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Abstract

Graph mining applications analyze the structural proper-
ties of large graphs. These applications are computation-
ally expensive because finding structural patterns requires
checking subgraph isomorphism, which is NP-complete. This
paper exploits the sub-structural similarities across differ-
ent patterns by employing Subgraph Morphing to accu-
rately infer the results for a given set of patterns from the
results of a completely different set of patterns that are
less expensive to compute. To enable Subgraph Morphing in
practice, we develop efficient query transformation tech-
niques as well as automatic result conversion strategies
for different application scenarios. We have implemented
Subgraph Morphing in four state-of-the-art graph mining
and subgraph matching systems: Peregrine, AutoMine/-
GraphZero, GraphPi, and BigJoin; a thorough evaluation
demonstrates that Subgraph Morphing improves the perfor-
mance of these four systems by 34×, 10×, 18×, and 13×,
respectively.

CCS Concepts: • Information systems → Computing

platforms; • Computing methodologies → Parallel

programming languages.

Keywords: subgraph exploration, motifs, frequent subgraph
mining, graph system performance

1 Introduction

With growing popularity in graph-structured data, graph
mining applications are widely used across a variety of do-
mains including bioinformatics, computer vision, malware
detection, and social network analysis [11, 14, 44, 45, 52, 55,
67, 68]. These applications require computing the structural
properties of a graph by exploring its subgraphs. To improve
efficiency and scalability, a number of graph mining systems
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have been developed recently [7, 9, 10, 12, 19, 26, 40, 60, 66].
At the core of these systems are an efficient runtime that
explores the subgraphs of interest, as well as a high-level
programming framework that allows users to express cus-
tomized logic for exploration and computation.
Recent systems like Peregrine [26] and AutoMine [40]

take a pattern-based approach where graph mining appli-
cations are formulated as pattern matching sub-tasks—the
subgraphs of interest (or patterns) are expressed directly via
the programming model, and each application is written
as a set of operations over the subgraphs that match such
patterns. In doing so, the underlying system analyzes the
patterns and creates efficient exploration plans. During the
matching phase, these exploration plans are used to quickly
find the matching subgraphs (or matches) and compute re-
sults based on them. A pattern-based approach not only
simplifies the programming effort, but also provides superior
performance compared against traditional approaches that
explore subgraphs in breadth/depth-first manner.
We observe that the performance of graph mining appli-

cations is not only dependent on the patterns queried by the
application, but is also sensitive to system-level nuances (e.g.,
pattern matching strategies and optimizations employed) as
well as application-level characteristics (e.g., application UDF
and aggregation functions).
Instead of developing another custom graph mining sys-

tem with tailored pattern matching strategies, we take a
fundamentally different approach. We aim to take advantage
of the performance difference when mining seemingly sim-
ilar patterns by exploiting the structural similarities across
different patterns. In general, dramatic performance improve-
ments can be achieved if we could devise a general technique
that can infer the results of a pattern for which it is expen-
sive to find matches directly (i.e., hard pattern) from those
of other patterns where matching is less expensive (i.e., easy
pattern).
We propose Subgraph Morphing for graph mining sys-

tems – a generic technique that enables structure-aware
algebra over patterns to morph the queried patterns into a
set of alternative patterns, which can then be used to quickly
compute accurate results for the original patterns. We make
the following key contributions in this paper.

• We expose key factors that impact the performance of
graph mining (Section 3). Our observations from bench-
marking various graph mining workloads across multiple

95

https://doi.org/10.1145/3552326.3567489
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3552326.3567489&domain=pdf&date_stamp=2023-05-08


EuroSys ’23, May 8–12, 2023, Rome, Italy Kasra Jamshidi, Guoqing Harry Xu, and Keval Vora

graph mining systems show that the nature of input work-
loads (input patterns and data graph from the application),
the pattern matching engines in graph mining systems,
and the processing requirements of mining applications,
all together contribute to the final performance. We envi-
sion these observations will be useful in building intuition
for future research and development on graph mining sys-
tems.
• We develop the Subgraph Morphing algebra that shows
how patterns can be morphed with guaranteed correct re-
sults (Section 4). Our algebra is general as it natively incor-
porates morphing with arbitrary aggregation operations
from graph mining applications, and it generates multi-
ple alternative solutions (which we call alternative pat-
tern sets) to exploit different performance characteristics.
With such generality, the system-level and application-
level nuances can be incorporated to improve the overall
performance, which is a key strength of our technique.
• We develop efficient strategies to enable
Subgraph Morphing in practice. A major challenge
is the exponential search space of alternative pattern
sets with different benefits. We generate and navigate
through different alternatives methodically using a novel
data structure called S-DAG and a greedy algorithm to
select efficient alternative pattern sets (Section 5). Our
approach is backed by cost models that incorporate
all the factors discussed above while estimating the
performance of alternative patterns.
Another challenge is that the results for queried patterns
must be inferred from the results of alternative patterns,
which can be tedious for users to perform in application
logic. We develop strategies to seamlessly convert the
results by operating on patterns and their matches only,
hence removing the need to modify the application logic
(Section 6). Our conversion strategies operate efficiently
across both the common output modes in graph mining
systems: batched mode where aggregation results are
output at the end, and streaming mode where matching
subgraphs are returned as a continuous output stream.
• We demonstrate the generality and effectiveness of
Subgraph Morphing by integrating it into four state-
of-the-art graph mining and subgraph matching sys-
tems: Peregrine [26], AutoMine/GraphZero [39, 40],
GraphPi [57], and BigJoin [4]. Our extensive evaluation
on a variety of graph datasets and graph mining applica-
tions demonstrates that Subgraph Morphing accelerates
these systems by 34× on Peregrine, 10× on AutoMine/-
GraphZero, 18× on GraphPi, as well as 13× on BigJoin
(Section 7).
To the best of our knowledge, this paper provides the

first treatment of exploiting structural similarities across
patterns in a general manner in order to improve graph
mining systems across various graph mining workloads. A
detailed discussion of related works is available in Section 8.

Triangle 4-Star Tailed
Triangle 4-Cycle Chordal

4-Cycle 4-Clique

p1 p2 p3 p4 p5 p6 p7p1 p2 p3 p4 p5 p6 p7

p1 p2 p3 p4 p5 p6 p7p1 p2 p3 p4 p5 p6 p7p1 p2 p3 p4 p5 p6 p7p1 p2 p3 p4 p5 p6 p7
Figure 1. Common pattern names.

2 Background

This section provides an introduction to graph mining con-
cepts necessary for this paper.
Pattern-Centric Graph Mining. Graph mining applica-
tions find subgraphs of interest in an input graph G. Such
subgraphs are represented as patterns. A pattern p is a user-
provided graph (or a shape), possibly with labels on its ver-
tices. Apart from regular edges between vertices, a pattern
can contain special edges called anti-edges [26]. An anti-edge
indicates disconnections between pairs of vertices. They are
used to quickly filter out a subgraph during exploration—a
subgraph containing an edge that can match an anti-edge
in the pattern is immediately disqualified. An anti-edge is
visually represented using a dashed edge in the pattern.

The subgraphs of interest (called matches or embeddings)
are subgraphs in G that are isomorphic to pattern p, taking
both regular edges as well as anti-edges into account.
The isomorphism relation also exists between patterns,

but it does not consider anti-edges (i.e., isomorphism be-
tween patterns is w.r.t. regular edges only). A subpattern of
a pattern p is a pattern q for which there exists a subgraph
isomorphism from q into p. Conversely, a superpattern of a
pattern p is a pattern q such that p is a subpattern of q.
There are two main strategies to explore subgraphs:

vertex-induced exploration and edge-induced exploration.
Vertex-induced exploration explores subgraphs induced by
the vertices in the data graph. On the contrary, edge-induced
exploration explores subgraphs induced by the edges in the
data graph. These two strategies are often used to imple-
ment different applications. For example, motif counting
uses vertex-induced exploration because a match for a given
motif must be edge-exclusive—none of its vertices can have
an edge in д that does not belong to the motif. On the other
hand, frequent subgraph mining uses edge-induced explo-
ration because any subgraph can potentially be frequent.
The exploration strategy can be encoded in the input

patterns using anti-edges, controlling which edges can par-
ticipate in a match. This leads to two types of patterns. A
vertex-induced pattern (denoted as pV ) contains anti-edges
between each pair of vertices that are not connected by a
regular edge. Such a pattern explores subgraphs in the same
way as vertex-induced exploration. An edge-induced pattern
(denoted aspE ) is a pattern without any anti-edge, and hence,
it explores subgraphs in the same way as edge-induced ex-
ploration. Note that fully connected patterns (i.e., cliques)
are simultaneously edge- and vertex-induced since there
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Figure 2. Graph mining workflow.

exists an edge between any pair of vertices (and hence no
anti-edge). For any given pattern p, we refer to pE and pV as
variants of each other. Throughout the paper, we omit the
superscript on patterns when the discussion applies to both
vertex-induced and edge-induced patterns.

