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Abstract
While graph mining systems employ efficient task-parallel
strategies to quickly explore subgraphs of interest (or
matches), they remain oblivious to containment constraints
like maximality and minimality, resulting in expensive con-
straint checking on every explored match as well as redun-
dant explorations that limit their scalability.
In this paper, we develop Contigra for efficient graph

mining with containment constraints. We first model the
impact of constraints in terms of dependencies across explo-
ration tasks, and then exploit the dependencies to develop:
(a) task fusion that merges correlated tasks to increase cache
reuse; (b) task promotion that allows explorations to continue
from available subgraphs and skip re-exploring subgraphs
from scratch; (c) task cancelations that avoid unnecessary
constraint checking and prioritizes faster constraint valida-
tions; and (d) task skipping that safely skips certain explo-
ration and validation tasks. Experimental results show that
Contigra scale to graph mining workloads with contain-
ment constraints, which could not be handled by existing
state-of-the-art systems.

CCS Concepts: • Information systems→ Data mining;
Computing platforms; •Computingmethodologies→
Concurrent computing methodologies.

Keywords: subgraph exploration, graphmining, maximality,
quasi-cliques, nested queries, keyword search, motifs

1 Introduction
Graph mining systems like Peregrine [25], Automine [35],
GraphPi [39], and others [4–6, 17, 40, 42] explore subgraphs
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of interest in large graphs by checking subgraph isomor-
phisms which is computationally expensive (NP-complete).
These systems decompose the subgraph exploration into
static, independent exploration tasks that traverse through
the graph in parallel, finding one subgraph match (or em-
bedding) per task at a time. While they support applications
like Motif Counting and Frequent Subgraph Mining, com-
plex applications like Maximal Quasi-Cliques and Keyword
Search are difficult to run on these systems as they stipulate
additional constraints like maximality or minimality.
Mining with Containment Constraints. We call such
constraints Containment Constraints since they are in the
form of a subgraph being present or absent inside an-
other subgraph. Containment constraints occur in vari-
ous common graph mining applications. For example, min-
ing Maximal Cliques or Quasi-Cliques [33] requires ex-
ploring cliques/quasi-cliques that are not contained inside
larger cliques/quasi-cliques. Similarly, queries with Anti-
Vertices [26] specify neighborhood constraints, producing
subgraphs which are not contained inside a larger subgraph
that includes the anti-vertices. This can further be gener-
alized into what we call ‘Nested Subgraph Queries’ which
are important primitives in modern graph query languages
(e.g., nestedMATCH clause in Cypher/GQL [13, 16]). Finally,
Keyword Search [15] is an application with the minimality
constraint that aims to find minimal subgraphs with certain
specific keywords, i.e., subgraphs that do not contain smaller
connected subgraphs with all those keywords.

This paper develops solutions to efficiently support graph
mining applications with containment constraints on mod-
ern pattern-based graph mining systems. We motivate the
scalability challenges in containment constrained applica-
tions using the maximal quasi-clique example next.
Scalability Challenges. Consider the problem of finding
Maximal Quasi-Cliques which is used in several applications
like drug discovery [3, 22], social network analysis [21, 32],
and cybersecurity [41, 45]. A quasi-clique is a dense graph
structure; it is similar to a clique but it can miss a few edges.
Figure 1 shows an example graph and all the quasi-cliques it
contains. Notice that while a-c-d-e is a valid quasi-clique,
it is not maximal since it is contained inside a-b-c-d-e-i.
Hence, the Maximal Quasi-Clique problem must consider
a-b-c-d-e-i in its result set and leave a-c-d-e out of it.

https://doi.org/10.1145/3627703.3629589
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Figure 1. Example data graph and its quasi-cliques with
γ = 0.8. There are five quasi-cliques of size 4, but the ones
shown on the left are not maximal due to the size 6 quasi-
clique a-b-c-d-e-i (shown on the right).

Constraint Checking. Finding maximal quasi-cliques on
pattern-based graph mining systems is challenging because
the maximality constraint is not specified on the structure
of the subgraph alone, i.e., it cannot be directly reduced into
finding matches for certain specific quasi-clique patterns.
This is visible in our example in Figure 1 where a-c-d-e and
f-g-c-b have the same structure, but only the latter one is
maximal. Since exploration tasks in graph mining systems
follow static loop schedules (or matching orders), the task
exploring a-c-d-e can remain independent from the task
exploring a-b-c-d-e-i, making it difficult to enforce maxi-
mality constraint by checking these two matches. The only
way to ensure maximality is to examine every individual
match after it has been explored and ensure it is not con-
tained in a larger matching subgraph. This would require
O
(
C(n,k)

)
matches to be checked (subgraphs of size k in a

graph with n vertices), which is inefficient and does not scale
on large graphs (i.e., as n grows).
Per-Match Cost. Checking whether a match satisfies maxi-
mality is itself not a simple task. Each quasi-clique match
can potentially be a part of multiple larger quasi-cliques. For
instance in Figure 1 the match c-d-e is inside a-c-d-ewhile
it is also inside quasi-cliques b-c-d-e and a-c-d-e-i. This
means, given a match for c-d-e, checking whether it is max-
imal would require verifying whether c-d-e is contained
in any of those quasi-cliques which are being explored by
other concurrent tasks. This issue complicates further since
maximality checks can span across multiple sizes (e.g., a size
k quasi-clique might not be inside any size k + 1 quasi-clique
while still being part of size k + 2 quasi-clique). Hence, every
match must go through multiple checks against matches
from other tasks, making the process of satisfying maximal-
ity computationally intensive for each match.
Effect on Performance. We verified the scalability bottleneck
in exploring Maximal Quasi-Cliques by measuring the time
taken to find maximal quasi-cliques in different graphs and
comparing it with time taken to only find quasi-cliques (i.e.,
without maximality constraint). Figure 2 shows the per-
formance for state-of-the-art graph mining systems Pere-
grine [25] and GraphPi [39]. As we can see, the maximality
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Figure 2. Performance of mining quasi-cliques with and
without the maximality checks. Red bars indicate executions
with maximality checks that did not complete in 12 hours.

checks often add over an order of magnitude performance
penalty compared to executions without those checks. More
importantly, the performance difference between exploring
just the quasi-cliques compared to exploring maximal quasi-
cliques grows as graphs grow large, primarily because the
number of matches to be examined increases rapidly; for
instance, 453.1 million maximality checks are performed
on Patents graph whereas 2.3 billion checks are performed
on the larger Youtube graph. Such increase in the number
of matches to be checked significantly limits scalability; as
seen, both GraphPi and Peregrine fail to complete maximal
quasi-cliques on the large Products graph while they finish
exploring quasi-cliques without the maximality constraint.
Custom maximal quasi-clique solvers like TThinker [31]

and others [18, 33, 38] reduce the number of matches to be
checked by pruning the sparse regions of the graph (i.e., re-
duce n in O

(
C(n,k)

)
checks). However, similar to previous

pattern-based systems, the issue remains: matches are ex-
amined for maximality individually after they are explored
by comparing them with other matches. We measured how
TThinker scales in Figure 2; as we can see, it can find max-
imal quasi-cliques for the one small graph, but it does not
finish execution for the remaining five graphs.

The above scalability limitations are present for all graph
mining applications with containment constraints. For ex-
ample, Minimal Keyword Search performs multiple minimal-
ity checks for each match against other subgraph matches
that are explored by other tasks. Similarly, Nested Subgraph
Queries require checking the specified constraints about ab-
sence or presence of subgraphs within/around the matches
that are explored. Existing graph mining solutions cannot
efficiently handle containment constrained graph mining
because they examine the explored matches against the re-
quired constraints after those matches have been explored.
Our Solution. Our goal is to enrich the pattern matching
strategies in state-of-the-art graph mining systems to enable
graph mining applications with containment constraints.
We develop Contigra, a novel execution model for contain-
ment constrained graph mining that actively leverages the
containment constraints to enforce dependencies across con-
current exploration tasks. By doing so, constraint checking
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is performed naturally during exploration, hence avoiding
expensive checking after matches are explored while also
limiting the number of constraint checks and unnecessary
subgraph explorations. We make the following contributions.

