈ S be the
state obtained by applying all state updates from tasks t1, . . . , t
to the initial application state in order.

Correct verifiers sendOP a sequence of records R correspond-
ing to a task t if and only if R = A(st , t).

Proof. By Lemma 6.1, all correct processes have access to
st during execution of t . Write R as a concatenation of k

101

OsirisBFT: Say No to Task Replication for Scalable Byzantine Fault Tolerant Analytics PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

chunks, R = R1 |R2 | . . . |Rk , with chunk Ri consisting of l
records ri1 | . . . |ril . By Algorithm 4, verifiers forward R to
OP whenever the following hold:

k∧
i=1

l∧
j=1

isValid(ri j) (1)

k∧
i=1

l−1∧
j=1

happensBefore(ri j , ri(j+1)) (2)

k−1∧
i=1

happensBefore(ril , r(i+1)1) (3)

k∑
i

|Ri | = outputSize(t) (4)

By (1), for all r ∈ R, r ∈ A(st , t). Hence we can write {r :
r ∈ R} ⊆ {r : r ∈ A(st , t)}. By (2) and (3),R is totally ordered
according to ≺, so every element of R is unique and we can
write |{r : r ∈ R}| = |R |. Finally, by (4), |R | = |A(st , t)|, and
we get {r : r ∈ R} = {r ∈ A(st , t)}. Since both R andA(st , t)
are totally ordered according to ≺, we have R = A(st , t). □
Corollary 6.1. Correct output processes only observe correct
records.

Proof. We prove this by contradiction. Suppose a correct
output process O observes an incorrect sequence of records.
As every sequence is made up of chunks,O must observe an
incorrect chunk Ri .

To accept Ri ,O receives Ri and f digests σ (Ri) from f + 1
verifiers in the same sub-cluster. This implies either a cor-
rect verifier forwarded an incorrect chunk, contradicting
Lemma 6.2, or there are more than f failures in the same
sub-cluster. □

Theorem 6.3. Every correct output process observes records
corresponding to a legal sequential execution of tasks submitted
by correct input processes.

Proof. By Corollary 6.1, there is a sequence of tasks T with
corresponding states S such that correct output processes
only receive records corresponding to A(st , t) for t ∈ T .
By Lemma 6.1, all correct tasks are consistently ordered
and successfully distributed to executors. Correct verifiers
reject records corresponding to unassigned tasks and hence
T contains only correct tasks submitted by an input process.

Furthermore, correct verifiers have a consistent view of
the ordering of tasks when verifying A(st , t). Therefore,
∀t ∈ T ,A(st , t) follows a legal sequential execution ofT . □

6.2 Liveness
Reliable links alongside partial synchrony guarantee that
sent messages are always delivered without reordering. This
constrains potential liveness issues to Byzantine behavior
from processes, namely full or partial unresponsiveness lead-
ing to omission failures. We begin by proving that such
failures cannot occur.

Lemma 6.4. If there is a non-faulty executor in EP , every
correct task is executed.

Proof. Let t be a correct task and suppose for contradiction
that t is never executed. By Lemma 6.1, t is correctly dis-
tributed to an executor E. If E is correct it will execute t , so
E must be faulty.
But then f + 1 correct verifiers in VPCO will eventually

reassign t to a different executor, succeeding once again
due to Lemma 6.1. If any other executor is correct, t will be
executed after enough reassignments. Hence, t would remain
unexecuted only when VPCO cannot find a correct executor
to reassign t . This means all executors must be faulty, which
is a contradiction. □

Lemma 6.4 relies on a non-faulty executor in EP . Without
this assumption, it is impossible to tell whether all executors
are faulty once t has been assigned to every executor because
the length of a task is not known a priori. To guarantee
liveness in this worst case, after a final timeout VPCO can
always reassign t to a verifier sub-cluster, where at least
f + 1 correct processes execute it and skip to [P4] in the
Output Flow. In practice, however, executors can be assumed
Byzantine after a sufficiently long timeout and failed over.

Using Lemma 6.4, Lemma 6.2, and our assumptions about
the underlying network, we can now prove liveness.

Theorem 6.5. All correct output processes receive output
records for every correct task submitted by input processes.

Proof. The underlying network is partially synchronous and
messages are delivered reliably, thus executors can success-
fully forward output records to f + 1 verifiers. Additionally
by Lemma 6.2, verifiers will successfully forward output
records to the output processes. Finally, by Lemma 6.4, every
correct task is executed. Therefore, all output records will
be received by f + 1 verifiers whether they are generated by
a correct executor or by the verifiers themselves. □

7 Evaluation
We seek to understand how OsirisBFT affects performance
and fault tolerance in realistic processing scenarios.