Several patterns can be easily described by their names
(e.g., triangle, clique, etc.). Figure 1 summarizes the common
pattern names that we use in our paper.
Graph Mining Workflow & Applications. Graph mining
applications find subgraphs that match patterns of interest
and either enumerate (i.e., list out) the individual matches,
or perform aggregation operations like counting, computing
support, etc., over these instances. Figure 2 shows the high-
level workflow of recent pattern-based graphmining systems
like Peregrine [26]. At a high level, these systems contain two
key modules: an execution planner and a matching engine.
The execution planner analyzes the input patterns from the
mining application (and perhaps, the data graph) to generate
an efficient exploration plan for finding matching subgraphs.
This plan is heavily dependent on the structure of the in-
put patterns (i.e., edges and anti-edges), and describes how
to break the data graph into tasks, and how to compute
each task independently. Then, the matching engine pro-
cesses the data graph, distributing exploration tasks among
worker threads to efficiently explore the matches in the input
graph. Based on the requirements of the graph mining appli-
cation, the pattern matching module outputs either streams
of matches (for enumeration) or aggregation results (e.g.,
match counts).
There are several graph mining applications like

Clique Finding, Subgraph Enumeration (SE), Subgraph
Counting (SC), Frequent Subgraph Mining (FSM) and
Motif Counting (MC). FSM and MC are two popular appli-
cations that perform aggregation over matches. Below we
elaborate on important details for these two applications.

Figure 3 shows the difference in the patterns for MC and
FSM. MC counts the vertex-induced matches of a certain size
(e.g., patterns containing 4 vertices). There are six such pat-
terns (shown on the right side of Figure 3), most containing
anti-edges. Since the aggregation operation is counting (i.e.,
sum), MC requires constant time for each match. FSM, on the
other hand, does not have a set of known patterns a priori.
Instead, it computes frequencies for all subgraphs up to a
certain size, based on edge-induced matches. The left side of
Figure 3 shows a set of 5 patterns, each of which is simply
represented by a set of edges. After matches are found, FSM

(g, c, f, h) 

(a, b, c, e)
(a, b, c, f)

...

(a, d, f, b)
(d, a, f, c)

...

(a, b, c, d)
(d, e, f, g)

(a, f, d, g)
(d, g, c, f)

...

(a, d, e, f)
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(a, b, d, f)

…
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…
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…

(a, b, c, d)
(a, b, d, c)

…

(g, c, b, h)
(g, c, d, h)

…

3-FSM 4-MC

e
f

b

g

c h

a d

Data Graph

Figure 3. Examples of vertex- and edge-induced patterns
in graph mining applications. 3-FSM typically explores (la-
beled) edge-induced subgraphs; there are three size-3 pattern
topologies which form five patterns with distinct labelings. 4-
MC typically explores (unlabeled) vertex-induced subgraphs,
and there are six size-4 patterns.

computes the minimum node image (MNI) [8] of their corre-
sponding patterns, which is used to check whether a pattern
is frequent enough.
The MNI computation consists of a table with a column

for each group of symmetric vertices in p. The data vertices
for each match are maintained in respective columns, and
the support is computed as the size of the smallest column in
the table. Hence, to compute this support, the aggregation
operation is to join tables by concatenating their respective
columns. Each column contains O(|V |) vertices which are
merged during aggregation. As a result, while each match re-
quires constant time (to append a value to the table), joining
the tables can take O(|V |) time.

3 Performance Analysis

This section identifies key factors that impact the perfor-
mance of graph mining workloads in order to motivate the
need for a generic technique to accelerate arbitrary graph
mining workloads across different graph mining systems.
To understand the performance bottlenecks in existing sys-
tems, we profiled various graph mining workloads on dif-
ferent open-source systems: Peregrine [26], GraphPi [57],
and BigJoin [4] for subgraph matching. Figure 4 shows the
profiling results, and we summarize our observations below.

3.1 Graph Mining Applications

Figure 4a, Figure 4b and Figure 4c show the performance
of three graph mining applications on Peregrine: Frequent
Subgraph Mining (FSM), Subgraph Counting (SC) and Sub-
graph Enumeration (SE). These applications differ widely
from each other. FSM invokes a user-defined function (UDF)
on each match to compute MNI of patterns, whereas SC
does not invoke any UDF since the system natively performs
counting using set optimizations. SE is between FSM and SC
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Figure 4. Profiling graph mining systems. Figures (a-c) show performance breakdown of FSM, SE and SC on Peregrine [26];
(d-e) show performance breakdown of enumerating matches in GraphPi [57] and BigJoin [4]; (f) shows the relative performance
of mining patterns on different data graphs in Peregrine (relative w.r.t. longer execution for each data graph). MG and MI are
MAG and MiCo data graphs (see Figure 11b). 4CL, C4C, TT and 4S are patterns 4-clique, chordal 4-cycle, tailed triangle and
4-star respectively (see Figure 1). The suffixes “-V” and “-E” indicate vertex-induced and edge-induced patterns (e.g., TT-V is
vertex-induced tailed triangle).

where it lists out the matches using a UDF, but the UDF is
simpler than in FSM.

Observation 1. Since the number of matches grows exponen-
tially with graph size, invoking UDF on each match impacts
the end-to-end processing time. UDFs become the main per-
formance bottleneck when they are expensive (as seen for
FSM), while simpler UDFs also influence the processing time
by non-trivial amount (as seen for SE).

The above observation is also valid when mining vertex-
induced subgraphs using systems like GraphPi and BigJoin
that only perform edge-induced exploration. For these cases,
the edge-induced matches mined by the system are pro-
cessed using a Filter UDF to prune out invalid matches (i.e.,
matches that do not contain all edges induced by their ver-
tices). As shown in Figure 4[d-e], the Filter UDFs are the
main performance bottlenecks, and they significantly slow
down the overall processing compared to when matching
edge-induced subgraphs (which does not require any UDF).

3.2 Structure of Patterns

Next, we study the performance of SC and SE (Figure 4b and
Figure 4c). As expected, the set operations on adjacency lists
(set intersections and differences) take most of the time for
SC, while SE also spends time on materializing matches by
merging sets of candidate vertices.
Since graph mining systems analyze the pattern struc-

ture to generate customized pattern-specific matching plans,
the structure of the pattern dictates the effectiveness of the
sub-techniques involved in the matching plan (e.g., pruning
strategies to account for pattern symmetries, or different
join fast-paths [28]). Hence, different patterns incur different
amount of set operation and materialization time. While one
would expect similar looking patterns (e.g., same number
of vertices) to have similar performance trends, or denser
patterns to be more expensive than sparser patterns with
same number of vertices, no such performance trends are
guaranteed. For instance, in Figure 4[b-c] we can see:

• A 4-star takes more set operation and materialization time
than a 4-clique, even though latter has twice the number of
edges than the former (see pattern structures in Figure 1).
• A chordal 4-cycle has only one additional edge over a
tailed triangle, but the latter consumes more time for set
operation and materialization compared to the former.

Observation 2. As graph mining systems generate pattern-
specific matching plans, even similar-looking patterns incur
different amounts of set operations and materialization time,
which results in unexpected performance trends across those
patterns that are difficult to justify.

3.3 Structure of Data Graphs

Next, we study the performance of mining different patterns
on different data graphs. While mining in larger graphs takes
more time (which is expected), the structure of the data
graph impacts the relative performance of mining different
patterns. This is visible in Figure 4f where mining 4-stars is
25% faster than tailed triangles in MiCo graph, but it is 125%
slower in MAG graph. This is because the graph structure
influences how different explorations proceed or get pruned
(e.g., matching order violation), which in turn impacts the
amount of work performed to mine all matches.

Observation 3. The structure of the data graph also influ-
ences the mining performance since it dictates which explo-
rations proceed while others get pruned out.

3.4 Graph Mining Systems

Finally, we study the relative performance between graph
mining workloads across different graph mining systems.
Since graph mining systems employ different kinds of pat-
tern matching techniques (e.g., matching algorithms) and are
implemented and optimized in different manner (e.g., paral-
lelization strategies), the performance relationships across
workloads varies across the systems as well. This is observed
when comparing the performance numbers in Figure 4[b-d]
for Peregrine and GraphPi: while the chordal 4-cycle is faster
than a tailed triangle in Peregrine, the performance relation
is reverse for GraphPi where tailed triangle is faster.
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Observation 4. The design and implementation choices in-
corporated in graph mining systems impacts the relative
performance between different graph mining workloads.

3.5 Motivation Summary

In summary, the end-to-end processing time is influenced
by: (a) the structure of patterns and the data graph, (b) the
matching strategies and optimizations employed by the min-
ing system, and (c) the processing requirements of the graph
mining application (i.e., UDF calls). More importantly, none
of these factors are a clear single variable that should be
optimized over the other, making it difficult to improve the
performance of mining systems.

This motivates the need for a general technique that graph
mining systems can employ across various graph mining
workloads. Subgraph Morphing is our general technique. It
first methodically exposes the space of performance oppor-
tunities (Section 4) and then considers the system-level and
application-specific nuances to deliver high performance
across different scenarios (Section 5 and Section 6).

4 Subgraph Morphing

This section describes principles of subgraph morphing with
illustrative examples, and develops its semantics.