• We model the effect of containment constraints in terms
of dynamic dependencies across concurrent exploration
tasks (Section 4). We identify three key dependency types
based on the different semantics of constraints. These
dependencies lay the foundation for task management
strategies in Contigra to efficiently explore matches that
satisfy all the required containment constraints.
• We develop novel strategies in Contigra to actively vali-
date dependencies during execution. Contigra employs
a new kind of task called validation tasks that focus on
validating constraints by exploring matches containing
specific subgraphs (Section 5). While validation tasks are
spawned dynamically from exploration tasks, we enable
task fusion in Contigra to minimize the dynamic over-
heads of task creation and synchronization as well as lever-
age the explored subgraph and associated caches for faster
validation. Furthermore, Contigra uses task promotion,
a technique that allows validation tasks to subsequently
continue as exploration tasks, hence skipping other ex-
ploration tasks that would otherwise re-explore the same
subgraphs from scratch.
• We enable Contigra to automatically infer and impose
dependencies across validation tasks to capture the dy-
namic progress of validation during execution, and to can-
cel validation tasks based on the dynamic progress so that
unnecessary constraint checking is avoided (Section 6). As
different validation tasks involve different amounts of com-
putation, Contigra automatically generates a scheduling
order for validation tasks to prioritize quicker validations
and higher cancelation of validation tasks.
• We further develop strategies in Contigra to skip cer-
tain exploration tasks as well as speed up other explo-
ration tasks by analyzing the constraints across potential
matches they would explore. Our analysis buckets explo-
ration tasks into different categories based on different
possibilities of constraint violations, using which Conti-
gra either safely skips exploration tasks, skips validation of
constraints, or performs eager filtering to actively check
constraints (Section 7).
• We demonstrate the effectiveness of techniques by incor-
porating Contigra in Peregrine, a state-of-the-art graph
mining system, and evaluating its performance across mul-
tiple containment constrained graph mining applications
using a variety of graph datasets. Our evaluation demon-
strates that our techniques deliver high performance for
mining with containment constraints compared to exist-
ing state-of-the-art, and it further scales to larger graphs
that existing graph mining systems as well as a custom
solution failed to process (Section 8).

2 Background
2.1 Graph Terminology
A graph is a tuple G = ⟨V , E, L⟩, consisting of a vertex set
V , an edge set E ⊂ V × V , and a vertex labeling function
L : V → L where L is an arbitrary set of possible labels.
A subgraph of G is a tuple ⟨V ′, E ′, L⟩ where V ′ ⊆ V and
E ′ ⊆ E ∩ (V ′ ×V ′). If S is a subgraph ofG , we sayG contains
S . We consider undirected graphs for ease of exposition, but
our techniques also apply to directed graphs. A pattern P is
an arbitrary graph. Given a data graph G and a pattern P , if
a subgraph S of G can be mapped one-to-one to P such that
every edge in P is also present in S , and S and P have the
same labels, then we say S matches P and the subgraph S is
amatch for P . We refer to vertices in the input data graph as
data vertices and those in pattern graphs as pattern vertices.

2.2 Mining with Containment Constraints
Containment Constraints specify which matches are per-
missible based on other matches. A containment constraint
is represented as a pair of patterns ⟨PM , P+⟩ that constrains
matches for PM . The constraint is specified over two cases
depending on whether PM is larger or smaller than P+:
(a) If P+ contains PM , then constraint ⟨PM , P+⟩ specifies that
a matchm1 for PM is permitted iff there is no matchm2 for
P+ such thatm1 is a subgraph ofm2.
(b) If P+ is contained within PM , then constraint ⟨PM , P+⟩
specifies that a matchm1 for PM is permitted iff there is no
matchm2 for P+ such thatm2 is a subgraph ofm1.
Given a data graph G, a pattern PM and containment con-
straint ⟨PM , P+⟩, a subgraph s of G that matches PM is con-
sidered valid iff it also satisfies the containment constraint
⟨PM , P+⟩.
Several graph mining applications have containment con-

straints, usually in the form of maximality or minimality of
matches. We discuss the representative applications below
that cover the different types of containment constraints.

TheMaximal Quasi-Cliques (MQC) application [31]mines
γ -quasi-cliques, i.e., dense subgraphs of size k where each
vertex has degree at least γ (k−1). The maximality constraint
mandates that the γ -quasi-cliques are not contained in any
other γ -quasi-clique. There can be multiple quasi-cliques of
a given size; hence, MQC has a collection of containment
constraints ⟨PM1 , P

+
1 ⟩, ⟨P

M
2 , P

+
2 ⟩, . . .where each P

M
i is a quasi-

clique of size k and P+i is a quasi-clique of size k ′ ≥ k . In
Figure 1, a-c-d-e is a quasi-clique of size 4 (matches PM ),
but it is invalid because a-b-c-d-e-i is a quasi-clique of
size 6 (matches P+) and the former is a subgraph of the latter.
The Maximal Cliques application is a special case of MQC
where both PM and P+ are cliques (fully connected patterns).

The Keyword Search (KWS) application [4] mines con-
nected subgraphs up to a certain size k whose vertices cover
a fixed set of labelsW called keywords. Here, the matching
subgraphs must be minimal: every vertex must either have a



EuroSys ’24, April 22–25, 2024, Athens, Greece Joanna Che, Kasra Jamshidi, and Keval Vora

a h

eb

dc

g

f
i

e
g

f
i

eb

d

g
h

eb

d

a h

eb

a h

b

c
e

g

f

a
h

e
gb

dc

Data Graph Not Minimal Minimal

Keywords: { }

Figure 3. Example for Keyword Search on labeled data graph
with matches containing three keywords (colored in red, blue
and green). The matches on the right are minimal, while
matches on the left are not minimal since they contain con-
nected subgraphs that cover all three keywords.

label fromW , or if the vertex is removed from the subgraph,
it is no longer connected. Hence, each minimality constraint
has PM as a size-k pattern covering all labels inW , and P+
being its subgraph that also covers all labels inW . Figure 3
shows an example data graph and all the minimal matches
covering labels red, green and blue. Observe that although
match a-b-e-h contains vertex h that does not cover any
of the three labels, it is still minimal because the subgraph
matching only a-b-e is disconnected.

Finally, Nested SubgraphQueries (NSQ) are queries where
matches are constrained by being present or absent inside
other specific subgraphs. For instance, an NSQ finding tri-
angles that are not contained inside a size-5 house graph 1

has a single containment constraint ⟨PM , P+⟩ where PM is
the triangle pattern and P+ is the house graph pattern. An
Anti-Vertex query [26] can also be modeled as a query with
a single containment constraint ⟨PM , P+⟩ where PM is the
pattern without the anti-vertex and P+ is the pattern with
an additional regular vertex in place of the anti-vertex.