System Details. All experiments were conducted using a
40-node cluster with each node containing 8 logical cores and
6GB RAM, implemented as Docker containers like in [59].
Nodes are distributed among a testbed of machines con-
nected by a Mellanox 100Gbps Infiniband network (0.075ms
TCP ping latency), each with a 2-socket Intel Xeon Gold
6242R CPU. All experiments have a single node acting as
both IP and OP , and the remaining nodes allocated toWP .

OsirisBFT Implementation. OsirisBFT is implemented in
approximately 3500 lines of C++20 code. Regular commu-
nications use RDMA RC [46] via the ibverbs library, the
non-equivocating multicast implementation follows open-
source code forMu [4], and the Fast & Robust algorithm [3] is

102

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Kasra Jamshidi and Keval Vora

Kauri Basil OsirisBFT ZFT RCP

1

4 8 16 32
n

1K

10K

U
pd

at
es

/s
ec

1
(a) State
Updates.

1 2 4 8 16 32
n

25M

50M

75M

100M

R
ec
or
ds

/s
ec

1
(b) Anomaly
Detection.

1 2 4 8 16 32
n

10

30

50

70

1
(c) Motion
Planning.

1 2 4 8 16 32
n

0

100

200

1
(d) Video
Analysis.

Figure 5. Throughput scalability.

used for consensus. Processes use one CPU core for network
operations, and the rest for cryptography and executing ap-
plication tasks (executors) or verifying results (verifiers).
Baselines. We compare OsirisBFT performance against a
baseline with zero fault tolerance (ZFT), as well as a repli-
cated computing processing architecture (RCP) based on the
RSM philosophy of replicating computation tasks. In ZFT, IP
sends tasks to a coordinator worker inWP , which distributes
the tasks to other workers who execute A and simply for-
ward the results. BFT processing systems like Medusa [28]
and others [27, 63, 69] target narrow application models such
as map-reduce or lack open-source code, and state-of-the-
art RSM systems like Kauri [59] focus on consensus and
are inappropriate for heavyweight computations. Therefore,
we implement RCP using the same network and consen-
sus algorithms as OsirisBFT to capture the essence of the
replicated processing design while ensuring prior works
are represented fairly. Every worker is replicated to cre-
ate sub-clusters of size 2f + 1, with a designated coordi-
nator sub-clusterWPCO that linearizes tasks from IP and
distributes them among the other sub-clusters to be executed.
The worker sub-clusters and OP only accept messages that
are sent from f + 1 processes in a sub-cluster.
ZFT, RCP, and OsirisBFT all use a fully replicated data

store since execution is bottlenecked by computations and
not state updates. To confirm this, we ran write-only work-
loads on state-of-the-art BFT state management solutions
Kauri [59] and Basil [70], as well as OsirisBFT. Figure 5a
shows the results for different cluster sizes. The data store in
OsirisBFT (and therefore the baselines) performs better as
it does not incur overheads from transactional safety (Basil)
or hashing blocks (Kauri), while also leveraging RDMA.
Applications. We consider three applications to evaluate
performance under diverse conditions.

Anomaly Detection: Anomaly Detection computes in-
stances of anomalous network structures that emerge as
a result of state updates [26]. We built the application on
top of OsirisBFT by integrating components from state-of-
the-art pattern matching systems [10, 68] with verification
operators implemented in only 100 lines of code.

Motion Planning: Motion Planning solves Mixed Integer
Programs (MIP) to determine routes for e.g., airplanes [62]

and robots [66], where output failures can lead to human
harm. This is a batch-processing workload with no un-
derlying state; tasks are drawn from a set of 107 standard
MIP instances [25]. Executors use the state-of-the-art SCIP
suite [15] to solveMIP instances. InOsirisBFT experiments,
SCIP is configured to append a proof of optimality or in-
feasibility to each record [21]. The verification operators
use built-in SCIP methods for validating the proof.

Video Analysis: This application operates on frequently
updating video feed and periodically computes pixel clus-
ters useful for image segmentation and motion detec-
tion [12, 17, 78] for, e.g., security cameras, where Byzantine
fault tolerance is desirable. It uses clustering [43] where
executors return the centroids of each cluster, and verifiers
check the optimality of centroids.

Methodology. Experiments are run 5 times and their results
averaged to account for variance. Throughput experiments
measure average throughput (output records per second)
over 5 minutes, with an initial 30 second warm-up period.
IP submits tasks toWP in batches, and results are streamed
continuously to OP . Except where specified otherwise, ex-
periments are run with f = 1 and 1MB record chunks. In
Anomaly Detection, IP streams 1K tasks per second, and EP
finds 6-cliques missing 2 edges in the Orkut graph [77], com-
mon inputs in previous work [44, 68, 72]. In Video Analysis,
IP streams 1K state updates per second and 5 computation
tasks per second. In Motion Planning, IP streams 1K tasks
per second. Dynamic role-switching is enabled in most ex-
periments, and executions begin with |WP |/(2f + 1) verifier
sub-clusters. OsirisBFT converges to a stable number of
sub-clusters during the warm-up period. Timeout values are
calibrated empirically between 500 milliseconds and 5 sec-
onds for each workload, necessary due to the complexity of
the queries (tasks can take hundreds of seconds).

