
GraphBolt: Dependency-Driven Synchronous
Processing of Streaming Graphs

Mugilan Mariappan

School of Computing Science

Simon Fraser University

British Columbia, Canada

mmariapp@cs.sfu.ca

Keval Vora

School of Computing Science

Simon Fraser University

British Columbia, Canada

keval@cs.sfu.ca

Abstract
Efficient streaming graph processing systems leverage incre-

mental processing by updating computed results to reflect

the change in graph structure for the latest graph snapshot.

Although certain monotonic path-based algorithms produce

correct results by refining intermediate values via numerical

comparisons, directly reusing values that were computed be-

fore mutation does not work correctly for algorithms that re-

quire BSP semantics. Since structural mutations in streaming

graphs render the intermediate results unusable, exploiting

incremental computation while simultaneously providing

synchronous processing guarantees is challenging.

In this paper we develop GraphBolt which incrementally

processes streaming graphs while guaranteeing BSP seman-

tics. GraphBolt incorporates dependency-driven incremental

processing where it first tracks dependencies to capture how

intermediate values get computed, and then uses this in-

formation to incrementally propagate the impact of change

across intermediate values. To support wide variety of graph-

based analytics, GraphBolt provides a generalized incremen-

tal programming model that enables development of incre-

mental versions of complex aggregations. Our evaluation

shows that GraphBolt’s incremental processing eliminates

redundant computations and efficiently processes streaming

graphs with varying mutation rates, starting from just a sin-

gle edge mutation all the way up to 1 million edge mutations

at a time. Furthermore, being specialized for graph compu-

tations, GraphBolt extracts high performance compared to

Differential Dataflow.

Keywords Streaming Graphs, Incremental Processing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys’19, March 25–28, 2019, Dresden, Germany.
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00

https://doi.org/10.1145/3302424.3303974

1 Introduction
The continuously evolving nature of streaming graphs

has led to the development of several systems like Kick-

Starter [44], GraphIn [37], Tornado [38] and Kineograph [10]

that enable efficient analysis over fast changing graphs. At

the heart of these streaming graph processing systems is a

dynamic graph whose structure changes rapidly via a stream

of graph updates, and an incremental algorithm that reacts

to the graph structure mutations to produce final results for

the latest graph snapshot. The incremental algorithm aims

to minimize redundant computations by reusing results that

have been computed before the graph structure mutates.

While incremental processing makes the system more re-

sponsive, directly reusing intermediate values often causes

the algorithm to produce incorrect results. Furthermore,

these incorrect results become the basis upon which subse-

quent incremental processing gets performed, which results

in increasing inaccuracies as time progresses. To address

this issue, solutions like GraphIn and KickStarter incremen-

tally transform the intermediate results to first make them

consistent with the updated graph, and then use the trans-

formed results to compute final answers. However, such

transformations are often based on algorithmic properties

like monotonic convergence (path lengths or component

ids) which make them applicable to the selected subclass

(e.g., monotonic) of graph algorithms. Generalized graph-

based analytics solutions often rely on Bulk Synchronous

Parallel (BSP) processing semantics since it enables easier

programmability (correctness/convergence properties can be

clearly reasoned with BSP), and the monotonic transforma-

tions do not apply for the general class of graph algorithms.

Resorting to naive approaches based on tag propagation and

values reinitialization end up tagging majority of values to

be reset [44], limiting incremental reuse to only few vertices.

Generalized incremental processing systems, on the other

hand, operate on unbounded structured and unstructured

streams [1, 2, 4, 5, 31, 36, 42, 50, 51]. Differential Dataflow [25]

incrementally processes generalized streams by enabling

the impact of change in streams to be reflected via diffs (or

changes). Its strength lies in its differential operators that

capture and directly compute over diffs, and are general

enough to support any iterative incremental computations.

However, such generality comes at a performance cost when

https://doi.org/10.1145/3302424.3303974

applied to specific use-cases, like streaming graph processing;

extracting performance for graph computations requires

attention to detail that graph-aware runtimes can enable.

In this paper, we develop a dependency-driven stream-

ing graph processing technique that minimizes redundant

computations upon graph mutation while still guaranteeing

synchronous processing semantics. To do so, we first char-

acterize dependencies among values across consecutive iter-

ations as defined by synchronous processing semantics, and

then track these dependencies as iterations progress. Later

when graph structure changes, we refine the captured depen-

dencies iteration-by-iteration to incrementally produce the

final result. Based on the above dependency-driven refine-

ment strategy, we develop GraphBolt which incrementally

processes streaming graphs and guarantees BSP semantics.

To ensure that GraphBolt’s incremental processing scales

well and delivers high performance, it incorporates several

key optimizations. GraphBolt reduces the amount of depen-

dency information to be tracked fromO

(
E
)
toO

(
V
)
by trans-

lating the dependency information in form of aggregation

values that reside on vertices and by utilizing the structure

of input graph to deduce dependencies as needed. It further

incorporates pruning mechanisms that conservatively prune

the dependency information to be tracked, without causing

additional analysis (e.g., backpropagation) when graph struc-

ture mutates. Finally, GraphBolt incorporates computation-

aware hybrid execution that dynamically switches between

dependency-driven refinement strategy and traditional in-

cremental computation when dependency information is

unavailable due to pruning.

Several analytics algorithms likeMachine Learning &Data

Mining (MLDM) algorithms, utilize complex aggregations

that are difficult to update based on graph mutations. To sup-

port the broad class of graph algorithms beyond traditional

traversal algorithms, GraphBolt provides a generalized incre-

mental programming model that allows decomposing com-

plex aggregations to incorporate incremental value changes.

Our evaluation shows that GraphBolt processes up to 1 mil-

lion edge updates in just few seconds and its incremental

processing engine eliminates redundant computations for

varying mutation rates, starting from just a single edge mu-

tation all the way up to 1 million edge mutations at a time.

GraphBolt compares favorably against Ligra which is a state-

of-art synchronous graph processing system; furthermore,

being specialized for graph computations, GraphBolt extracts

high performance compared to Differential Dataflow.

2 Background & Motivation
We first discuss the semantics of synchronous execution

and issues involved in incremental processing of streaming

graphs, and then provide an overview of our dependency-

driven incremental computation technique that accelerates

processing while guaranteeing synchronous semantics.

Algorithm 1 Synchronous PageRank

1: G = (V ,E) ▷ Input graph

2: pr = {1, 1, ..., 1} ▷ Floating-point array of size |V |

3: while not converged do
4: newPr = {0, 0, ..., 0} ▷ Floating-point array of size |V |

5: par-for (u,v) ∈ E do

6: atomicAdd(&newPr[v],
pr[u]

|out_neiдhbors(u)|)

7: end par-for
8: par-for v ∈ V do
9: newPr[v] = 0.15 + 0.85 × newPr[v]
10: end par-for
11: swap(pr, newPr)
12: end while

2.1 Streaming Graph Processing
At the heart of efficient streaming graph processing systems,

like KickStarter [44], GraphIn [37] and Tornado [38] is a

dynamic graph whose structure changes rapidly via a stream

of graph updates, and an incremental algorithm that reacts

to the change in graph structure to produce final results

for the latest graph snapshot. A streaming graph G is con-

stantly modified by a stream of ∆G updates consisting of

insertions and deletions of edges and vertices. An algorithm

S iteratively computes over the latest snapshot of the graph

to produce final results. To maintain consistency, updates are

batched into ∆G when computations are being performed

during an iteration, and they are incorporated in G before

starting the next iteration.

Synchronous Processing. The Bulk Synchronous Parallel

(BSP) (hereafter called synchronous) model is a popular iter-

ative processing model that separates computations across

iterations such that values in a given iteration are computed

based on values from the previous iteration. We illustrate

the synchronous processing semantics using PageRank
1
in

Algorithm 1. The algorithm computes vertex values (newPr)
using the ones computed in previous iteration (pr) as shown
on line 6. The flow of values across iterations is explicitly

controlled via swap() on line 11.

Such clear separation of values being generated v/s val-

ues being used in synchronous processing allows program-

mers to develop iterative graph algorithms more easily

than with asynchronous execution since they can clearly

reason about the important convergence and correctness

properties. Hence, the synchronous processing model often

becomes a preferred choice for large-scale graph process-

ing [22, 27, 35, 39, 54] and in this paper we focus on efficient

synchronous processing of streaming graphs for algorithms

that require synchronous processing semantics.

Incremental Computation. Incremental computation en-

ables fast processing as graph structure mutates since it

reuses the results that have been computed prior to graph

mutation. Such incremental processing is achieved as fol-

lows (visually depicted in Figure 1): let I be the initial values

1
Algorithm 1 is simplified to eliminate details like selective scheduling.

I RG
k

Sk(G,	I) S*(G,	RG
k)

RG=	S
*(G,	I)

R?
k+1 R? ≠		RG ≠		RGT

Sk+1(GT,	RG
k)

S*(GT,	R?
k+1)

RkGT
S*(GT, RkGT)

RGT =	S
*(GT,	I)

Zs (RG
k)

Vertex	values	
for	GT

Incorrect	
vertex	values

Vertex	values	
for	G

Figure 1. Incremental Processing of Streaming Graphs.

of vertices before processing starts. The iterative algorithm

S computes over I and G to generate final results RG . We

use S i to denote i iterations of S that produce intermediate

results RiG , and S
∗
to denote processing until convergence to

generate RG . Hence, RG = S∗(G, I).
Assuming ∆G arrives during iteration k , incremental com-

putation incorporates ∆G at the start of iteration k + 1 while
using intermediate results generated by Sk . LetGT = G+∆G .
Hence in iteration k + 1, Rk+1GT = Sk+1(GT ,Rk), and upon con-

vergence, the final results become RGT = S∗(GT ,RkG). Since

incremental processing starts from Rk instead of I , it reuses
the result of previous computations and converges quickly to

the final results. Future updates that arrive after convergence

get processed by starting from RGT . Typically, the amount

of processing involved in incremental computation is aimed

to be between O

(
∆G

)
and O

(
G
)
depending on the impact of

∆G on computed results. Such incremental processing has

been shown to accelerate monotonic path-based algorithms

over billion-scale graphs by 8.5-23.7× [44].

2.2 Problem: Incorrect Results
While incremental processing is efficient, directly reusing

intermediate results often causes the algorithm to produce in-

correct results. Although certain monotonic algorithms like

shortest paths and breadth first search always produce cor-

rect results, algorithms that require synchronous processing

semantics do not converge to correct values. Figure 2 shows

a streaming graph that mutates fromG toGT
, and the corre-

sponding results for Label Propagation, a synchronous graph

algorithm that we use in our evaluation.Without incremental

processing, S∗(GT , I) converges to correct results; however,

incrementally computing from S∗(G, I) violates synchronous
processing semantics and hence, converges to S∗(GT ,RG)
which is incorrect. We also profiled the impact of such in-

cremental processing using a real-world graph by streaming

10 batches of edge mutations with 100 mutations per batch.