2.3 Exploration Tasks in Graph Mining Systems
Graph mining systems efficiently explore subgraphs in a data
graph G that match a pattern P . In order to discuss how to
efficiently support containment constraints in graph min-
ing systems, we first provide necessary background about
their patternmatching process bymodeling their exploration
strategies as parallel exploration tasks.
Execution in graph mining systems can be logically sep-

arated into two phases: the pattern matching phase and the
match processing phase. During the pattern matching phase,
subgraphs of the data graphG that match the given pattern P
are explored. Each subgraph is then processed using builtin
graph mining algorithms (e.g., counting) or user-defined
functions (e.g., filter, map, and reduce) in the match process-
ing phase. Graph mining systems develop exploration plans
that guide the pattern matching phase. The exploration plans
mainly consist of a matching order or schedule (the order in
which pattern vertices are matched with data vertices) and

1A house graph is a triangle (roof) combined with a 4-cycle (body).
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Figure 4. Exploration plan & search tree for tailed-triangle
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Paths reaching level 3 match, whereas those terminating at
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symmetry-breaking restrictions (constraints on vertex ids of
G to skip duplicate subgraphs).
Exploration Tasks (ETasks). Subgraph exploration in the
pattern matching phase is decomposed into static, indepen-
dent exploration tasks (or ETasks) that traverse G in parallel
to generate subgraphs, one subgraph per thread at a time.
ETasks are identified by the tuple ⟨P, S,C⟩, consisting of the
pattern to match P , currently matched subgraph S of the data
graph, and a local cacheC with an entry for each vertex in P .
Each ETask proceeds in depth-first fashion to match P , with S
initialized to a single vertex inG (called its root), andC empty.
S is then extended step-by-step with new vertices from G
following the matching order, such that S always matches
a subgraph of P . We mark the vertices of P as u0, . . . ,u |P |−1,
where ui is the i-th vertex in the matching order.

Initially, S is a match for only u0. For each subsequent
vertex ui , the ETask: (a) computes a set of vertices V using
set operations on the adjacency lists of vertices in S as well
as cached values in C; (b) sets V as the cache entry for ui ;
and (c) extends S using a vertex v ∈ V , if v has the correct
label and satisfies the symmetry breaking restrictions on P ;
before (d) descending in the depth-first traversal to extend
S to match ui+1. Once S matches the entire P , it proceeds to
the match processing phase. If there are no unused vertices
fromV to extend with, or if ui was the final vertex in P , then
the ETask backtracks to the previous pattern vertexui−1. The
ETask completes when it must backtrack from u1, i.e., when
it must match a new vertex to u0.

When several patterns have identical structure (i.e., same
edge and vertex set) but different labels, the labels are merged
so that they are all explored by a single ETask. In this case,
the ETask ignores vertex labels at intermediate steps of the
exploration, and for each found match it computes the final
pattern using an isomorphism check [17, 35]. This enables
greater reuse of cache C and reduces per-task overheads
recurring across many patterns with the same structure.
Thus, the depth-first exploration beginning at the ini-

tial task state and following the matching order induces
a search tree containing the different subgraphs of G that
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arise. The search tree is organized into levels, with level 0
being the root consisting of a single vertex v and level k − 1
being the subgraphs with k vertices that are explored when
starting from v . Every point in the exploration where the
ETask must backtrack corresponds to a root-to-leaf path in
this tree. We call each such path an RL-Path of the ETask. An
RL-Pathmatches if the leaf subgraph corresponds to a match
for P . Figure 4 shows the exploration plan and search tree
for a tailed-triangle pattern (a triangle with a dangling edge).
The RL-Paths ending at level 3 match, i.e., they result in a
tailed-triangle. Other RL-Paths end at lower levels because
they could not be extended by following the exploration plan,
and hence they do not match.

The above model captures the execution of state-of-the-art
pattern-based graph mining systems, including compilation-
based systems [35, 39], pattern-aware systems [17, 25], and
decomposition-based systems [5]. They all follow matching
orders in depth-first fashion, computing and caching vertex
sets from G using set operations at each step, and mapping
them with pattern vertices until a match is found.

3 Overview of Contigra
Contigra is an execution model for graph mining with
containment constraints that actively stops exploration of
unnecessary subgraphs (i.e., ones that are expected to violate
constraints). By doing so, matches are checked against the
required constraints naturally during exploration.

To enable Contigra, we model dependencies across con-
current tasks that, when enforced during exploration, ensure
the constraints are correctly satisfied. The dependencies are
categorized into three types (Section 4) based on how tasks
traversing at different levels in search trees relate to each
other according to various kinds of containment constraints.
Successor dependencies capture containment constraints

like maximality by constraining ETasks for target subgraphs
based on other subgraphs that are deeper in search trees.
Contigra actively checks successor dependencies using val-
idation tasks that spawn and continue from the ETasks to find
subgraphs at deeper levels. Tomaximize reuse of the explored
subgraphs and the associated local caches, the validation
tasks are fused together with the ETasks that spawned them
(Section 5.2). Since exploration plans for different subgraphs
can be incompatible with each other, Contigra achieves
task fusion by carefully aligning the exploration plans and
bridging gaps in search trees, while simultaneously ensuring
efficient RL-Paths are prioritized during validation. Further-
more, Contigra reuses the results computed by validation
tasks for subsequent exploration by directly promoting vali-
dation tasks to ETasks and canceling the original ETasks that
would have otherwise started from scratch.

Lateral dependencies capture constraints across tasks that
traverse to the same depth in the search trees. Contigra au-
tomatically infers these dependencies on top of the available
successor dependencies to cancel tasks that would result in
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B since A matches e-d-h-g which is contained inside match
e-d-h-g-f which is matched by B.

redundant computation whenever certain constraints get
violated (Section 6).

Finally, predecessor dependencies capture containment con-
straints like minimality by constraining ETasks based on
other subgraphs that are at a shallower depth in search trees.
Due to the local nature of these dependencies, Contigra
does not employ separate validation tasks, but instead stat-
ically analyzes the exploration state space to either skip
ETasks from scheduled (when they are expected to result in
dependency violation), or cancel them dynamically when
dependency violations occur during exploration (Section 7).

4 Cross-Task Dependencies
We model the impact of containment constraints in terms
of dynamic dependencies across ETasks. Containment con-
strained applications must satisfy these dependencies to en-
sure correctness or improve efficiency. Dependencies man-
ifest among ETasks in three ways; in all three cases, each
matching RL-Path in the dependent task depends on the
result of a different RL-Path in order to determine how to
process its subgraph. Hence, the notion of cross-task depen-
dencies naturally extends to dependencies betweenmatching
RL-Paths in different tasks.
Successor Dependency. A containment constraint ⟨PM , P+⟩,
where P+ is larger than PM , constrains subgraphs matching
PM depending on the subgraphs that are explored deeper
in search trees. When subgraphs explored by an ETask A
depend on subgraphs explored by another ETask B which
traverses deeper in a search tree, we say A has a successor
dependency on B.

Consider the RL-Paths for ETaskA and ETask B in Figure 5
for maximal quasi-cliques. A explores a size-4 quasi-clique,
while B explores a size-5 quasi-clique. WhileA and B explore
vertices in different order, by the time B reaches the final
step of the RL-Path it has matched all the vertices in the
quasi-clique Q found by A. Hence, Q is not maximal if B
finds a quasi-clique. Since A depends on B, which explores
deeper than A, we say A has a successor dependency on B.
Successor dependencies are validated by efficiently con-

ducting explorations deeper in the search tree; details will
be presented in Section 5.
Predecessor Dependency. A containment constraint
⟨PM , P+⟩, where P+ is smaller than PM , constrains sub-
graphs matching PM depending on subgraphs that are
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explored at a shallower depth in search trees. When an ETask
A depends on an ETask B which traverses to a shallower
depth in the search tree, we say A has a predecessor
dependency on B.
For example, Figure 6 shows RL-Paths from 3 different

tasks performing minimal keyword search. The ETask for RL-
Path A explores a size-5 subgraph s containing all keywords,
and depends on the ETasks exploring RL-Paths B and C that
explore size-4 subgraphs. B and C both explore subgraphs
that are contained in s , so if either of those matches contain
the correct keywords then s is not minimal.
Note that in the above example the smaller subgraphs

containing all the keywords are never explored in the RL-
Path that matches s . Despite seeming like a local property,
constraints like minimality induce predecessor dependen-
cies across different tasks. In Section 7, we present how to
efficiently validate such predecessor dependencies.
Lateral Dependency. When a task A depends on a task B
which traverses to the same depth in the search tree, we say
that A has a lateral dependency on B. Lateral dependencies
may not be explicitly specified by containment constrained
applications, since different matching RL-Paths at the same
level explore different subgraphs and hence cannot contain
each other. However, they can be automatically inferred
and enforced by the system in order to improve efficiency
by preemptively canceling certain tasks when a different
task has already performed the required computation. These
details will be explained in Section 6.

