
32

Synergistic Analysis of Evolving Graphs
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Evolving graph processing involves repeating analyses, which are often iterative, over multiple snapshots of
the graph corresponding to different points in time. Since the snapshots of an evolving graph share a great
number of vertices and edges, traditional approaches that process these snapshots one at a time without
exploiting this overlap contain much wasted effort on both data loading and computation, making them
extremely inefficient. In this article, we identify major sources of inefficiencies and present two optimization
techniques to address them. First, we propose a technique for amortizing the fetch cost by merging fetching
of values for different snapshots of the same vertex. Second, we propose a technique for amortizing the
processing cost by feeding values computed by earlier snapshots into later snapshots. We have implemented
these optimizations in two distributed graph processing systems, namely, GraphLab and ASPIRE. Our
experiments with multiple real evolving graphs and algorithms show that, on average fetch amortization
speeds up execution of GraphLab and ASPIRE by 5.2× and 4.1×, respectively. Amortizing the processing
cost yields additional average speedups of 2× and 7.9×, respectively.
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1. INTRODUCTION

The importance of graph processing has grown due to the wide ranging use of graph
mining and graph analytics. An important feature of real-world graphs is that they
are constantly evolving (e.g., social networks, networks modeling the spreading of
diseases, etc.) [Rossi et al. 2013; Watts and Strogatz 1998]. Such evolving graphs
are useful to capture dynamic properties and interesting trends that change over
time. For example, researchers in Leskovec et al. [2005] study how various structural
characteristics like graph density and graph diameter evolve over time by analyzing
multiple graph snapshots captured at different points in time. In Wilson et al. [2009],
researchers analyze evolving graphs to study how user interactions and activities
change over time. Techniques in Yang et al. [2007] operate on historical web graph
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Fig. 1. Trend analysis of PageRanks in an evolving graph.

snapshots to model the dynamic nature of link analysis. Also, in Radicchi et al. [2009],
researchers rank authors and papers in different graph snapshots to study how an
author’s influence changes in time.

Therefore, there is a great deal of interest in carrying out graph analytics tasks over
evolving graphs, that is, repeatedly computing the results of analysis at various points
in time to study how different characteristics of vertices (e.g., their PageRank, shortest
path, widest path, community, etc.) change over time.

For example, Figure 1 shows the trend of PageRank values for different vertices in
an evolving graph; by studying such a dynamic parameter, analysts can observe that
popularity of the three web pages (red, purple, and yellow) that follow similar trends
in their ranks are influenced by similar set of topics.

The analysis of an evolving graph is expressed as the repeating of graph analysis
over multiple snapshots of a changing graph—different snapshots are analyzed inde-
pendently of each other and their results are finally aggregated. Note that evolving
graph processing is different from streaming graph processing [Ediger et al. 2012]
where iterative processing continues over a dynamic graph structure that keeps on
changing, hence terminating to the final solution for the most updated graph.

Due to the fast-changing nature of a modern evolving graph, the graph often has a
large number of snapshots; analyzing one snapshot at a time can be extremely slow even
when done in parallel, especially when these snapshots are large graphs themselves.
For instance, one single snapshot of the Twitter graph—an input graph used in our
experiment—has over 1 billion edges, and there are in all 25.5 billion edges in all its
snapshots we analyzed.

In this article, we develop temporal execution techniques that significantly improve
the performance of evolving graph analysis, based on an important observation that
different snapshots of a graph often have large overlap of vertices and edges. By laying
out the evolving graph in a manner such that this temporal overlap is exposed, we
identify two key optimizations that aid the overall processing: first, we reorder the
computations based on loop transformation techniques to amortize the cost of fetch
across multiple snapshots while processing the evolving graphs; and second, we enable
feeding of values computed by earlier snapshots into later snapshots to amortize the
cost of processing vertices across multiple snapshots. Furthermore, the two optimiza-
tions are orthogonal, that is, they amortize different costs, and hence, we identify and
exploit the synergy between them by allowing feeding of values from all vertices, in-
cluding those that have not attained their final values, to amortize the processing cost,
while simultaneously reordering computations to amortize the fetch cost.

There exists a body of work on speeding up mining of evolving graphs [Ren et al.
2011; Kan et al. 2009; Desikan et al. 2005; Sun et al. 2007]. While Chronos [Han et al.
2014] introduces a novel memory layout for evolving graphs to improve cache locality,
none of these works amortize fetch and processing costs on clusters as we do; our
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Fig. 2. Example evolving graph G = 〈G1, G2, G3〉.

techniques are complimentary and applicable to a wide variety of problems. Moreover,
our optimizations are general and can be plugged into a variety of distributed or
shared-memory graph processing systems.

In this article, we have experimented extensively with the implementations of these
optimizations in GraphLab [Low et al. 2012] (a distributed graph-based machine learn-
ing framework) and ASPIRE (a Distributed Shared Memory (DSM) -based graph pro-
cessing system [Vora et al. 2014]). Our experiments with multiple real evolving graphs
and graph processing algorithms on a 16-node cluster demonstrate that, on average,
fetch amortization speeds up the execution of GraphLab and ASPIRE by 5.2× and 4.1×,
respectively. Amortizing the processing cost yields additional average speedups of 2×
and 7.9×, respectively. Furthermore, our amortization techniques on average perform
16.5% faster than the optimizations incorporated in Chronos [Han et al. 2014].

2. EVOLVING GRAPH AND ITERATIVE PROCESSING

We formalize evolving graphs and discuss how they are iteratively processed.

2.1. Evolving Graph

An evolving graph G is a graph that undergoes structural changes over time. These
structural changes take place via addition and deletion of edges and vertices. Formally,
an evolving graph G = 〈G1, G2, . . . , Gk〉 is a sequence of k graph snapshots taken at
different points in time. In general, the structural changes that cause a transition from
snapshot Gi−1 to snapshot Gi involve both addition and deletion of edges and vertices.
Note that a change in edge weight can be viewed as a deletion of the edge followed by
its insertion with a different weight. Figure 2(a), Figure 2(b), and Figure 2(c) together
show an evolving graph consisting of three graph snapshots taken at t1, t2, and t3,
respectively.

2.2. Computation Over Evolving Graphs

We briefly discuss the iterative vertex-centric processing over a simple graph and then
describe how it is performed over an evolving graph.
Iterative Vertex-Centric Processing. In this work, we focus on iterative vertex-
centric graph algorithms, used in a wide range of modern mining and analytics tasks.
In a vertex-centric graph algorithm, computation is written from the perspective of a
single vertex. For a given vertex, all the neighboring vertex values are fetched and a
new value is computed using these fetched values. If the value of a vertex changes,
its neighbors become active, that is, they are scheduled to be processed in the next
iteration. This process terminates when all the vertices in the graph become inactive.
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ALGORITHM 1: Iterative Algorithm on an Evolving Graph.
1: function EXECUTE(Gi)
2: for vid ∈ GET-ACTIVE-VERTEX(Gi) do
3: vertex ← FETCH(vid, Gi)
4: nbrs ← ∅

5: for nid ∈ GET-NEIGHBORS(vertex) do
6: nbrs ← nbrs ∪ FETCH(nid, Gi)
7: end for
8: old-value ← vertex.GET-VALUE( )
9: comp-value ← f (vertex, nbrs)

10: vertex.SET-VALUE(comp-value)
11: if |old-value − comp-value| > ε then
12: ACTIVATE-NEIGHBORS(vertex)
13: end if
14: STORE(vertex, Gi)
15: end for
16: end function

17: function MAIN(G)
18: for each graph Gi ∈ G do
19: INITIALIZE(Gi)
20: ACTIVATE-VERTICES(Gi)
21: do
22: parallel-for all threads do
23: EXECUTE(Gi)
24: end parallel-for
25: BARRIER( )

/* Global termination condition */
26: while there are active vertices
27: OUTPUT-VERTEX-VALUES(Gi)
28: end for
29: end function