7.1 Graceful Execution Performance
We measure how output record throughput scales in Osiris-
BFT by varying the size of n = |WP | between 1 and 32 nodes
for each of the three applications. Figure 5 shows the re-
sults. OsirisBFT scales nearly as well as ZFT, with 1.2–4×
lower throughput. The performance gap between ZFT and
OsirisBFT decreases as n grows, with ZFT having 4× higher
throughput at n = 4 but only 1.4× at n = 32 (Video Analysis).
The other applications exhibit similar behaviour: in Motion
Planning, ZFT initially has 2.3× higher throughput at n = 4
but 1.4× at n = 32, whereas the difference is 3.1× to 1.6× for
Anomaly Detection. This aligns with our theoretical analysis
indicating OsirisBFT scales in O(n − f) instead of O(n/f),
as the relative cost of the O(f) overhead reduces as n grows.
Finally, OsirisBFT outperforms RCP in all workloads,

achieving 1.9–2.3× higher throughput at n = 32. The per-
formance difference can be attributed to lower parallelism
in RCP; at n = 32 RCP has 10 parallel worker sub-clusters

103

OsirisBFT: Say No to Task Replication for Scalable Byzantine Fault Tolerant Analytics PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

while OsirisBFT varies between 13 and 25 parallel executors
based on how many verifiers switch roles.
OsirisBFT scales comparably to ZFT and scales better

than RCP. OsirisBFT can reduce the performance penalty
of fault tolerance relative to ZFT by scaling out.

7.2 Bottleneck Analysis
We performed detailed experiments to study performance
across workloads. Results for Anomaly Detection are sum-
marized below. By choosing appropriate queries from the
literature, we emphasize stress on the CPU or the network,
obtaining three workloads:

MediumCPU&MediumOutput (MM): Listing instances
of a dense size-6 pattern in the Orkut graph [77], a fairly
expensive query with fairly large output.

Low CPU & High Output (LH): Listing 3-hop paths in
Amazon Products [41], a computationally cheap query that
creates massive result sets, to identify network bottlenecks.

High CPU & Low Output (HL): Listing 6-cliques in the
Orkut graph [77], a computationally expensive query with
relatively few results, to identify CPU bottlenecks.

Figure 6 shows the scalability on these workloads. As
before, OsirisBFT scales nearly as well as ZFT, achieving
1.4–3.7× lower throughput, with the gap closing as n grows.
Drilling down, we notice that MM and LH lead to worse scal-
ing than the low output workload HL. By profiling network
and CPU usage of the workloads in ZFT and OsirisBFT
at n = 32, we discover that bandwidth usage on the link
betweenOP andWP is similar during the high output work-
loads. In OsirisBFTWP sends messages to OP at a rate of
2.2GB/s in LH, 2.0GB/s in MM, but 1.8GB/s in HL, and in ZFT
the rates are 3.4GB/s in both LH and MM, and 2.7GB/s in HL.
Meanwhile average CPU usage of executors in OsirisBFT
and ZFT is 93–95% during HL but 79–84% in LH and MM.
Finally, comparing OsirisBFT to RCP shows that with

different workloads, OsirisBFT achieves 1.5–4× higher
throughput at n = 32, due to better parallelism. We ob-
serve that in network-bound LH, RCP has 2.1×/1.5× lower
throughput than ZFT/OsirisBFT, since parallelism is least
important, but 6.5×/4× lower than ZFT/OsirisBFT in CPU-
bound HL, where parallelism is most important. This follows
our performance analysis in Section 2, as OsirisBFT is CPU-
efficient.
Locating the Network Bottleneck. Since output rates dur-
ing LH and MM are nearly identical and higher than HL, and
CPU utilization is low, we confirm these workloads are bot-
tlenecked by record communication in both OsirisBFT and
ZFT. Importantly, this bottleneck only occurs at the link to
OP , where records converge. The replicated communication
between executors and verifier sub-clusters is parallelized
over multiple links, and avoids this bottleneck. To further
support this claim, we fix n = 32 and vary system load by

controlling the rate of task submission between 100 per sec-
ond and 100K per second, measuring task execution latency
and output record throughput. Figure 6e shows the results.

In LH andMM, heavy task loads severely impact latency as
network bandwidth to OP saturates. Increasing from 10K to
100K tasks per second leads to slim increases in throughput
compared to the increase in latency. However, in the CPU-
bound HL workload OsirisBFT continues to achieve higher
throughput as load increases. Mean latency was not affected
from 10K to 100K tasks/sec since tasks in HL are expensive,
and the cluster has sufficient parallelism and bandwidth.