5 VTasks for Successor Dependencies
Successor dependencies ⟨PM , P+⟩ arise when a subgraph
matching PM is constrained by matches for a larger pattern
P+, such as in applications searching for maximal subgraphs
(e.g., maximal quasi-cliques). Because the successor depen-
dencies of an ETask involve subgraphs deeper in the search
tree, they must be validated dynamically during exploration
when ETasks explore matching subgraphs at the end of each
RL-Path. In this section, we introduce a new kind of task
called validation tasks (or VTasks) that are launched as sub-
tasks of ETasks for validating successor dependencies.

Algorithm 1 Exploration Task
1: function ETask(P : pattern, S : subgraph, C : cache)
2: if |P | = |S | then ▷ Leaf node of search tree
3: status ← Match
4: for P+ ∈ validationPatterns(P ) do
5: if VTask(P+, S , S ,C) = VTask-Matched then
6: status ← No-Match
7: break ▷ Cancel remaining VTasks

8: else
9: cancel ⟨P+, S ,C ⟩ ▷ Cancel ETask
10: end if
11: end for
12: if status = Match then
13: ProcessMatch(S ) ▷ Pass to Match Processing module
14: end if
15: for P+ ∈ nextExplorationPatterns(P , S ) do
16: if ⟨P+, S ,C ⟩ was not canceled then
17: ETask(P+, S ,C ) ▷ Promote to new ETask

18: end if
19: end for
20: else ▷ Intermediate exploration step
21: V ← computeCandidates(P , S ,C)
22: for v ∈ V do
23: ETask(P , S ∪ {v },C )
24: end for
25: end if
26: end function

During validation, VTasks are often required to explore
portions of the search tree that are incompatible with their
parent ETasks. Naïvely performing such explorations could
result in redundant computations. We remedy this with
Task Fusion that enables dynamic cache-sharing between
ETasks and VTasks despite incompatible matching orders.
On the other hand, a VTask may target the same pattern as
another ETask. To avoid redundant exploration in such cases,
we develop Task Promotion that directly converts the state
of a VTask into that of an ETask to the same pattern.

5.1 VTask: Validation Task
While an ETask begins from a data vertex and traverses
the search tree to generate all subgraphs matching a target
pattern, a VTask is a special task represented as ⟨P, SM , S,C⟩
which searches for a subgraph that both: (a) contains the
subgraph SM , and (b) matches the pattern P . Similar to ETask,
VTasks also maintain a state consisting of subgraph S and
cacheC ; however instead of exploring every RL-Path,VTasks
terminate as soon as a single RL-Path containing SM matches.
An ETask ⟨P, S,C⟩ launches VTasks every time an RL-Path

matches in order to check the successor dependencies for
S . These VTasks take the form ⟨P+, S, S,C⟩, where SM is
initialized to S and P+ is a pattern larger than P .
For example in maximal quasi-cliques from Figure 1, an

exploration task ⟨P, S,C⟩ with P being a 4-clique and S being
a-e-d-i will spawn VTasks with P+ being size-5 and size-
6 quasi-clique patterns that contain a 4-clique. If a VTask

matches, then S is contained in the larger pattern P+, and
hence S does not satisfy the containment constraint. This
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Algorithm 2 Validation Task
27: function VTask(P : pattern, SM : subgraph, S : subgraph, C : cache)
28: PS ← pattern(S )
29: for ρ ∈ validPermutations(PS ) do
30: S ′ ← permute S using ρ ▷ Align S with exploration plan for P
31: C′ ← permute C to correspond to S ′
32: if |P | = |S ′ | − 1 then
33: V ← computeCandidates(P , S ′,C′)
34: C ← permute C′ back ▷ Reuse the VTask cache
35: if V , � then ▷ There are matches for P containing SM
36: return VTask-Matched
37: end if
38: else
39: P+ ← nextIntermediatePattern(PS ) ▷ From Section 5.2.2
40: V ← computeCandidates(P+, S ′,C′)
41: for v ∈ V do
42: if VTask(P , SM , S ′ ∪ {v },C′) = VTask-Matched then
43: C ← permute C′ back ▷ Reuse the VTask cache
44: return VTask-Matched
45: end if
46: end for
47: end if
48: end for
49: return No-VTask-Match
50: end function

is the case with a-e-d-i in our example as a VTask finds
a-e-d-i-b, hence deeming a-e-d-i to be not maximal. The
containment constraint is satisfied if none of the VTask RL-

Paths matches. Algorithm 1 and Algorithm 2 summarize the
core operations performed in ETasks and VTasks.

5.2 Task Fusion
Implementing VTasks directly using ETasks is not straight-
forward because it is unclear how to follow an exploration
plan to generate a subgraph containing a specific subgraph
SM . Specifically, an ETask targeting pattern P can exhibit
a successor dependency for another ETask targeting larger
pattern P+ which is rooted at a different vertex. Consider the
example in Figure 7, where an ETask matches pattern PM (a
diamond pattern) with subgraph S = SM being e-d-g-h and
resulting cache C . However, due to the matching order used
by the ETask, no RL-Path of the same task will find the larger
quasi-clique containing e-d-g-h. While it is possible to have
multiple different exploration plans for each P+, such an
approach would be infeasible since VTasks would perform
many redundant computations in order to re-explore SM

and then match P+ from a different starting point. Moreover,
sharing C between tasks statically (i.e., prefix-sharing [35]
or shared connected subpattern [17]) only works when tasks
have compatible exploration plans, i.e., results cannot be
shared between dynamically spawned tasks.

For this, we develop Task Fusion, where VTasks are fused
with the ETask that spawned them, copying their state to
guarantee that only subgraphs containing SM are found.
Hence, the available S is reused along with the ETask’s cache
C to compute the remaining vertex sets that complete an
RL-Path. However, tasks cannot be easily fused by simply
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Figure 7. As ETask matches e-d-g-h for PM , VTask for P+
is spawned. Task alignment permutes e-d-g-h so that it can
match e-d-g-h-f for P+.

setting the VTask state to ⟨P+, S, S,C⟩ (i.e., reusing S and C
for the larger pattern P+) due to twomain obstacles. First, the
exploration plan for continuing to match P+ using S would
lead to incorrect execution of VTasks due to incompatibility
with the exploration plan for PM (i.e., matching order and
symmetry-breaking restrictions already applied on S). And
second, the target pattern for an ETask and the target pattern
for a VTask can differ by more than one level, leaving a non-
trivial matching strategy for VTask to follow. We describe
how these issues are addressed next.

5.2.1 Aligning Explorations in Fused Tasks. In our ex-
ample in Figure 7, analyzing P+ (a diamond-house pattern
that matches e-d-g-h-f) results in a symmetry-breaking
restriction u1 > u3, i.e., the data vertex mapped to u1 should
have a larger id than the one mapped to u3. Hence, e-d-g-h
is an invalid intermediate state for P+, since u1 is mapped to
g which is smaller than h mapped to u3. While symmetry-
breaking restrictions cannot be enforced when checking suc-
cessor dependencies, forgoing them completely (i.e., pattern-
oblivious exploration) drastically reduces performance [25].