In a given iteration, vertices are processed in parallel such that a vertex is completely
processed by the same set of threads on the same machine. This results in a simple
and intuitive parallel algorithm shown in function EXECUTE() in Algorithm 1. Since the
techniques presented in this work are general and independent of any specific graph
processing environment, we present the execution plan using high-level load/store
primitives—fetching/storing data from/to (local or remote) machines is achieved trans-
parently using the FETCH/STORE operations (lines 3, 6, and 14), which can have different
implementations on different platforms; for example, a message-passing-based sys-
tem like Pregel [Malewicz et al. 2010] may use SEND/RECEIVE to transfer values across
machines. Since only those vertices that are scheduled to be processed in a given it-
eration must be computed, GET-ACTIVE-VERTEX (line 2) returns the next vertex to be
processed in the current iteration. While processing this vertex, the neighboring val-
ues are obtained using GET-NEIGHBORS (line 5) that internally fetches the neighboring
vertex values residing on local and remote machines. Upon computation, if the change
in the value of a vertex exceeds threshold ε (line 11), the neighbors of the vertex are
activated for future processing by ACTIVATE-NEIGHBORS (line 12). It is interesting to note
that the computations performed (line 9) are typically quite simple and threads are
often seen waiting for values to be fetched (from local/remote memory/disk). In other
words, these iterative graph algorithms are typically network bound when executed on
a distributed environment.
Evolving Graph Processing. Analyzing an evolving graph involves repeating the
iterative graph analysis computation over each graph snapshot. The MAIN() function
in Algorithm 1 shows how an evolving graph is processed by invoking the same iterative
EXECUTE() (line 23) function over different graph snapshots, one at a time. Since the
results of iterative analysis are required for each of the graph snapshots, OUTPUT-
VERTEX-VALUES() (line 27) is invoked immediately after processing of a given graph
snapshot terminates.

As an example, the iterative Single Source Shortest Path (SSSP) computation for
evolving graph snaphots G1, G2, and G3 are shown in Tables I, II, and III, respectively.
Computation on G1 proceeds as follows. Initially, all the vertices are set to ∞ and the
source vertex (vertex d) is set to 0. The outgoing neighbors of d are b and c, which are
active in iteration 1. Their values are computed by fetching them and their incoming
neighbors, that is, vertices a, b, c, and d. Since both b and c change, their outgoing
neighbors (vertex e) become active in iteration 2. Processing terminates when there
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Table I. Execution of SSSP on Snapshot G1
(Figure 2(a))

Step
Vertex Distances Active

a b c d e Vertices

0 ∞ ∞ ∞ 0 ∞ -
1 ∞ 2 4 0 ∞ b,c
2 ∞ 2 4 0 3 e
3 9 2 4 0 3 a
4 9 2 4 0 3 b,c,d

Table II. Execution of SSSP on Snapshot G2
(Figure 2(b))

Step
Vertex Distances Active

a b c d e f g Vertices

0 ∞ ∞ ∞ 0 ∞ ∞ ∞ -
1 ∞ 2 4 0 ∞ ∞ ∞ b,c
2 ∞ 2 4 0 3 6 5 e,f,g
3 7 2 4 0 3 6 5 a,b,g
4 7 2 4 0 3 6 5 b,c,d

Table III. Execution of SSSP on Snapshot G3 (Figure 2(c))

Step
Vertex Distances Active

a b c d e f g h i Vertices

0 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ -
1 ∞ 2 4 0 ∞ ∞ ∞ ∞ ∞ b,c
2 ∞ 2 4 0 3 6 5 5 3 e,f,g,h,i
3 9 2 4 0 3 6 5 5 3 a,b,f,g,i
4 9 2 4 0 3 6 5 5 3 b,c,d

are no more active vertices. After processing completes for G1, snapshot G2, and later,
snapshot G3, is processed in a similar manner (Table II and Table III).

Note that evolving graph processing is inherently different from streaming graph
processing [Ediger et al. 2012]; streaming graph processing does not rely on strict
notion of graph snapshots and iterative processing continues while the graph structure
changes rapidly, hence terminating to the final solution for the most updated graph.
Evolving graph processing, on the other hand, involves processing all the intermediate
graph snapshots and producing the final converged results for each of the snapshots.

Since graphs being processed are large, significant effort is involved both in fetching
of values into memory of processing sites and carrying out the required computa-
tion. We recognize two opportunities (Section 4 and Section 5) to amortize these costs
across multiple graph snapshots of an evolving graph. Note that the opportunities
and proposed techniques are independent of any graph processing framework and any
processing environment (distributed, shared-memory, out-of-core, etc.).

3. TEMPORAL LAYOUT OF EVOLVING GRAPHS

Computations performed over a static graph are typically vertex centric and hence,
computation of a given vertex requires values of its neighboring vertices. To preserve
locality in this case, graph processing systems typically lay out the graph structure
using a variant of adjacency list format. Such a representation can be directly used to
represent evolving graphs by laying out individual graph snapshots one after the other
so that locality within each of the graph snapshots is preserved.

However, consecutive graph snapshots have high structural overlap that can be
exploited to make the representation space efficient. Moreover, this structural overlap
across snapshots can be used to expose the underlying temporal locality, which can be
further used to accelerate processing. Hence, we extend the traditional adjacency list-
based representation so that the represented graph structure is a union of all graph
snapshots. This is analogous to using a Structure-of-Arrays (SoA) layout instead of an
Array-of-Structures (AoS) layout where the graph snapshots collectively represent an
array.

Figure 3 shows how we represent evolving graphs. The overall structure holds the
union of all the captured graph snapshots, while the information about the individual
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Fig. 3. Temporal layout of evolving graphs. Fig. 4. Evolving graph G for example evolving
graph in Figure 2.

snapshots is maintained using liveness intervals tagged over edges. A liveness interval
is represented by a begin and end timestamp and each edge in the evolving graph has a
vector of such liveness intervals that allows tracking multiple additions and deletions
of same edges throughout the lifetime of the application. These vectors are sorted based
on the begin timestamps to allow quick access of required data using a forward-only
pointer. Note that vertices do not need liveness intervals because the presence of a
vertex in a snapshot can be determined by the presence of its edges.

Every graph snapshot has an associated timestamp at which it was captured, that is,
it is the time up to which all the updates have been applied to the snapshot. An edge is
considered part of the snapshot if the snapshot’s timestamp falls in between the begin
and end timestamps for some pair in the edge’s liveness vector. Every edge also has a
vector of immutable values to capture different edge weights for different lifetimes.

Figure 4 shows an example of evolving graph G = 〈G1, G2, G3〉 with three graph
snapshots that are shown in Figure 2. The individual snapshots G1, G2, and G3 taken
at t1, t2, and t3 are shown in Figure 2(a), 2(b), and 2(c), respectively.
Space Complexity. An evolving graph with k snapshots, G = 〈G1, G2, . . . , Gk〉,
consumes O(k × (|V | + |E|)) space when it is represented as a sequence of separate
snapshots. On the other hand, our unified representation consumes O(|V | + (p × |E|))
space, where p is the maximum number of times any edge in the graph is updated.
Typically, p 	 k and hence, our unified representation is space efficient.

Compactly representing evolving graphs using lifetime intervals naturally exposes
the temporal locality present across graph snapshots, which can be exploited by chang-
ing the order in which processing occurs, as discussed in subsequent sections.

4. FETCH AMORTIZATION

The high structural overlap across multiple snapshots leads to similar patterns in fetch
requests for vertices when the individual snapshots are processed. Table IV provides
the lists of Fetched Vertices for each iteration during the SSSP computation performed
on three graph snapshots in Section 2. On comparing the Fetched Vertices columns for
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Table IV. Fetched Vertices for SSSP
on G1, G2, and G3

Step
Fetched Vertices

G1 G2 G3

1 a,b,c,d a,b,c,d,f a,b,c,d,f
2 b,e b,c,e,f,g b,c,e,f,g,h,i
3 a,e a,b,d,e,f,g a,b,d,e,f,g,h,i
4 a,b,c,d a,b,c,d,f a,b,c,d,f

Table V. Average % Fetch Overlap Across Consecutive
Snapshots Over Different Datasets (Names Include

Number of Snapshots) for SSSP Algorithm

Evolving Graph Overlap

Twitter-25 66.0%
Delicious-100 58.8%

DBLP-100 42.4%
Amazon-100 44.8%
StackEx-100 53.5%
Epinions-100 51.2%
Slashdot-70 47.2%

the corresponding (same) iterations of consecutive graph snapshots, we observe that a
significant number of vertices that are fetched are common.