4.1 Overview

Subgraph Morphing primarily exploits the structural simi-
larities across different patterns. The key idea is to morph
the input patterns from graph mining applications into alter-
native patterns that are less expensive to compute, and then
convert the results for those alternative patterns into results
for the original input patterns.
When Subgraph Morphing is integrated in graph min-

ing systems, their workflow gets enhanced with two new
steps (shown in Figure 5): pattern transformation and re-
sult transformation. Instead of being directly passed to the
execution planner, the input patterns first undergo a pat-
tern transformation step resulting in alternative patterns.
Then, matching plans are computed and followed to explore
matches for the alternative patterns from the input graph.
Finally, the results for alternative patterns are sent through
the result transformation step to compute the results for the
original input patterns. Details of pattern transformation
and result transformation will be explained in Section 5 and
Section 6 respectively, and Appendix A illustrates the key
steps in Subgraph Morphing using two graph mining appli-
cations. In this section, we will focus on the semantics of
Subgraph Morphing.

4.2 Intuition & Example

The intuition behind Subgraph Morphing can be summa-
rized with the following two key observations.
[P1] A match for an edge-induced pattern pE on n vertices
is also a match for all of its subpatterns on these vertices.
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Figure 5. Graph mining with Subgraph Morphing.

For example, a match for a 4-clique is also a match for
an edge-induced 4-cycle, since the 4-clique contains all
the edges of the 4-cycle. Note that this observation does
not apply to vertex-induced patterns—although a vertex-
induced 4-cycle contains the same four (regular) edges, the
additional two anti-edges exclude matches for 4-cliques.
[P2] A match for a vertex-induced pattern pV is always a
match for the corresponding edge-induced pattern pE , but
not vice versa—pV matches exactly the edges in pE but a
subgraph that matches pE may contain additional edges
that are against the anti-edges in pV .

Example. These observations indicate that we can logically
partition the matches for an edge-induced pattern into dis-
joint sets of matches for vertex-induced patterns. For exam-
ple, consider a match (i.e., subgraph) for the edge-induced
4-cycle. The vertices in this match may have edges that are
in the graph but not present in the pattern. If these edges do
not exist, this is also a match for the vertex-induced 4-cycle
(e.g., a-b-c-d in Figure 6a). If there exists exactly one extra
edge, it is a match for the vertex-induced chordal 4-cycle
(e.g., d-c-g-f in Figure 6a). Finally, if there are two extra edges
in the match, it is a match for the 4-clique (e.g., a-d-f-e in
Figure 6a). These situations aremutually exclusive since they
depend on specific edges being present or absent.

While the above partitioning enables converting matches,
a match for a given pattern can potentially contain multiple
matches for another pattern. For example, a match for the
4-clique contains 3 unique matches for the edge-induced
4-cycle, as shown in Figure 6b. Hence, in order to convert
a match for the 4-clique into a match for the 4-cycle, we
must correctly map the 4-clique vertices, using the subgraph
isomorphisms, to those of the 4-cycle.

4.3 Semantics

Subgraph Morphing performs structure-aware algebra over
patterns (and hence, their matches) to capture all matches for
a given pattern in the input graph by converting the matches
of different (alternative) patterns. One way to find alternative
patterns for a given pattern is to consider its superpatterns
because matches of a pattern are guaranteed to contain valid
matches for its subpatterns. Hence, our first idea is to derive
the matches of the pattern using its superpatterns.
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(a) Edge-induced 4-cycle
contains 4-clique, vertex-
induced chordal 4-cycle, or
vertex-induced 4-cycle.
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(b) 4-clique contains three
unique edge-induced 4-cycles.

Figure 6. Identifying matches for different patterns.

LetM be the set of all matches for a given pattern p. Then,

M(pE ) = M(pV ) ∪
⋃

qE ⊃npE
M(qV ) ◦ ϕ(pE ,qE ) (1)

where qE ⊃n pE indicates the superpatterns qE of pattern pE
containing same number of vertices (n), ϕ(pE ,qE ) captures
the set of all subgraph isomorphisms from pE to qE , and
M(qV ) ◦ ϕ(pE ,qE ) permutes the vertices in each matchm ∈
M(qV ) according to subgraph isomorphism from pE to qE .
In simple words, given an edge-induced pattern pE , we

start with using the matches of its vertex-induced variant pV
(observation [P2]). However, since pV contains anti-edges
that eliminate some valid matches for pE , we compensate by
using matches for additional superpatterns, each obtained
by replacing anti-edges in pV one-by-one with true edges
(observation [P1]). This ends up generating an alternative
pattern set for pE that contains all of its vertex-induced su-
perpatterns with the same number of vertices. Since a match
for a superpattern can contain multiple matches for a sub-
pattern (e.g., 4-clique contains three edge-induced 4-cycles
in Figure 6b), we use permutation functions to generate
all the matches of the subpattern. A permutation function
converts matches of a superpattern into matches for the sub-
pattern based on isomorphic mappings from the subpattern
to the superpattern.
Due to space limitation, we skip the theory of

Subgraph Morphing and its preservation of full pattern
equivalency (e.g., proof for Eq. 1). Next, we focus on the
two key aspects that make our Subgraph Morphing strategy
generic: directly converting arbitrary aggregations results
and multiple alternatives for converting matches.
ConvertingAggregationResults. Subgraph Morphing can
be applied directly on aggregation results instead of convert-
ing the individual matches. By doing so, we can prevent ma-
terialization of a significant number of matches, and reduce
UDF overheads while computing aggregations by invoking
them on fewer match results.

2

= + +4 12

=

= —

+ + 3

3—

[SM-E1]

[SM-E2]

[SM-V1]

= + +2[SM-E3]

Figure 7. Sample equations resulting from subgraph morph-
ing. [SM-V1] morphs vertex-induced pattern (left) whereas
other equations morph edge-induced patterns. [SM-E1] and
[SM-E2] are directly obtained from Eq. 1, [SM-E3] by recur-
sively substituting in [SM-E1], and [SM-V1] by adjusting
[SM-E2]. The coefficients indicate the numbers of unique
matches resulting from subgraph isomorphism.

Let a = (λ, ⊕) be the aggregation in graph mining applica-
tions where λ is a map from a set of matches to an aggrega-
tion value and ⊕ is a commutative operator for combining
aggregation values. For example, in counting aggregation λ
is the number of matches in the set (i.e., λ(M) = |M |) and ⊕ is
the traditional integer sum. In FSM application on the other
hand, λ computes the MNI table of a set of matches and ⊕
joins tables on columns. For a set of matchesM(p), we write
a(M(p)) as a shorthand for

⊕
m∈M (p)

λ(m). The aggregation

results can be directly converted as follows:

a(M(pE )) = a(M(pV )) ⊕
(⊕
qE ⊃npE

⊕
f ∈

ϕ(pE ,qE )

a(M(qV )) ◦∗ f
)

(2)

where ◦∗ is a permute operator for aggregation values to
account for the permutations according to ϕ(p,q) (similar
to ◦ defined on matches in Eq. 1). The ◦∗ operator adjusts
the aggregation value based on a given permutation f in
ϕ(p,q). The definition of the permutation function depends
on the aggregation operation performed on the matches. For
instance, the permutation function for counting accounts for
all unique isomorphic mappings, which results in multiply-
ing the number of matches of a superpattern by the number
of unique isomorphic mappings. In FSM, the permutation
function permutes the columns of theMNI table of the match,
in a similar manner, based on subgraph isomorphism.
Multiple Alternative Pattern Sets. While Eq. 1 identifies
alternative patterns for edge-induced patterns, we can move
in the other direction as well to compute results for vertex-
induced patterns (achieved by rearranging the terms in Eq. 1
to bring M(pV ) on left-hand side). More importantly, the
patterns in the alternative pattern set can be iteratively sub-
stituted with their conversion equations to obtain differ-
ent alternative pattern sets. By recursively substituting the
patterns with their alternative patterns sets, we can gener-
ate a system of equations representing different alternative
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pattern sets that can be used to compute the results for a
given query pattern. Additionally, the alternative pattern
sets can contain a combination of vertex-induced and edge-
induced patterns by converting the intermediate aggrega-
tions through recursive substitution.
Figure 7 shows a few samples of how patterns can be

morphed to a given pattern. The coefficient associated with
a pattern indicates the number of unique matches resulting
from subgraph isomorphism (e.g., 4-clique has three 4-cycles,
and hence the 4-clique in Equation [SM-E2] has a coefficient
3). As we can see, [SM-E1] and [SM-E3] are two different
equations to compute results for the tailed triangle. With
different choices for alternative pattern sets, the pattern
query can be optimized by selecting the alternative set for
which match results can be efficiently computed (discussed
in Section 5).