7.3 Dynamic Role-Switching
We investigate whether role-switching balances verification
and execution by comparing the throughput with execu-
tions where verifier sub-clusters are kept static (i.e., verifiers
cannot switch roles). Figure 6d shows the average through-
put of the static executions, and plots the throughput over
2 minutes of execution with dynamic role-switching. The
best static configuration is 4 sub-clusters, with 5 sub-clusters
leaving verifiers idle and fewer than 4 sub-clusters causing a
verification bottleneck. The role-switching execution began
with 5 sub-clusters but settled at 4 during its warm-up phase.
Two other role-switches occur at near 45 and 95 seconds
to transition from 4 sub-clusters to 3 when the verification
workload dips due to a few consecutive batches of cheap
tasks, then back to 4 sub-clusters when output records be-
come too many to handle. Overall, dynamic role-switching
results in 11% higher average throughput and 31% higher
peak throughput than the best static configuration.

7.4 Performance Under Failures

Executor Failures. OsirisBFT theoretically tolerates the
failure of all executor processes. We investigate the be-
haviour of OsirisBFT when executors fail by injecting out-
put failures in every process from EP . Figure 7a shows the
throughput and bandwidth observed at OP during an ex-
ecution of MM with f = 1, |VP | = 15 and |EP | = 16. At
45 seconds, each executor corrupts the final record in the
next chunk it outputs to cause a mismatch. The failures are
detected quickly, and throughput does not drop to 0, because
3 verifiers had previously switched roles to act as execu-
tors. OsirisBFT automatically recovers to half its previous
throughput by 61 seconds, as 6 more verifiers switch roles to
make up for faulty executors. We repeated this experiment
with other failure types and observed that OsirisBFT al-
ways recovers to approximately half its previous throughput
seconds after fault detection.
Verifier Failures. Faulty verifiers mainly affect perfor-
mance when sub-cluster leaders do not forward chunks as
expected and require OP to report them. We repeat the pre-
vious experiment but instead of faulty executors, verifier
sub-cluster leaders do not send chunks to OP . We observe
that throughput is only affected until a new leader is elected,

104

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Kasra Jamshidi and Keval Vora

ZFT RCP OsirisBFT

1

k=1 k=4 k=5 Dynamic

1

LH HL MM

1

1 2 4 8 16 32
n

50M

100M

150M

R
ec
or
ds

/s
ec

1
(a) Low CPU

& High Output.

1 2 4 8 1632
n

20M

40M

60M

1
(b) High CPU
& Low Output.

1 2 4 8 1632
n

50M

100M

1
(c) Medium CPU

& Output.

0 40 80 120
Time

0

20M

40M

60M

R
ec
or
ds

/s
ec

k = 4 k = 3 k = 4

1(d) Effect of role-switching. k is the
number of active verifier

sub-clusters.

50 150 250

Task Latency (sec)

0

100M

200M

R
ec
or
ds

/s
ec 1K

10K 100K

1K 10K

100K

1(e) Throughput-Latency for 100 to
100K tasks submitted per second.

Figure 6. Throughput performance across different Anomaly Detection workloads.

Throughput (left) Bandwidth Use

1
1

2

3 G
B
/sec

30 45 60 75 90
Time

0

20M

40M

60M

R
ec
or
ds

/s
ec All executors fail

Roles switched

1(a) Simultaneous failure of all
executors in EP (i.e., not the ones
role-switched from verifiers).

RCP OsirisBFT

1

1 2 3 4 5 6
f

0

20M

40M

R
ec
or
ds

/s
ec

1(b) Throughput for
varying verifier fault
tolerance level f .

Figure 7. Performance with Byzantine faults.
and OsirisBFT recovers to the same level since the executors
are still correct.
Fault Scalability. We evaluate how OsirisBFT copes as
more possibly faulty verifiers must be tolerated. Figure 7b
compares executions of MM by OsirisBFT and RCP with
n = 32 and varying fault tolerance levels f . OsirisBFT with
role-switching ran with up to 2 verifier sub-clusters and
9–20 executors. We observe OsirisBFT executing with f = 6
achieves 2.7× higher throughput than RCP with f = 2.

8 Related Work
Byzantine fault tolerance is a well-studied research area. We
summarize the proposed solutions below.
Byzantine Fault Tolerant Data Processing. [27, 28, 57,
63, 69] enable Byzantine fault tolerance in data processing
systems. ClusterBFT [69] replicates data-flow nodes in data-
flow systems 2f +1 times. [27] replicates mapper and reducer
tasks in MapReduce so that an answer is correct when a
quorum of 2f + 1 tasks achieve the same result. Medusa [28]
extends this fault tolerance to MapReduce clusters in multi-
cloud environments, where failures can affect entire data
centers. [57] also replicates MapReduce tasks and chooses
results that occur most frequently. Finally, Greft [63] is a BFT
graph processing system that replicates vertex functions,
relying on a trusted master process to detect if values differ.