The high degree of fetch overlap can also be observed in real datasets. Table V
presents the degree of fetch overlap across consecutive snapshots when computing
SSSP for real-world evolving graphs (see Table VIII in Section 7.1 for a description of
graphs). As we can see, the fetch overlap is very high—over 49% of vertices are common
among consecutive snapshots. This naturally leads us to the following question:

Can we reorder computations such that overlapping fetches can be batched together?

4.1. Fetch Amortization via Computation Reordering

The temporal layout of an evolving graph that exposes the high structural overlap
across multiple snapshots can be efficiently utilized to aggregate the fetch requests of
same vertices across different snapshots. We achieve this by computation reordering
enabled using loop transformation techniques.

In the original processing model (Algorithm 1), the outer for loop (line 18) processes
graph snapshots one after the other, while the inner do-while loop (line 21) processes a
single snapshot. These two loops can be transformed such that the inner loop processes
a batch of snapshots at the same time, while the outer loop iterates through different
batches of snapshots to be processed. Now, while simultaneously processing the batch of
snapshots, the fetch requests for different versions of the same vertex can be aggregated
together by fusing multiple versions of the innermost loop which processes active
vertices (line 2) such that processing of multiple versions of the same vertex belonging to
different snapshots occur at the same time. This allows aggregating the fetch requests
performed for multiple versions of same vertices.

The preceding idea is generalized by simultaneously processing � consecutive graph
snapshots in parallel.

Fetch Amortization (FA). Fetch amortization simultaneously processes � snapshots
(Gi+1, Gi+2 . . . Gi+�) so that fetches of vertices common among some of the � snapshots
can be aggregated to amortize fetch cost across snapshots.

Algorithm 2 shows the iterative parallel algorithm that incorporates fetch amortiza-
tion. Note that this algorithm processes � snapshots in parallel denoted by G�. When a
thread invokes EXECUTE on a vertex, it performs an aggregate fetch via MULTI-FETCH (as
opposed to FETCH) to get all its � snapshots (lines 3 and 6), computes the new values for
the � snapshots (lines 8–15), and then performs an aggregate store via MULTI-STORE to
update the � snapshots (line 16). When one graph snapshot is fully processed (Gstable),
it is replaced by another snapshot (Gnext) so that the algorithm is always processing �
snapshots in parallel (lines 28–35).
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The preceding computation reordering is legal because processing of individual snap-
shots occurs independently and hence, there are no dependencies between iterations of
the outer for loop. This means, upon unrolling the outer for loop, the inner do-while
loops can be fused together by maintaining multiple versions of vertex values and cap-
turing individual snapshot’s convergence and vertex activations as described in the
following.

ALGORITHM 2: Incorporating Fetch Amortization.
1: function EXECUTE( G�)
2: for vid ∈ GET-ACTIVE-VERTEX(G�) do
3: vertices ← MULTI-FETCH(vid, G�)
4: nbrs ← ∅

5: for nid ∈
GET-NEIGHBORS(vertices, G�) do

6: nbrs ← nbrs ∪
MULTI-FETCH(nid, G�)

7: end for
8: for each vertex ∈ vertices do
9: old-value ← vertex.GET-VALUE( )

10: comp-value ← f (vertex, nbrs)
11: vertex.SET-VALUE(comp-value)
12: if |old-value − comp-value| > ε

then
13: ACTIVATE-NEIGHBORS(vertex)
14: end if
15: end for
16: MULTI-STORE(vertices,G�)
17: end for
18: end function

19: function MAIN(G,�)
20: G� ← G[0 ... � − 1]
21: INITIALIZE(G�)
22: ACTIVATE-VERTICES(G�)
23: do
24: parallel-for all threads do
25: EXECUTE(G�)
26: end parallel-for
27: BARRIER( )
28: for each Gstable ∈ G� with

no active vertex do
29: OUTPUT-VERTEX-VALUES(Gstable)
30: Gnext ← GET-NEXT-GRAPH(G)
31: INITIALIZE(Gnext)
32: ACTIVATE-VERTICES(Gnext)
33: G� ← G�\{Gstable}
34: G� ← G� ∪ {Gnext}
35: end for
36: while there are

unprocessed graphs in G
37: end function

4.2. Mutable Vertex Values

To incorporate Fetch Amortization (FA), the in-memory representation of the evolving
graph should support simultaneous processing of � graph snapshots. Hence, mutable
vertex values are vector expanded to store � values that are being computed simul-
taneously. If � snapshots are simultaneously processed in parallel, the memory con-
sumption increases to O((� × |V |) + (p × |E|)). This increase in memory consumption
limits the degree up to which multiple graph snapshots can be processed together. As
we will see in Section 7, we process 10 snapshots together for this reason.

4.3. Vertex Activations

During execution, not all � versions of the vertex may be activated to be processed since
activations are dependent on computed values that may not be the same for different
versions. Hence, vertex activations for different versions need to be explicitly tracked,
which is done using additional bits in the worklist that maintains active vertices.
While remote activation messages can be sent across machines as soon as they become
available, multiple activations of the same vertex for different versions can also be
aggregated together. Hence, we send out the remote activation messages after all the
� versions of the vertex are processed, that is, at the end of the iteration that processes
the vertex (line 15).

While a synchronous processing model requires that only active vertices in a given
iteration are processed in that iteration, an asynchronous processing model relaxes
this notion and tolerates computations on vertices even when they are not activated.
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In this case, activations can be tracked at vertex level, which eliminates the need to
maintain additional bits in the activation worklist.

4.4. Convergence Detection

To quickly determine whether or not processing has converged, individual machines
either maintain a convergence flag that is set to false whenever vertices are activated
to be processed in the next iteration, or rely on checking the activation queue. This
convergence information is exchanged between machines, typically via parallel reduc-
tion, to determine whether all machines should stop processing. Since FA processes �
snapshots in parallel, we maintain a vector of convergence flags, one for each snapshot
being processed, and set a given flag to false whenever the corresponding version of
any vertex is activated to be processed. Now, instead of exchanging the convergence
information using scalar reduction, the vector-expanded convergence flags from all the
machines are reduced together. Determining convergence separately for each of the
� snapshots allows pipelined execution of snapshots where snapshots that are fully
processed are replaced by new snapshots that are to be processed next (lines 28–35).

4.5. Caching and Message Aggregation

Distributed graph processing environments typically rely on caching to make remote
values (vertices, etc.) locally available. When caches are used to store vertex values,
the overall fetches from remote machines is reduced. However, this benefit does not
come for free—the cache management protocol itself generates additional messages
to maintain the data values coherent. A major part of the additional messages are
invalidates with piggy-backed updates (as in the case of ASPIRE & GraphLab). Hence,
once the stores of multiple snapshots of a vertex are aggregated by fetch amortization,
the corresponding cache protocol messages for those versions of the same vertex, going
to the same destination, are also aggregated. This reduces the overheads incurred by
the caching protocol itself.

While fetch amortization can be directly incorporated in ASPIRE using the iterative
execution algorithm presented in Algorithm 2, we have also integrated fetch amortiza-
tion in GraphLab, the details of which will be discussed in Section 6.

5. PROCESSING AMORTIZATION

In our SSSP example from Section 2.2, comparing the final results for vertices of
snapshots G1 (Table I) and G2 (Table II) reveals that values of vertices b, c, d, and e are
the same for both snapshots. Vertex a is the only common vertex whose result value
is not the same for the two snapshots; note vertices f and g are present only in G2.
Similarly, on comparing the results computed for G2 (Table II) with G3 (Table III) we
observe that resulting values for vertices b, c, d, e, f , and g are the same.

To further confirm the preceding observation, we measured the average percentage
of vertex values that are found to be the same across consecutive snapshots for seven
iterative algorithms (listed in Table IX) on the Slashdot graph. The results in Table VI
show that this is a high percentage—on average across consecutive snapshots, over
76% of vertices had values for a given snapshot identical to those for the previous
snapshot. Hence, we explore the following question:

Can we leverage the results (potentially partially computed) for previous graph
snapshots to accelerate processing of later snapshots?