Moreover, the exploration plan for matching P+ is incom-
patible with the plan followed by the RL-Path matching PM .
Following the exploration plan for P+, candidate vertices for
u4 are drawn from the common neighbors of d and h (mapped
to u2 and u3). But d and h have no common neighbors, so
e-d-g-h-f is never found. This means the exploration plan
for P+ cannot be applied to check successor dependencies.
We address both issues using a combination of pattern-

aware and pattern-oblivious approaches. The ETask uses
the exploration plan with symmetry-breaking restrictions
during exploration, and then it carefully adjusts the state to
undo restrictions and reconcile exploration plans before exe-
cuting the VTask. To safely account for all possible ways a
match for P+ could be encountered beginning from e-d-g-h,
the exploration plan for P+ is applied to those permutations
of e-d-g-h that match the diamond pattern. One such per-
mutation is shown in Figure 7, where the exploration plan
draws candidates for u4 from the shared neighborhood of g
and h, yielding e-d-g-h-f.
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Lines 29–48 in Algorithm 2 show how state is adjusted
in VTasks. For each valid permutation ρ, the subgraph S is
permuted into a new subgraph S ′. ρ is also applied to the
cache C to obtain a new cache C ′ (Line 31) that is consistent
with S ′. The VTask proceeds to compute data vertices to
match P+ using S ′ and C ′ (Line 33). Then, C ′ is permuted
back to C in order to allow other VTasks to correctly reuse
the computations in the current VTask (Lines 34 and 43).
The necessary permutations are computed before explo-

ration, and they are only applied when executing VTasks,
hence ensuring ETasks explore each subgraph exactly once.

5.2.2 Bridging Gaps in VTask Search Trees. Successor
dependencies between SM and the target subgraph that is one
level away from SM in the RL-Path can be checked by operat-
ing on S ′ andC ′ (Line 33 in Algorithm 2). However, achieving
this for subgraphs that are more than one level away from
SM requires more work. Figure 8 shows an instance of this
case. The ETask explores PM of size 3 (a triangle), but the
VTask searches for P+ with 5 vertices. Naïvely executing the
VTask from PM to P+ would lead to similar issues arising
from symmetry-breaking restrictions incorrectly pruning
subgraphs when fusing VTasks with ETasks.
To correctly check successor dependencies in such cases,

we bridge the gap between the ETask’s target pattern and the
VTask’s target pattern. We chart a path through the search
tree by choosing which pattern to explore at each interme-
diate step. As existing systems cannot provide exploration
plans for continuing exploration from an arbitrary subgraph,
we implement each intermediate step as a VTask invocation,
so it can be fused with the previous step. This allows using
the underlying system’s exploration plans for the patterns
at intermediate steps. Successor dependencies are therefore
verified correctly as the plans for each separate VTask are
aligned, while avoiding redundancy since caches are shared
between steps. This idea is demonstrated in Algorithm 2,
where on Line 42 the VTask recurses until the gap between
the initial subgraph and the target pattern is closed, i.e., a
matching RL-Path is explored.
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Figure 9. Decision tree for ordering RL-Paths.

Efficient RL-Paths. The above procedure opens up multi-
ple RL-Path options from SM to the target pattern of the
VTask. In our example, there are 3 RL-Paths starting at SM
that the VTask can take to match P+. As each RL-Path results
in different amounts of matching work, the performance of
VTasks is sensitive to the order in which RL-Paths are taken
to validate dependencies. For example, in Figure 8, the trian-
gle i-b-c contains 3 vertices whereas P+ contains 5 vertices.
If the VTask first attempts to match the tailed triangle Pa , it
would compute i-b-c-a only to find that it cannot be fur-
ther extended to match P+, and then backtrack to compute
i-b-c-d which would eventually lead to i-b-c-d-j that
matches P+. On the other hand, the VTask going through
Pb before Pa would compute i-c-b-j which would directly
lead to i-c-b-j-d, hence matching P+ in the first RL-Path.
To select an efficient ordering of RL-Paths, we develop

heuristics that estimate the likelihood of matching the sub-
graphs at each intermediate step based on the relationship of
the target patterns to each other and to the data graph. Our
heuristics are based only on the density of the data graph
and the possible patterns in order to compute the priority of
different paths statically before exploration begins.
Figure 9 shows our heuristics as a decision tree. The ma-

jority of matches occur in dense regions of the data graph,
where dense subgraphs are common and likely surrounded
by other dense subgraphs [28]. If the target pattern is dense,
the expected number of matching dense subgraphs at each
intermediate step is higher, causing more work since each
intermediate subgraph is further processed by the VTask.
Hence when the target patterns are all dense (e.g., high γ
values in maximal quasi-cliques), the RL-Path exploring the
sparsest patterns is chosen first in order to reduce intermedi-
ate matches. However, when target patterns are sparse, this
trend reverses. Sparse subgraphs are present throughout the
data graph and high-degree vertices in dense regions of the
graph often reach into sparse regions, where the sparsest
patterns have matches. Hence, when the target patterns are
sparse, we prioritize RL-Paths targeting the densest patterns.
Finally, if the target patterns include both sparse and dense
patterns, we base our decision on the density of the data
graph; for dense data graphs, sparse patterns are prioritized,
and for sparse data graphs we prioritize dense patterns.
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5.3 Promoting VTasks to ETasks
Applications like maximal quasi-cliques explore quasi-
cliques of multiple sizes. In such cases, different ETasks ex-
plore patterns of different sizes, with certainVTasks checking
dependencies against target patterns that are expected to
be explored by other ETasks. Furthermore, constraints like
maximality lead to exploring successors even when they get
violated, i.e., if a VTask matches a P+ that contains PM , then
this P+ becomes PM in the subsequent ETask and a larger
pattern that contains it would become P+ in its VTask. This
means the results computed by VTasks can be cached for fu-
ture ETasks to avoid exploring the same subgraphs that were
found by VTasks. We achieve this by promoting the VTask
to an ETask, and canceling the original ETask which would
have explored the subgraph from scratch. Thus, the result-
ing ETask directly uses the VTask cache C and the matched
subgraph S for subsequent processing and validation.
Figure 10 shows an example following the patterns and

data graph from Figure 7. The RL-Path belonging to the
initial ETask finds the match i-b-c-d with cache C contain-
ing entries for the first 4 pattern vertices. Then a VTask is
spawned which inherits C and finds a match i-b-c-d-a for
P+, caching candidates for the 5th pattern vertex at C[4].
Subsequently, this VTask is promoted to an ETask, and hence
it immediately finds another match i-b-c-d-j without ad-
ditional computation by reusing the candidates in C[4].
VTasks are statically analyzed to identify the ones that

target the same subgraphs as ETasks. Several VTasks orig-
inating from different ETasks can target the same pattern,
and all VTasks that target the same P+ are valid candidates to
be promoted to an ETask exploring P+. Since a single ETask
is required to explore P+, only one of the candidate VTasks
is promoted to an ETask. While all candidate VTasks have a
single matching RL-Path, when promoted to an ETask the re-
maining RL-Paths in the search tree also get explored. With
each VTask having a different starting point, the size of the
search tree and the number of RL-Paths that are traversed
upon promotion differs across VTasks. Hence, the choice of
whichVTask is promoted to a given ETask has a direct impact
in the amount of work performed by the promoted ETask.
We determine which matching VTask gets promoted to a

given ETask using the same heuristic from Section 5.2.2 that
minimizes the number of RL-Paths the VTask will produce
when it is treated as an ETask.