These works rely on replication of core computation, limit-
ing their scalability, whileOsirisBFT enables BFT processing
without replicating application tasks.
Byzantine Fault Tolerance Protocols. Research regard-
ing BFT consensus spans decades, with seminal works like
PBFT [19] inspiring many works that improve usability, re-
siliency, and performance [1, 5, 6, 13, 14, 20, 24, 29, 50, 51, 64,

75, 79]. [2] proposed the message-and-memory model used
by [3] to achieve BFT consensus with 2f + 1 replicas. [79]
divides workers into an agreement sub-cluster and execution
sub-clusters; however, both the sub-clusters replicate tasks.

More recently, the popularity of permissioned blockchains
has caused a resurgence in BFT research. HotStuff [80],
Kauri [59], Fabric [11], Narwhal and Tusk [30], Damysus [32],
and others [7, 31, 48, 49] develop efficient consensus strate-
gies using optimized communication and transaction sched-
uling techniques as well as trusted components.
There has also been ample work on Byzantine fault tol-

erance for databases, like [8, 9, 40, 61, 70, 74, 76] that focus
on serializable concurrent execution of transactions, and
[34, 35, 58] that marry blockchain and database features.
All these works focus on consensus in the client-server

model, where agreeing on an ordering of client requests is
the only consistency requirement. As such, they relate only
to the Task Flow of OsirisBFT, where tasks from IP are
linearized. However, we target task-parallel processing and
focus on computation and not state management, and our
solution ensures the computation is not replicated.
Byzantine Fault Detection. PeerReview [38] and oth-
ers [36, 37] propose failure detectors for Byzantine faults.
These are modules in each node which only eventually de-
tect simple deviations from a protocol, whereas a faulty ex-
ecutor can communicate correctly with other nodes while
outputting incorrect records. OsirisBFT does not have such
limitations since all communication with downstream nodes
occurs through verifiers which can detect all output failures.

9 Conclusion
WepresentedOsirisBFT, a verification-based Byzantine fault
tolerant processing architecture for distributed task-parallel
applications that does not replicate computation tasks. We
formalized the application failures and developed generic
verification operators to capture the required application
semantics for verification. OsirisBFT incorporates efficient
verification protocols that capture Byzantine failures with
little coordination. OsirisBFT does not replicate computa-
tion tasks, hence delivering high processing throughput and
scalability, for the first time allowing the performance gap
between BFT and unreliable systems to close through hori-
zontal scaling.

105

OsirisBFT: Say No to Task Replication for Scalable Byzantine Fault Tolerant Analytics PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

References
[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,

Michael K. Reiter, and Jay J. Wylie. Fault-Scalable Byzantine Fault-
Tolerant Services. In Proceedings of the ACM Symposium on Operating
Systems Principles, SOSP ’05, page 59–74, 2005.

[2] Marcos K. Aguilera, Naama Ben-David, Irina Calciu, Rachid Guer-
raoui, Erez Petrank, and Sam Toueg. Passing Messages While Sharing
Memory. In Proceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, PODC ’18, page 51–60, 2018.

[3] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra
Marathe, and Igor Zablotchi. The Impact of RDMA on Agreement. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, page 409–418, 2019.

[4] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J.
Marathe, Athanasios Xygkis, and Igor Zablotchi. Microsecond Con-
sensus for Microsecond Applications. In 14th USENIX Symposium
on Operating Systems Design and Implementation, OSDI ’20, pages
599–616, November 2020.

[5] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Antoine
Murat, Athanasios Xygkis, and Igor Zablotchi. UBFT: Microsecond-
Scale BFT Using Disaggregated Memory. In Proceedings of the 28th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2, ASPLOS ’23, page
862–877, 2023.

[6] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-
Philippe Martin, and Carl Porth. BAR Fault Tolerance for Cooperative
Services. In Proceedings of the ACM Symposium on Operating Systems
Principles, SOSP ’05, page 45–58, 2005.

[7] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. Chainspace: A Sharded Smart Contracts Platform.
In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Inter-
net Society, 2018.

[8] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi.
CAPER: A Cross-Application Permissioned Blockchain. Proceedings of
the VLDB Endowment, 12(11):1385–1398, July 2019.

[9] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi.
SharPer: Sharding Permissioned Blockchains Over Network Clusters.
In Proceedings of the 2021 International Conference on Management of
Data, SIGMOD ’21, page 76–88, 2021.

[10] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar.
Distributed Evaluation of Subgraph Queries Using Worst-Case Opti-
mal Low-Memory Dataflows. Proceedings of the VLDB Endowment,
11(6):691–704, February 2018.

[11] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Mu-
ralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh,
Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyperledger Fabric:
A Distributed Operating System for Permissioned Blockchains. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, 2018.

[12] Borislav Antić, Dragan Letić, Dubravko Ćulibrk, and Vladimir Crnoje-
vić. K-means based segmentation for real-time zenithal people count-
ing. In 2009 16th IEEE International Conference on Image Processing,
ICIP ’09, pages 2565–2568, 2009.