As shown in Table 1, incrementally computing from S∗(G, I)
causes 1.6M vertex values to be incorrect with relative error

of ≥ 1% when only the first batch of 100 edge mutations

is applied. Furthermore, this error propagates across sub-

sequent batches and for the 10th batch, up to 59K values

become incorrect by over 10% error.

1

0 3

42
1

0 3

4
2

C0(0) C0(1) C0(2) C0(3) C0(4)

C1(0) C1(1) C1(2) C1(3) C1(4)

C2(0) C2(1) C2(2) C2(3) C2(4)

C3(0) C3(1) C3(2) C3(3) C3(4)

g0(0) g0(1) g0(2) g0(3) g0(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

g0(0) g0(1) g0(2) g0(3) g0(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

(a) G

1

0 3

42
1

0 3

4
2

C0(0) C0(1) C0(2) C0(3) C0(4)

C1(0) C1(1) C1(2) C1(3) C1(4)

C2(0) C2(1) C2(2) C2(3) C2(4)

C3(0) C3(1) C3(2) C3(3) C3(4)

g0(0) g0(1) g0(2) g0(3) g0(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

g0(0) g0(1) g0(2) g0(3) g0(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

(b) GT

0 1 2 3 4
I 0.32 0.72 0.29 0.74 0.27

S∗(G, I) 0.32 0.326 0.329 0.317 0.327

S∗(GT , I) 0.32 0.717 0.737 0.741 0.737

Incorrect incremental computation using

values of G to compute for GT

S∗(GT ,RG) 0.32 0.326 0.322 0.317 0.321

(c) Label Propagation on G & GT
. Incorrect values

are highlighted in red.

Figure 2. As G transforms to GT
, directly using results

from G leads to incorrect results.

Error B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
>10% 790 2.9K 5.5K 9.3K 16.4K 24.5K 34K 43K 52K 59K

>1% 1.6M 2.3M 2.7M 2.8M 2.9M 2.9M 3M 3M 3M 3M

Table 1. No. of vertices with incorrect results (relative error

≥ 10% and ≥ 1%) for Label Propagation [53] on Wiki [47]

graph for 10 batches (B1-B10) of edge mutations,

100 mutations per batch.

Directly using the intermediate values leads to incorrect

results mainly because S∗(GT ,RkG) , S∗(GT , I) (as shown

in Figure 1). In particular, since RkG represents values corre-

sponding toG , it doesn’t incorporate the impact of ∆G across

previous k iterations. To address this issue, KickStarter and

GraphIn incrementally transform RkG to make it consistent

withGT
. With Z being the incremental transformation func-

tion, S∗(GT ,Z (RkG)) becomes equal to S∗(GT ,RkGT). However,

such transformations are often based on algorithmic prop-

erties like monotonic convergence and numerically compa-

rable vertex values (path lengths or component ids) which

allow Z (RkG) , RkGT . Since Z does not guarantee equivalence

between Z (RkG) and RkGT , such transformations only work

for asynchronous (e.g., path-based) graph algorithms.

As shown in Figure 1, we need a special incremental trans-

formation function Z S
that guarantees Z S (RkG) = RkGT , so

that the subsequent computation guarantees synchronous

semantics and converges to the correct final result. Since

RkG doesn’t include the information about how it got com-

puted, Z S
cannot directly incorporate impact of ∆G in RkG . A

straightforward Z S
is to identify the subset of values in RkG

that need to be corrected by propagating tags (e.g., down-

stream vertices from addition/deletion points), and then com-

pute their values to generate RkGT , as done in GraphIn [37];

however, as shown in KickStarter [44], such tagging based

approach ends up tagging majority of vertex values to be

thrown out, hence limiting reuse of values to a very small

fraction of vertices. This poses an important challenge: how
do we perform incremental processing of streaming graphs to
minimize redundant computations upon graph mutation while
still guaranteeing synchronous processing semantics?

2.3 Overview of Techniques
To incrementally transform RkG , we develop a dependency-

driven incremental processing model that captures how RkG
was computed in form of value dependencies, and later uses

the captured information to incorporate the impact of change

in graph structure. To do so, we first characterize dependen-

cies among values across consecutive iterations as defined

by synchronous processing semantics, and then track these

dependencies as iterations progress. When ∆G arrives, we

refine the captured dependencies iteration-by-iteration to

incrementally produce RkGT for iteration k , which is then di-

rectly used to compute forward in synchronous manner. By

doing the above process, we guarantee synchronous process-

ing semantics at the end of each iteration, hence ensuring

correctness of final results.

However, developing such a dependency-driven incremen-

tal processing poses several challenges. Firstly, tracking de-

pendencies online can be very expensive since the amount of

dependency information is directly proportional to |E |. We

overcome this challenge by carefully translating the depen-

dency information in form of aggregation values that reside
on vertices, and by further recognizing that the structure of

dependencies (i.e., how values impacts each other) can be

derived from the input graph structure. This brings down the

dependency information to order of |V |. Moreover, we ob-

serve that real-world graphs are sparse and skewed which re-

sults in aggregation values stabilizing as iterations progress.

Hence, we incorporate pruning mechanisms that conser-

vatively prune the dependency information to be tracked,

without causing additional analysis (e.g., backpropagation)

to recompute untracked values when ∆G arrives.

Secondly, dependency-driven incremental processing be-

comes difficult for complex aggregations (e.g., MLDM ag-

gregations that operate on vectors) since their incremental

counterparts are often not easy to deduce. To address this

issue, we develop a generalized incremental programming

model that allows decomposing complex aggregations to

incorporate incremental value changes resulting from ∆G.
Our programming model allows expressing the underlying

workflow of decomposing complex aggregations and repro-

ducing old contributions which get updated based on value

changes, hence constructing incremental complex aggrega-

tions. Furthermore, simple aggregations like sum get directly

expressed in our incremental programming model without

going through the decomposition workflow.

Finally, we develop a computation-aware hybrid execution

that dynamically switches between dependency-driven in-

cremental processing and traditional incremental processing

when dependency information is unavailable due to pruning.

3 Dependency-Aware Processing
We first characterize value dependencies and then develop

our dependency-driven incremental processing technique.

1

0 3

42
1

0 3

4
2

C0(0) C0(1) C0(2) C0(3) C0(4)

C1(0) C1(1) C1(2) C1(3) C1(4)

C2(0) C2(1) C2(2) C2(3) C2(4)

C3(0) C3(1) C3(2) C3(3) C3(4)

g0(0) g0(1) g0(2) g0(3) g0(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

g0(0) g0(1) g0(2) g0(3) g0(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

C0(0) C0(1) C0(2) C0(3) C0(4)

C1(0) C1(1) C1(2) C1(3) C1(4)

C2(0) C2(1) C2(2) C2(3) C2(4)

C3(0) C3(1) C3(2) C3(3) C3(4)

(a) DG = (VD, ED)

1

0 3

42
1

0 3

4
2

C0(0) C0(1) C0(2) C0(3) C0(4)

C1(0) C1(1) C1(2) C1(3) C1(4)

C2(0) C2(1) C2(2) C2(3) C2(4)

C3(0) C3(1) C3(2) C3(3) C3(4)

g0(0) g0(1) g0(2) g0(3) g0(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

g0(0) g0(1) g0(2) g0(3) g0(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

(b) AG = (VA, EA)

Figure 3. Dependence graphs for G in Figure 2a.

3.1 Synchronous Processing Semantics
Synchronous iterative graph algorithms compute vertex val-

ues in a given iteration based on values of their incoming

neighbors that were computed in the previous iteration.

Since computations are primarily based on graph structure,

such value dependencies can be captured via the graph struc-

ture as follows:

∀(u,v) ∈ E, ut 7→ vt+1 (1)

where ut and vt+1 represent values of vertex u in iteration t
and vertex v in iteration t + 1 respectively, and 7→ indicates

that vt+1 is value-dependent on ut . It is important to note

that there are no dependency relationships among vertices

that are not directly connected by an edge.

We can understand how synchronous processing seman-

tics get violated as graphs mutate using value dependencies

by carefully analyzing the impact of each edge mutation. If a

new edge (u,v) gets added in iteration k , ∀j < k , u j−1 7→ v j

was absent (while it should have been present), and hence

vk represents incorrect value under synchronous processing

semantics. Furthermore, this incorrect vk gets propagated

via v’s outgoing neighbors in subsequent iterations spread-

ing inaccuracies across the graph. Similarly, if an existing

edge (u,v) gets deleted in iteration k , ∀j < k , u j−1 7→ v j was
present (while it should not have been present) making vk

inaccurate, which further propagates across the graph.

3.2 Tracking Value Dependencies
Let Ci represent the vertex values at the end of iteration i
for the initial graph G = (V ,E), i.e., ∀v ∈ V , ci (v) ∈ Ci is

the vertex value of v at the end of iteration i . Assuming G
mutates to GT = (VT ,ET) at the end of iteration L, CL is no

longer valid and must be refined to eliminate inaccuracies.

Since the values that propagate through edges to satisfy

dependencies together lead to values in CL , values that have

flown to satisfy prior dependencies must be examined to

ensure that dependencies get correctly satisfied based on

edge mutations. Hence, we aim to track the values that have

contributed to computation of CL , which we later use to

correct CL as graph mutates.

A simple way to track value dependencies is to save all the

values that participate in satisfying dependencies defined

in Eq. 1. Let DG = (VD , ED) be the dependency graph for

computation over graphG = (V ,E) whereVD captures all

the intermediate values for vertices in V and ED captures

dependencies among intermediate values based on Eq. 1.

Formally, at the end of iteration k :

VD =
⋃

i ∈[0,k]
ci (v) ED = { (ci−1(u), ci (v), ei (u,v)) :

i ∈ [0,k] ∧ (u,v) ∈ E }

Figure 3a shows the dependency graph for G in Figure 2a

over an execution of 4 iterations. As computation progresses

through iterations, DG increases by |V | vertices and |E |
edges. While saving DG exhaustively captures the entire

execution history such that it enables incremental correction

ofCL for subsequent graph mutations, such tracking of value

dependencies leads to O

(
|E |.t

)
amount of information to be

maintained for t iterations which significantly increases the

memory footprint, making the entire processmemory-bound.

To reduce the amount of dependency information that must

be tracked, we first carefully analyze how values flowing

through dependencies participate in computing CL .

Tracking Value Dependencies as Value Aggregations.
Given a vertex v , its value is computed based on values from

its incoming neighbors in two sub-steps: first, the incoming

neighbors’ values from previous iteration are aggregated into

a single value; and then, the aggregated value is used to com-

pute vertex value for the current iteration. This computation

can be formulated as
2
:

ci (v) =

∮
(
⊕

∀e=(u,v)∈E
(ci−1(u)))

where

⊕
indicates the aggregation operator and

∮
indicates

the function applied on the aggregated value to produce the

final vertex value. For example in Algorithm 1,

⊕
is atomi-

cAdd on line 6 while

∮
is the computation on line 9. Since

values flowing through edges are effectively combined into

aggregated values at vertices, we can track these aggregated

values instead of individual dependency information. By

doing so, value dependencies can be corrected upon graph

mutation by incrementally correcting the aggregated values

and propagating corrections across subsequent aggregations

throughout the graph.