As shown in Algorithm 1, when an ETask finishes match-
ing pattern P it runs VTasks on lines 4–11 to match P+. If a
VTask targeting P+ does not match, then any ETask to P+

from the same state cannot match, and hence the ETask is di-
rectly canceled on line 9. If all theVTasksmatch, sinceVTasks
fuse their caches with that of the ETaskwhich launched them
(lines 34 and 43), the promoted ETask reuses the candidates
already computed by the VTasks (line 21).

5.4 Generality of Task Fusion & Promotion
While task fusion and task promotion enable efficient execu-
tion while validating successor dependencies, they can also
be applied to groups of ETasks in graph mining applications
without successor dependencies (i.e., beyond containment
constrained applications). An ETask A targeting pattern P is
fused with another ETask B targeting P ′ if P ′ is a subgraph
of P , applying task alignment and bridging gaps as necessary.
Then, if an RL-Path in B does not match P ′,A can be skipped
to avoid exploring the same subgraphs. On the other hand,
matching RL-Paths in B are promoted to executions of A to
reuse caches and avoid redundant exploration from scratch.

6 Lateral Dependencies across VTasks
Applications often have multiple constraints ⟨PM , P+1 ⟩,
⟨PM , P+2 ⟩, . . . on the same pattern PM . For example, the max-
imality constraint in quasi-clique results into multiple con-
straints between a given quasi-clique of size k and different
quasi-cliques of size k + 1, each representing a different P+i .
In such cases, when an ETask matches the subgraph S for
PM , multiple VTasks need to be scheduled, each targeting a
different P+i . However, the subgraph S satisfies the applica-
tion constraints only if it fulfills all of its dependencies, i.e.,
S must satisfy all constraints on PM that matches S . Hence,
if one of the VTasks matches P+, the other VTasks do not
need to be executed as those dependency checks would not
contribute to the final decision for S .

To avoid executing such unnecessary VTasks, we impose
lateral dependencies between VTasks arising from the same
ETask, which in turn enforces a serial execution of those
VTasks. By doing so, VTasks can be easily canceled during
execution; when any VTask in the serial execution matches,
the remaining VTasks from that specific ETask are simply
not executed (line 7 in Algorithm 2) and the ETask moves to
matching the next RL-Path.

Since a single matching VTask cancels the remaining ones,
it is important to order the VTasks such that the most likely
to match are executed first. While the previous heuristics
for ordering RL-Paths (Section 5.2.2) sought to reduce the
chances of matching, here we want to identify VTasks that
match as quickly as possible in order to end the validation
process. Hence, we apply the same heuristics to estimate
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Figure 11. State spaces for RL-Paths that match PM1 and PM2 .

the relative likelihood of matching subgraphs but with the
resulting decision inverted, i.e., choose sparse patterns first
if dense patterns first is prescribed, and vice versa.
Our lateral dependency-based execution enables VTask

cancelation in a light-weight manner compared to any al-
ternate solution that concurrently schedules all VTasks as
it would require periodic synchronization to check whether
the task is canceled. It is important to note that there is al-
ready sufficient parallelism in the form of ETasks, so serially
executing VTasks does not affect scalability.

7 Predecessor Dependencies for ETasks
Predecessor dependencies ⟨PM , P+⟩ where P+ is smaller than
PM are typically seen in applications with minimality con-
straints (e.g., keyword search). Unlike successor dependen-
cies which involve previously unseen subgraphs, these con-
straints are local to an explored subgraph S and hence do
not require special VTasks for validation. Instead, validation
is performed on ETasks as they match RL-Paths.
A naïve approach to validate a predecessor dependency
⟨PM , P+⟩ is to backtrack in the RL-Path for PM to check if
any of the intermediate subgraphs at previous steps matches
P+. However, RL-Paths do not necessarily explore all pos-
sible subgraphs of their target subgraph (as illustrated by
Figure 6 in Section 4), and hence such an approach can miss
containment constraints for one or more P+. To address this,
we classify all ETask states that can potentially lead to pre-
decessor dependency violations. This enables Contigra to
skip ETasks which are guaranteed to violate dependencies,
perform eager filtering to prune ETasks which potentially
violate them, and allow remaining ETasks which will never
violate dependencies to execute unchanged.
State Space & Virtual State Space. Validating predeces-
sor dependencies requires examining all possible subgraph
states under all possible RL-Paths resulting from different
exploration plans that target the same subgraph S . We call
the set of these states the state space of an RL-Path. For
example Figure 11a shows the state space of the RL-Path
that explores labeled subgraph e-g-f-i that matches PM1 for
minimal keyword search. Note that the state space includes
the smaller subgraph f-e-g containing all keywords.
For each matching RL-Path there are combinatorially

many states explored at preceding levels, and therefore con-
structing and traversing all states in the space for every
matching RL-Path is non-trivial. To alleviate this cost, we

determine which states can violate the predecessor depen-
dencies before exploration begins, using per-pattern virtual
state spaces. For each target pattern P , we treat P as if it were
the resulting state of a matching RL-Path, and construct its
virtual state space, comprised of all connected subgraphs of
P . This virtual state space corresponds one-to-one with the
state space of all RL-Paths that match P , which allows us to
statically determine before exploration begins whether any
states violate the containment constraints.
Skipping ETasks. An RL-Path R exploring state S that
matches PM violates the constraint ⟨PM , P+⟩ for predeces-
sor dependency when a state S ′ in its state space matches
P+. In this case, S is a violating state. For example in key-
word search application which has minimality constraint, an
RL-Path R has a violating state S if a smaller subgraph of S
contains each of the necessary keywords.
We analyze the target patterns and group them in three

cases based on whether the states in their virtual space vio-
late the application constraints. For a given target pattern
PM , either: (a) there is some violating state, meaning every
match for PM violates its predecessor dependencies; or (b)
none of the states are violating, meaning every match for PM
satisfies its predecessor dependencies. In addition, since an
ETask can explore multiple patterns with the same structure
but different labels (merged labels explained in Section 2.3),
ETasks exploring multiple target patterns can fall in a third
category (c) where they may explore some RL-Paths which
violate predecessor dependencies, and others which do not.

In the first case, ETasks targeting PM are unnecessary and
can be safely skipped. In our example, the subgraphs in the
virtual state space for PM1 are identical in structure and label-
ing to those in the state space shown in Figure 11a. Hence
the virtual state space also contains a violating subgraph,
causing any RL-Path matching PM1 to violate the minimality
constraint. Thus, all ETasks targeting PM1 are skipped. For
the second case where every match for PM satisfies its prede-
cessor dependencies, the ETasks targeting PM do not need to
check containment constraints. Figure 11b shows the state
space of an RL-Path matching PM2 ; the virtual state space
of PM2 has no violating states, and hence its ETasks do not
perform any dependency checks.

Finally for the third case, ETasks perform eager filtering by
checking constraints when exploring each RL-Path. ETasks
maintain a set of violating states for each level in the search
tree, corresponding to the violating states in the state space
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of the merged patterns which are guaranteed to violate pre-
decessor dependencies. Then at each level of exploration, if
the current state matches a violating state for that level, the
RL-Path is canceled and the ETask immediately backtracks.

This categorization drastically reduces the cost of satisfy-
ing predecessor dependencies by moving the computational
burden from execution-time checks at each matching RL-

Path to virtual state space analysis before execution. In KWS
with 3 keywords and the exploration depth 4 (i.e., patterns
have at most 5 vertices), 273 of 287 patterns are guaranteed to
violate predecessor dependencies, and the ETasks targeting
these patterns are completely skipped (i.e., a 95% reduction).

