
Anti-Vertex for Neighborhood Constraints in SubgraphQueries
Kasra Jamshidi

kjamshid@cs.sfu.ca

School of Computing Science

Simon Fraser University

British Columbia, Canada

Mugilan Mariappan

mmariapp@cs.sfu.ca

School of Computing Science

Simon Fraser University

British Columbia, Canada

Keval Vora

keval@cs.sfu.ca

School of Computing Science

Simon Fraser University

British Columbia, Canada

ABSTRACT
This paper focuses on subgraph queries where constraints are

present in the neighborhood of the explored subgraphs. We de-

scribe anti-vertex, a declarative construct that indicates absence

of a vertex, i.e., the resulting subgraph should not have a vertex

in its specified neighborhood that matches the anti-vertex. We

formalize the semantics of anti-vertex to benefit from automatic

reasoning and optimization, and to enable standardized implemen-

tation across query languages and runtimes. The semantics are

defined for various matching semantics that are commonly em-

ployed in subgraph querying (isomorphism, homomorphism, and

no-repeated-edge matching) and for the widely adopted property

graph model. We illustrate several examples where anti-vertices

can be employed to help familiarize with the anti-vertex concept.

We further showcase how anti-vertex support can be added in exist-

ing graph query languages by developing prototype extensions of

Cypher language. Finally, we study how anti-vertices interact with

the symmetry breaking technique in subgraph matching frame-

works so that their meaning remains consistent with the expected

outcome of constrained neighborhoods to connected vertices.

ACM Reference Format:
Kasra Jamshidi, Mugilan Mariappan, and Keval Vora. 2022. Anti-Vertex

for Neighborhood Constraints in Subgraph Queries. In Joint Workshop on
Graph Data Management Experiences & Systems (GRADES) and Network Data
Analytics (NDA) (GRADES & NDA’22), June 12, 2022, Philadelphia, P A, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3534540.3534690

1 INTRODUCTION
Subgraph queries are an important class of queries supported by

graph databases. These queries find instances of query graphs in an

input graph (also called data graph). Query graphs are well-defined

structures that constrain the vertices and edges in matching sub-

graphs, and how they should be connected to each other. However,

queries often require constraints on the neighborhood of the sub-

graphs, which are difficult to express in existing models for graph

queries.

In this paper, we describe anti-vertex, a special kind of vertex

that constrains how subgraphs are connected to the rest of the data

graph. Specifically, an anti-vertex indicates absence of a vertex,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9384-3/22/06. . . $15.00

https://doi.org/10.1145/3534540.3534690

i.e., there should be no vertex in the data graph that matches the

anti-vertex in the neighborhood of specified matched vertices.

The declarative nature of the anti-vertex construct simplifies

expressing the constraint on subgraph neighborhoods for several

applications. For example, identifying whether a clique is maximal

simply requires connecting an anti-vertex to all other vertices in

the clique query graph. In this case, the anti-vertex will ensure

that vertices in each matched subgraph do not have a common

neighbor, thereby guaranteeing maximality of the explored cliques.

To help develop the intuition for anti-vertex, as its first contribution

this paper identifies several examples where anti-vertices can be

employed.

The strength of any construct lies in its semantics being well-

defined, as it not only enables a standard implementation across

different languages and runtimes, but also allows automatic rea-

soning and optimization for efficient query evaluation. The second

contribution is formalizing the semantics of anti-vertex. We observe

that isomorphism, homomorphism and no-repeated-edge matching

semantics [5] are commonly employed in graph querying solu-

tions [4, 17, 21, 23, 41]. We formalize the anti-vertex under all three

matching semantics, and generalize for the widely used property

graph model [5]. The semantics are carefully developed to ensure

the meaning of anti-vertex remains consistent with the matching

semantics, i.e., it varies across the different matching semantics.

The third contribution of this paper is studying the interaction

of anti-vertex construct with graph query languages and subgraph

matching frameworks. This includes two components:

• The anti-vertex construct can be employed in graph query lan-

guages such as Cypher [17], GSQL [12], and GQL [11]. This

paper develops prototype extensions of Cypher’s patternmatch-

ing syntax in order to demonstrate how anti-vertices can be in-

corporated in Cypher without impacting its existing capabilities.

The anti-vertex enhancement in Cypher allows declaratively

writing the absence of vertex in the subgraph neighborhoods,

which is difficult to express otherwise.

• Subgraph matching frameworks [36, 42] often avoid generating

duplicate subgraphs by employing symmetry breaking [18].