Let дi (v) be the aggregated value for vertex v for iteration

i , i.e., дi (v) =
⊕

∀e=(u,v)∈E
(ci−1(u)). We define AG = (VA , EA) as

dependency graph in terms of aggregation values at the end

of iteration k :

VA =
⋃

i ∈[0,k]
дi (v) EA = { (дi−1(u), дi (v)) :

i ∈ [0,k] ∧ (u,v) ∈ E }

This allows us to separate out the structure of dependencies

(i.e., ut−1 “impacts” vt) from the values that participate in

satisfying those dependencies (i.e., ct−1(u) and ct (v)). Fig-
ure 3b shows the dependency graph AG in terms of aggre-

gation values. It is interesting to note that the structure of

2
Values residing on edges (i.e., edge weights) have been left out from equa-

tions for simplicity since they do not impact dependencies.

 0

 5

 10

Vertices

It
er

at
io

ns

Figure 4. Change in vertex values across iterations for

Label Propagation over Wiki graph. Blue pixels indicate

change in vertex values.

dependencies in AG is directly based on the structure of

input graph (see Eq. 1), i.e., EA in Figure 3b is based onG in

Figure 2a. Since we are no longer tracking the values flowing

through those dependency edges, we don’t need to track the

dependency structure as it can be later reconstructed during

the refinement stage using the input graph structure. Hence,

we only need to track aggregated values, i.e., VA , which

reduces the amount of dependency information to O

(
|V |.t

)
.

Pruning Value Aggregations.
The skewed nature of real-world graphs [15] often cause

synchronous graph algorithms to behave such that most

vertex values keep on changing during the initial iterations

and then the number of changing vertices decrease as iter-

ations progress. For example, Figure 4 shows how vertex

values change across iterations in Label Propagation over

Wiki graph (graph details in Table 2) for a 10-iteration win-

dow. As we can see, the color density is higher during first 5

iterations indicating that majority of vertex values change in

those iterations; after 5 iterations, values start stabilizing and

the color density decreases sharply. As values stabilize, their

corresponding aggregated values also stabilize. This provides

a useful opportunity to limit the amount of aggregated values

that must be tracked during execution.

We conservatively prune the dependence graph AG to

balance the memory requirements for tracking aggregated

values with recomputation cost during refinement stage. In

particular, we incorporate horizontal pruning and vertical
pruning over the dependence graph that sparsify AG across

different dimensions. As values start stabilizing, horizon-

tal pruning is achieved by directly stopping the tracking

of aggregated values after certain iterations. For example,

the horizontal red line in Figure 4 indicates the cut-off after

which aggregated values won’t be tracked. Vertical pruning,

on the other hand, operates at vertex-level and is performed

by not saving aggregated values that have stabilized. This

eliminates the white regions above the horizontal red line in

Figure 4. Hence, only the values corresponding to blue points

are tracked after horizontal and vertical pruning. This cap-

tures the important region where changes in vertex values

result in larger impact across their neighborhoods, i.e., the

region where incremental processing will be most effective.

It is interesting to note that both horizontal and verti-

cal pruning methods are conservative, i.e., they don’t need

further analysis about whether subset of values need to be

recomputed to be able to refine values upon graph mutation.

While aggressive pruning can be performed (e.g., dropping

certain vertices altogether), it would require backpropagation

from values that get changed during refinement to recom-

pute the correct old values for incremental computation.

3.3 Dependency-Driven Value Refinement
Let Ea and Ed be the set of edges to be added to G and

deleted from G respectively to transform it to GT
. Hence,

GT = G ∪ Ea \ Ed . Given Ea , Ed and the dependence graph

AG , we ask two questions that help us transform CL to CT
L .

(A) What to Refine?
Wedynamically transform aggregation values inAG tomake

them consistent with GT
under synchronous semantics. To

do so, we start with aggregation values in first iteration, i.e.,

д0(v) ∈ VA , and progress forward iteration by iteration.

At each iteration i , we refine дi (v) ∈ VA that fall under

two categories: first, values corresponding to end points of

Ea and Ed which are directly impacted by edge mutations;

and second, values corresponding to outgoing neighbors of

vertices whose values got refined in the previous iteration

i − 1, which captures the transitive impact of mutation. This

means, we dynamically identify the aggregation values in

VA that need to be refined as the process of refinement

progresses. Note that performing incremental changes cor-

responding to transitive impact of edge mutations requires

information about the structure of dependencies, i.e., EA ,

which we directly infer by looking at the graph structure.

Figure 5 shows how the refinement process selects values

to be incrementally computed for our dependency graph

from Figure 3b upon addition of new edge (1, 2). In step 1,

дT
1
(2) is incrementally computed from д1(2) based on contri-

bution of дT
0
(1) (iteration 0 represents initial value) flowing

from the new edge (solid edge). In step 2, the change in contri-
bution of дT

1
(2) (i.e., effect of дT

1
(2)−д1(2)) gets propagated to

vertex 2’s outgoing neighbors 0 and 1 (dotted edges), which

effectively allows дT
2
(0) and дT

2
(1) to compute based on дT

1
(2).

Since contribution of д1(1) was never propagated to д2(2),
the contribution of дT

1
(1) is also propagated to incremen-

tally compute дT
2
(2) (similar to in step 1). Similarly, дT

3
(0),

дT
3
(1), дT

3
(2) and дT

3
(3) are incrementally computed in step 3

based on direct and transitive impact of the edge addition.

As we can see, changes unroll dynamically based on: (a) the

structure of AG ; and, (b) the change in aggregation values

resulting from edge mutations. Furthermore, computations

during refinement process are far lesser than that involved

while processing the original graph (as indicated by fewer

edges in Figure 5 compared to Figure 3b) which showcases

the efficacy of dependency-driven incremental processing.

(B) How to Refine?
As aggregation values in VA get identified to be refined,

we incrementally update them based on change in values

coming from incoming neighbors. Specifically, with L being

the latest iteration before which graph mutates, we aim to

update дi (v) =
⊕

∀e=(u,v)∈E
(ci−1(u)) to дTi (v) =

⊕
∀e=(u,v)∈ET

(cTi−1(u)) for

0 ≤ i ≤ L. This is incrementally achieved as:

дTi (v) = дi (v)
⊎

∀e=(u,v)∈Ea
(ci−1(u))

⋃
–

∀e=(u,v)∈Ed
(ci−1(u))

⋃
△

∀e=(u,v)∈ET
s .t .ci−1(u),cTi−1(u)

(cTi−1(u))

where

⊎
,

⋃
- and

⋃
△ are incremental aggregation operators

that add new contributions (for edge additions), remove old

contributions (for edge deletions), and update existing con-

tributions (for transitive effects of mutations) respectively.

While

⊎
often is similar to

⊕
,

⋃
- and

⋃
△ require undoing

aggregation to eliminate or update previous contributions.

We focus our discussion on incremental

⋃
△ since its logic

subsumes that for

⋃
- . We generalize

⋃
△ by modeling it as:⋃

△

∀e=(u,v)∈ET
s .t .ci−1(u),cTi−1(u)

=
⋃
–

∀e=(u,v)∈ET
s .t .ci−1(u),cTi−1(u)

(ci−1(u))
⊎

∀e=(u,v)∈ET
s .t .ci−1(u),cTi−1(u)

(cTi−1(u))

= ∀
e=(u,v)∈ET

s .t .ci−1(u),cTi−1(u)

(⊕
(cTi−1(u)) −

⊕
(ci−1(u))

)
The right-hand side of the above equation is referred to as

change in contribution for each respective edge. Several ag-

gregations like sum, product, etc. often simplify incremental

aggregation by directly capturing the change in contribu-

tions; however, complex aggregations like operations on vec-

tors require careful extraction of old values since differences

cannot be directly formulated.

Complex Aggregations.
Machine Learning & Data Mining (MLDM) algorithms of-

ten involve complex aggregations that intricately transform

vertex values, making them difficult to be computed incre-

mentally. For example, algorithms like Belief Propagation

and Alternating Least Squares operate on vectors or multi-

valued variables that interact with elements of other com-

plex variables during aggregations. We present a generalized

incremental technique by explaining how such complex ag-

gregations become incremental in two steps:

1. Static Decomposition to (Simple) Sub-Aggregations.
Complex aggregations can often be decomposed into multi-

ple simple aggregations that act as sub-operations to perform

the original complex aggregation. For example in Alternating

Least Squares, the computation involving complex aggrega-

tion is:

ci (v) =
(∑

∀e=(u,v)∈E
ci (u).ci (u)

tr + λIk

)−1
×

∑
∀e=(u,v)∈E

ci (u).weiдht(u,v)

Ignoring the inverse operation and addition of identity ma-

trix, the computation gets decomposed into a pair of sub-

aggregations:

дi (v) = ⟨
∑

∀e=(u,v)∈E
ci (u).ci (u)

tr ,
∑

∀e=(u,v)∈E
ci (u).weiдht(u,v) ⟩

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4) g3(0) g3(1) g3(2) g3(3) g3(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT2(0) gT2(1) gT2(2) gT2(2) gT2(4)

gT3(0) gT3(1) gT3(2) gT3(3) gT3(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT2(0) gT2(1) gT2(2) gT2(2) gT2(4)

(a) Step 1

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4) g3(0) g3(1) g3(2) g3(3) g3(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT2(0) gT2(1) gT2(2) gT2(2) gT2(4)

gT3(0) gT3(1) gT3(2) gT3(3) gT3(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT2(0) gT2(1) gT2(2) gT2(2) gT2(4)

(b) Step 2

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4) g3(0) g3(1) g3(2) g3(3) g3(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT2(0) gT2(1) gT2(2) gT2(3) gT2(4)

gT3(0) gT3(1) gT3(2) gT3(3) gT3(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT2(0) gT2(1) gT2(2) gT2(3) gT2(4)

(c) Step 3

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4) g3(0) g3(1) g3(2) g3(3) g3(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT2(0) gT2(1) gT2(2) gT2(3) gT2(4)

gT3(0) gT3(1) gT3(2) gT3(3) gT3(4)

g1(0) g1(1) g1(2) g1(3) g1(4)

g2(0) g2(1) g2(2) g2(3) g2(4)

g3(0) g3(1) g3(2) g3(3) g3(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT0(0) gT0(1) gT0(2) gT0(3) gT0(4)

gT1(0) gT1(1) gT1(2) gT1(3) gT1(4)

gT2(0) gT2(1) gT2(2) gT2(3) gT2(4)

(d) Final VA

Figure 5. Dependency-driven value refinement for addition of new edge (1, 2). Edges indicate incremental flow of values to

satisfy dependencies: solid edges indicate propagation of values while dotted edges indicate propagation of change in values.