Moreover, when we compare unstable values, that is, the intermediate results, from
step 2 in G2 (Table II) with the final results of G3 (Table III), we observe that the
values of most available vertices in G1 (all except vertex a) are exactly the same. This
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Table VI. Average % Overlap of Vertex Values Across
Consecutive Graph Snapshots of Slashdot Input

Benchmark Overlap

PageRank 87.9%
Single Source Shortest Path 99.3%
Single Source Widest Path 80.2%

Circuit Simulation 76.7%
Heat Simulation 99.8%
Graph Coloring 97.5%

Fig. 5. Effect of processing amortization.

means, unstable results from previous snapshots may also be used in order to accelerate
processing of later snapshots. This allows amortizing processing costs simultaneously
while leveraging the first opportunity, that is, processing consecutive snapshots in
batches by using unstable results from previous snapshots to process later snapshots.

5.1. Processing Amortization via Feeding

Based upon the previous observations, we propose processing amortization technique in
which the computed values (from stable and unstable vertices) for a given snapshot can
be used to accelerate processing of the next snapshot by avoiding repeated computation
of same values. In the presence of fetch amortization, when processing of a snapshot
finishes, the new snapshot that is included in the working set of snapshots being pro-
cessed can be fed from its previous snapshot (analogous to pipelined processing), which
might not have converged to its stable solution (see Figure 5). The advantage of doing
this is twofold: it removes redundant computations so that the needed (nonredundant)
processing can be performed sooner; and vertices stabilize faster because the computed
values used from previous snapshots are already close to stability.

Processing Amortization (PA). While snapshot Gi−1 is being processed, when pro-
cessing of Gi is initiated for simultaneous processing, processing amortization feeds
current vertex values from snapshot Gi−1 into Gi as initializations to accelerate the
processing of Gi.

Algorithm 3 shows the iterative processing with processing amortization. When pro-
cessing of snapshot Gstable completely finishes (i.e., there are no active vertices), and the
processing of a new snapshot Gnext is initiated, instead of initializing vertices of Gnext
to their standard initial values, they are copied from the latest snapshot Gprev, which
is still being processed (lines 14 and 15). This step involves copying the entire work-
ing set, which includes the following three components: the vertex values mapped to
the machines; activations for vertices; and, any caches holding vertex values. Vertices
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that are active for Gprev potentially have unstable values and hence, it is necessary to
activate them for Gnext.

Note that the values that are fed from Gi−1 to Gi may not have stabilized yet as
Gi−1 is in the midst of processing (see Figure 5). However, as our experiments show,
this optimization yields benefits because Gi−1 has often made enough progress toward
stability that it helps accelerate Gi ’s termination. On the other hand, in absence of
fetch amortization, the values fed by PA from Gi−1 to Gi are always stable.

ALGORITHM 3: Incorporating Process Amortization.
1: function MAIN(G,�)
2: G� ← G[0 ... � − 1]
3: INITIALIZE(G�)
4: ACTIVATE-VERTICES(G�)
5: do
6: parallel-for all threads do
7: EXECUTE(G�)
8: end parallel-for
9: BARRIER( )

10: for each Gstable ∈ G� with
no active vertex do

11: OUTPUT-VERTEX-VALUES(Gstable)

12: Gprev ← GET-LATEST-GRAPH(G�)
13: Gnext ← GET-NEXT-GRAPH(G)
14: INITIALIZE(Gnext ← Gprev)
15: ACTIVATE-VERTICES(Gnext ← Gprev)
16: G� ← G�\{Gstable}
17: G� ← G� ∪ {Gnext}
18: end for
19: while there are

unprocessed graphs in G
20: end function

5.2. Applicability and Correctness

Even though processing amortization shows the potential to accelerate evolving graph
processing, it is important to ensure that the technique guarantees correct results for
each of the graph snapshots. Note that any graph algorithm capable of executing over a
streaming graph processing framework (like STINGER [Ediger et al. 2012]) can safely
leverage PA mainly because the algorithm can handle structural changes. While this
captures a large class of graph algorithms, to better understand the set of feasible
algorithms, we identify the characteristics of graph algorithms and then reason about
correctness of each of the algorithms considered in our evaluation.

5.2.1. Mutation Properties. Feeding of values across consecutive snapshots can be viewed
as mutation in the graph structure while the overall computation progresses. Hence,
we study the impact of PA on correctness of results by reasoning about the behavior of
graph algorithms when the structure of the graph is mutated, that is, when vertices and
edges are added and deleted to progress from one snapshot to the next. Determining
properties in this manner is similar to the study performed in Burke and Ryder [1990]
related to incremental dataflow analysis algorithms.

Note that vertex addition occurs when an edge with a new end vertex is added.
Similarly, vertex deletion occurs when all its edges get deleted. Hence, we model vertex
addition/deletion via addition/deletion of its edges.

(A) Global Mutation Property: We define two properties that directly characterize
the results obtained by the iterative algorithms based on their behavior and the values
using which they start computing the results.

[P-INIT] Convergence to correct results is independent of vertex initializations.
[P-MONO] Intermediate results exhibit monotonic trend under a given ordering.

For algorithms exhibiting [P-INIT], when the graph structure mutates in the mid-
dle of computation, subsequent processing operates on vertex values coming from
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Fig. 6. Edge deletion examples.

computations performed prior to the mutation. These values can be considered as
new vertex initializations using which the processing converges to stable values. This
means, feeding values does not affect the correctness of results even when graph struc-
ture changes because the fed values are considered as vertex initializations that do
not impact correct convergence; only the path to achieve final convergence changes by
feeding different values. Hence, it is easy to see that [P-INIT] is a sufficient condition
for an algorithm to be able to use PA correctly. However, note that [P-INIT] is not a
necessary condition.

Algorithms exhibiting [P-MONO] can be reasoned about in a similar manner as
monotonic dataflow functions [Burke and Ryder 1990] where the algorithms aim to
achieve a maximum or a minimum fixed point based on a cost metric. Such algorithms
need to be carefully evaluated to determine whether processing can recover from lo-
cal maxima/minima and correctly converge to global maxima/minima when edges are
added and deleted in the middle of processing. We illustrate such a reasoning with the
Connected Components algorithm, which is based on iterative label propagation [Zhu
and Ghahramani 2002] as shown next.

v.value =
{

v.id ... when iteration = 0
min(v.value, min

e∈edges(v)
(e.other.value)) ... otherwise.

The preceding function starts with an approximation where every vertex is in a sep-
arate component and then iteratively merges components by picking the minimum
component value available across the vertex’s neighborhood. When edge addition oc-
curs, the subsequent iteration computes over the vertices of the edge which incorporate
the new neighbor’s component value. If the two vertices have different component val-
ues, [P-MONO] ensures that the vertex with the larger value will get reassigned the
smaller value from the new neighbor, the effects of which are propagated throughout
the graph. When edge deletion occurs, the deleted edge can split a component into two
separate components as shown in Figure 6(a). In this case, recomputing the compo-
nent value for vertex 2 incorrectly results in value 0 because its remaining neighbors,
that is, vertices 3 and 4, still exhibit the old component values. This means connected
components can safely leverage PA only on growing graphs, that is, those that evolve
purely using addition of new edges.

(B) Local Mutation Property: Contrary to the preceding properties, we define
[P-EDGE] at the level of vertex functions.

[P-EDGE] Computation for a vertex only depends on values coming from its edges.

Algorithms exhibiting [P-EDGE] majorly compute values based on graph structure and
hence, they rely lesser on previously computed values. This allows the computation to
self-correct values and propagate the corrections throughout the graph in an iterative
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manner. We illustrate the effectiveness of [P-EDGE] using the Single Source Shortest
Paths (SSSP) algorithm; next are two variants for expressing SSSP that correctly
compute shortest paths on a given graph snapshot.

(A) v.value =
⎧⎨
⎩

0 ... when v is source
∞ ... when iteration = 0
min(v.value, min

e∈inEdges(v)
(e.weight + e.source.value)) ... otherwise,

(B) v.value =
⎧⎨
⎩

0 ... when v is source
∞ ... when iteration = 0

min
e∈inEdges(v)

(e.weight + e.source.value) ... otherwise.