4.4 Significance of Generic Subgraph Morphing

The generic nature of Subgraph Morphing enables acceler-
ating arbitrary graph mining applications while also incor-
porating system-level nuances and application-level charac-
teristics. For example, system-level nuances were shown to
impact the mining workloads differently in Section 3, caus-
ing certain patterns to be faster than others on one system
but slower on another system. In such a situation, alternative
patterns sets can be optimized differently for each individual
system by accounting for their relative performance across
different patterns; in our example from observation 4, this
wouldmean choosing tailed triangle over 4-cycle for GraphPi
but not for Peregrine. Similarly, application-level characteris-
tics like application UDF and the structure of the data graph
were shown to impact the query performance in Section 3.
Since Subgraph Morphing enables direct conversion of ag-
gregation results, the impact of these application-level char-
acteristics can be directly accounted in choosing the right set
of alternative patterns. For example, expensive UDF calls like
filtering each match or computing MNI tables for FSM can
be reduced by using alternative patterns that are expected
to generate fewer match results. But on the other hand, ap-
plications that employ inexpensive aggregation operations
like counting (system-native) can benefit from alternative
patterns that are expected to incur fewer set operations.
In comparison, counting techniques developed in prior

works like [22, 35, 42, 47, 72] are inapplicable for general-
purpose graph mining systems since they focus on count
conversion rules that are customized for specific types of
equations on specific patterns. Hence, they cannot system-
atically generate multiple alternative sets for a given query
pattern, which renders them useless as they cannot account
for various system-level and application-level nuances. For
instance, blindly converting results from vertex-induced to
edge-induced (or vice-versa) would often be slower than the
original query, depending on the system and the application.

5 Generating Alternative Pattern Sets

This section describes the pattern transformation step (see
Figure 5) to compute alternative patterns.

To fully exploit Subgraph Morphing, our goal is to gener-
ate alternative pattern sets that would potentially compute
the final results efficiently compared to the original query
patterns. This cannot be achieved statically because of two
main reasons. First, the query patterns in graph mining appli-
cations can change dynamically during runtime. For instance
in FSM, only those patterns that have enough matches in
the data graph (i.e., cross a support threshold) are extended
to generate the new set of patterns to be explored in the
next step. And second, the input data graph itself impacts
the performance of matching (observation 3 in Section 3).
Hence, we dynamically generate the alternative patterns for
the query patterns as they become available at runtime.

Since the possible alternative pattern sets grow recursively,
the search space for identifying efficient alternative pattern
sets grows exponentially. For a single query pattern, the
choice may appear simple. However, when the input contains
multiple query patterns, the number of choices increases
exponentially as the alternative sets for different patterns
overlap, making it hard to estimate benefits. For instance,
two patterns may have a lower cost (i.e., faster to compute)
compared to the cost of their individual alternative pattern
sets; however, the cost of the combined alternative pattern
sets can be lower (due to overlapping patterns) than that of
the two patterns.
Exhaustively searching all possible combinations of al-

ternative pattern sets is impractical. Instead, we develop a
greedy exploration strategy backed by a cost model that
actively prunes the search space. Our approach is to first
generate a single alternative set, and then use a cost-based
selection strategy to iteratively improve the alternative set
by substituting better (low cost) alternatives.

5.1 Initial Alternative Patterns

Given a set of input patterns, we generate the initial alter-
native pattern set for each pattern in the input set using
Eq. 1. This primarily involves generating superpatterns of
the input pattern (second term in Eq. 1). While the final al-
ternative pattern set contains a mix of vertex-induced and
edge-induced patterns, the choice of each individual pattern
being either vertex-induced or edge-induced is independent
of the other patterns in the set. Hence, we generate edge-
induced superpatterns, and later optimize the choice for each
pattern when constructing the efficient alternative pattern
set. By doing so, we maximize the overlap between the al-
ternative patterns generated across different patterns in the
input set, which is beneficial since the same superpattern (or
its alternatives) covers multiple input patterns.
The superpatterns of the input pattern are generated by

extending them recursively, adding edges between discon-
nected vertices. Naïvely extending the input patterns can
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Figure 8. S-DAG for unlabeled patterns (on left), and for
patterns with one yellow labeled vertex (on right).

end up generating duplicate patterns due to two reasons.
First, adding edges between automorphic (or symmetric)
sub-components of a given pattern can result in the same
superpatterns; for instance, adding an edge between any pair
of disconnected vertices in a 4-cycle would result in the same
chordal 4-cycle pattern. Second, different patterns with the
same number of vertices have a common subset of superpat-
terns; for instance, a 4-cycle and a tailed triangle both have
the 4-clique and chordal 4-cycle as their superpatterns.
We avoid generating redundant superpatterns by main-

taining them in the S-DAG data structure, as described next.
S-DAG for Superpattern Sets. As superpatterns get gener-
ated, wememoize them and their superpattern-subpattern re-
lationships in form of a directed acyclic graph, called S-DAG.
The S-DAG is queried each time before recursively extending
any pattern and adding new superpatterns in order to avoid
redundant pattern alternatives.

Each vertex of the S-DAG represents a pattern (either one
of the input patterns or one of their superpatterns), and we
draw directed edges from each pattern with k edges to its
superpatterns with k + 1 edges. Figure 8 shows two S-DAG
examples: one where patterns are unlabeled, and other where
patterns are labeled. Depending on the number of labels
in the pattern, the number of possible patterns increases
compared to the number of unlabeled patterns, and each
labeled pattern can have many more superpatterns than an
unlabeled one.
For fast comparison and lookup operations on S-DAG,

we represent the patterns using 64-bit pattern IDs which
uniquely correspond to the pattern structures. Each pattern
is first canonicalized (using Bliss library [29]) so that its
vertices have consistent vertex IDs. Then, the edges of the
canonicalized pattern are hashed consistently to compute
its pattern ID that uniquely identifies the pattern structure.
While pattern IDs can be computed quickly (in milliseconds)
as patterns get generated, they can also be computed offline.

5.2 Selecting Efficient Alternative Patterns

Once the S-DAG is generated, the final alternative pattern
set is constructed by carefully selecting the set of patterns

Algorithm 1 Efficient Alternative Patterns
Input: Set of query patterns P and their S-DAGP
Output: Low-cost alternative pattern set S

1: initializePatternCosts(S-DAGP )
2: procedure selectPatterns(P , S-DAGP )
3: S ← P
4: while S not converged do

5: for each p ∈ ∪s∈S parents(S-DAGP , s ) do
6: for each C ∈ P(children(S-DAGP , p)) where C ⊆ S do

7: costC ←
∑
c∈C initial_cost(c )

8: SPC ← ∪c∈C superpatterns(c )
9: costSPC ←

∑
spc∈SPC cost(spc )

10: if costSPC < costC then

11: S ← (S \C) ∪ SPC
12: for each c ∈ C ∪ SPC do

13: setCost(S-DAGP , c , 0)
14: end for

15: end if

16: end for

17: end for

18: end while

19: return S
20: end procedure

based on the potential performance benefits they can bring.
To avoid evaluating every possible alternative set in the
exponential search space, we develop a greedy algorithm that
iteratively finds better alternatives using the S-DAG. Instead
of searching for the optimal alternative pattern set, our goal
is to construct an efficient alternative set that promises faster
execution compared to the original query patterns.

Algorithm 1 shows the selection algorithm. Initially, each
node in S-DAG is assigned a cost that estimates the time
taken to match that pattern. Since either variant of super-
patterns can be used in the alternative pattern set, the nodes
are assigned the minimum cost between the two variants
of the patterns they represent. Then the algorithm proceeds
iteratively to replace patterns with lower cost alternatives.
For each pattern we check whether any subsets of the

pattern’s children in the S-DAG benefit from morphing. If
the combined cost of the children is more than the cost of
their combined superpatterns, then the superpatterns are
selected for the alternative pattern sets. When the alternative
patterns are selected, the S-DAG is re-weighted to reflect that
those patterns are free, i.e., their cost is set to 0, and then the
patterns are traversed again. The algorithm incrementally
reduces the cost of the alternative pattern set until it can no
longer be improved. By considering only the subsets of each
pattern’s children, we reduce the exponential search space
to the number of unique subpatterns for each pattern.
Estimating Relative Pattern Costs. In order to identify
cheaper pattern alternatives, the selection algorithm requires
pattern costs that represent the estimated relative times to
match different patterns. The cost of pattern-matching de-
pends not only on the input patterns and the data graph,
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but also on the system-specific properties such as the un-
derlying matching algorithm used by the system and on
application-specific details like aggregation functions.

Modern graph mining and pattern matching systems like
[19, 39, 40, 57] often incorporate a cost model to compute ef-
ficient exploration plans for the given patterns. While these
models are useful, they do not account for any application-
specific detail since it is irrelevant to their matching plans.
Since we are interested in costs that estimate the perfor-
mance of different patterns on a given application workload,
for these systems we piggyback on their existing cost model
by enhancing them to include cost of result aggregation.
The data graph is modeled by an abstract probabilistic

graph, where two vertices are connected by an edge with a
fixed probability. The pattern matching process is modeled as
a series of V (P) nested loops over this abstract graph. After
computing the expected number of iterations in each loop,
keeping in mind previous loops, the final cost is simply the
number of iterations in the innermost loop.