While both sub-aggregations get decomposed to addition, the
second sub-aggregation is simple, and hence, can be directly

made incremental using difference, i.e., cTi (u)−ci (u). However,
the first sub-aggregation requires further computation as

described in the next step.

2. On-the-fly Evaluation of Discrete Contributions.
Since the first sub-aggregation in the above equation involves

transformation of vertex values before they are summed to-

gether, we need to recompute the old contribution from ver-

tex’s value, which we then use to compute the difference in

the contribution. Hence, we separately compute ci (u).ci (u)
tr

and cTi (u).c
T
i (u)

tr
, and then compute their difference to be

aggregated. By doing so, the combined aggregation gets in-

crementally computed as:⋃
△

∀e=(u,v)∈ET
s .t .ci−1(u),cTi−1(u)

= ⟨
∑

∀e=(u,v)∈ET
s .t .ci−1(u),cTi−1(u)

(
cTi (u).c

T
i (u)

tr) − (
ci (u).ci (u)

tr),
∑

∀e=(u,v)∈ET
s .t .ci−1(u),cTi−1(u)

(cTi (u) − ci (u)).weiдht(u,v) ⟩

The process of breaking down complex aggregations is de-

pendent on the arithmetic rules of underlying sub-operations.

For example, the aggregation in Belief Propagation gets bro-

ken down based on products instead of additions.

Aggregation Properties & Extensions.
Our three incremental aggregation operators (

⊎
,

⋃
- and

⋃
△)

allow capturing change in vertex values that propagate via

edges. Firstly, the aggregation operator (and hence, these

incremental operators) must be commutative and associa-

tive to relax the order in which values get combined and

reverted during regular (non-incremental) and incremental

computation. Furthermore, the domain of values visible to

these operators includes the aggregation value at vertex v
(i.e., either дi (v), or д

T
i (v), or intermediate values between

дi (v) and д
T
i (v)), and the values corresponding to a single

edge (u,v) along with its source vertex u (i.e., cTi−1(u), ci−1(u)
and edge weights). This adds a restriction on the nature of

aggregation that can be incrementally adjusted using our

above formulation. Specifically, the aggregation must allow

incrementally incorporating the impact of change from its

single input (e.g., change coming from a single edge) to its

final value. We classify such aggregations to be decomposable,
examples of which include sum and count.
Contrary to these, we have non-decomposable aggrega-

tions like min and max, where certain changes cannot be

directly adjusted if only the final aggregation result is main-

tained in дi (v). For example, if ci−1(u) = k , cTi−1(u) = p,
p > k and k = дi (v), the min aggregation cannot be incre-

mentally adjusted without re-examining its prior inputs. To

directly support such non-decomposable aggregations, дi (v)
must be represented by the set of values upon which it op-

erates so that changes can be handled by re-examining the

set. However, tracking aggregations by maintaining all edge

dependencies is not desirable. Hence, we incorporate a re-

evaluation strategy that pulls values from incoming edges

on-the-fly and separates out tracking ofдi (v) to single values
(i.e., final results only). This modifies our formulation for

non-decomposable aggregations to:

дTi (v) =
⊕

∀e=(u,v)∈Eold
(ci−1(u))

⊎
∀e=(u,v)∈Enew

(cTi−1(u))

Eold = E \ (Ed ∪ {(u,v) : (u,v) ∈ E ∧ ci−1(u) , c
T
i−1(u)})

Enew = Ea ∪ {(u,v) : (u,v) ∈ ET ∧ ci−1(u) , c
T
i−1(u)}

4 GraphBolt Processing Engine
So far we discussed dependency-driven value refinement in

a generalized context of processing streaming graphs with-

out focusing on any particular system which makes our

proposed techniques useful for several systems. We now

discuss the important design details of GraphBolt system

that incorporates our dependency-driven value refinement.

We developed GraphBolt based on Ligra’s processing archi-

tecture since its lightweight execution model enables high

performance in supporting synchronous graph algorithms.

4.1 Streaming Graph & Dependency Layout
As discussed in §3.2, value dependencies are directly main-

tained as aggregation values, and are used along with the

graph structure to perform refinement based on mutations.

To enable fast manipulation of the graph structure, we main-

tain the structure separate from the aggregation values.

The core graph structure is maintained in compressed

sparse row (CSR) and column (CSC) forms where edges are

maintained as contiguous chunks indexed based on their

source and destination vertices. This allows GraphBolt to

achieve efficient parallel mapping over vertices and edges

in dense and sparse modes [39, 54]. To apply mutations, the

structure is adjusted by making one sequential pass over ver-

tex array and one parallel pass over edge array to ensure that

indexes correctly reflect the mutation. The first pass over

vertices computes offset adjustments in parallel while the

second pass over edges shifts the edges and inserts/deletes

edges in vertex-parallel manner. Mutations are supported in

form of vertex and edge additions and deletions and can be

applied either: a) one after the other as single edge/vertex

mutation; or b) as a batch of multiple edge/vertex muta-

tions. Value refinement begins instantly after the mutation

batch gets applied. Mutations arriving during refinement are

buffered to prioritize latency of the ongoing refinement step,

and are applied immediately after refining finishes. Adjust-

ing the structure across above two passes allows GraphBolt

to respond quickly as graph structure changes: for example,

adjusting the structure of UKDomain graph [7] (1B edges)

with 10K mutations takes ∼850 ms. Faster dynamic graph

data-structures like STINGER [13] can be incorporated to

improve the time taken to adjust the graph structure.

The aggregation values are maintained as arrays per-

vertex to hold values across iterations. As computations

progress and aggregation values get updated, the per-vertex

aggregation arrays grow dynamically. To eliminate indirec-

tions during refinement, the aggregation values are main-

tained contiguously such that if дi (v) is to be saved because

it reflects an updated value compared to дi−1(v), then дk (v)
is also maintained ∀k < i (i.e., holes reflecting no change are
eliminated). These structures required are also pre-allocated

for few iterations based on the available memory and op-

tional user-defined parameters. With vertical pruning dis-

abled, allocations are done per-iteration across all vertices.

4.2 Dependency-Driven Processing Model
We present how the aggregation values get iteratively re-

fined via incremental computation using PageRank and Be-

lief Propagation algorithms as our examples to contrast the

technique for simple and complex aggregations. GraphBolt

builds over the graph parallel interface to provide edgeMap
and vertexMap functions, and also provides incremental ex-

ecution models to simplify the refinement process.

Algorithm 2 shows the refinement process for Belief Prop-

agation [20]. To focus our discussion on the incremental

refinement process, details related to eliminating inbound

contributions for Belief Propagation are left out from Algo-

rithm 2. In BPMutable(), lines 47-50 first compute direct

impact of edge mutations (i.e.,

⊎
and

⋃
-), and lines 53-60

compute the transitive impact (i.e.,

⋃
△). The user functions

repropagate() and retract() capture the incremental

logic of

⊎
and

⋃
- respectively. As we can see, the shape of

these functions is similar since they are either contributing

to or withdrawing from the saved aggregated values. It is

interesting to note that the contribution made by each edge

to the target aggregation is based on all of its states (lines

2-12). This means, the aggregation type is complex and can-

not be directly undone. Hence,

⋃
△ gets further split across

two functions (lines 55-56): retract() to withdraw old con-

tribution followed by propagate() to contribute based on

updated value for same set of edges. Algorithm 3 shows the

refinement functions for PageRank whose aggregation type

is simple. In this case, propagateDelta() directly captures

the change in contribution (lines 8) which gets invoked using

a single edgeMap() instead of two edgeMap() calls on lines

55-56 in Algorithm 2.

Note that to simplify exposition, Algorithm 2 and Algo-

rithm 3 show that

⊎
and

⋃
- get computed separately before

computing

⋃
△ . However, GraphBolt merges these computa-

tions together to make a single pass over the iteration space.

Non-Decomposable Aggregations.
While min and max are amenable to addition of new con-

tributions (e.g., coming from edge additions) due to their

monotonic nature, the aggregated value cannot be incre-

mentally adjusted to remove an old contribution (e.g., to

reflect edge deletions) since it doesn’t implicitly hold all

the original contributions. We classify such aggregations

to be non-decomposable (discussed in §3.3). To support non-

decomposable aggregations without increasing the amount

of dependency information, GraphBolt’s processing model

can be enhanced such that it directly re-evaluates the ag-

gregation with the entire updated input set (instead of the

changed values only). The updated input set per vertex is

reconstructed by pulling values from its incoming neighbors

(directly available from CSC format). In §5.4 we will incre-

mentally compute Single Source Shortest Paths algorithm

using this re-evaluation strategy for min aggregation.

Selective Scheduling.
GraphBolt also supports selective scheduling which elim-

inates redundant computations by allowing vertex values

to be recomputed only when its neighboring values change.

Incremental refinement, if left oblivious of such selective

scheduling, can violate semantics since it may cause spu-

rious updates (e.g., retracting contribution that was never

made). Our processing model ensures that change in contri-

butions get correctly accounted based on how computations

took place prior to mutations. GraphBolt also allows users

to express the selective scheduling logic (e.g., comparing

change with tolerance) which gets invoked on old values,

based on which value retraction gets invoked.