The preceding functions initially set source to 0 and start with an approximation where
all vertices are unreachable from the source, that is, the path length is ∞. Then, they
iteratively compute shorter paths for every vertex based on available shortest paths in
its neighborhood.1 The only difference between two variants is that while computing
the new path value, variant A considers its previous path value, whereas variant B does
not, that is, variant A does not exhibit [P-EDGE], whereas variant B does. When edge
addition occurs, the target of newly added edges compute new values and if the newly
added edge results in shorter paths, both the variants compute the corrected path,
effects of which are iteratively propagated throughout the graph. When edge deletion
occurs, however, the two variants behave differently, as illustrated in Figure 6(b). Upon
deletion of edge (1, 2), variant A still incorrectly retains its shortest path as 4 (note
that simply resetting its value to ∞ does not resolve the issue because of the back-edge
from vertex 3). Variant B, on the other hand, corrects its path value to 10 (0 → 5 →
2) due to [P-EDGE]. This means, variant A can safely leverage PA only on growing
graphs, whereas variant B can do so on evolving graphs that include deletion of edges
too.

It is interesting to note that [P-EDGE] is neither a necessary nor a sufficient property
to guarantee correctness of results when using PA. However, it is important to reason
about [P-EDGE] because it defines a subset of vertex algorithms for which PA may be
safely used.

5.2.2. Correctness of Algorithms. Using the properties described previously, we now
study each of our benchmark algorithms considered in our evaluation (listed in
Table IX) to discuss their correctness while incorporating PA. Table VII shows the
vertex functions for each of the algorithms (vertex initializations are eliminated for
simplicity).
(A) Shortest and Widest Paths: Our SSSP algorithm is the variant B from the
preceding discussion that exhibits [P-EDGE]. As discussed previously, it can safely
leverage PA. Single Source Widest Paths (SSWP), similar to SSSP, exhibits [P-EDGE].
However, as discussed previously, [P-EDGE] is not a sufficient condition to guarantee
correctness while using PA and hence, we will see that edge deletions can impact the
correctness of results of SSWP. When edge addition occurs, the target vertex recom-
putes its value based on the available edges and the newly added edge can increase
the fed path value (due to monotonic nature of max), which is further observed by its
neighbors to be propagated throughout the graph. Hence, correct results are guar-
anteed when PA is used with edge additions. However, when edge deletion occurs,
the target vertex can incorrectly compute its path value to be same as the fed value
from an alternate path that previously passed through itself, disallowing the vertex to

1Edge weights are positive for path problems.
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Table VII. Various Vertex-Centric Graph Algorithms

Algorithm Vertex Function

PR v.rank ← 0.15 + 0.85×∑
e∈inEdges(v)

e.source.rank

SSSP v.path ← min
e∈inEdges(v)

(e.source.path + e.weight)

GC

conf lict ← ∨
e∈edges(v)

((v.color = e.other.color) and (v.id < e.other.id))

decrease ← true if ∃c < v.color s.t. ∀e∈edges(v)(e.other.color = c)
if conf lict = true or decrease = true then:

v.color ← c : where ∀e∈edges(v)(e.other.color = c)

HS v.value ←
∑

e∈inEdges(v)
C1×e.source.value+C2

|inEdges(v)|

SSWP v.path ← max
e∈inEdges(v)

(min(e.source.path, e.weight))

CS v.value ←
∑

e∈inEdges(v)
e.weight×e.source.value

∑
e∈inEdges(v)

e.weight

step out of its previous approximation. Note that this does not occur in SSSP because
positive edge weights ensure that such incorrect cyclic feeding does not occur. Hence,
we evaluate PA on SSWP with growing evolving graphs (i.e., allowing edge additions
only).
(B) Graph Coloring: Graph Coloring (GC) is an interesting algorithm that effectively
corrects vertex color values based on the neighboring values. In particular, when edge
addition occurs, if the new neighboring vertices have the same color values, the vertex
with the lower id updates its value to a new color value based on its neighbors, the
effects of which iteratively propagate throughout the graph. When edge deletion occurs,
the neighboring vertices are reset to default color values (to guarantee minimality) and
recomputed to receive new color values based on the remaining neighborhood. Hence,
even after structural mutations are observed across snapshots, the fed incorrect color
values are treated as initializations using which correct coloring solution is computed,
that is, GC exhibits [P-INIT] allowing PA to be safely used.
(C) PageRank, Heat Simulation, Circuit Simulation: It is well known that for
algorithms like PageRank (PR), the initial vertex values do not matter [Farahat et al.
2005], that is, they exhibit [P-INIT]. This allows PR to safely leverage PA. Similarly,
both Circuit Simulation (CS) and Heat Simulation (HS) do not require vertex initial-
izations except for their source/ground vertices, which are not computed upon dur-
ing processing; hence, they also exhibit [P-INIT] and can safely incorporate PA while
processing.

Beyond the set of benchmarks considered in our evaluation, we studied many differ-
ent vertex programs in order to ensure applicability of PA. Various algorithms includ-
ing, but not limited to, K-Means, Wave Simulation, Reachability, Maximal Independent
Set, Triangle Counting, NumPaths, BFS, and Diameter can safely incorporate PA, en-
suring its wider applicability.

6. GRAPH PROCESSING SYSTEMS

The amortization techniques proposed in this work are independent of any specific
graph processing system (and its internals) that can process a given graph snap-
shot one at a time. Various graph processing systems have been developed across
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different processing environments, some of which include Pregel [Malewicz et al.
2010], GraphLab [Low et al. 2012; Gonzalez et al. 2012], ASPIRE [Vora et al. 2014],
GraphX [Gonzalez et al. 2014] and GraphChi [Kyrola et al. 2012]. To evaluate the
efficacy of our proposed techniques, we incorporate our amortization techniques in
two of those systems, namely, GraphLab and ASPIRE. We briefly discuss these two
frameworks and how we incorporate the amortization techniques to process evolving
graphs.2

6.1. ASPIRE

ASPIRE [Vora et al. 2014] uses an object-based DSM where the objects (vertices and
edges) are distributed across the cluster such that there is exactly one global copy of
each object in the DSM. The machine-level caches are kept coherent using a directory-
based protocol that provides strict consistency [Goodman 1991]. Since the vertex values
are usually small, invalidates are piggybacked with the updated data. Other standard
optimizations like Work Collocation (or locality in Dean and Ghemawat [2008]) and
Message Aggregation (similar to bulk transfer in Liang et al. [1996]) are enabled.

The graph is partitioned across machines to minimize edge cuts for reducing commu-
nication using the well-known ParMETIS [Karypis et al. 1997] partitioner. The runtime
holds a flag per vertex indicating whether a vertex is active for the next iteration. For
a particular vertex, the programmer can determine whether to activate neighbors on
outgoing, incoming, or both edges. After each iteration, a check is made to see whether
computation for a graph snapshot is complete. If not, the activation vectors are ex-
changed between the machines so that each machine aggregates the vertices it needs
to work on in the next iteration. Before starting the next iteration, a check is made to
ensure that all the invalidates have been acted upon. This guarantees that updated
values are visible and correctly used in the next iteration.

In order to incorporate FA, we take advantage of ASPIRE’s single-writer model by
having the same thread process multiple snapshots of the same vertex at the same
time. This allows remote fetches, stores, and all the cache protocol messages to be auto-
matically aggregated across multiple snapshots of same vertices. To transfer objects to
and from the DSM, the runtime provides DSM-Fetch, DSM-MultiFetch and DSM-Store,
DSM-MultiStore APIs. This hides the internal details of the runtime and allows parallel
algorithms to directly execute over the DSM.

6.2. GraphLab

GraphLab [Low et al. 2012; Gonzalez et al. 2012] is a popular distributed graph process-
ing framework that provides shared memory abstractions to program over a distributed
environment. It provides synchronous and asynchronous engines to process the graph
and allows users to express computations in a gather-apply-scatter (GAS) model. Sim-
ilarly to ASPIRE, boundary vertices are cached (named as ghost vertices) on different
machines to make them locally available and the graph is partitioned using a balanced
p-way partitioning strategy to minimize cuts and balance computation.

Since processing is done on a set of machines, FA is used to tolerate network latencies
especially for ghost vertices, which need to be continuously synchronized. This is done
by vectorizing the vertex values and updating the vertex functions to process multiple
versions of the same vertex. PA is incorporated by feeding values from the most recent
snapshot to the next snapshot; we only allow this feeding when all the executing
snapshots become stable because GraphLab prevents dynamic changes to all vertex
values and graph structure while the engine is processing.