[13] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. RBFT:
Redundant Byzantine Fault Tolerance. In 2013 IEEE 33rd International
Conference on Distributed Computing Systems, ICDCS ’13, pages 297–
306, 2013.

[14] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. State Machine
Replication for the Masses with BFT-SMART. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN ’14, pages 355–362, 2014.

[15] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia
Chmiela, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver
Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph
Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf
van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J. Maher,
Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch,
Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian
Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. The
SCIP Optimization Suite 8.0. Technical report, Optimization Online,
December 2021.

[16] Gabriel Bracha and Sam Toueg. Asynchronous Consensus and Broad-
cast Protocols. Journal of the ACM, 32(4):824–840, October 1985.

[17] Butler, Darren and Bove Jr, V. Michael and Sridha, Sridharan. Real-Time
Adaptive Foreground/Background Segmentation. EURASIP Journal on
Advances in Signal Processing, 2005, August 2005.

[18] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. Apache flink: Stream and batch
processing in a single engine. The Bulletin of the Technical Committee
on Data Engineering, 38(4), 2015.

[19] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance.
In 3rd Symposium on Operating Systems Design and Implementation,
OSDI ’99, New Orleans, LA, February 1999.

[20] Miguel Castro and Barbara Liskov. Proactive Recovery in a Byzantine-
Fault-Tolerant System. In Proceedings of the 4th Conference on Sympo-
sium on Operating Systems Design & Implementation - Volume 4, OSDI
’00, USA, 2000.

[21] Kevin K. H. Cheung, Ambros Gleixner, and Daniel E. Steffy. Verifying
Integer Programming Results. In Integer Programming and Combina-
torial Optimization, pages 148–160. Springer International Publishing,
2017.

[22] Alexandra Chouldechova. Fair Prediction with Disparate Impact: A
Study of Bias in Recidivism Prediction Instruments. Big Data, 5(2):153–
163, June 2017.

[23] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues.
On the (Limited) Power of Non-Equivocation. In Proceedings of the
2012 ACM Symposium on Principles of Distributed Computing, PODC
’12, page 301–308, 2012.

[24] Allen Clement, EdmundWong, Lorenzo Alvisi, Mike Dahlin, andMirco
Marchetti. Making Byzantine Fault Tolerant Systems Tolerate Byzan-
tine Faults. In Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’09, page 153–168, USA,
2009.

[25] William J. Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A
Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer
Programming. Mathematical Programming Computation, 5(3):305–344,
2013.

[26] Corinna Cortes, Daryl Pregibon, and Chris Volinsky. Communities of
Interest. In Proceedings of the 4th International Conference on Advances
in Intelligent Data Analysis, IDA ’01, page 105–114, Berlin, Heidelberg,
2001. Springer-Verlag.

[27] Pedro Costa, Marcelo Pasin, Alysson N. Bessani, and Miguel Correia.
Byzantine Fault-Tolerant MapReduce: Faults are Not Just Crashes. In
2011 IEEE Third International Conference on Cloud Computing Technol-
ogy and Science, pages 32–39, 2011.

[28] Pedro A. R. S. Costa, Xiao Bai, Fernando M. V. Ramos, and Miguel
Correia. Medusa: An Efficient Cloud Fault-Tolerant MapReduce. In
2016 16th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGrid ’16, pages 443–452, 2016.

[29] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues,
and Liuba Shrira. HQ Replication: A Hybrid Quorum Protocol for
Byzantine Fault Tolerance. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, page 177–190,
USA, 2006.

106

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Kasra Jamshidi and Keval Vora

[30] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexan-
der Spiegelman. Narwhal and Tusk: A DAG-Based Mempool and
Efficient BFT Consensus. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, page 34–50, 2022.

[31] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang,
Qian Lin, and Beng Chin Ooi. Towards Scaling Blockchain Systems
via Sharding. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, page 123–140, 2019.

[32] Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan
Yu. DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Com-
ponents. In Proceedings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, page 1–16, 2022.

[33] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in
the Presence of Partial Synchrony. Journal of the ACM, 35(2):288–323,
April 1988.

[34] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Koss-
mann, and Ravi Ramamurthy. BlockchainDB: A Shared Database on
Blockchains. Proceedings of the VLDB Endowment, 12(11):1597–1609,
July 2019.

[35] Zerui Ge, Dumitrel Loghin, Beng Chin Ooi, Pingcheng Ruan, and
Tianwen Wang. Hybrid Blockchain Database Systems: Design and
Performance. Proceedings of the VLDB Endowment, 15(5):1092–1104,
May 2022.

[36] Fabiola Greve, Murilo Santos de Lima, Luciana Arantes, and Pierre
Sens. A Time-Free Byzantine Failure Detector for Dynamic Networks.
In 2012 Ninth European Dependable Computing Conference, pages 191–
202, 2012.