Computation-Aware Hybrid Execution.
With horizontal pruning, aggregation values are available

only until a certain iteration k . As computation progresses

beyond iteration k , GraphBolt dynamically switches to in-

cremental computation without value refinement. While the

incremental computation directly pushes change in vertex

values across edges, at iteration k + 1 edges whose vertex

Algorithm 2 Dependency-Driven Refinement for Belief Propagation (Simplified)

1: S: set of states

2: function getContribution(e = (u,v),product)
3: for s ∈ S do
4: contribution[s] = 0

5: end for
6: for s ∈ S do
7: for s ′ ∈ S do
8: contribution[s] +=ϕ(u, s ′) ×ψ (u,v, s ′, s) × product[s ′]
9: end for
10: end for
11: return contribution
12: end function

13: function repropagate(e = (u,v), i)
14: contrib = getContribution(e,normOProd[u][i])
15: for s ∈ S do
16: atomicMultiply(&newProd[v][i + 1][s], contrib[s])
17: end for
18: end function
19: function retract(e = (u,v), i)
20: contrib = getContribution(e,normOProd[u][i])
21: for s ∈ S do
22: atomicDivide(&newProd[v][i + 1][s], contrib[s])
23: end for
24: end function
25: function propagate(e = (u,v), i)
26: contrib = getContribution(e,normNProd[u][i])
27: for s ∈ S do
28: atomicMultiply(&newProd[v][i + 1][s], contrib[s])
29: end for
30: end function

31: function compute(v, i)
32: ret = f alse
33: for s ∈ S do
34: normNProd[v][i + 1][s] = normal(newProd[v][i + 1][s])
35: if normNProd[v][i+1][s] , normOProd[v][i+1][s] then
36: ret = true
37: end if
38: end for
39: return (ret == true) ? v : ∅
40: end function
41: function computeBelief(v, i)
42: for s ∈ S do
43: belie f [v][s] = k × ϕ(i, s) × normNProd[v][i][s]
44: end for
45: end function
46: function BPMutable()

47: for i ∈ [0...k] do
48: edgeMap(E_add , repropagate, i)
49: edgeMap(E_delete , retract, i)
50: end for
51: V _updated = ∅
52: V _chanдe = getTargets(E_add ∪ E_delete)
53: for i ∈ [0...k] do
54: E_update = {(u,v) : u ∈ V _updated}
55: edgeMap(E_update , retract, i)
56: edgeMap(E_update , propagate, i)
57: V _dest = getTargets(E_update)
58: V _chanдe = V _chanдe ∪V _dest
59: V _updated = vertexMap(V _chanдe , compute, i)
60: end for
61: vertexMap(V _chanдe , computeBelief, k)
62: end function

Algorithm 3 Refinement functions for PageRank

1: function repropagate(e = (u,v), i)

2: atomicAdd(&sum[v][i + 1],
oldpr [u][i]

old_deдree[u])

3: end function
4: function retract(e = (u,v), i)

5: atomicSub(&sum[v][i + 1],
oldpr [u][i]

old_deдree[u])

6: end function
7: function propagateDelta(e = (u,v), i)
8: atomicAdd(&sum[v][i + 1],

newpr [u][i]
new_deдree[u] −

oldpr [u][i]
old_deдree[u])

9: end function

values had changed in the original computation (prior to mu-

tation) must also be processed, along with the set of edges

(directly and transitively) impacted by edge mutations. In

absence of vertical pruning, this is achieved by tracking the

set of changed vertex values in a bit-vector at the end of

iteration k in the original computation, and then updating

the set with vertices impacted by mutations before starting

the incremental processing.

4.3 Guaranteeing Synchronous Semantics
We directly reason about how дTi (v) gets computed ∀i, ∀v .
Let cT

0
(v) denote the value of v before processing begins.

Theorem 4.1. With dependency-driven value refinement,
∀i > 0, ∀v ∈ V , дTi (v) is computed using cTi−1(u) to satisfy
dependencies based on ET as defined in Eq. 1.
Proof. We skip the proof due to limited space. We reason

about the changes performed by

⊎
,

⋃
- and

⋃
△ incremental

aggregators in terms of change in dependencies (subtracting

dependencies from old values and adding dependencies from

new values) to incrementally compute дTi (v) from дi (v). □

5 Evaluation
We evaluate GraphBolt using six synchronous graph algo-

rithms and compare its performance with Ligra [39], Differ-

ential Dataflow [25] and KickStarter [44].

5.1 Experimental Setup
We evaluate GraphBolt using six synchronous graph algo-

rithms as listed in Table 4. PageRank (PR) [30] computes rel-

ative importance of web-pages while Belief Propagation (BP)

[20] is an inference algorithm. Label Propagation (LP) [53]

Graphs Edges Vertices
Wiki (WK) [47] 378M 12M

UKDomain (UK) [7] 1.0B 39.5M

Twitter (TW) [21] 1.5B 41.7M

TwitterMPI (TT) [8] 2.0B 52.6M

Friendster (FT) [14] 2.5B 68.3M

Yahoo (YH) [49] 6.6B 1.4B

Table 2. Input graphs used in evaluation.

System A System B
Core Count 32 (1 × 32) 96 (2 × 48)

Core Speed 2GHz 2.5GHz

Memory Capacity 231GB 748GB

Memory Speed 9.75 GB/sec 7.94 GB/sec

Table 3. Systems used in evaluation.

Algorithm Aggregation (
⊕

)

PageRank (PR)

∑
∀e=(u,v)∈E

c (u)
out_deдr ee (u)

Belief Propagation (BP) ∀s ∈ S :

∏
∀e=(u,v)∈E

(
∑

∀s′∈S
ϕ(u, s′) ×ψ (u, v, s′, s) × c(u, s′))

Label Propagation (LP) ∀f ∈ F :

∑
∀e=(u,v)∈E

c(u, f) ×weiдht (u, v)

Co-Training Expectation
∑

∀e=(u,v)∈E

c (u)×weiдht (u,v)∑
∀e=(w,v)∈E

weiдht (w,v)
Maximization (CoEM)

Collaborative Filtering (CF) ⟨
∑

∀e=(u,v)∈E ci (u).ci (u)tr ,
∑

∀e=(u,v)∈E ci (u).weiдht (u, v) ⟩

Triangle Counting (TC)

∑
∀e=(u,v)∈E

|in_neiдhbors(u) ∩ out_neiдhbors(v) |

Table 4. Graph algorithms used in evaluation and their aggregation functions.

is a learning algorithm while Co-Training Expectation Max-

imization (CoEM) [28] is a semi-supervised learning algo-

rithm for named entity recognition. Collaborative Filtering

(CF) [52] is a context-based approach to identify related

items for recommendation systems. Triangle Counting (TC)

computes frequencies of different triangles.

Table 2 lists the six real-world graphs used in our evalu-

ation. Similar to [38, 44], we obtained an initial fixed point

and streamed in a set of edge insertions and deletions for

the rest of the computation. After 50% of the edges were

loaded, the remaining edges were treated as edge additions

that were streamed in. Edges to be deleted were selected from

the loaded graph and deletion requests were mixed with ad-

dition requests in the update stream. In our experiments, we

varied the rate of the update stream to thoroughly evaluate

the effectiveness of incremental processing and scalability of

GraphBolt. Unless otherwise stated, each algorithm (except

TC which gets computed in a single iteration) was run for

10 iterations on all inputs except YH, and algorithms on YH

were run for 5 iterations.

Table 3 describes the machines used in our evaluation. We

used System A for all graphs except YH, and to further evalu-

ate how GraphBolt scales, we used System B (r5.24xlarge
on Amazon EC2) which has 3× the amount of memory and

cores compared to that in System A. Both systems ran 64-bit

Ubuntu 16.04 and programs were compiled using GCC 5.4,

optimization level -O3.
To thoroughly evaluate GraphBolt, we compare the fol-

lowing three versions:

• Ligra: is the Ligra system [39] which restarts compu-

tation upon graph mutations.

• GB-Reset: is our GraphBolt system based on incre-

mental computation during processing (i.e., propagates

changes to enable selective scheduling), but restarts

computation upon graph mutations. The processing

model is similar to PageRankDelta in [39].

• GraphBolt: is our GraphBolt system based on

dependency-driven incremental computation upon

graph mutations as proposed in this paper.

To ensure a fair comparison among the above versions, ex-

periments were run such that each algorithm version had

the same number of pending edge mutations to be processed

(similar to methodology in [44]). Unless otherwise stated,

100K edge mutations were applied before the processing of

each version. While Theorem 4.1 guarantees correctness of

results via synchronous processing semantics, we validated

correctness for each run by comparing final results.

5.2 Performance
Table 5 shows the execution times for Ligra, GB-Reset and

GraphBolt across 1K, 10K and 100K edge mutations. As we

can see, both GB-Reset and GraphBolt outperform Ligra

across all cases except TC where Ligra and GraphBolt-Reset

are same (recall TC takes only single iteration to compute

results). This is mainly due to selective scheduling that pro-

cesses only those edges whose source vertex values change

across iterations by propagating changes across aggregations.

Furthermore, GraphBolt outperforms GB-Reset in all cases

which indicates the effectiveness of our dependency-driven

incremental computation to quickly react to changes in graph

structure, even at a scale of 100K edge mutations. Figure 6

compares the amount of work performed by GraphBolt v/s

GB-Reset in terms of number of edges processed. GraphBolt

performs less than 50% edge computations compared to that

in GB-Reset in most of the cases; while GraphBolt often per-

forms 60-80% edge computations for PR (except UK), and

for TT/TW on CoEM, the reduction in edge computations

directly results in savings in Table 5.

It is interesting to observe that speedups are different

across different algorithms; for example GraphBolt v/s GB-

Reset for BP on TW is 10.48-14.39×, while for CF on TW

is 6.17-8.79× even though Figure 6 shows that latter per-

forms lesser edge computations compared to the former.

This difference is because the remaining factors beyond edge

computations (like vertexMap times, managing local copies,

etc.) that had minor impact on GB-Reset’s performance be-

come significant enough in GraphBolt since edge work gets

drastically reduced; nevertheless, this time is very low and

WK UK TW TT FT
1K 10K 100K 1K 10K 100K 1K 10K 100K 1K 10K 100K 1K 10K 100K

PR

Ligra 2.81 2.84 2.81 4.52 4.34 4.36 19.45 19.58 19.26 45.50 45.38 45.76 47.65 47.36 47.57

GB-Reset 1.65 1.66 1.67 4.76 4.61 4.63 9.87 9.85 9.81 13.80 13.89 13.79 20.22 20.29 20.33

GraphBolt 1.12 1.22 1.36 0.26 0.37 0.55 7.25 7.43 7.60 8.61 9.20 9.74 11.77 14.44 15.72

× Ligra 2.52× 2.32× 2.06× 17.40× 11.69× 7.87× 2.68× 2.64× 2.54× 5.29× 4.93× 4.70× 4.05× 3.28× 3.03×

× GB-Reset 1.48× 1.36× 1.22× 18.35× 12.44× 8.36× 1.36× 1.33× 1.29× 1.60× 1.51× 1.42× 1.72× 1.40× 1.29×

BP

Ligra 49.89 49.91 49.84 98.66 98.24 98.28 256.15 256.25 256.86 348.26 321.20 321.03 521.56 521.49 522.12

GB-Reset 12.36 12.39 12.36 33.27 33.36 33.14 60.88 60.85 61.08 78.83 78.78 78.76 116.91 116.84 116.72

GraphBolt 0.76 1.05 1.45 2.11 2.17 2.23 4.23 5.04 5.83 3.41 4.90 9.19 3.62 3.73 4.09

× Ligra 65.89× 47.61× 34.41× 46.76× 45.37× 44.02× 60.53× 50.82× 44.09× 102.14× 65.60× 34.93× 143.9× 139.7× 127.7×

× GB-Reset 16.32× 11.81× 8.54× 15.77× 15.41× 14.84× 14.39× 12.07× 10.48× 23.12× 16.09× 8.57× 32.27× 31.29× 28.55×

CF

Ligra 14.20 14.15 14.14 27.65 27.04 27.75 81.93 81.61 81.84 109.79 109.87 110.08 170.06 169.25 169.01

GB-Reset 3.60 3.59 3.63 7.76 7.54 7.59 20.20 20.13 20.17 26.99 26.91 26.91 40.80 40.48 40.71