2Details about system runtime, caching, programming, performance numbers, etc., for each of the frame-
works can be found in their respective publications.
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Table VIII. Real-World Evolving Graphs Taken from
KONECT [Kunegis 2013] Repository for Experiments

Evolving Graph V E

Twitter-25 [Cha et al. 2010] 8.4B 25.5B
Delicious-100

1.6B 15.2B
[DeliciousUI 2014]

DBLP-100 [Ley 2002] 92.7M 963.8M
Amazon-100 [Lim et al. 2010] 144M 299.8M
StackEx-100 [StackExchange] 27.6M 70.7M

Epinions-100
9.4M 47.5M

[Massa and Avesani 2005]
Slashdot-70 [Gómez et al. 2008] 2.1M 7.5M

Table IX. Benchmark Programs Used in Experiments

Benchmark Type

PageRank (PR)

Graph
Analytics
& Mining

Single Source Shortest
Path (SSSP)
Single Source Widest
Path (SSWP)
Graph Coloring (GC)
Circuit Sim. (CS)

PDE
Heat Sim. (HS)

6.3. Other Graph Processing Frameworks

Incorporating both amortization techniques in various graph processing frameworks
requires knowledge about their processing engines and how computations are ex-
pressed (vertex centric, edge centric, etc.). This is because different frameworks are
developed in order to exploit different processing environments and hence, they op-
erate in different manners. However, we identify two simple techniques that can be
easily used to incorporate both transformations in a new processing framework.

For FA, the values associated with graph structure (vertices and edges) can be vec-
torized to hold multiple versions in order to allow simultaneous processing of multiple
snapshots. Also, the user defined processing function for a given algorithm can be vec-
torized so that it operates over a vector of vertex/edge values instead of traditional
scalar values. For PA, the simplest technique is to orchestrate pipelined batch process-
ing of graph snapshots by invoking the processing engine multiple times, each time
using values from previous results. However, in order to fully leverage PA, the pro-
cessing engine itself needs to be modified so that it becomes aware of this pipelined
processing technique and feeding of values occurs internally as soon as processing of
any graph snapshot ends.

7. EXPERIMENTAL EVALUATION

7.1. Experimental Setup

Real-World Datasets. Our experiments use real-world evolving graphs taken from the
KONECT [Kunegis 2013] repository. Table VIII lists the input datasets and their sizes
that range from 25.5 billion to 7.5 million edges. Similar to as in Han et al. [2014], we
develop snapshots by first dividing the entire evolution into half; the first snapshot is
this midpoint and then subsequent snapshots are created by batching the remaining
edge additions and deletions. The number of snapshots is included in each input’s name
in Table VIII. We also create a synthetic graph called StackEx+D to simulate edge
deletions using StackEx. In this case, the edges to be deleted are randomly selected
from a given graph snapshot and the next snapshot is constructed using an equal
number of edge deletions and additions.
Benchmarks. To evaluate our techniques, we use a wide range of modern applications
(as listed in Table IX) that belong to important domains such as scientific simulation
and social network analysis. These applications are based on the vertex-centric model
where each vertex iteratively computes a value (e.g., colors for GC, ranks for PR [Page
et al. 1999], and shortest paths for SSSP) and the algorithm terminates when values
become stable, that is, all the algorithms were run fully until completion.
System. The experiments were run on a 16-node cluster running CentOS 6.3, Kernel
v2.6.32 with each node having two 8-core Xeon E5-2680 processors (16 cores) operating
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Fig. 7. Speedups achieved by FA, PA, and FA+PA in GraphLab. The execution times (in seconds) for
PR/SSSP on the original version of GraphLab (Baseline) are 4,117/2,900 for Twitter-25 and 7,148/1,490 for
Delicious-100.

at 2.7GHz and 8X4GB (32 GB) DDR3-1600MHz memory. The nodes are connected via
56Gbit/s FDR InfiniBand interconnect.

The first set of performance results (i.e., entire Figure 7) are averaged (arithmetic
mean) across 10 runs and since the observed deviation was typically less than 2%, the
remaining results are averaged across three runs.

7.2. Performance of FA and PA in GraphLab/ASPIRE

We evaluate the benefits of the proposed techniques in distributed systems,
ASPIRE and GraphLab,3 by comparing the performance of the following versions of the
benchmarks:

—GraphLab/ASPIRE is the original version that does not employ amortization tech-
niques.

—FA is the version in GraphLab/ASPIRE that employs fetch amortization.
—PA is the version in GraphLab/ASPIRE that employs processing amortization.
—FA+PA is the version in GraphLab/ASPIRE that employs both techniques.

We carried out this performance comparison using all six benchmarks in ASPIRE
and three benchmarks in GraphLab—PR, SSSP, and SSWP. For FA and FA+PA, we
choose the number of snapshots to be simultaneously processed (�) to be 10 (more
experiments with varying � are further presented in Section 7.4.). Since ParMETIS
requires a high amount of memory to partition very large graphs, we ran ASPIRE with
first 40/20 snapshots for DBLP/Delicious graphs and do not evaluate using the Twitter-
25 graph. GraphLab’s synchronous engine outperforms its asynchronous engine in all
cases and hence, we report the times obtained from its synchronous engine.

Figure 7 and Figure 8 show the speedups achieved by FA, PA, and FA+PA when
incorporated in GraphLab and ASPIRE, respectively. On average, FA in GraphLab
achieves 5.2× speedup over original GraphLab and the further addition of PA yields
an additional 2× speedup over FA in GraphLab. Similarly, on average, adding FA to
ASPIRE yields a speedup of 4.06× over the original version of ASPIRE and the further
addition of PA results in an additional 7.86× speedup over FA alone.

Figures 8(d)–8(f) show the reduction in remote fetches and vertex computations
performed when amortizations are enabled. Overall, the speedups achieved by the
amortization techniques vary across the benchmark-input combinations. However, it
is interesting to note that the improvement from FA is usually higher for SSSP and
SSWP than for PR even though the remote fetches saved by FA are more for PR than
both SSSP and SSWP. On average, FA in ASPIRE gives 4.3/4.4× speedups over the

3We used the latest available version of GraphLab (v2.2).
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Fig. 8. Speedups achieved by FA, PA, and FA+PA in ASPIRE ((a)–(c)); reduction in Remote fetches for FA,
Vertex Computations for PA, and Reduction in Remote fetches for FA+PA over FA ((d)–(f)). The execution
times (in seconds) for PR/SSSP on the original version of ASPIRE (Baseline) are 16,245/7,244 for Delicious-20
and 9,282/2,340 for DBLP-40.

original versions for SSSP/SSWP, whereas for PR the corresponding speedup is 3×.
This is because PR is more compute intensive compared to SSSP and SSWP; hence,
even though reductions in remote fetches are higher for PR, vertices take more time
to stabilize to their final values for PR compared to SSSP and SSWP, leading to more
work to be done in each intermediate iteration. Similarly, speedups for HS are lower
with PA compared to those with FA. This is because HS is more sensitive to structural
changes in the graph and hence, the fed values are less useful, causing a fair amount
of work to be performed (as can be seen in Figure 8(e)) to reach stability.

It is interesting to observe that in GraphLab, FA+PA performs better than PA,
whereas the trend is reversed in ASPIRE on large graphs. This is due to the funda-
mental difference in how the remote vertex values are locally maintained in these two
systems. In FA+PA, when a new snapshot gets included to be processed with the other
snapshots, vertex values for the new snapshot get fed from the previous snapshot.
In ASPIRE, this change in value is reflected on remote machines in the subsequent
iteration (immediately after the inclusion of the new snapshot) when the values are
accessed, which causes the computation to wait for the changed values to become
available. For PA, on the other hand, the fed values are the same and hence, remote
machines already have correct values in their software caches when processing of the
new snapshot begins. The preceding behavior does not occur in GraphLab because re-
mote vertex values are kept consistent with local copies as soon as new edges get added
since they represent computation dependencies.

We achieve consistent speedups across all inputs, including both with and without
edge deletions. On StackEx+D-100 (which includes edge deletions), on average, FA in
GraphLab and ASPIRE gives 3.6× and 3.2× speedups, respectively, over their original
versions and the further addition of PA achieves additional speedups of 1.8× and 7.9×,
respectively. No data is provided for PA and FA+PA for SSWP on StackEx+D-100
because PA is not applicable on SSWP in the presence of edge removals.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 32, Publication date: October 2016.