Since anti-vertex imposes structural constraint in the query

graph, we further study how anti-vertices should participate

in symmetry breaking in order to ensure subgraph results that

are consistent with the intuition of constrained neighborhoods.

Finally, the paper discusses a potential future extension to anti-

vertex that enforces constraints on neighborhoods in terms of ab-

sence of paths and absence of patterns instead of vertices alone. We

envision the final semantics of anti-vertices would naturally capture

such extensions, making graph query languages more expressive

and powerful.

https://doi.org/10.1145/3534540.3534690
https://doi.org/10.1145/3534540.3534690

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA Kasra Jamshidi, Mugilan Mariappan, and Keval Vora

FH3

FH1

Luke’s
DinerChilton

FH2

FH4

Hogwarts

KFC

FH5

p q

r t

p r

t u

r s

t u

p q

r u

q r

t u

p q

t u

Data Graph Non-maximal 4-cliquesMaximal
4-clique

FH4

Hogwarts

KFC

FH5

FH3 FH2

Luke’s
Diner

Chilton

FH1

q

u

r

t
p s

Normative
Subgraph

Anomalous
Subgraph

Fire HydrantSchool Mall

Data
Graph

FH3

FH1

Luke’s
DinerChilton

FH2

FH4

Hogwarts

KFC

FH5

p q

r t

p r

t u

r s

t u

p q

r u

q r

t u

p q

t u

Data Graph Non-maximal 4-cliquesMaximal
4-clique

FH4

Hogwarts

KFC

FH5

FH3 FH2

Luke’s
Diner

Chilton

FH1

q

u

r

t
p s

Normative
Subgraph

Anomalous
Subgraph

Fire HydrantSchool Business

Data
Graph

MATCH (a:SCHOOL)--(b:BUSINESS),

(a)--(c:FIRE_HYDRANT)--(b),

(a)--(d:FIRE_HYDRANT)--(b)

WHERE NOT EXISTS {

MATCH (a:SCHOOL)--(b:BUSINESS),

(a)--(c:FIRE_HYDRANT)--(b),

(a)--(d:FIRE_HYDRANT)--(b),

(a)--(e:FIRE_HYDRANT)--(b)

}

RETURN a, b, c, d

MATCH (a:SCHOOL)--(b:BUSINESS),

(a)--(c:FIRE_HYDRANT)--(b),

(a)--(d:FIRE_HYDRANT)--(b)

WHERE NOT EXISTS {

MATCH (a)--(e:FIRE_HYDRANT)--(b)

WHERE e<>c

AND e<>d

}

RETURN a, b, c, d

Figure 1: Anomaly detection use case. The anomalous subgraph of interest is the one where the school and the business are
connected with two fire hydrants and not three. Cypher queries to find anomalous subgraphs shown on right.

FH3

FH1

Luke’s
DinerChilton

FH2

FH4

Hogwarts

KFC

FH5

p q

r t
p r

t u

r s

t u

p q

r u
q r

t u

p q

t u

Data Graph Non-Maximal 4-CliquesMaximal
4-Clique

FH4

Hogwarts

KFC

FH5

FH3 FH2

Luke’s
Diner

Chilton

FH1

q

u

r

t
p s

Normative
Subgraph

Anomalous
Subgraph

Fire HydrantSchool Business

Data
Graph

MATCH (a)--(b), (a)--(c), (a)--(d),

(b)--(c), (b)--(d), (c)--(d)

WHERE NOT EXISTS{

MATCH (a)--(b), (a)--(c), (a)--(d),

(b)--(c), (b)--(d), (c)--(d),

(a)--(e), (b)--(e),

(c)--(e), (d)--(e)

}

RETURN a, b, c, d

MATCH (a)--(b), (a)--(c), (a)--(d),

(b)--(c), (b)--(d), (c)--(d)

WHERE NOT EXISTS{

MATCH (a)--(e), (b)--(e),

(c)--(e), (d)--(e)

WHERE e<>a AND e<>b

AND e<>c AND e<>d

}

RETURN a, b, c, d

Figure 2: Maximal cliques use case. Only clique r-s-t-u is a maximal size-4 clique since all other size-4 cliques are part of larger
size-5 clique p-q-r-t-u. Cypher queries to find maximal 4-cliques shown on right.

2 USE CASES
In this section, we present motivating use cases that constrain the

subgraphs of interest based on their neighborhoods.We also demon-

strate how such constrained queries can be currently expressed in

the Cypher language to argue the need for an easily expressible

construct that indicates absence of vertices.