GraphBolt 0.47 0.51 0.82 1.49 1.50 1.54 2.30 2.68 3.27 3.15 4.92 7.08 2.57 2.62 2.76

× Ligra 29.91× 27.60× 17.29× 18.50× 18.08× 18.07× 35.65× 30.47× 25.05× 34.89× 22.35× 15.54× 66.14× 64.61× 61.30×

× GB-Reset 7.58× 7.00× 4.44× 5.19× 5.04× 4.94× 8.79× 7.52× 6.17× 8.58× 5.48× 3.80× 15.87× 15.45× 14.77×

CoEM

Ligra 12.69 12.74 12.66 24.01 24.09 24.08 77.79 78.07 77.84 103.62 103.69 103.75 159.96 160.33 160.35

GB-Reset 3.46 3.46 3.44 6.33 6.35 6.40 20.39 20.44 20.43 27.19 27.25 27.33 39.96 39.94 39.97

GraphBolt 0.61 0.73 0.98 0.27 0.34 0.46 4.59 5.37 5.84 7.19 8.36 9.41 0.69 3.41 6.26

× Ligra 20.79× 17.37× 12.94× 90.36× 70.30× 51.91× 16.94× 14.55× 13.32× 14.40× 12.41× 11.03× 232.5× 47.06× 25.63×

× GB-Reset 5.67× 4.71× 3.52× 23.82× 18.53× 13.79× 4.44× 3.81× 3.50× 3.78× 3.26× 2.91× 58.08× 11.72× 6.39×

LP

Ligra 22.40 22.39 22.32 38.15 38.10 37.93 135.62 135.75 135.86 167.08 166.77 167.20 287.51 287.76 287.77

GB-Reset 7.63 7.61 7.55 16.49 16.47 16.45 43.12 43.20 43.21 54.26 54.40 54.11 91.81 91.82 91.92

GraphBolt 0.70 0.96 1.48 1.78 1.81 1.85 13.59 16.25 17.45 15.74 20.05 24.05 3.72 8.81 15.64

× Ligra 32.08× 23.32× 15.13× 21.40× 21.04× 20.52× 9.98× 8.35× 7.78× 10.62× 8.32× 6.95× 77.23× 32.67× 18.40×

× GB-Reset 10.93× 7.92× 5.12× 9.25× 9.10× 8.90× 3.17× 2.66× 2.48× 3.45× 2.71× 2.25× 24.66× 10.42× 5.88×

TC

Ligra 10.02 9.00 8.94 6.14 6.15 5.96 273.56 273.84 274.82 335.18 334.90 335.48 59.31 59.34 59.44

GB-Reset 10.02 9.00 8.94 6.14 6.15 5.96 273.56 273.84 274.82 335.18 334.90 335.48 59.31 59.34 59.44

GraphBolt 0.03 0.20 2.12 0.05 0.06 0.15 0.15 0.22 0.41 0.58 5.34 14.58 0.08 0.08 0.21

× Ligra 345.2× 43.96× 4.21× 124.9× 103.9× 40.21× 1815.7× 1268.2× 674× 578.2× 62.74× 23× 722.5× 710× 279×

× GB-Reset 345.2× 43.96× 4.21× 124.9× 103.9× 40.21× 1815.7× 1268.2× 674× 578.2× 62.74× 23× 722.5× 710× 279×

Table 5. Execution times (in seconds) for Ligra, GB-Reset and GraphBolt across 1K, 10K and 100K edge mutations. The

highlighted rows, i.e., × Ligra and × GB-Reset indicate speedups achieved by GraphBolt over Ligra and GB-Reset respectively.

hence, doesn’t impact the benefits achieved from incremen-

tal processing. Alternately, GraphBolt on TC outperforms

GB-Reset by two-three orders of magnitude mainly because

the impact of edge mutations on TC is always local (e.g., edge

addition/deletion only affect its end-points and their direct

neighbors). Hence, set intersections involved in TC get incre-

mentally adjusted to reflect changes in final result without

propagating those changes across multiple iterations.

Finally, Table 6 presents the executions times for YH graph

(on system B) and the corresponding amount of edge compu-

tations performed is shown in Table 7. It is interesting to note

that GraphBolt performs significantly lower edge computa-

tions for YH compared to other graphs (shown in Figure 6);

it is less than 0.5% for all cases except CoEM where it is

less than 12% (i.e., 0.12 ratio). We also varied the parallelism

by 3× from 32 cores to 96 cores in Table 6; as we can see,

going to 96 cores reduces the execution time for GraphBolt

(as expected), but also reduces the speedups mainly because

GB-Reset has more work to be done compared to GraphBolt,

and hence, GB-Reset leverages parallelism more compared to

 0.2

 0.4

 0.6

 0.8

WK UK TW TT FT

PR

E
dg

e
C

om
pu

ta
ti
on

s 1K 10K 100K

 0.02

 0.04

 0.06

 0.08

WK UK TW TT FT

BP

E
dg

e
C

om
pu

ta
ti
on

s 1K 10K 100K

 0.02
 0.04
 0.06
 0.08
 0.1

WK UK TW TT FT

CF

E
dg

e
C

om
pu

ta
ti
on

s 1K 10K 100K

 0.2

 0.4

 0.6

 0.8

WK UK TW TT FT

CoEM

E
dg

e
C

om
pu

ta
ti
on

s 1K 10K 100K

 0.1

 0.2

 0.3

 0.4

WK UK TW TT FT

LP

E
dg

e
C

om
pu

ta
ti
on

s 1K 10K 100K

 0.0003

 0.0006

 0.0009

 0.0012

WK UK TW TT FT

TC

E
dg

e
C

om
pu

ta
ti
on

s 1K 10K 100K

Figure 6. Ratio of edge computations performed by

GraphBolt compared to that by GB-Reset.

96 cores 32 cores
1K 10K 100K 1K 10K 100K

PR

Ligra 7.85 7.73 7.93 9.28 9.02 8.53

GB-Reset 4.24 4.40 4.53 5.29 5.02 4.89

GraphBolt 0.32 0.39 0.37 0.32 0.41 0.41

× Ligra 24.19× 20.05× 21.52× 29.17× 21.74× 20.63×

× GB-Reset 13.08× 11.40× 12.30× 16.63× 12.1× 11.82×

BP

Ligra 96.52 97.74 95.65 184.08 181.46 187.19

GB-Reset 51.19 54.90 52.02 89.74 93.32 93.16

GraphBolt 9.63 10.06 10.73 10.88 14.69 14.06

× Ligra 10.02× 9.71× 8.91× 16.92× 12.35× 13.31×

× GB-Reset 5.31× 5.46× 4.85× 8.25× 6.35× 6.62×

CF

Ligra 21.94 22.00 21.70 38.04 38.13 37.96

GB-Reset 11.73 12.18 11.69 18.54 18.99 18.83

GraphBolt 2.14 2.23 2.46 2.31 2.31 2.47

× Ligra 10.25× 9.85× 8.80× 16.49× 16.52× 15.36×

× GB-Reset 5.48× 5.46× 4.74× 8.04× 8.23× 7.62×

CoEM

Ligra 28.05 26.77 26.90 50.18 49.99 50.44

GB-Reset 13.09 13.31 13.04 23.28 23.11 23.53

GraphBolt 0.99 1.79 2.12 1.02 1.96 2.68

× Ligra 28.25× 14.96× 12.68× 49.29× 25.51× 18.83×

× GB-Reset 13.19× 7.44× 6.15× 22.87× 11.79× 8.79×

LP

Ligra 35.90 38.22 36.24 69.82 72.34 70.36

GB-Reset 23.48 25.37 23.36 39.35 41.4 39.36

GraphBolt 9.57 9.49 9.58 10.77 8.58 9.91

× Ligra 3.75× 4.03× 3.78× 6.48× 8.43× 7.1×

× GB-Reset 2.45× 2.67× 2.44× 3.65× 4.83× 3.97×

TC

Ligra 3.77 3.70 3.70 6.54 6.48 6.47

GB-Reset 3.77 3.70 3.70 6.54 6.48 6.47

GraphBolt 0.45 0.47 0.58 0.81 0.72 0.56

× Ligra 8.37× 7.93× 6.42× 8.04× 8.96× 11.56×

× GB-Reset 8.37× 7.93× 6.42× 8.04× 8.96× 11.56×

Table 6. Execution times (in seconds) on 96 and 32 cores for

Ligra, GB-Reset and GraphBolt on YH graph across 1K, 10K

and 100K edge mutations. The highlighted rows, i.e.,

× Ligra and × GB-Reset indicate speedups achieved by

GraphBolt over Ligra and GB-Reset respectively.

1K 10K 100K
PR 577.6K (0.013%) 7.3M (0.162%) 12.0M (0.267%)

BP 18.6K (0.000%) 0.4M (0.010%) 2.0M (0.051%)

CF 27.7K (0.002%) 1.8M (0.105%) 8.2M (0.481%)

CoEM 15.8M (1.801%) 57.8M (6.579%) 96.8M (11.009%)

LP 0.1M (0.002%) 2.0M (0.066%) 4.9M (0.164%)

TC 2.0K (0.000%) 20.0K (0.001%) 0.2M (0.012%)

Table 7. Edge computations performed by GraphBolt on

YH. Numbers in parentheses indicate the percentage of edge

computations performed by GraphBolt on YH compared to

that by GB-Reset on YH.

GraphBolt. This is an indicator that GraphBolt’s dependency-

driven incremental computation is strong enough to reduce

computations without relying on increasing compute capa-

bilities to achieve high performance. Note that the impact of

edgemutations varies based on the structure of the graph and

also the nature of graph algorithm. For example, GraphBolt

on PR achieves higher savings for UK compared to that for

 2
 4
 6
 8

 10
 12
 14

1 10 100 1K 10K 100K 1M

PR on TT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

GB-Reset GraphBolt
 15
 30
 45
 60
 75
 90

 105
 120

1 10 100 1K 10K 100K 1M

BP on FT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

GB-Reset GraphBolt

 5

 10

 15

 20

 25

1 10 100 1K 10K 100K 1M

CoEM on TT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

GB-Reset GraphBolt

 5
 10
 15
 20
 25
 30
 35
 40

1 10 100 1K 10K 100K 1M

CF on FT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

GB-Reset GraphBolt

 75

 150

 225

 300

1 10 100 1K 10K 100K 1M

TC on TT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

GB-Reset GraphBolt

 10
 20
 30
 40
 50
 60
 70
 80
 90

1 10 100 1K 10K 100K 1M

LP on FT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

GB-Reset GraphBolt

Figure 7. Execution times (in seconds) for TT and FT across

different batch sizes: single edge to 1M mutations per batch.

FT, while BP and CF achieve higher speedup for FT compared

to that for UK.

5.3 Sensitivity Analysis
We study the sensitivity of our dependency-driven incremen-

tal processing to varying mutation batch size and workloads.