Synergistic Analysis of Evolving Graphs 32:19

While Figure 7 reports the overall speedups, we also separated the processing times
from the evolving graph management times. When only the processing times are con-
sidered, on average, FA speeds up processing by 5.3× in GraphLab, while PA achieves
additional speedups of 2.6×.

Note that simultaneously processing too few graph snapshots fails to fully realize
the benefits of FA while processing excessive numbers of graph snapshots can also
lead to suboptimal performance. Simultaneously processing too many graph snapshots
causes many vertices to be active even though only some of the snapshots of those
vertices are active. This delays processing for a given snapshot because different snap-
shots of other vertices need to be processed. Therefore, the number of graph snapshots
that are simultaneously processed is a parameter that must be tuned for a given dis-
tributed environment. As discussed in Section 4.1, the degree up to which multiple
graph snapshots can be processed together is bound by available memory. Based upon
our experiments by varying the number of snapshots that are simultaneously pro-
cessed, we found that simultaneously processing 10 snapshots gives good performance
overall. Therefore, the experimental data reported previously used these settings when
running FA and FA+PA.

From the results, we observe that amortization optimizations are very effective as they
significantly improve the performance of both GraphLab and ASPIRE. The results for
FA clearly show the need to tolerate communication latencies by amortizing fetches
in both GraphLab and ASPIRE; the results for PA clearly show that the amount of
computation is significantly reduced by feeding values across snapshots.

7.3. Sensitivity to Cache Size

Both caching and amortization optimizations reduce remote fetches. Hence, it is im-
portant to study their interplay and how the benefits achieved from the amortization
techniques are affected when caching is available in the system. In order to study
how the benefits of amortizations vary with caching, we experiment using ASPIRE
and vary the machine-level software cache sizes to be 100%, 10%, 5%, and 1% of the
number of vertices as well as when no cache is used. The ASPIRE runtime incorpo-
rates machine-level caches in order to make the remote vertices locally available for
processing. The cache coherence protocol provides strict consistency [Goodman 1991]
and cache invalidates are piggybacked with updated vertex values.

Since in the previous section we observed that the benefits achieved from FA and
PA are similar across all inputs, we now select one of the inputs (Slashdot) to further
perform this sensitivity study in detail. Finally, we ran all six applications in Table IX
for each configuration.

From Figure 9(a), we first observe that, although both caching and FA can reduce
remote fetches, they complement each other quite well. Consider the case where the
cache size is 100%. When FA uses 10 snapshots plus caching, it provides speedups
ranging from 2.35× to 5.92× over the ASPIRE Baseline4 with caching enabled. For the
10%, 5%, and 1% cache size, the corresponding speedups range from 2.79× to 5.32×,
4.32× to 6.39×, and 5.5× to 7.7×. In other words, FA provides substantial speedups
beyond caching by reducing remote fetches. The main reason for these speedups is
the significant number of remote fetches saved by FA (shown in Figure 9(d)); as cache
size decreases from 100% to 0%, the average savings increase from 54% to 82%. It is
interesting to note that the speedups with FA are higher with 1% compared to other
cases which is due to the inefficiency of the small cache which provides a higher miss
rate; on average, cache with size 1% provides an 84.56% miss rate compared to the
34.78% to 10.12% miss rate provided by caches with size 5% to 100%. Hence, the

4Baseline refers to the ASPIRE version without FA and PA.
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Fig. 9. Effect of varying cache size on FA, PA, and FA+PA ((a)–(c)); Remote fetches saved by FA, PA, and
FA+PA ((d)–(f)).

overheads of maintaining a smaller cache of 1% size effectively enables a larger scope
for savings that are captured by FA.

Alternatively, we also find that the 10% cache size is enough to capture most of
the benefits of caching—further increasing the cache size from 10% to 100% would
reduce the average miss rates only from 14.82% to 10.12% for the Baseline algorithm.
The corresponding average speedups of FA plus caching over Baseline plus caching
increase from 3.7× to 3.8× as the cache size decreases from 100% to 10%; moreover,
this 10× increase in cache size does not yield many additional benefits. Note that the
5% cache size, on the other hand, is not enough to capture benefits comparable to that
with the 10% cache size. The average hit rate for the Baseline algorithm with the 5%
cache size is 34.78%, and hence, the average speedups of FA plus caching over Baseline
plus caching increase to 5.12×.

Figure 9(b) shows the speedups achieved by PA with varying cache sizes. The
speedups increase with increase in cache sizes; this is mainly because of the elimination
of redundant computations by PA which makes the computation more communication
bound, allowing larger caches to provide more speedups by saving more remote fetches
(shown in Figure 9(e)). Again, the overheads of a smaller cache with size 1% along with
a higher miss rate reduces the speedups achieved compared to other cases.

Finally, as seen in Figure 9(c) FA+PA provides the highest speedups with different
cache sizes mainly because of the very high amount of remote fetches saved (as shown
in Figure 9(f)) by both the amortization strategies.

7.4. Sensitivity to Number of Snapshots (�)

We also varied the number of snapshots processed simultaneously, that is, � from
one to 20. As discussed in Section 4.1, the degree up to which multiple graph snap-
shots can be processed together is bound by available memory. Hence, we do not go
beyond simultaneously processing 20 snapshots. We again select Slashdot and use all
six benchmarks to perform this sensitivity study. In the first set of experiments, we
disabled the machine-level caches to decouple the effects of caching from our amortiza-
tion techniques. Later, we enabled the machine-level caches and vary both the number
of snapshots and the cache sizes, to study the interplay between them.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 32, Publication date: October 2016.



Synergistic Analysis of Evolving Graphs 32:21

Fig. 10. Effect of varying � on FA (a) and FA+PA (b); Reduction in Remote Fetches for FA (c); and Increase
in Vertex Computation for FA+PA (d).

The effects of varying � on the overall performance are shown in Figure 10. Clearly,
our approach scales well with the number of snapshots. Figure 10(a) shows that as
� increases, the benefits of FA show up. The reduction in remote fetches achieved by
FA in those cases is shown in Figure 10(c); as we can see, the speedups are mainly
achieved due to this reduction.

It is interesting to note that bulk of the reduction in remote fetches is achievable
when � = 8. Hence, we observe nearly linear speedup for FA up until � = 8. Beyond
� = 8, some benchmarks exhibit a sawtooth trend where the benefits of increasing �
by small steps are not clearly visible. The reason for this is the decline in reduction
of remote fetches for corresponding intermediate � steps beyond � = 8, which can be
seen in Figure 10(c).

Figure 10(b) shows the benefits achieved by FA+PA with an increase in �. As we
already know, PA eliminates redundant computations and FA with increased � reduces
the overall remote fetches performed. It is interesting to note from Figure 10(d) that
as � increases, the amount of processing required increases compared to PA with
� = 1. This is mainly because for � > 1, unstable values are fed across snapshots, and
these unstable values are further away from the final values for new snapshots, hence
requiring more work to stabilize these newly fed snapshots. However, this increase in
processing is overshadowed by savings in remote fetches, hence resulting in an overall
increase in speedups with an increase in �.

Note that the speedups for GC nearly flatten out for higher � values because of
the high impact of structural changes across snapshots that are far apart in evolution
resulting in more color changes across the graph.

Finally, Figure 11(a) and Figure 11(b) show the execution times for PR for varying
� with different cache sizes on FA and FA+PA, respectively, normalized with respect
to � = 1 without PA. As we can see, the performance benefits are achieved in all
cases with different � and cache size combinations. As expected, increasing � reduces
the overall execution time; again, the majority of performance benefits are achieved
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Fig. 11. Effect of varying � for different cache sizes on FA (a) and FA+PA (b).

Fig. 12. Effect of varying the overlap across consecutive snapshots on PA and FA+PA.

when � is increased up to a certain point, after which, lesser additional benefits are
seen—in particular, while the performance continues to improve beyond � = 8–10,
the improvement is not significant. This means, the difference in execution times for
higher values of � is much less and hence, we can achieve a majority of the performance
benefits from our techniques without determining the ideal � value for each of the cache
sizes.