Example 2.1. Consider the use cases below.

(1) Anomaly Detection. Identifying anomalies in graph data [33] is

crucial across various domains. Certain anomalies are identi-

fied as subgraphs that have missing vertices from a reference

(normative or non-anomalous) subgraph [13]. Figure 1 shows

an example of a city planning scenario. One of the planning

requirements is if there is a school and a business close to each

other, then there must be at least three fire hydrants nearby that

are useful for both locations. For the graph shown in Figure 1,

the subgraph with Chilton and Luke’s Diner satisfies the allo-
cation requirement because of fire hydrants FH1, FH2 and FH3.
However, the subgraph with Hogwarts and KFC is anomalous

since there are only two fire hydrants FH4 and FH5.
Finding subgraphs with exactly two fire hydrants is not straight-

forward. There are two obvious approaches to writing a Cypher

query for this problem, both shown in Figure 1. In the first query,

the problem is reformulated as matching subgraphs with two

fire hydrants that are not part of subgraphs containing three

fire hydrants. Expressing the absence of the third fire hydrant in

such an indirect fashion causes tedious repetition and increase

in query sizes. This not only makes it challenging to read and

manage those queries (e.g., incrementally adjust to add new

constraints), but also makes the process of writing complex

queries (e.g., with multiple constraints) error-prone. The sec-

ond query incurs less repetition in the subquery than the first

approach, but requires users to specify additional constraints

against the outer query to achieve the desired semantics. Deter-

mining the correct constraints to ensure the subquery does not

filter too many or too few subgraphs is difficult in larger queries,

as users must visualize how their query will be matched against

complex graph structures. Both approaches lead to larger, less

declarative queries involving error-prone subqueries. Instead,

the absence of another fire hydrant neighbor can be directly

expressed using an anti-vertex.

(2) Maximal Cliques. Finding and enumerating maximal cliques is

a popular graph mining problem, with applications in social

network analysis, financial analysis, security and biology [8].

In Figure 2, the clique r-s-t-u is maximal, but the other cliques

are not maximal since they all can be extended into the larger

clique p-q-r-t-u by adding a vertex. While cliques of a certain

size can be easily expressed as a Cypher query, the maximality

requirement can again be expressed in two ways. The first

query in Figure 2 reformulates the problem as finding cliques of

size k that are not contained inside cliques of size k + 1, while
the second query finds vertices adjacent but not equal to all k
previously matched vertices. Since the maximality constraint

simply limits the vertices in cliques to not have a common

neighboring vertex, the absence of this common neighboring
vertex can be directly expressed using an anti-vertex.

(3) Approximate SubgraphMatching.Approximate subgraphmatch-

ing often allows optional and forbidden vertices and edges [43]

to provide a loose subgraph template for which subgraphs are

matched. As subgraphs get matched for approximate templates,

identifying which subgraphs result due to the vertices being

optional requires adding a constraint for the vertex to be absent.

Such a constraint indicating absence of vertices can be achieved

using anti-vertices.

(4) Contrasting Quasi-Cliques. Recent research [1] on mining for

multigraphs argues the strength of finding collection of vertices

that are dense in one graph but less connected in a second

Anti-Vertex for Neighborhood Constraints in SubgraphQueries GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA

graph. An interesting sub-case is mining contrasting quasi-

cliques where the sparser subgraph is fully imposed on a subset

of vertices, i.e., remaining vertices are not connected to the

subgraph. Here, the isolated vertices from the rest of the subgraph
can be represented using anti-vertices.

The above examples showcase the need for easily expressing

absence of vertex connections in the neighborhood of explored

subgraphs. A well-defined declarative construct would also enable

thorough reasoning about correctness as well as methodical explo-

ration of useful optimizations.

3 ANTI-VERTEX: CONCEPT AND SEMANTICS
This section develops the concept of the anti-vertex. Section 3.1

illustrates the semantics of anti-vertices by means of sample use

cases. Then, Section 3.2 establishes our data model and terminology,

and Section 3.3 formally defines the semantics of anti-vertices.

3.1 What is an Anti-Vertex?
An anti-vertex is a vertex in the query graph that indicates absence

of a vertex in the resulting subgraph. Anti-vertices allow users

to express constraints on the neighborhoods of subgraph vertices

declaratively, simply by describing which vertices are undesirable.