(A) Varying Mutation Batch Size.
Figure 7 shows execution times for algorithms on FT and TT

as we vary the mutation batch size between 1 to 1M edge

mutations per batch. As expected, increase in edge muta-

tions results in more work to be done, and hence, GraphBolt

spends more time in doing increased work. It is interest-

ing to note that even with 1M edge mutations, GraphBolt’s

incremental computation continues to be useful as it still

manages to reduce work compared to the baseline GB-Reset.

While GraphBolt outperforms GB-Reset for PR by 1.2-1.3×

with 1M edge mutations, other benchmarks show higher im-

provements (between 1.9-42.5×). The increase in execution

times is lowest for TC since the impact of edge mutations is

relatively local in TC compared to that in other algorithms.

(B) Varying Mutation Workloads.
Since the impact of edge mutations also depend on where in

the graph those mutations are being applied, we created two

kinds of batches to reflect different mutation workloads: (1)

a high workload (Hi) where mutations impact vertices with

high outgoing degree (so that changes affect more vertices);

and, (2) a lowworkload (Lo) wheremutations impact vertices

with low outgoing degree (to limit the impact of changes).

Table 8 shows the execution times for GraphBolt on TT

and FT with Hi and Lo workloads. As expected, executions

times for Hi are higher than that for Lo across all cases.

Nevertheless, GraphBolt still outperforms GB-Reset across

all these cases due to its incremental computation.

BP CoEM LP TC CF
Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi

TT 2.81 6.03 6.83 8.66 4.69 21.42 0.12 7.64 2.42 5.98

FT 3.62 4.76 1.26 9.26 3.15 27.44 0.08 0.12 2.59 3.08

Table 8. Execution times (in seconds) for GraphBolt with

high workload (Hi) and low workload (Lo).

 0

 125

 250

 375

 500

 625

1 10 100 1K 10K

PR on TT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

Batch Size

Differential Dataflow
GraphBolt-RP

GraphBolt

(a) Varying mutation batch size.

 0
 25
 50
 75

 100
 125
 150
 175

 20 40 60 80 100

PR on TT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

Single Edge Mutations

Differential Dataflow
GraphBolt

(b) 100 single edge mutations.

Figure 8. Execution times (in seconds) for Differential

Dataflow and GraphBolt.

5.4 Comparison with Other Systems
We compare the performance of GraphBolt with that of Dif-

ferential Dataflow [25] which is a general-purpose incre-

mental dataflow system that operates on input streams, and

KickStarter [44] which is a streaming graph processing solu-

tion for path-based monotonic graph algorithms.

(A) Differential Dataflow.
Graph computations can be expressed on Differential

Dataflow in edge-parallel manner by joining edge tuples

with rank values to be pushed across them, and then group-

ing them at destination vertices’ rank tuples. In Figure 8, we

evaluate PageRank on TT in Differential Dataflow and two

versions in GraphBolt: first, expressed as propagateDelta

as shown in Algorithm 3 (called GraphBolt); and second,

expressed as retract and propagate as shown in Algo-

rithm 2 (called GraphBolt-RP). GraphBolt-RP is typically

performed for complex aggregations where change in values

is captured explicitly using old and new values, i.e., edges

propagate two values instead of one as done in GraphBolt

(via propagateDelta). We varied the mutation batch size

from 1 to 10K and ran the experiments till convergence.

As shown in Figure 8a, Differential Dataflow retains high

performance with 1 edge mutation, and scales as mutation

batch size grows. Since GraphBolt is specialized towards pro-

cessing streaming graphs as opposed to general streams, it de-

livers very high performance across all cases. GraphBolt-RP,

as expected, gets impacted by propagating and computing

over two values per change and hence is slower than Graph-

Bolt. We observed very high variance for 1 edge mutation

in Differential Dataflow; in Figure 8b, we show performance

of 100 different 1 edge mutations for Differential Dataflow

and GraphBolt. Differential Dataflow directly operates on

changes and some of the changes impact the overall compu-

tation (i.e., intermediate results) more than others, which re-

sults in very high variance. GraphBolt processes single edge

mutations efficiently and its variance is much lower even

thoughwork done per mutation is different; this is because of

the constant overhead coming from the iteration-by-iteration

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

1 10 100 1K 10K

SSSP on TT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

Batch Size

KickStarter
GraphBolt

Differential Dataflow

(a) Edge additions & deletions.

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

1 10 100 1K 10K

SSSP on TT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

Batch Size

KickStarter
GraphBolt

Differential Dataflow

(b) Edge additions only.

Figure 9. Execution times (in seconds) for KickStarter,

Differential Dataflow and GraphBolt.

parallelization model and data-structure maintenance. We

observe the impact of these overheads on throughput of

processing single edge mutations such that results for each

individual mutation needs to be reported: GraphBolt fully

processes 100 consecutive single edge mutations (producing

corresponding result for each individual mutation) in 409.34

seconds (compared to 7.89 seconds to process a single batch

of 100 updates). Differential Dataflow, on the other hand,

takes 1947.53 seconds for this case.

(B) KickStarter.
KickStarter enables streaming graph processing for mono-

tonic graph algorithms by capturing light-weight dependen-

cies across computed results and incrementally adjusting

results upon edge mutations. Since it doesn’t capture depen-

dencies across intermediate vertex values, it doesn’t guar-

antee synchronous processing semantics and is applicable

to path-based monotonic algorithms. Figure 9 compares the

performance of Single Source Shortest Path (SSSP) on TT

in KickStarter and GraphBolt. As we can see in Figure 9a,

even though GraphBolt efficiently computes shortest paths

using min aggregation (non-decomposable type), KickStarter
outperforms GraphBolt across all cases. This is due to two

main reasons: a) GraphBolt maintains dependencies across

all intermediate vertex values with the goal to guarantee

synchronous processing semantics which is unnecessary for

SSSP; and b) themin aggregation gets re-evaluated in Graph-

Bolt with updated set of inputs which requires pulling values

from incoming neighbors whenever edge deletions result in

increase in path values. KickStarter, being a tailored solu-

tion for path-based monotonic algorithms, leverages asyn-

chrony in SSSP in form of computation reordering which

allows it to relax intermediate dependencies and propagate

impact of changes quickly. Hence, KickStarter performs 14×

lesser edge computations compared to GraphBolt upon edge

mutation. To separate out the impact of re-evaluating min,
we compare the performance with only edge additions in

Figure 9b since edge additions in SSSP can be computed in-

crementally by min without re-evaluating it. As expected,

both KickStarter and GraphBolt efficiently process edge addi-

tions and the difference in performance is purely due to the

amount of dependencies maintained and updated in Graph-

Bolt compared to that in KickStarter. Figure 9 also compares

Differential Dataflow which is faster with edge deletions

because it maintains an ordered map of path values and

counts for each vertex, which get quickly updated with value

changes. Such a data-structure can be incorporated in Graph-

Bolt to simulate faster incrementalmin (andmax) at the cost
of increased storage per vertex.

5.5 Memory Overhead
GraphBolt tracks aggregation values which requires space

that is proportional to number of vertices. We measure the

increase in memory used by GraphBolt compared to that by

GB-Reset. Since this memory overhead gradually decreases

with iterations, we measure the increase for the first iteration

as a worst-case estimate; subsequent iterations will require

lesser memory due to vertical pruning. As shown in Table 9,

the increase is only up to 25% for all algorithms except CF and

TC with TC requiring close to 2× memory. This overhead

for TC comes from directly maintaining the structure of

graph without mutation to incrementally adjust counts via

addition/subtraction instead of resetting counts to 0 and

recomputing for all edges within two-hop distance from

mutated vertices. Nevertheless, TC runs for a single iteration

only and hence, there is no further increase.

WK UK TW TT FT YH
PR 13.30% 15.90% 12.18% 11.69% 11.57% 12.49%

BP 16.87% 18.83% 15.95% 15.52% 15.42% 16.21%

CoEM 12.73% 15.10% 11.71% 11.25% 11.14% 11.99%

LP 20.30% 23.20% 18.97% 18.37% 18.23% 19.34%

CF 53.25% 59.06% 50.47% 49.18% 48.88% 51.25%

TC 92.13% 90.24% 92.90% 93.23% 93.31% 78.27%

Table 9. Increase in memory for GraphBolt w.r.t. GB-Reset.

6 Related Work
There exist several works on processing streaming graphs

and generalized (structured and unstructured) data streams.

— Streaming Graph Processing Frameworks. Tornado [38] pro-
cesses streaming graphs by forking off the execution to

process user-queries while graph structure updates. Kick-

Starter [44] uses dependence trees for incremental correc-

tions inmonotonic graph algorithms. GraphIn [37] incremen-

tally processes dynamic graphs using fixed-sized batches. It

provides a five-phase processing model that first identifies

values that must be changed, and then updates them so that

they can be merged back to previously computed results. It

also maintains sparse dependence trees for path-based graph

algorithms. Kineograph [10] enables graph mining using in-

cremental computation alongwith push and pull models. [40]

proposes the GIM-V incremental graph processing model

based on matrix-vector operations. [32] constructs represen-

tative snapshots which are initially used for querying and

upon success uses real snapshots. While these systems en-

able incremental computation, they lack dependency-driven

incremental processing which guarantees synchronous pro-

cessing semantics. STINGER [13] proposes dynamic graph

data-structure and works like [12, 33] use the data-structure

to develop algorithms for specific problems.

— Batch Processing of Graph Snapshots. These systems enable

offline processing of well-defined temporal graphs snapshots.

Chronos [18] uses incremental processing to compute values

across multiple graph snapshots. [43] presents temporal com-

putation and communication optimizations to process evolv-

ing graphs and its incremental processing leverages partially

computed results across graph snapshots. GraphTau [19]

maintains history of values over snapshots to rectify inac-

curacies by reverting back the values. Finally, static graph

processing systems [9, 15, 16, 27, 34, 35, 39, 45, 46, 48, 54]

can also be used to process discrete graph snapshots.

— Generalized Stream Processing. Generalized stream pro-

cessing systems [1, 2, 4, 5, 31, 36, 42, 50, 51] operate on un-

bounded structured and unstructured streams. Differential

Dataflow [25] extends incremental computation in Timely

Dataflow [26] by allowing the impact of change in streams to

be reflected directly via diffs. Its strength lies in differential

operators that enable capturing and computing over record

changes. Since it operates over value changes only, it natu-

rally incorporates selective scheduling which is useful for

sparse computations. Its generality allows it to efficiently pro-

cess streaming graphs as well (as shown in §5.4). GraphBolt,

in comparison, is specialized towards processing streaming

graphs, and hence extracts high performance.