7.5. Sensitivity to Similarity in Snapshots

While PA is useful to eliminate redundant computations by feeding values across
snapshots, we study its effectiveness when consecutive graph snapshots are made
structurally dissimilar. In this experiment, we vary the percentage of overlapping
edges, that is, edges that are the same, across consecutive snapshots from 90% (high
overlap) to 50% (low overlap) and measure the speedups achieved by PA with and
without FA (� = 10). We again select Slashdot and use all six benchmarks to perform
this sensitivity study. Since we are interested in the effectiveness of the amortization
strategy itself, we enabled machine-level caches to hold the required remote vertices
on each machine.

The effects of varying the percentage of overlapping edges are shown in Figure 12.
As we can see, PA accelerates the overall processing in all cases; even if consecutive
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Table X. Amortization Techniques vs. Chronos

Aspect Chronos Amortization Techniques

Temporal Layout
Enhance locality for Expose structural similarity to
cache performance aggregate remote fetches

Snapshots Static Dynamic
Batch Processing Fixed batching Variable batching using pipelining
Feeding Unstable Values Absent Present
Message Aggregation Absent Present

snapshots are structurally dissimilar by up to 50%, feeding of values provides a bet-
ter initialization by eliminating redundant computations and hence, convergence is
achieved faster. As expected, the speedups increase with an increase in structural
overlap mainly because the fed values are closeer to the final results and hence, re-
quire less computation. The speedups do not increase as clearly for PR and GC as
compared to those of SSSP, SSWP, CS, and HS when the overlap increases from 50% to
90%. This is because the number of remote fetches performed by PR and GC without
the amortization techniques is high enough to minimize the difference between relative
reduction achieved using the amortization techniques as similarity varies.

7.6. Comparison with Chronos

Table X highlights the major differences between our amortization techniques and
Chronos’s [Han et al. 2014] processing techniques. While Chronos incorporates batch
scheduling and incremental processing, it is designed to improve the L1 data cache
and last level cache performance in a shared memory environment. As shown in Han
et al. [2014], the benefits are lower in a distributed setting (an average speedup of
4.06×) mainly because it is constrained by the network overheads. Our amortization
techniques, on the other hand, collectively reduce the network overheads and provide
average speedups of 28.9× and 10.3× in ASPIRE and GraphLab.

Since Chronos itself is a temporal graph processing system, we directly compare the
performance of PA with the Incremental Processing (IP) technique. In the presence
of FA, IP is performed by feeding stable values from the most recent snapshot in
the previous batch to all the snapshots in the next batch. This requires Chronos to
wait for all the snapshots in the previous batch to finish before the next batch can
begin execution. PA, on the other hand, enables faster processing by feeding unstable
(partially computed) values that are available from the most recent snapshot. This
allows the batch of snapshots being processed to be dynamically adjusted as snapshots
finish processing, eliminating the need to stall processing of future snapshots.

We incorporated IP in ASPIRE by processing snapshots batch after batch so that only
final results from the most recent snapshots in the previous batch are fed to all the
snapshots in the next batch. Figure 13 shows the execution times for PR using FA+PA
normalized with respect to that using FA+IP across multiple evolving graphs created
from StackEx input by varying the number of edge updates required to determine new
snapshots. On average, FA+PA performs 16.5% faster than FA+IP mainly because PA
does not stall processing of snapshots, which allows those snapshots to be computed in
parallel as other snapshots are being processed.

8. RELATED WORK

The related works on evolving graphs consider two major scenarios: offline mining of
evolving graphs representing historical data; and online processing of evolving graphs
for continuous query processing.
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Fig. 13. Execution times for PR using FA+PA normalized with respect to FA+IP.

Mining of evolving graphs. This work, similar to our work, considers the scenario
where an evolving graph is represented as a sequence of snapshots that are then
analyzed. Chronos [Han et al. 2014] is a storage and execution engine to process tem-
poral graphs. It employs a graph representation that places vertex data from different
snapshots together. It exploits the cache locality created by the graph representation
by interleaved (parallel) processing of snapshots in a single- and multithreaded en-
vironment leading to improved L1 data cache and last level cache performance. Both
Chronos and FA exploit synergy between different graph snapshots by collocating ver-
tex values, in memory versus in messages, respectively. In the presence of FA, Chronos
performs incremental processing by feeding stable values from the most recent snap-
shot in the previous batch to all the snapshots in the next batch. This requires Chronos
to wait for all the snapshots in the previous batch to finish before the next batch can
begin execution. In comparison, our PA allows faster processing by feeding potentially
unstable (partially computed) values that are available from the most recent snapshot.
In addition, in our work we also consider the interplay between FA, PA, and caching in
distributed and shared-memory environments. GraphInc [Cai et al. 2012] is a system
that allows incremental processing of graphs by employing memorization of incoming
messages to remove redundant vertex computations for same sets of messages.

GraphScope [Sun et al. 2007] focuses on the encoding of time-evolving graphs to ef-
ficiently perform community discovery and change detection. Kan et al. [2009] present
indexing techniques for detecting simple spatiotemporal patterns in evolving graphs—
unlike our work, these queries are simple and do not involve iterative algorithms.
TEG [Fard et al. 2012] focuses on partitioning time-evolving graphs across nodes of a
cluster for distributed processing and implements reachability and subgraph queries.
In Khurana and Deshpande [2013], a distributed graph database system is devel-
oped to manage historical data for evolving graphs, supporting temporal queries and
analysis. Many algorithmic approaches are being developed for improving effi-
ciency. Ren et al. [2011] propose the Find-Verify-Fix approach where from a sequence of
snapshots a representative snapshot is constructed. To process a query, first represen-
tative snapshot is used and if there is success, the real snapshots are queried to verify
and fix the response. Like our work, the Find-Verify-Fix approach also recognizes the
synergy between analysis performed on different snapshots. However, this approach is
effective when only the structural properties of graphs are being considered. Desikan
et al. [2005] propose an incremental PageRank algorithm for evolving graphs that
partitions graph into a part whose PageRank values will remain unchanged and the
remaining subgraph. This algorithm exploits the underlying principle of a first-order
Markov model on which PageRank is based. In contrast, our Fetch Amortization is
applicable and effective across a variety of mining tasks.
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Online query processing for streaming graphs. Continuous real-time query pro-
cessing over streaming data poses unique challenges, different from those faced while
processing evolving graphs. Yuan et al. [2013] perform evolution aware clustering to
partition a streaming graph that favors recent edges over older edges during split-
ting and merging of clusters. Suzumura et al. [2014] propose the GIM-V incremental
graph processing model based upon matrix-vector operations. STINGER [Ediger et al.
2012] proposes an efficient representation for evolving graphs to enable fast real-
time query processing on shared memory systems. Kineograph [Cheng et al. 2012]
is a distributed in-memory graph storage system that supports incremental iterative
propagation-based graph mining to operate on streaming graph. Finally, for real-time
query processing, approaches providing approximate results are explored (e.g., tech-
niques in Bahmani et al. [2012] provide approximate PageRank values for an evolving
graph).
Other graph processing frameworks. Various other graph processing systems
have been developed including Google’s Pregel [Malewicz et al. 2010], GraphLab [Low
et al. 2012], PowerGraph [Gonzalez et al. 2012], GraphX [Gonzalez et al. 2014], AS-
PIRE [Vora et al. 2014], Cyclops [Chen et al. 2014], GraphChi [Kyrola et al. 2012],
X-Stream [Roy et al. 2013], Ligra [Shun and Blelloch 2013], Galois [Nguyen et al.
2013], and optimizations like Kusum et al. [2016] and Vora et al. [2016]. Beyond these,
work has been done in the area of graph databases like Neo4J [2012], OrientDB [2012],
FlockDB [Pointer et al. 2010], and InfoGrid [2016]. Moreover, similar techniques have
been explored in other domains like in Liu et al. [2012] where an auxiliary system of
equations is first solved to provide good initial guesses.

9. CONCLUSION

We accelerated evolving graph processing using two optimizations: Fetch Amortiza-
tion reduces remote fetches while Processing Amortization accelerates termination of
iterative algorithms. Our experiments with multiple real evolving graphs and graph al-
gorithms on a 16-node cluster demonstrate that, on average fetch amortization speeds
up the execution of GraphLab and ASPIRE by 5.2× and 4.1×, respectively. Amortizing
the processing cost yields additional average speedups of 2× and 7.9×, respectively.
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