As aggregations are functions on individual matches, their
costs are modeled as the number of estimated matches mul-
tiplied by the amount of work for the aggregation. The num-
ber of estimated matches is already available from the cost
model of the underlying system. The amount of work for the
aggregation can be estimated by profiling the application-
specific UDF to identify how aggregation time scales with
the number of matches, or by analyzing the aggregation
operations. For profiling, a set of n dummy matches can be
generated by randomly selecting |V (P)| vertices n times, and
then the time required to apply the UDF to these n matches
gets measured. Repeating this for varying n and integrating
the resulting curve yields an approximation of how the ag-
gregation scales. Alternatively, the cost of aggregation for
simple or well-known operations can be directly provided as
hints to the system. For instance, the counting aggregation is
performed using a constant operation per match, and hence
incurs no additional cost. On the other hand, FSM applica-
tion incurs O(|V (G)|) cost to approximate the overheads of
merging MNI tables.
Finally, for systems like [4, 26] that do not use any cost

model, we compute pattern costs based on their pattern
matching details using a similar approach as [40]. In addition,
we improve the cost estimation using two novel enhance-
ments.
• From profiling, we observed that highest degree data ver-
tices (those in the 95th percentile) contribute the majority
(66–99%) of the matches and the majority of the execution
time. Hence, the graph model is restricted to the portion
of the data graph comprising the highest degree vertices.
• Since partial orders for symmetry breaking [18] impact
the input size (e.g., adjacency lists or indexed tuples) for
the set operations or joins performed during matching, the
neighborhood size is estimated in terms of the expected
number of smaller or higher vertex id neighbors.

Algorithm 2 Converting Aggregation Results
Input: Set of query patterns P , their alternative pattern set S ,

and aggregation store A holding results of S
Output: Aggregation store R for P

1: procedure convertResults(P , S , A)
2: for each p ∈ P do

3: for each q ∈ alternative(S , p) do
4: for each q_key ∈ AggrKeyMap(q) do
5: for each f ∈ ϕ(p, q) do
6: p_key ← permute(q_key , f )
7: R[p_key] ← reduce(R[p_key], A[q_key])
8: end for

9: end for

10: end for

11: end for

12: return R
13: end procedure

6 Transforming Results

The efficient alternative pattern set is given as input to the
pattern matching engine. The next step is to convert the
match results generated for these alternative patterns into
results for the original query patterns (result transformation
in Figure 5). As discussed in Section 4.3, we use permuta-
tion functions (i.e., ϕ(p,q) in Eq. 1 and Eq. 2) that convert
the results based on isomorphic mappings from the query
pattern to the alternative pattern. For seamless conversion,
our key insight is to permute the vertex ids in the pattern in-
stead of modifying the results so that the results get mapped
for original patterns. We will describe our result conversion
strategies in Section 6.1 and Section 6.2.
Output Modes. Graph mining systems often employ dif-
ferent output modes for returning match results that are
suitable for different applications. For example, applications
like FSM and MC return the final aggregation values (counts,
support values) in the end after all required matches are
found. On the other hand, applications like SE return each
individual match to the user function for further process-
ing (e.g., filtering) as the matches get explored. To handle
these output requirements, our permutation functions can
be employed to convert the results either on-the-fly or after
matching finishes.

6.1 Post-Matching Conversion

In this case, results get converted after matching for the
alternative patterns completes. Then the converted results
are returned to output.

Since the final results are often computed by application-
specific aggregation functions, one way to convert the results
would be by directly modifying the aggregation functions
(e.g., map-reduce UDF) to simply change the mapping be-
tween results and patterns. While such a change is easy, it
still requires capturing the relationship between the query
patterns and their alternative patterns into aggregation func-
tions.
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void process(Pattern p, Match m) {
for (PatternVertex u : p.getVertices ())

map(u, m(u));
}
MNIColumn reduce(MNIColumn accumulator ,

MNIColumn new_value) {
return accumulator.merge(new_value);

}

Figure 9. FSM Application.
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Figure 10. Converting MNI aggregation for FSM.

To make the conversion process seamless to the applica-
tion, we instead modify the vertex ids in the patterns, which
does not require modifying application-specific logic. This is
achieved by applying the permutation function on vertex ids
of the alternative patterns. By doing so, we simply invoke
the aggregation operation on the query pattern, but with per-
muted ids, which ends up correctly routing the aggregation
results from alternative patterns to the query patterns.
Algorithm 2 shows the result conversion process. The

results for alternative patterns are maintained in the aggre-
gation storeA as key-value pairs, where keys are of different
types depending on the application (e.g., patterns for SC, pat-
tern vertices for MNI). To convert the results (lines 5-8), the
aggregation keys for the alternative pattern are permuted
based on the permutation function to obtain the key for in-
put pattern, and then the aggregation values for those keys
are combined using the application’s aggregation function
(reduce on line 7).
Example.We illustrate how conversion happens for theMNI
aggregation in FSM. To help understand the context, the FSM
application code is shown in Figure 9. In the process function,
the individual vertices are mapped to the respective pattern
vertices, and the reduce operation merges the set of pattern
vertices (i.e., MNI columns).

Figure 10 shows an example of result conversion. The
permutation function permutes the vertex ids for pattern
q which results in a change in the mappings between keys
(pattern vertices) and values (MNI columns). Hence, for the
results on top right, the column for vertex 0 gets remapped
to the third column. Then, the aggregation function merges
the columns for p with the permuted aggregation.

Algorithm 3 Converting Matches On-the-Fly
1: // Send alternative pattern q to matching engine
2: // Matching engine starts finding matches
3: // Matching engine generates matchm for pattern q
4: for each f ∈ ϕ(p, q) do
5: m_permuted ← permute(m, f )
6: process(p ,m_permuted ) /* Call UDF */
7: end for

6.2 On-the-Fly Conversion

Here, the results are converted as they get generated by the
matching engine, and then the converted results are sent
down the application’s processing pipeline.
While we can employ the same strategy of converting

patterns instead of converting the results, it is possible to
directly convert the match generated by the matching engine
since it is yet not been modified by the application-specific
functions (i.e., converting the match does not require appli-
cation details). Algorithm 3 shows on-the-fly conversion of
matches. Instead of directly calling the application function
with the alternative pattern q and its matchm, the permuta-
tion function is applied onm which generates the match for
the query pattern p. These are then supplied to the applica-
tion function (process on line 6).

7 Evaluation

Mining Systems and Implementation Details. We inte-
grated Subgraph Morphing in four state-of-the-art graph
mining and subgraph matching systems: Peregrine [26],
AutoZero (an implementation of techniques in both Au-
toMine [40] and GraphZero [39]), GraphPi [57], and
BigJoin [4]. Subgraph Morphing is generally applicable to
other mining and pattern matching systems like [19, 38]
as well. Systems like Arabesque [60], Fractal [12] and oth-
ers [9, 10, 66] perform generic BFS or DFS explorations that
do not exploit the pattern structure in order to optimize ex-
ploration. Hence, they deliver similar performance across
different patterns of same size, providing little or no oppor-
tunity to exploit performance difference across patterns.
We evaluate using the available mining capabilities of

each of the four systems to cover all cases. Hence, we use
Peregrine and AutoZero for counting motifs and patterns,
GraphPi and BigJoin when counting vertex-induced patterns
with a UDF to filter, and Peregrine for subgraph enumeration
and FSM.
Subgraph Morphing was added in form of two modules

external to the pattern matching engines in these systems
(see Figure 5), i.e., the pattern matching strategies and opti-
mizations in these systems were left untouched.

AutoMine [40] uses a compilation-based approach to gen-
erate matching schedules and GraphZero [39] enhances the
schedules using symmetry breaking (similar to [18]). Since
neither AutoMine nor GraphZero have source code available,
we developed an in-house version by faithfully implement-
ing the symmetry breaking restrictions and performance
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(a) Vertex-induced patterns used in evaluation. The edge-induced variants do not
contain anti-edges.

G |V (G) | |E(G) | Num. Max. Avg.
Labels Deg. Deg.

(MI) MiCo [13] 100K 1M 29 1359 22
(MG) MAG [24] 726K 5.4M 349 4779 14
(PR) Products [24] 2.4M 61M 47 17481 52
(OK) Orkut [70] 3M 117M — 33133 76
(FR) Friendster [70] 65M 1.8B — 5214 55

(b) Real-world graphs used in evaluation.
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Figure 12. Performance improvements from Subgraph Morphing in Peregrine & AutoZero for Motif Counting. (a-b): speedups
are w.r.t. baseline system (without morphing); absolute times (in seconds) for when Subgraph Morphing is enabled are shown
on top of the bars. Red bars indicate the cases where baseline did not finish within 24 hours (i.e., speedups for those cases are
underestimated). (c-d): reductions in set operation times are w.r.t. baseline system; absolute times (in seconds) are shown.

model for choosing individual pattern schedules from [39].
Unlike AutoMine however, GraphZero does not merge the
schedules of multiple input patterns. Hence we augmented
our in-house implementation with schedule-merging, so that
overlapping loops in different pattern schedules are merged
together, and conflicting restrictions are applied separately
to avoid under-counting. We name this augmented imple-
mentation AutoZero. AutoZero directly generates C++ code
for pattern matching schedules, and invokes g++ version 10
to compile it. Across all the experiments, we did not measure
the C++ code generation and compilation time for AutoZero.
Experimental Setup. We investigate the impact of
Subgraph Morphing on the performance bottlenecks iden-
tified in Section 3 through experiments on a wide array of
applications: Motif Counting (MC) of size 3 to 5 vertices,
FSM with size-3 and -4, as well as Subgraph Counting (SC)
and Enumeration (SE) with patterns in Figure 11a. Most
of these patterns have been used in state-of-the-art evalu-
ations [12, 57], and we have also included some larger and
denser patterns in order to stress the systems.
Figure 11b lists the data graphs used in our evaluation.