— Incremental Algorithms. Incremental PageRank [24] refor-

mulates computation where vertices propagate changes to

extract optimizations for incremental updates and faster con-

vergence. [3] analyzes Monte Carlo methods for incremental

PageRank whereas [11] identifies vertices impacted by graph

mutation and recomputes ranks for those vertices. For Tri-

angle Counting, [23] presents a space-efficient algorithm to

approximate counts while [41] develops cache-efficient par-

allel algorithm for counting on undirected streaming graphs.

Incremental View Maintenance (IVM) algorithms [6, 17,

29] reuse computed results to maintain a view consistent

with input changes. They operate on different types of com-

plex queries, however, they remain inefficient in terms of

the amount of re-computation and storage required [25].

7 Conclusion
We presented GraphBolt to process streaming graphs while

guaranteeing BSP semantics via dependency-driven incre-

mental processing. GraphBolt’s programming model allows

decomposing complex aggregations to incorporate incremen-

tal value changes while also supporting direct incremental

updates for simple aggregations. Our evaluation showed that

GraphBolt efficiently processes streaming graphs with vary-

ing mutation rates, starting from just a single edge mutation

all the way up to 1 million edge mutations at a time.

Acknowledgments
We would like to thank our shepherd Frank McSherry and

the anonymous reviewers for their valuable and thorough

feedback. This work is supported by the Natural Sciences

and Engineering Research Council of Canada.

References
[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,

Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag

Maskey, Alex Rasin, Esther Ryvkina, et al. The Design of the Borealis

Stream Processing Engine. In CIDR, volume 5, pages 277–289, 2005.

[2] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish

Gupta, Haifeng Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid

Ryabkov, Manpreet Singh, and Shivakumar Venkataraman. Photon:

Fault-tolerant and Scalable Joining of Continuous Data Streams. In

SIGMOD, pages 577–588, New York, NY, USA, 2013.

[3] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast Incre-

mental and Personalized PageRank. VLDB, 4(3):173–184, December

2010.

[4] Hari Balakrishnan, Magdalena Balazinska, Don Carney, Uğur Çet-

intemel, Mitch Cherniack, Christian Convey, Eddie Galvez, Jon Salz,

Michael Stonebraker, Nesime Tatbul, et al. Retrospective on Aurora.

The VLDB Journal, 13(4):370–383, 2004.
[5] Pramod Bhatotia, Umut A Acar, Flavio P Junqueira, and Rodrigo Ro-

drigues. Slider: Incremental Sliding Window Analytics. InMiddleware,
pages 61–72. ACM, 2014.

[6] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently

Updating Materialized Views. In SIGMOD, pages 61–71, 1986.
[7] Paolo Boldi and Sebastiano Vigna. The WebGraph Framework I: Com-

pression Techniques. InWWW, pages 595–601, 2004.

[8] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P.

Gummadi. Measuring User Influence in Twitter: The Million Follower

Fallacy. In ICWSM, pages 10–17, 2010.

[9] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. PowerLyra:

Differentiated Graph Computation and Partitioning on Skewed Graphs.

In EuroSys, pages 1:1–1:15, 2015.
[10] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,

Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen.

Kineograph: Taking the Pulse of a Fast-changing and ConnectedWorld.

In EuroSys, pages 85–98, 2012.
[11] Prasanna Desikan, Nishith Pathak, Jaideep Srivastava, and Vipin Ku-

mar. Incremental Page Rank Computation on Evolving Graphs. In

WWW, pages 1094–1095, 2005.

[12] David Ediger, Karl Jiang, Jason Riedy, and David A. Bader. Massive

Streaming Data Analytics: A Case Study with Clustering Coefficients.

In IPDPSW, pages 1–8, 2010.

[13] David Ediger, Rob Mccoll, Jason Riedy, and David A. Bader. STINGER:

High Performance Data Structure for Streaming Graphs. In HPEC,
pages 1–5, 2012.

[14] Friendster network dataset. http://konect.uni-koblenz.de/networks/
friendster. KONECT, 2015.

[15] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-

los Guestrin. PowerGraph: Distributed Graph-parallel Computation

on Natural Graphs. In OSDI, pages 17–30, 2012.
[16] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,

Michael J. Franklin, and Ion Stoica. GraphX: Graph Processing in a

Distributed Dataflow Framework. In OSDI, pages 599–613, 2014.
[17] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-

taining Views Incrementally. In SIGMOD, pages 157–166, 1993.
[18] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong

Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen.

Chronos: A Graph Engine for Temporal Graph Analysis. In EuroSys,
pages 1:1–1:14, New York, NY, USA, 2014. ACM.

[19] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica.

Time-Evolving Graph Processing at Scale. In GRADES, page 5. ACM,

2016.

[20] U Kang, Duen Horng, and Christos Faloutsos. Inference of Beliefs on

Billion-Scale Graphs. In KDD-LDMTA, 2010.
[21] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What

is Twitter, A Social Network or a News Media? In WWW, pages

591–600, 2010.

[22] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.

Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski, and Google

Inc. Pregel: A System for Large-Scale Graph Processing. In SIGMOD,
pages 135–146, 2010.

[23] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better Al-

gorithms for Counting Triangles in Data Streams. In PODS, pages
401–411, 2016.

[24] Frank McSherry. A Uniform Approach to Accelerated PageRank Com-

putation. In WWW ’05, pages 575–582, 2005.
[25] Frank McSherry, Derek G. Murray, Rebecca Isaacs, and Michael Isard.

Differential Dataflow. In CIDR, 2013.
[26] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Martín Abadi. Naiad: A Timely Dataflow System. In

SOSP, pages 439–455. ACM, 2013.

[27] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A Lightweight

Infrastructure for Graph Analytics. In SOSP, pages 456–471, 2013.
[28] Kamal Nigam and Rayid Ghani. Analyzing the Effectiveness and

Applicability of Co-training. In CIKM, pages 86–93. ACM, 2000.

[29] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Main-

taining Distributed Logic Programs Incrementally. In PPDP, pages
125–136, 2011.

[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The PageRank Citation Ranking: Bringing Order to theWeb. Technical

report, Stanford University, 1998.

[31] Frederick Reiss, Kurt Stockinger, Kesheng Wu, Arie Shoshani, and

Joseph M. Hellerstein. Enabling Real-Time Querying of Live and

Historical Stream Data. In SSDBM, pages 28–, 2007.

[32] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On

Querying Historical Evolving Graph Sequences, 2011.

[33] Jason Riedy and Henning Meyerhenke. Scalable Algorithms for Anal-

ysis of Massive, Streaming Graphs. In SIAM PP, 2012.
[34] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy

Zwaenepoel. Chaos: Scale-out Graph Processing from Secondary

Storage. In SOSP, pages 410–424, 2015.
[35] Amitabha Roy, Ivo Mihailovic, andWilly Zwaenepoel. X-Stream: Edge-

centric Graph Processing Using Streaming Partitions. In SOSP, pages
472–488, 2013.

[36] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented Sketch:

Faster and More Accurate Stream Processing. In SIGMOD, pages 1449–
1463, New York, NY, USA, 2016. ACM.

[37] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore LWillke,

Jeffrey Young, Matthew Wolf, and Karsten Schwan. GraphIn: An

Online High Performance Incremental Graph Processing Framework.

In Euro-Par, pages 319–333. Springer, 2016.
[38] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. Tornado:

A System For Real-Time Iterative Analysis Over Evolving Data. In

SIGMOD, pages 417–430, New York, NY, USA, 2016. ACM.

[39] Julian Shun and Guy E. Blelloch. Ligra: A Lightweight Graph Pro-

cessing Framework for Shared Memory. In PPoPP, pages 135–146,
2013.

[40] Toyotaro Suzumura, Shunsuke Nishii, and Masaru Ganse. Towards

Large-scale Graph Stream Processing Platform. In WWW Companion,
pages 1321–1326, 2014.

[41] Kanat Tangwongsan, A. Pavan, and Srikanta Tirthapura. Parallel

Triangle Counting in Massive Streaming Graphs. In CIKM, pages

781–786, 2013.

[42] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,

Jignesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,

Maosong Fu, Jake Donham, et al. Storm @ Twitter. In SIGMOD,
pages 147–156. ACM, 2014.

[43] Keval Vora, Rajiv Gupta, and Guoqing Xu. Synergistic Analysis of

Evolving Graphs. ACM TACO, 13(4):32, 2016.
[44] Keval Vora, Rajiv Gupta, and Guoqing Xu. KickStarter: Fast and Accu-

rate Computations on Streaming Graphs via Trimmed Approximations.

http://konect.uni-koblenz.de/networks/friendster
http://konect.uni-koblenz.de/networks/friendster

In ASPLOS, pages 237–251, 2017.
[45] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. ASPIRE: Exploiting

Asynchronous Parallelism in Iterative Algorithms Using a Relaxed

Consistency Based DSM. In OOPSLA, pages 861–878, 2014.
[46] Keval Vora, Guoqing (Harry) Xu, and Rajiv Gupta. Load the Edges You

Need: A Generic I/O Optimization for Disk-based Graph Processing.

In USENIX ATC, pages 507–522, 2016.
[47] Wikipedia links, english network dataset. http://konect.uni-koblenz.

de/networks/wikipedia_link_en. KONECT, 2017.
[48] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan

Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou. GraM: Scaling Graph

Computation to the Trillions. In SoCC, pages 408–421, New York, NY,

USA, 2015. ACM.

[49] Yahoo! Webscope Program. http://webscope.sandbox.yahoo.com/.

[50] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion

Stoica. Discretized Streams: An Efficient and Fault-Tolerant Model for

Stream Processing on Large Clusters. In HotCloud, 2012.
[51] Erik Zeitler and Tore Risch. Massive Scale-out of Expensive Continu-

ous Queries. In VLDB, pages 1181–1188, 2011.
[52] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan.

Large-Scale Parallel Collaborative Filtering for the Netflix Prize. In

AAIM, pages 337–348. Springer, 2008.

[53] Xiaojin Zhu and Zoubin Ghahramani. Learning from Labeled and

Unlabeled Data with Label Propagation. In CMU Technical Report
CALD-02-107, 2002.

[54] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.

Gemini: A Computation-Centric Distributed Graph Processing System.

In OSDI, pages 301–316, 2016.

http://konect.uni-koblenz.de/networks/wikipedia_link_en
http://konect.uni-koblenz.de/networks/wikipedia_link_en
http://webscope.sandbox.yahoo.com/

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Streaming Graph Processing
	2.2 Problem: Incorrect Results
	2.3 Overview of Techniques

	3 Dependency-Aware Processing
	3.1 Synchronous Processing Semantics
	3.2 Tracking Value Dependencies
	3.3 Dependency-Driven Value Refinement

	4 GraphBolt Processing Engine
	4.1 Streaming Graph & Dependency Layout
	4.2 Dependency-Driven Processing Model
	4.3 Guaranteeing Synchronous Semantics

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance
	5.3 Sensitivity Analysis
	5.4 Comparison with Other Systems
	5.5 Memory Overhead

	6 Related Work
	7 Conclusion
	References