[37] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. The Case
for Byzantine Fault Detection. In Proceedings of the 2nd Conference on
Hot Topics in System Dependability - Volume 2, HOTDEP ’06, page 5,
USA, 2006.

[38] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview:
Practical Accountability for Distributed Systems. In Proceedings of
the ACM Symposium on Operating Systems Principles, SOSP ’07, page
175–188, 2007.

[39] Jelle Hellings and Mohammad Sadoghi. Coordination-Free Byzantine
Replication with Minimal Communication Costs. In Carsten Lutz and
Jean Christoph Jung, editors, 23rd International Conference on Database
Theory, volume 155 of ICDT ’20, pages 17:1–17:20, Dagstuhl, Germany,
2020.

[40] Jelle Hellings and Mohammad Sadoghi. ByShard: Sharding in
a Byzantine Environment. Proceedings of the VLDB Endowment,
14(11):2230–2243, October 2021.

[41] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. Open Graph Bench-
mark: Datasets for Machine Learning on Graphs. CoRR, abs/2005.00687,
2020.

[42] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and Thorsten Holz.
JACKSTRAWS: Picking Command and Control Connections from Bot
Traffic. In Proceedings of the 20th USENIX Conference on Security, SEC
’11, page 29, USA, 2011.

[43] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, Inc., USA, 1988.

[44] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: A
Pattern-Aware Graph Mining System. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys ’20, 2020.

[45] Kasra Jamshidi, Harry Xu, and Keval Vora. Accelerating Graph Mining
Systems with Subgraph Morphing. In Proceedings of the Eighteenth
European Conference on Computer Systems, EuroSys ’23, page 162–181,
2023.

[46] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design Guide-
lines for High Performance RDMA Systems. In Proceedings of the 2016
USENIX Annual Technical Conference, ATC ’16, page 437–450, 2016.

[47] Miltiadis Kandias, Nikos Virvilis, and Dimitris Gritzalis. The Insider
Threat in Cloud Computing. In Sandro Bologna, Bernhard Hämmerli,

Dimitris Gritzalis, and StephenWolthusen, editors, Critical Information
Infrastructure Security, pages 93–103, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[48] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A Provably Secure Proof-of-Stake Blockchain
Protocol. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
I, volume 10401 of Lecture Notes in Computer Science, pages 357–388.
Springer, 2017.

[49] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. OmniLedger: A Secure, Scale-Out,
Decentralized Ledger via Sharding. In 2018 IEEE Symposium on Security
and Privacy, SP ’18, pages 583–598, 2018.

[50] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
EdmundWong. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM
Transactions on Computer Systems, 27(4), January 2010.

[51] Ramakrishna Kotla and Mike Dahlin. High throughput Byzantine
fault tolerance. In International Conference on Dependable Systems and
Networks, 2004, DSN ’04, pages 575–584, 2004.

[52] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda.
TrInc: Small Trusted Hardware for Large Distributed Systems. In
Proceedings of the 6th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’09, page 1–14, USA, 2009.

[53] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. An Empirical
Study of Memory Hardware Errors in a Server Farm. In Proceedings of
the 3rd Workshop on on Hot Topics in System Dependability, HotDep’07,
page 13–es, 2007.

[54] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael
Isard. Differential Dataflow. In CIDR, 2013.

[55] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. Revisiting
Memory Errors in Large-Scale Production Data Centers: Analysis and
Modeling of New Trends from the Field. In 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN
’15, pages 415–426, 2015.

[56] Nema Milaninia. Biases in Machine Learning Models and Big Data
Analytics: The International Criminal and Humanitarian Law Implica-
tions. International Review of the Red Cross, 102(913):199–234, 2020.

[57] Mircea Moca, Gheorghe Cosmin Silaghi, and Gilles Fedak. Distributed
Results Checking for MapReduce in Volunteer Computing. In 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum, pages 1847–1854, 2011.

[58] Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi,
and Praveen Jayachandran. Blockchain Meets Database: Design and
Implementation of a Blockchain Relational Database. Proceedings of
the VLDB Endowment, 12(11):1539–1552, July 2019.

[59] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. Kauri: Scalable BFT
Consensus with Pipelined Tree-Based Dissemination and Aggregation.
In Proceedings of the ACM Symposium on Operating Systems Principles,
SOSP ’21, page 35–48, 2021.

[60] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. Cycles,
Cells and Platters: An Empirical Analysis of Hardware Failures on
a Million Consumer PCs. In Proceedings of the Sixth Conference on
Computer Systems, EuroSys ’11, page 343–356, 2011.

[61] Ricardo Padilha and Fernando Pedone. Augustus: Scalable and Robust
Storage for Cloud Applications. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, page 99–112, 2013.