MiCo (MI) is a co-authorship graph labeled with each au-
thor’s research field. MAG (MG) is an academic graph com-
posed of several vertex types. We use the portion represent-
ing citations between papers, where papers are labeled by
the venue they were published in. Products (PR) is a co-
purchasing network, where vertices represent products, la-
beled by their category, and edges indicate two products are
purchased together. Orkut (OK) and Friendster (FR) are un-
labeled social network graphs where edges represent friend-
ships between users. MiCo, Orkut and Friendster have been
used to evaluate previous systems [12, 19, 26, 40, 60], while

MAG and Products are recent graph datasets designed to
evaluate data mining tasks [24].
All our experiments were run on a Google Cloud

n2-highcpu-32 instance, equipped with a 2.8GHz Intel Cas-
cade Lake processor with 32 logical cores and 32GB of RAM.
Across all experiments, we measured the end-to-end exe-
cution time, which includes input pattern transformation,
mining computation, as well as result transformation. Since
pattern transformation is done on the input patterns, we
observed this phase took little time—for instance, transform-
ing patterns of size 4 and 5 took at most 0.7 ms and 7.2 ms,
respectively, whereas finding matches for those patterns on
large graphs often takes 10s-1000s of seconds.

7.1 Morphing for Reducing Set Operation Time

Since counting is heavily bottlenecked by set operations
in both Peregrine and AutoZero, we use Motif Counting

(MC) as a representative benchmark. Figure 12 summarizes
the results. Figure 12c and Figure 12d show that execution
time for motif counting is dominated by set operations.
Compared to the baseline systems, applying

Subgraph Morphing reduced set operation time in AutoZero
and Peregrine by 3 − 22× and 3.5 − 30×, respectively. This
is because morphing the vertex-induced patterns in Motif
Counting results in alternative pattern sets which contain
fewer anti-edges. While anti-edges actively prune the
search space and reduce the number of matches generated,
each anti-edge necessitates an additional set operation (set
difference) in the matching plan. Our selection algorithm
identifies that the additional time required for set operations
is not justified by the reduction in the number of matches
since the counting aggregation is inexpensive.
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Figure 13. Performance improvements from Subgraph Morphing in Peregrine for Subgraph Counting (Figures a-b) and
Frequent Subgraph Mining (Figure c). For FSM, minimum speedups are reported in brackets. Note that 4-FSM on larger graphs
did not finish in 24 hours since the complexity grows exponentially, requiring more resources (more machines and time).

The reduced set operation times translate to significant
speedups in overall execution times, as seen in Figure 12a
and Figure 12b. Subgraph Morphing yields a maximum 34×
speedup in Peregrine for 4-MC on PR. The smallest speedup
with Peregrine, 1.5× for 5-MC on PR, is an underestimation
since the baseline Peregrine (without Subgraph Morphing)
did not finish counting even half the patterns in 24 hours. In
AutoZero, Subgraph Morphing yields 2 − 10× speedups for
motif counting, including a conservative 5× speedup in the
OK 4-MC case, which the baseline system could not complete
in 24 hours.
SubgraphCounting (SC).Motif Counting represents a best-
case scenario for Subgraph Morphing, since all superpat-
terns are already contained in the input pattern set. Here we
examine the converse situation in Figure 13(a-b), matching
single patterns and pairs of patterns from Figure 11a, such
that few or no superpatterns are part of the input set. We use
Peregrine for these experiments, since it matches patterns
one by one, further exacerbating the cost of extra superpat-
terns. Due to limited space, we skip AutoZero, which gives
the best case for Subgraph Morphing since merged match-
ing plans significantly reduce the cost of extra superpatterns.
Even with higher costs for superpatterns, Figure 13a shows
that Subgraph Morphing speeds up Peregrine executions by
1.2 − 24×. The greatest speedup came from the large pV8
pattern, which Peregrine could not mine without morph-
ing. As expected, set operations are still the main bottleneck
whenmatching individual patterns, and Subgraph Morphing
reduces the time spent on them by 1.3 − 10× (shown in Fig-
ure 13b), despite having to match extra patterns.

7.2 Morphing for Reducing UDF Overheads

We evaluate the effectiveness of Subgraph Morphing to ad-
dress the key bottleneck in Frequent Subgraph Mining

(FSM) and filter-based mining.
Reducing UDF overheads in FSM. Figure 13c
summarizes the performance results when em-
ploying Subgraph Morphing in Peregrine for FSM.
Subgraph Morphing alleviates the UDF bottleneck in 4-FSM
on MiCo by morphing the patterns predicted to be most
frequent into vertex-induced variants which will have fewer
matches. For example, the edge-induced 4-Star pattern with

all of its vertices sharing the most frequent label in the data
graph is one of the most expensive patterns to mine in MiCo
FSM due to the few constraints in the pattern combined
with the frequent labeling, leading to over 5.7B matches.
Morphing it generates 3 additional superpatterns (Tailed
Triangle, Chordal 4-Cycle, and 4-Clique, all vertex-induced
and with the same labeling), but results in 1.4B fewer
matches, and as many fewer UDF calls (a reduction of 24%).
Similarly for other expensive patterns, the morphed pat-

terns saved over 13 hours of time spent on UDFs while spend-
ing only 1 additional hour on set operations, yielding 3.6×
speedup. 3-FSM on MiCo shows the least improvement, as
both the patterns and the data graph are small, making the
input patterns easy to match. Note that FSM operates on la-
beled patterns, which generally require more superpatterns
during morphing.
Eliminating Filter UDFs. We apply Subgraph Morphing
to vertex-induced pattern matching with GraphPi [57] and
BigJoin [4]. These systems lack native support for mining
vertex-induced patterns; hence, extracting vertex-induced
results requires matching the edge-induced variants and us-
ing a Filter UDF to remove matches with extra edges. With
Subgraph Morphing, we compute vertex-induced results
with edge-induced patterns without invoking any UDFs.

As shown in Figure 14, Subgraph Morphing significantly
speeds up GraphPi and BigJoin, by 1.4− 18× and 6.3− 13.3×
respectively. This is because the native matching capabilities
in these systems outweigh the expensive edge lookups in
Filter UDFs even when multiple patterns must be matched.

We observed that 98% of execution time in the baseline sys-
tem (without Subgraph Morphing) was spent in UDF calls.
Drilling deeper reveals that the poor performance is primar-
ily due to branches incurred on everymatch by the FilterUDF.
Figure 14c and Figure 14d show that eliminating the UDFs
using Subgraph Morphing reduces the number of branch
misses by 30× on average (1.7 − 88×).
7.3 On-the-Fly Conversion

We evaluate the benefits of Subgraph Morphing for Sub-

graph Enumeration (SE) where on-the-fly conversion is
employed to handle a stream of matches. We used Peregrine
to enumerate matches comprised of vertices whose aver-
age weight is within a standard deviation of the distribution
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Figure 14. Performance improvements from Subgraph Morphing in GraphPi and BigJoin.

mean (vertex weights were assigned from a normal distribu-
tion). All edge-induced 4-vertex patterns (4VE ) on MiCo and
Products, as well aspE4 onMiCo were used in this experiment.
Neither pE4 nor its alternative pattern sets could be matched
on Products within 24 hours.
Figure 15a and Figure 15b summarize the results. Since

the filter is only dependent on the matched vertices,
Subgraph Morphing trades the time spent filtering matches
for additional set operations by morphing into vertex-
induced patterns which have fewer matches, and then con-
verting the matches that pass the filter on-the-fly. This re-
duces the time spent in UDFs by 5 − 16×, and as a result,
speeds up the execution by 2.6 − 4×.
7.4 Scaling to Large Patterns

We use patterns p9 and p10 that contain 7 vertices. Such
large patterns are uncommon in evaluations of graph min-
ing systems. This is because graph mining workloads scale
exponentially with pattern size (theoretical bottleneck due
to NP-complete nature), making large patterns difficult to
mine on single machine systems even for medium-sized
data graphs. Since our goal is to show the effectiveness of
Subgraph Morphing on large pattern workloads, we control
the data graph size to limit the workload size so that execu-
tions can finish on a single machine in reasonable time. We
do so by partitioning the Products and Orkut graphs using
METIS [30], and using Peregrine and GraphPi to mine pV9
and pV10 within the partitions. This way, the edges between
partitions are dropped out, which reduces the workload size.

As shown in Figure 15c and Figure 15d, morphing speeds
up enumeration on Peregrine by 4 − 7×, while it also im-
proves enumeration on GraphPi by 2 − 5×. We observed
that the analyses from Section 7.1 and Section 7.2 apply to
large patterns as well. With Subgraph Morphing incorpo-
rated, Peregrine spent 3 − 11× less time on set operations,
while GraphPi incurred 2.2 − 46× fewer branches.
7.5 Cost Model Effectiveness

A given input pattern can have exponentially many alterna-
tive sets, leading to potentially large gaps in performance.
We study the effectiveness of our cost model in identifying
the right alternative pattern set that delivers performance.
Figure 15e shows the performance of 250 alternative pattern
sets for 5-motif counting on MiCo, including the query pat-
tern set and the set chosen by the cost model. The optimal

set is over 3× faster than the slowest. The cost model chose
an alternative pattern set which performs within 10% of the
optimal one.