To easily visualize an anti-vertex in the query graph, anti-vertices

are pictorially represented as vertices with dashed borders as op-

posed to solid borders used for regular vertices. We demonstrate

how anti-vertices can be employed in our use cases to help develop

the intuition.

Example 3.1. Anti-vertices simplify the expression of the anomaly

detection and maximal cliques use cases from Example 2.1.

(1) Anomaly Detection. To find anomalous subgraphs with two

fire hydrants, a normative subgraph can easily be turned into

a query graph by marking a fire hydrant as an anti-vertex.

Figure 3a shows the query graph containing an anti-vertex that

exactly returns the anomalous subgraph containing FH4, FH5
without returning the normative subgraph involving FH1, FH2,
FH3. The anti-vertex (indicated by the dotted border) requires

that any school and business matched by the query do not have

a third fire hydrant in their neighborhood. In this case, the

anti-vertex provides a declarative way to express a constraint

on the shared neighborhood of nearby schools and businesses.

(2) Maximal Cliques. A maximal clique of size k can be directly

expressed using an anti-vertex by expressing a clique of size

k + 1 and marking one of the vertices as an anti-vertex. As

shown in Figure 3b, the query graph contains an anti-vertex

connected to all the vertices of a 4-clique. This eliminates all the

non-maximal 4-cliques from the result set, while still returning

the maximal r-s-t-u clique.

As demonstrated in the above examples, the anti-vertex is a

declarative construct that allows users to express constraints simply

in terms of which results are not desired. Definitions are established

next, before formal discussion of the anti-vertex semantics.

(a) Anomaly detection. Third fire
hydrant marked as anti-vertex.

(b) Maximal 4-cliques. Fifth vertex
in the cliquemarked as anti-vertex.

Figure 3: Use cases with anti-vertex.

3.2 Preliminaries
Graph Model. When storing and processing graph-structured

data it is often convenient to consider not only the structural in-

formation encoded by connections between vertices, but also the

myriad information associated with each vertex and edge. Two

popular models for rich graph data are the Resource Description

Framework (RDF) [10] and property graphs [5]. Property graphs

canmodel more complex structures than RDF by allowing edges and

vertices to be associated with arbitrary key-value pairs called prop-

erties. As a result, property graphs have gainedwidespread adoption

by both commercial and academic graph databases [4, 11, 17, 41].

We develop our graph model based on the property graph model.

Though we define a similar graph model, this paper uses simple

undirected graphs in order to ease exposition, since accounting for

edge directions and properties is trivial but involves cumbersome

notation. Descriptions of how definitions and semantics translate

to property graphs are provided where it is not obvious.

Let I ⊆ Z be a set of integer identifiers, and let L and T be sets

of vertex labels and edge types, respectively. An undirected graph
is a tuple G = ⟨V , E, λ, τ ⟩ where:

• V ⊆ I are the vertices of G.
• E ⊂ V ×V are the edges of G, consisting of unordered pairs of

distinct vertices.

• λ : V → 2
L

maps each vertex to a (possibly empty) set of

labels.

• τ : E → T maps each edge to an edge type.

Let G = ⟨VG , EG , λG , τG ⟩ and H = ⟨VH , EH , λH , τH ⟩ be graphs.

For v ∈ VG , e ∈ EH , u ∈ VH , the (e,u)-neighborhood of v is the set

of vertices inVG which contain the labels of u and are adjacent tov
via edges like e . Formally, we write the (e,u)-neighborhood of v as

N(v, e,u) = {v ′ ∈ VG : (v,v ′) ∈ EG

∧ τH (e) = τG ((v,v
′))

∧ λH (u) ⊆ λG (v
′)}

Next, we clearly separate anti-vertices in our model. A query
graph is a graph where a proper subset of vertices V − ⊂ V are dis-

tinguished as anti-vertices. Currently we assume two anti-vertices

cannot form both endpoints of an edge, but we envision the seman-

tics will evolve to a point where this assumption is not enforced
1
.

For convenience, we introduce notation to partition the edges and

1
Since anti-vertex simply captures absence of vertices, we envision that anti-vertices

can be used to model paths of absent vertices (e.g., querying vertices separated by two

hops), which will require edges between two anti-vertices. However, the semantics of

anti-vertices with such extended capability need to be thoroughly defined, which is

left for future work (see Section 8).

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA Kasra Jamshidi, Mugilan Mariappan, and Keval Vora

vertices of the query graph into the parts with and without anti-

vertices:

V + = V \V −

E+ = {(u,v) ∈ E : u,v ∈ V +}

E− = E \ E+

Throughout the paper, we will refer to G = ⟨VG , EG , λG , τG ⟩ as
the data graph and P = ⟨VP , EP , λP , τP ⟩ as the query graph.