[62] Lucia Pallottino, Eric M Feron, and Antonio Bicchi. Conflict resolution
problems for air trafficmanagement systems solved with mixed integer
programming. IEEE Transactions on Intelligent Transportation Systems,
3(1):3–11, 2002.

[63] Daniel Presser, Lau Cheuk Lung, and Miguel Correia. Greft: Arbitrary
Fault-Tolerant Distributed Graph Processing. In 2015 IEEE International
Congress on Big Data, pages 452–459, 2015.

107

OsirisBFT: Say No to Task Replication for Scalable Byzantine Fault Tolerant Analytics PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

[64] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: Using
Abstraction to Improve Fault Tolerance. SIGOPS Operating Systems
Review, 35(5):15–28, October 2001.

[65] Fred B. Schneider. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Computing Survey,
22(4):299–319, December 1990.

[66] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How.
Mixed integer programming for multi-vehicle path planning. In 2001
European Control Conference, ECC ’01, pages 2603–2608. IEEE, 2001.

[67] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM
Errors in the Wild: A Large-Scale Field Study. Communications of the
ACM, 54(2):100–107, February 2011.

[68] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. GraphPi: High
Performance Graph Pattern Matching through Effective Redundancy
Elimination. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’20, 2020.

[69] Julian James Stephen and Patrick Eugster. Assured Cloud-Based Data
Analysis with ClusterBFT. In 14th International Middleware Conference,
volume LNCS-8275 of Middleware ’13, pages 82–102, Beijing, China,
December 2013. Springer. Part 1: Distributed Protocols.

[70] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang,
Lorenzo Alvisi, and Natacha Crooks. Basil: Breaking up BFTwith ACID
(Transactions). In Proceedings of the ACM Symposium on Operating
Systems Principles, SOSP ’21, page 1–17, 2021.

[71] Michiaki Tatsubori and Shohei Hido. Opportunistic Adversaries: On
Imminent Threats to Learning-Based Business Automation. In Proceed-
ings of the 2012 Annual SRII Global Conference, SRII ’12, page 120–129,
USA, 2012.

[72] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos
Siganos, Mohammed J. Zaki, and Ashraf Aboulnaga. Arabesque: A
System for Distributed Graph Mining. In Proceedings of the ACM
Symposium on Operating Systems Principles, SOSP ’15, pages 425–440,
2015.

[73] Tian Tian, Jun Zhu, Fen Xia, Xin Zhuang, and Tong Zhang. Crowd
Fraud Detection in Internet Advertising. In Proceedings of the 24th In-
ternational Conference onWorld Wide Web, WWW ’15, page 1100–1110,
2015.

[74] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden.
Tolerating Byzantine Faults in Transaction Processing Systems Using
Commit Barrier Scheduling. In Proceedings of the ACM Symposium on
Operating Systems Principles, SOSP ’07, page 59–72, 2007.

[75] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and
Lau Cheuk Lung. Spin One’s Wheels? Byzantine Fault Tolerance with
a Spinning Primary. In Proceedings of the 2009 28th IEEE International
Symposium on Reliable Distributed Systems, SRDS ’09, page 135–144,
USA, 2009.

[76] Hiroyuki Yamada and Jun Nemoto. Scalar DL: Scalable and Practi-
cal Byzantine Fault Detection for Transactional Database Systems.
Proceedings of the VLDB Endowment, 15(7):1324–1336, June 2022.

[77] Jaewon Yang and Jure Leskovec. Defining and Evaluating Network
Communities based on Ground-Truth. Knowledge and Information
Systems, 42(1):181–213, 2015.

[78] Hong Yao, Qingling Duan, Daoliang Li, and Jianping Wang. An im-
proved K-means clustering algorithm for fish image segmentation.
Mathematical and Computer Modelling, 58(3):790–798, 2013.

[79] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi,
and Mike Dahlin. Separating Agreement from Execution for Byzantine
Fault Tolerant Services. In Proceedings of the ACM Symposium on
Operating Systems Principles, SOSP ’03, page 253–267, 2003.

[80] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham. HotStuff: BFT Consensus with Linearity and Respon-
siveness. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC ’19, page 347–356, 2019.

[81] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant stream-
ing computation at scale. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 423–438,
2013.

108

	Abstract
	1 Introduction
	2 Overview of OsirisBFT
	3 System Model
	4 Identifying Application Faults
	4.1 Modeling Task-Parallel Applications
	4.2 Output Failure Model
	4.3 Properties for Verification
	4.4 Output Verification Model

	5 Verifiable Processing with OsirisBFT
	5.1 Normal Execution
	5.2 Detecting Failures
	5.3 Dynamic Role-Switching

	6 Safety and Liveness
	6.1 Safety
	6.2 Liveness

	7 Evaluation
	7.1 Graceful Execution Performance
	7.2 Bottleneck Analysis
	7.3 Dynamic Role-Switching
	7.4 Performance Under Failures

	8 Related Work
	9 Conclusion
	References