Several alternative sets perform worse than the query set;
while this is visible in Figure 15e for 5-motif counting, it is
especially clear in FSM which involves many patterns. For
3-FSM on PR with support threshold 140K, blindly morphing
all input patterns leads to an execution time of over 22 hours,
whereas the query pattern set takes 14 hours and the cost
model selects a set taking only 5.65 hours.

8 Related Work

To the best of our knowledge, this paper provides the first
treatment of exploiting structure-based query transforma-
tions to address bottlenecks in graph mining systems.
General-Purpose Graph Mining Systems. General-
purpose graphmining systems [7, 10, 12, 19, 26, 40, 60, 66, 73]
incorporate efficient subgraph exploration strategies as
well as expressive programming models that enable users
to express a wide range of graph mining applications.
Arabesque [60], Fractal [12], RStream [66], Kaleido [73]
and Pangolin [10] are exploration-based systems which
mine subgraphs through iterative extensions by edges or
vertices. ASAP [25] is an approximate system allowing users
to navigate the tradeoff between error and performance.
Tesseract [7] is a mining system for dynamic graphs.

Peregrine [26] introduced the concept of pattern aware-
ness in graph mining systems where it exploits the structural
(and label) properties of input patterns. Peregrine incorpo-
rates a pattern-based programming model that enables easier
expression of complex graph mining use cases, and employs
efficient pattern matching strategies [28] to deliver high per-
formance. Being a practical end-to-end system, Peregrine
also includes techniques for dynamic load balancing, early
termination and on-the-fly aggregation that enable it to re-
tain high efficiency across various graph mining applications.
SumPA [19] enhances batching in pattern-aware matching
plans by combining the input patterns into abstract patterns
in order to eliminate redundancies during exploration. Au-
toMine [40] compiles input patterns into exploration pro-
grams consisting of set operation schedules.While AutoMine
batches the schedules of multiple input patterns, the sched-
ules remain oblivious to the pattern substructures and sym-
metries, and hence end up exploring redundant matches [26].
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Figure 15. (a-b): performance improvements from Subgraph Morphing in Peregrine for Subgraph Enumeration with On-the-
Fly conversion (absolute times in seconds). (c-d): performance improvements from Subgraph Morphing for large patterns. (e):
the space of alternative pattern sets for 5-motifs and their performance (in seconds) using Peregrine on MiCo graph. The input
pattern set is marked by the cross and the set selected by the cost model is marked by the triangle.

All these works focus on efficiently processing
graph mining applications as expressed by the user.
Subgraph Morphing can be integrated as an add-on in
these systems to exploit performance opportunities across
different pattern applications.
Counting Subgraphs. A myriad of research has been con-
ducted on algorithms for counting motifs [3, 18, 22, 35, 41–
43, 47, 48, 72]. [3] uses combinatorial identities for counting
size 3 and 4 motifs. RAGE [35] provides a method for comput-
ing edge-induced size-4 motifs, and for converting the results
to those for vertex-induced motifs. [22] uses automorphism
groups of pattern vertices to compute counts for motifs with
2-5 vertices, while [42, 43, 72] optimize orbit-local counting
using equations for arbitrary pattern sizes. [47] computes
counts for all size 5 motifs using global and local counts for
smaller patterns.
As discussed in Section 4.4, none of these works are ap-

plicable for general-purpose graph mining systems since
they focus (a) only on converting counts, (b) only for cer-
tain specific patterns, and (c) only on certain specific way
to convert counts. Hence for instance, their combinatorial
strategies (e.g., scalar möbius function in [72]) cannot be
generalized to arbitrary aggregations, and they cannot gen-
erate multiple alternatives, which is crucial. In comparison,
Subgraph Morphing is general and captures system-level nu-
ances and application-level characteristics, making it practi-
cal for graph mining systems.
Subgraph Matching. Several works devise efficient sub-
graph isomorphism solutions using sophisticated analysis of
data and query graphs [4–6, 20, 21, 31, 32, 38, 39, 49, 50, 56,
57, 71]. None of these works infer matches from one pattern
to another. We refer readers to a recent study [59], which
evaluates state-of-the-art subgraph matching techniques.
GraphZero [39] enhances the schedules from AutoMine us-
ing the standard symmetry breaking technique [18], but the
individual schedules remain independent unlike in AutoMine
(i.e., no schedule batching). [38] leverages an intermediate
computation tree structure to generate efficient code for dis-
tributed pattern matching. GraphPi [57] uses a performance
model to select efficient matching orders for subgraph match-
ing. Finally, works like [15, 27, 51, 62] develop graph query

language abstractions for easier expression of graph work-
loads while enabling automatic reasoning and optimization
in the underlying graph runtime systems.
Frequent Subgraphs.Works like [1, 2, 13] develop solutions
for mining frequent patterns, however none of these are
pattern-based and they instead view the FSM computation
in terms of arbitrary subgraphs of the data graph.
Graph Processing. [16, 17, 23, 34, 36, 37, 46, 53, 54, 58, 63–
65, 69, 74] and others primarily focus on graph processing
problems that compute values on vertices and edges, as op-
posed to graph mining problems that are concerned with
subgraph structures. aDFS [61] enhances the graph process-
ing system PGX.D [23]with a hybrid depth-first/breadth-first
graph exploration strategy for pattern matching queries. On
the other hand, techniques like [33] develop custom trans-
formations for specific subgraphs in the data graph in order
to speed up value propagation.

9 Conclusion

We presented Subgraph Morphing, a general technique
to accelerate graph mining workloads across various graph
mining systems. We exposed key factors that impact the
performance of graph mining workloads, and observed there
is no singular bottleneck that is common across the differ-
ent workloads running on different graph mining systems.
Subgraph Morphing exploits performance differences across
pattern structures while also incorporating key system-level
and application-level characteristics to deliver high perfor-
mance. We formalized Subgraph Morphing and developed
efficient strategies to enable it in practice. Our extensive
evaluation showed promising results.
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A Applications with Subgraph Morphing

We will walk through the main steps in applying
Subgraph Morphing (i.e., S-DAG generation, pattern selec-
tion, and result conversion) on two graph mining use cases:
Frequent Subgraph Mining and Subgraph Counting.
A.1 Frequent Subgraph Mining

Since FSM explores labeled edge-induced patterns, it can
end up matching and computing MNI for a large number of
patterns. To simplify exposition, we consider a single pattern
pEa (edge-induced 4-star). Figure 16 summarizes the example.

The S-DAG is constructed by recursively adding the super-
patterns of pEa . The resulting S-DAG is shown in Figure 16a.
Since we are dealing with labeled patterns, some of the super-
patterns can have identical structures but different labelings.
Patterns pb and pc in the S-DAG show this case.

Costs are estimated for both variants of each pattern in the
S-DAG. The pattern costs for our example are shown in Fig-
ure 16c. Since MNI computations are sensitive to output size,
patterns that are estimated to produce more matches have
higher costs. For example, pEa is the least constrained pattern
in the S-DAG, and hence has the highest cost. Similarly, the
other superpatterns have lower costs for the vertex-induced
variants which cause fewer matches.

Next, the alternative pattern set S is constructed using
Algorithm 1. Initially, S = {pEa }. Then we iterate over the
direct parents of pEa in the S-DAG, beginning with pVb . The
only child of pVb is pEa with cost 25 while the superpatterns
of pEa (including pVa ) have combined cost 17. As a result, S
is updated to contain {pVa ,pVb ,p

V
c ,p

V
d ,p

V
e ,pf } and all these

patterns have their costs set to 0. The algorithm converges
in the next iteration as the alternative pattern set S does not
change.
The matching engine explores the subgraphs that match

the patterns in S . The final step is to compute the MNI table
for pEa from the MNI results for patterns in S . To illustrate
this, consider the sample data graph shown in Figure 16b.
Figure 16d shows the MNI tables for the alternative pattern
set S . Note that pVa , pVc and pVd do not have any matches in
this example, and hence their MNI tables are empty (not
shown). Figure 16e shows how the final MNI table is com-
puted from the tables for alternative patterns. Starting with
an empty table, the MNI tables are merged after permuting
them using permutation functions. Consider the MNI table
for pVe . There are two subgraph isomorphisms from pEa to pVe ,
which lead to two permutations. The first one is the identity
permutation (i.e., unchanged) which results inT1. The second
one sends the first column of the MNI table to the second,
the second column to the third, and the third column to the
first. Applying this permutation and merging the resulting

table with T1 gives T2. This process continues with the next
alternative pattern pf and results inT3. There are two further
isomorphisms into pf , and one into pVb , none of which affect
the final result, and the process completes with T6.

A.2 Subgraph Counting

In this application, we are interested in counting the sub-
graphs that match three unlabeled vertex-induced patterns:
a 4-star, a 4-cycle, and a 4-chain. Figure 17 summarizes the
example where the three patterns are named pa , pb and pc .
Similar to the previous example, S-DAG is constructed

by recursively adding superpatterns of those three input
patterns. The resulting S-DAG is shown in Figure 17a and
the estimated pattern costs are shown in Figure 17c. In this
case, since the patterns are unlabeled and the counting ag-
gregation is a constant time operation, the set operation
time is the primary concern. Hence, edge-induced variants
of sparse patterns tend to be far cheaper to compute than
their vertex-induced variants which require additional set
differences.