8 Evaluation
We evaluate the effectiveness of Contigra for containment
constrained graph mining applications.

8.1 Implementation Details
We develop Contigra on top of Peregrine+, a modified
version of the state-of-the-art graph mining system Pere-
grine [25] which supports simultaneous exploration of mul-
tiple patterns proposed in recent works which are not open-
source [17, 34]. We implemented caches in Peregrine ETasks:
set operation results are associated with each pattern vertex
in a cache, and previous cache entries are reused to com-
pute new operations. Patterns with identical pattern cores
are explored simultaneously (i.e., Shared Connected Subpat-
tern [17]), and ETasks to such patterns share their caches
(i.e., intra-pattern reuse [17]). These modifications were im-
plemented in ∼4300 lines of code.
ETasks and VTasks are implemented as individual recur-

sive matching steps like in Algorithm 1 and Algorithm 2.
Hence, task fusion and task promotion can be applied trans-
parently to combinations of ETasks andVTasks by calling the
appropriate function with the current subgraph and cache.
For task fusion, the task exploring deeper ensures the sub-
graph and cache are consistent with its target pattern by
permuting them. For task promotion, a valid subgraph has
already been explored and hence no permutation is required.
To avoid runtime overheads, many aspects of task man-

agement are computed before exploration begins. ETasks
maintain lists of VTasks that must be executed, and VTasks

maintain plans for bridging gaps to target patterns. All tasks
also track which tasks they can promote to, sorted using our
heuristics for ordering RL-Paths. Finally, the permutations
for aligning exploration plans are stored in lookup tables
indexed by pattern combinations. Since these computations
occur at pattern-level and not per match, it took only 0.1s–2s
across all our experiments, compared to pattern exploration
times which are often in 10’s-1000’s of seconds.

8.2 Applications, Datasets & Systems
Applications. We evaluate three containment constrained
applications to cover the different dependency types: Max-
imal Quasi-Cliques (MQC) and Nested Subgraph Queries

Data Graphs Vertices Edges Labels
Amazon (AZ) 334.9K 925.9K 0
DBLP (DB) 317.1K 1.0M 0
Mico (MI) 96.6K 1.1M 28
Patents (PA) 2.7M 14.0M 36
Youtube (YT) 7.7M 50.7M 23
Products (PR) 2.4M 61.9M 46

Table 1. Real-world graph datasets used in evaluation.

(NSQ) for successor dependencies, and Keyword Search
(KWS) for predecessor dependencies. Lateral dependencies
are automatically imposed across VTasks during execution.
The maximal quasi-cliques finds γ -quasi-cliques up to size 6
that are maximal with γ between 0.8 and 0.6, which results
in exploring 7–26 different quasi-clique patterns. We use two
different nested subgraph queries: the first query searches
all triangles not contained in two size-5 patterns shown in
Figure 12a, whereas the second query searches all tailed tri-
angles not contained in size-6 patterns shown in Figure 12b.
In keyword search, we explore minimal subgraphs with up
to five vertices that contain two different sets of 3 keyword
labels: first set containing most frequent labels occurring in
the data graph, and other set containing less frequent labels.
Each label set results in matching upto 287 different patterns.
Datasets. Table 1 shows the graph datasets used in our
experiments, commonly used to evaluate graph mining solu-
tions [5, 17, 25, 28, 35]. Amazon (AZ) [46] is a co-purchasing
network where vertices are Amazon products and edges rep-
resent two products which are frequently purchased together.
DBLP (DB) [46] is a co-authorship network where vertices
are computer science researchers, and two researchers are
adjacent if they have co-authored a paper. In the Patents
(PA) [19] graph, vertices represent patents and edges repre-
sent citations between patents. Youtube (YT) [11] is a net-
work of related videos, while Products (PR) [23] is a larger
co-purchasing network on Amazon products.
Containment constrained applications are computation-

ally expensive compared to traditional mining applications,
and existing state-of-the-art cannot compute results for sev-
eral of these graph datasets. Larger graphs (beyond the ones
listed in Table 1) require higher time budget for experiments
compared to traditional applications mainly due to the com-
putational difficulty in checking containment constraints.
Systems. We compare the performance of our tech-
niques with two state-of-the-art systems: Peregrine+ and
TThinker [31]. Peregrine+ is a general graph mining sys-
tem that extends Peregrine [25] by batching the exploration
plans together for efficiency (explained in Section 8.1). For
nested subgraph queries and keyword search applications,
we wrote the containment constraint checking code in the
user callback of Peregrine+ (∼600 lines of code). TThinker on
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Application Baseline Speedup
Maximal Quasi-Cliques (§8.4.1) TThinker 12–41700×
Nested Subgraph Queries (§8.4.2) Peregrine+ 5.6–379×
Keyword Search (§8.5) Peregrine+ 21–16000×
Quasi-Cliques (§8.6) Peregrine+ 2.4–7.2×

Table 2. Summary of Contigra’s performance.

the other hand develops a custom solution for mining maxi-
mal quasi-cliques using strategies to prune sparse regions of
the graph that would never contain dense quasi-cliques.
All experiments we conducted on a 3.10GHz Intel(R)

Xeon(R) Gold 6242R CPU with 64GB RAM and 40 physi-
cal cores, allowing 80 threads with hyperthreading.

8.3 Performance Summary
Table 2 summarizes the performance of Contigra com-
pared to state-of-the-art baselines. Contigra enables ef-
ficient execution of containment constrained graph min-
ing applications compared to the Peregrine+ graph mining
system as well as the custom TThinker for maximal quasi-
cliques. Moreover, Contigra scales to larger graphs that
these baselines could not handle mainly because Contigra
verifies dependencies actively during exploration whereas
these baselines examine matches after they are explored,
hence often running out of time or requiring massive mem-
ory/storage capacities to hold the explored matches for con-
straint checking. Finally, Contigra’s task fusion and task
promotion techniques also speed up graph mining execution
in unconstrained applications like quasi-cliques.

8.4 VTask Performance
We study the performance of VTask and associated tech-
niques for validating successor dependencies.

8.4.1 VTasks for Maximality. Table 3 compares the per-
formance of maximal γ -quasi-cliques for Contigra and
the state-of-the-art TThinker. As shown, Contigra is 12–
41,000× faster than TThinker. Contigra delivers high per-
formance due to VTasks and their associated techniques;
we observed that up to 76.7% of VTasks and up to 72% of
ETasks get canceled as VTasks check constraints, and task
promotion increases the cache utilization to 75%. TThinker
is only able to complete executions on the small Amazon
and DBLP graphs, where its execution is dominated primar-
ily by the phase that checks maximality of the explored
subgraphs, failing on the larger data graphs due to its mas-
sive space requirements. On the MiCo graph TThinker runs
out of storage after using 208GB of buffer space to store
its exploration tasks, while only producing 280MB of po-
tentially maximal quasi-cliques for future post-processing.
On Patents, YouTube, and Products, TThinker exhausts the
system’s 64GB of memory, despite all three graphs taking
less than 1GB space. Hence, the speedups reported for these
large graphs are only a lower bound.

γ = 0.6
Contigra TThinker Speedup

Amazon 0.92 9224.17 1.00e+4×
DBLP 13.76 TLE 6.28e+3×
Mico 4266.89 OOS 20.3×
Patents 199.28 OOM 434×
Youtube 1156.75 OOM 74.7×

γ = 0.7
Contigra TThinker Speedup

Amazon 0.11 1263.08 1.20e+4×
DBLP 6.59 13435.26 2.04e+3×
Mico 887.67 OOS 97.3×
Patents 2.07 OOM 4.17e+4×
Youtube 18.59 OOM 4.65e+3×
Products 5867.63 OOM 14.7×

γ = 0.8
Contigra TThinker Speedup

Amazon 0.12 785.24 6.53e+3×
DBLP 6.64 595.64 89.7×
Mico 1083.62 OOS 79.7×
Patents 2.92 OOM 2.96e+4×
Youtube 25.65 OOM 3.37e+3×
Products 7181.76 OOM 12×

Table 3. Execution times (in seconds) of Contigra and
TThinker for maximal quasi-cliques. TLE indicates TThinker
executions that did not complete in 24 hours. OOS indicates
TThinker executions that ran out of storage and OOM indi-
cates TThinker executions that ran out of memory.