Using the S-DAG and the pattern costs, Algorithm 1 com-
putes the alternative pattern set S . Initially, S starts with
{pVa ,p

V
b ,p

V
c }. Then, pVa is evaluated against its superpatterns

(pEa , pVc , pEd , p
E
e , pf ). Since pVa costs 20 while its superpat-

terns cost 30 combined, pVa is not morphed in this step. Sim-
ilarly, pVb is not morphed in the next step. However, when
C = {pVa ,p

V
b }, the cost of C is 50 while the cost of the com-

bined superpatterns (including the variants of the patterns
in C) is only 33. Hence, S is updated to replace pVa and pVb
with pEa ,p

E
b , and the other superpatterns, and the cost of

these superpatterns is set to 0. Notice that pVc is one of the
superpatterns of pa and pb . Since the original cost of the
superpatterns of pVc was greater than the cost of pVc , it would
not have been morphed. However, since the cost of superpat-
terns got set to 0, the new cost of superpatterns ofpVc reduces
to 10. Hence, S is updated once again with pEe instead of pVe .
The final alternative pattern set S is {pEa ,pEb ,p

E
c ,p

E
d ,p

E
e ,pf }.

After matching the alternative patterns, their results are
transformed back to counts for pa , pb and pc . We discuss this
result conversion process next. Figure 17b shows an example
data graph, and Figure 17d shows the number of matches in
the data graph for the alternative patterns. The permutation
function accounts for the subgraph isomorphisms from the
original patterns to the alternative patterns. For example,
consider pattern pVc whose counts can be computed using
[SM-V1] in Figure 7, i.e., |M(pVc )| = |M(pEc )| − |M(pVe )| − 3 ×
|M(pf )|. However, our alternative set contains the morphed
patterns for pVe , and hence, |M(pVe )| is computed as |M(pEe )|−
6 × |M(pf )|. Therefore, |M(pVc )| = 7 − 3 − 3 × 1 = 1. Counts
for pVa and pVb are computed in a similar manner.
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(c) Pattern costs
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(d) MNI tables for
alternative patterns
of pa
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(e) Transforming MNI tables of alter-
native patterns to compute MNI for pa

Figure 16. Frequent Subgraph Mining (FSM) with Subgraph Reshaping. Key steps in reshaping are shown for pattern pa .
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(c) Pattern costs
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(e) Transforming counts to
compute for pEc

Figure 17. Subgraph Counting (SC) with Subgraph Reshaping. Key steps in reshaping shown for input patterns pa , pb and pc .

B Artifact Appendix

B.1 Abstract

This artifact implements the core Subgraph Morphing tech-
niques, including the SDAG data structure, all algorithms
presented in the paper, as well as the experiments support-
ing our major claims. We have provided scripts to re-create
our major benchmarking experiments on the open-source
systems evaluated in Section 7.

Note that this artifact does not contain our AutoZero im-
plementation (original code for those systems is not made
available by the authors), and hence we have not provided
scripts to reproduce the results for AutoZero experiments
(i.e., Figure 12b and Figure 12d).

B.2 Description & Requirements

B.2.1 How to access. Source code, datasets, instructions
for building the software, and scripts to run the experiments
are available in our git repository: <link-removed>.

B.2.2 Hardware dependencies. We conducted our experi-
ments in a Google Cloud n2-highcpu-32 instance, compris-
ing 32 virtual cores and 32 GBmemory. Graphmining is CPU
intensive and embarrassingly parallel, so we recommend a
powerful multi-core machine to run experiments. Addition-
ally, some experiments use the Friendster dataset, which
requires approximately 36GB memory to pre-process, and
the same amount of disk space, though after pre-processing
its space requirement falls to 28GB. The remaining datasets
take up around 5GB disk space.

B.2.3 Software dependencies. To re-create our testbed,
the following software is required:
• Linux operating system; we conducted our experi-
ments on Ubuntu 22.04
• g++ (version 11 or newer) and cmake (version 3.13 or
newer) to build Peregrine
• OpenMPI (libopenmpi-dev) to build GraphPi
• cargo to build BigJoin
• Additionally, the experiment scripts use datamash and
bc to analyze execution results

B.2.4 Benchmarks. Our git repository contains all neces-
sary benchmarking code.

B.3 Set-up

First, clone our git repository on a Ubuntu 22.04 machine.
Then for each package mentioned above, run

$ apt install -y <package name>

From within the repository, you can build the various
systems. To build Peregrine (10 minutes), run

$ make bliss; make -j

To build GraphPi (5 minutes), run
$ ./scripts/install-gpi.sh

To build BigJoin (15 minutes or more, depending on network
speed), run

$ ./scripts/install-bigjoin.sh
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To check if everything is functioning (30 seconds), run
$ ./scripts/sanity_check.sh

B.4 Evaluation workflow

B.4.1 Major Claims.

• (C1): Subgraph Morphing algebra (introduced in Sec-
tion 4) improves performance across a wide range of
graph mining applications and inputs without sacrific-
ing correctness. The performance claim is verified by
the experiments: (E1-2) described in Section 7.1 and pre-
sented in Figure 12a and Figure 13a; (E3-5) described in
Section 7.2 and presented in Figure 13c, Figure 14a, and
Figure 14b; and (E6) described in Section 7.3 and pre-
sented in Figure 15a. Correctness is validated in all these
experiments, as the outputs are equal between baseline
and morphed executions.

• (C2): The Subgraph Morphingmodule is able to navigate
tradeoffs in different pattern sets to select efficient alter-
native patterns in negligible time compared to the graph
mining execution. This is demonstrated in experiment
(E7) described in Section 7.5 and presented in Figure 15e.

• (C3): Subgraph Morphing can scale to large pattern sizes,
as evidenced by experiments (E8-9) described in Sec-
tion 7.4 and presented in Figure 15c and Figure 15d.

• (C4): Subgraph Morphing is system-agnostic and can be
integrated in several different state-of-the-art pattern-
based graph mining systems to improve performance.
This is demonstrated through all experiments (E1-9), as
they demonstrate performance improvement in three
different graph mining systems.

B.4.2 Experiments. All experiments reproduce figures in
Section 7 in tabular form, using a comma-separated value
(CSV) format. Each experiment comes with a single script
that reproduces its corresponding figure, with the conven-
tion that ./scripts/figXX.sh will reproduce Figure XX.
We provide additional scripts that run on limited versions of
experiments which take unreasonably long to run exhaus-
tively. They take the form ./scripts/figXX-quick.sh.
The results of experiments (E1-2), (E4-6), and (E8-9) are

identical in format and interpretation. A CSV file will be writ-
ten to the terminal as execution progresses, always showing
the command currently being run. At the end of execution,
the CSV file contains a line for each set of inputs in the
format:

p,g,morphed time,baseline time,speedup
where p is the pattern name, g is the graph name, and the

execution times are in seconds.

(E1) [Motif Counting] [3 compute-days] [limited: 12

compute-hours]: This experiment reproduces Fig-
ure 12a and validates claim (C1) and (C4).

(E2) [Subgraph Counting] [5 compute-days] [limited:

1 compute-day]: This experiment reproduces Fig-
ure 13a and validates claim (C1).

(E3) [Frequent SubgraphMining] [1.5 compute-days]

[limited: 6 compute-hours]: This experiment repro-
duces Figure 13c and validates claim (C1).
[Results] The output of this experiment is also a CSV
file, with the following format:
t,g,morphed time,baseline time,speedup
where t is the support threshold, g is the graph name,
and the execution times are in seconds.

(E4) [GraphPi Filter] [1 compute-day] [limited: 3

compute-hours]: This experiment reproduces Fig-
ure 14a and validates claims (C1) and (C4).

(E5) [BigJoin Filter] [6 compute-hours]: This experi-
ment reproduces Figure 14b and validates claims (C1)
and (C4).

(E6) [On-The-Fly Conversion] [1.5 compute-days]

[limited: 1.5 compute hours]: This experiment re-
produces Figure 15a and validates claim (C1).

(E7) [Cost Modeling] [10 milliseconds]: This experi-
ment reproduces Figure 15e and validates claim (C2).
The provided script uses the Subgraph Reshaper to se-
lect an alternative pattern set for the 5-motifs pattern
set, then compares its performance to that of every
other possible choice of alternative pattern set.
[Preparation] This experiment requires a file contain-
ing the execution time for every size 5 pattern both
edge-induced and vertex-induced. One is provided in
the repository, but users can generate it themselves
by simply running Peregrine on every size 5 pattern
individually and recording the times.
[Results] The output is the total runtime of the alterna-
tive pattern set selected by the Subgraph Reshaper, as
well as statistics about this selection relative to other
possible alternative pattern sets.

(E8) [Peregrine Pattern Scalability] [1 compute-

hour]: This experiment reproduces Figure 15c and
validates claim (C3).

(E9) [GraphPi Pattern Scalability] [1 compute-hour]:

This experiment reproduces Figure 15d and validates
claim (C3).
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