8.4.2 VTasks for Nested Subgraph Queries. We evalu-
ate two nested subgraph queries shown in Figure 12. The
baseline in Peregrine+ extends each matched subgraph in
the user-defined function to ensure it is not contained in
any match for the larger patterns. Figure 12c compares the
performance of Contigra with the Peregrine+ baseline. As
shown, Contigra is 5.6–379× faster than the Peregrine+
baseline. This is mainly due to task fusion that enables cache
reuse between VTasks, whereas the user-defined function
in Peregrine+ has no access to the ETask caches. We again
observe that Peregrine+ executions for several inputs do not
complete in 24 hours, hence we plot conservative speedups.

8.4.3 Task Management Strategies.
Task Promotion. To evaluate the benefits of task promotion,
we compare the hit rate of ETask caches with and without
task promotion enabled in maximal quasi-cliques application.
Figure 13 shows that cache hit rates can rise to 73% with task
promotion from only 48% when it is disabled, as redundant
operations are cached instead of recomputed.
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Figure 12. Nested subgraph queries.
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Figure 13. Cache hit rates with and without task promotion.

Lateral Dependencies. We quantify the effectiveness of
VTask cancellation via lateral dependencies on the speedups
over the baseline. Figure 14 shows executions of maximal
quasi-cliques measuring the percentage of VTasks that were
canceled. As shown, up to 77% of VTasks get canceled, moti-
vating the importance of lateral dependencies.
RL-Path Ordering. Choosing which RL-Paths to explore
first can affect performance when scheduling VTasks and
bridging gaps between ETasks and VTasks. We study this
performance impact and evaluate the effectiveness of our
heuristics for prioritizing RL-Paths. Figure 16 shows exe-
cutions of maximal quasi-cliques on various data graphs
with different orderings of RL-Paths. As we can see, the
performance difference between the fastest and the slowest
executions is up to 2×. Our heuristics select the fastest exe-
cutions in most of the cases. For Youtube with γ = 0.7 our
choice is within 1.8 seconds of the fastest execution and for
Patents with γ = 0.7 and γ = 0.8 our choice is within 0.1
seconds of the fastest execution.

8.5 Predecessor Dependencies
We evaluate keyword search with minimality constraint that
results into predecessor dependencies. It searches for up to
size-5 subgraphs containing 3 keyword labels that are most
frequent in the data graph and other 3 keyword labels that
are less frequent. Task promotion is also enabled in keyword
search; since subgraphs of multiple sizes are explored, when
an RL-Path to level k matches, its ETask gets promoted to
patterns in level k + 1.
Figure 15 compares the results for Contigra and Pere-

grine+ baseline. Contigra performs 21–16138× faster than
the baseline. This is due to the reduction in ETasks that are
executed thanks to the combination of virtual state space
analysis and eager filtering, as well as task promotion strat-
egy. We observe that in comparison to Peregrine+ we explore
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Figure 14. Task cancellations due to lateral dependencies.
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Figure 15. Performance of Contigra and Peregrine+ for
keyword search with most frequent (MF) and less frequent
labels (LF). Numbers on top of bars indicate Contigra exe-
cution times (sec).

only 0.6–2.5% of all possible ETasks. To break down which
techniques lead to such aggressive reduction, we disabled
task promotion in Contigra and compared the performance
when task promotion is enabled. We observed that with task
promotion Contigra explores only 19–47% of the ETasks
in all cases except on YouTube graph, where up to 80% of
the ETasks are explored mainly because many subgraphs
end up having valid labels. Finally, eager filtering and task
cancellation lead to far fewer RL-Paths being explored; and
hence fewer dependency checks were performed; Figure 17
shows task elimination explores 40-85% fewer matches while
eager filtering explores ∼0.01% matches.
RL-Path Ordering. RL-Path ordering can significantly im-
pact performance when promoting ETasks. Figure 18 shows
the execution time using two opposing strategies for prior-
itizing RL-Paths. The dense strategy prioritizes RL-Paths
targeting dense patterns first, while the sparse strategy pri-
oritizes those targeting sparse patterns first. Our heuristics
lead to the faster choice, giving up to 4.4× speedup. For Mico
and Patents the performance difference is only ∼0.6 seconds.

8.6 Generality of Task Fusion & Promotion
We further evaluate the generality of task fusion and task
promotion for applications without successor dependencies.
We run quasi-cliques without maximality constraints and
with task fusion and task promotion between ETasks enabled,
comparing the performance to Peregrine+ baseline without
these techniques. Figure 19 shows the speedups of Contigra
over the baseline when matching γ -quasi-cliques without
checking maximality. Task fusion and task promotion for
ETasks lead to 2.4–7.2× faster execution.
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9 Related Work
To the best of our knowledge, this paper provides the first
treatment for directly mining subgraphs that satisfy contain-
ment constraints, avoiding the need to examine subgraphs
after exploration.
Graph Mining & Pattern Matching. General-purpose
graph mining systems [4, 5, 8, 14, 17, 25, 35, 42, 44, 50]
combine efficient pattern matching strategies with a pro-
grammable match processing module to support various
graph mining applications. Pattern-oblivious systems [4, 9,
14, 42, 44, 50] explore subgraphs through iterative extensions
by edges or vertices without taking pattern structure into
account. Pattern-aware systems [5, 8, 25] exploit structural
properties of target patterns in the pattern matching module,
enabling powerful optimizations [6, 27, 28]. Pattern-based
graph mining also benefits from research in pattern match-
ing systems [1, 7, 10, 24, 29, 34, 37, 39, 40, 48] that enable
techniques from architecture research [7, 10, 40], dataflow
systems [1, 37], and compilers [34, 39]. None of these so-
lutions consider containment constraints across subgraphs,
hence requiring users to implement the constraint checking
logic in user-defined functions that are invoked after each
match is explored. Pattern-oblivious systems are further lim-
ited by properties like anti-monotonicity which may not
apply to containment constrained applications.
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Figure 19. Performance of Contigra and Peregrine+ for
quasi-cliques without maximality constraint. Numbers on
top of bars indicate execution times (in sec) for Contigra.

Maximal Quasi-Cliques There are several specialized
maximal quasi-clique solutions [12, 18, 31, 33, 36, 38, 49].
Most recent solutions are based on Quick [33], which is ex-
tended by the state-of-the-art system TThinker [31]. While
the Quick algorithm reduces the search space by pruning out
sparse regions of the graph, it relies on post-processing to
eliminate matches that are not maximal, limiting its scalabil-
ity for large graphs. On the other hand, Contigra efficiently
executes maximal quasi-clique without post-processing, and
can further support general constrained applications.
Graph Keyword Search There are many specialized key-
word search algorithms [2, 15, 20, 30, 43, 47]. More recently,
keyword search has been applied to RDF [15] and knowledge
graphs [47]. These algorithms explore in pattern-oblivious
manner and hence explore redundant subgraphs that cannot
be minimal, whereas Contigra is able to skip such sub-
graphs using virtual state space analysis.

10 Conclusion
We developed Contigra for graph mining with contain-
ment constraints. We modeled containment constraints as
cross-task dependencies and developed efficient validation
tasks that merge explorations with validations, as well as
techniques to actively avoid redundant explorations and con-
straint checks. Evaluation showsContigra scales to massive
workloads that could not be handled by existing solutions.
This is the first general treatment of containment constraints,
providing a framework for future systems to efficiently sup-
port containment constrained graph mining.
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