Finally, we define property graph based on the definition in [17],

while including anti-vertices. A property graph is a data graph or

query graph where E ⊆ I \V , and there are additional functions

ρ : E → V ×V and π : V ∪ E → 2
K×V

, where K and V are sets

of property keys and values, respectively. ρ maps each edge to an

ordered pair of endpoints, so that a pair of vertices can havemultiple

edges between them. The definition of the (e,u)-neighborhood of a

vertex v generalizes easily to property graphs by using ρ to obtain

all edges involving v and by considering the properties of e and u
in addition to their type and labels.

Subgraph Matching. A match is a mapping m : V +P ∪ E+P →

VG ∪ EG from the vertices and edges of P to the vertices and edges

of G which satisfies two kinds of constraints: (a) structural con-

straints indicating how edges and vertices are connected; and (b)

non-structural constraints regarding vertex labels and edge types

of P . The non-structural constraints are defined as:

∀v ∈ V +P , λP (v) ⊆ λG (m(v))

∧ ∀e ∈ E+P , τP (e) = τG (m(e))

The structural constraints, on the other hand, are dependent on

the underlying matching semantics. We consider three matching

semantics defined by [5]: isomorphism (used in [21, 23]), homomor-
phism (used in [4, 41]) and no-repeated-edge (used in [17]).

• Homomorphism: Any mapping from P toG that preserves edge

relationships is a homomorphism. Formally, a match m is a

homomorphism if it satisfies:

∀(u,v) ∈ E+P , (m(u),m(v)) =m((u,v))

• No-Repeated-Edge: In addition to preserving edge relationships,

m must be an injective mapping with respect to the edges of

G in no-repeated-edge semantics. While the same vertex in G
may appear multiple times as part of the match,m never maps

two different pattern edges to the same data edge. A matchm
satisfies no-repeated-edge semantics if:

∀(u,v) ∈ E+P , (m(u),m(v)) =m((u,v))

∧ ∀e1, e2 ∈ E+P ,m(e1) =m(e2) =⇒ e1 = e2

• Isomorphism: Isomorphism semantics require thatm is injective

with respect to both vertices and edges, so that every data

vertex/edge in the range of m is mapped from exactly one

query vertex/edge in the domain. In other words, every vertex

and edge matched bym is distinct. Formally, a matchm is an

isomorphism if:

∀(u,v) ∈ E+P , (m(u),m(v)) =m((u,v))

∧ ∀e1, e2 ∈ E+P ,m(e1) =m(e2) =⇒ e1 = e2

∧ ∀v1,v2 ∈ V +P ,m(v1) =m(v2) =⇒ v1 = v2

We abuse the function notation to allow sets as well, e.g., for a

vertex or edge subset S,m(S) = {m(x) : x ∈ S}.
These definitions can be easily extended to property graphs by

also requiring that properties on vertices and edges be satisfied by

the mapping, in a similar way to vertex labels, and using ρ to obtain

edge endpoints.

3.3 Formal Semantics
Anti-vertices encode an additional requirement on matches, namely

that an anti-vertex should not be possible to match.

Supposem is a match for all edges and standard vertices of a

query graph P . Let C : V −
P → 2

VG
be a function which returns

the set of data vertices that can be mapped to bym from a query

anti-vertex. The matchm is valid only if ∀u ∈ V −
P ,C(u) = �. Hence,

an anti-vertex will invalidate a match if there are vertices in the

data graph which can be mapped to it.

The definition of C depends on the underlying subgraph match-

ing semantics (homomorphism, no-repeated-edge, isomorphism),

as described next. To ensure the semantics of anti-vertices is con-

sistent with the matching semantics, we define C by adhering to

the requirements onm which allow or disallow multiple different

pattern vertices/edges to be mapped to the same vertices/edges.

Let P = ⟨VP , EP , λP , τP ⟩ be a query graph,G = ⟨VG , EG , λG , τG ⟩
be the data graph, andm be a match for P in G.

Homomorphism. In homomorphism semantics,m only needs to

satisfy the vertex labels and edge types, and preserve edge rela-

tionships. Hence, any data vertex with the correct edges and labels

can fulfill the anti-vertex requirement and invalidate the match,

including previously mapped vertices. C is defined as follows.

C(u) =
⋂

v :(u ,v)∈EP

N(m(v), (u,v),u)

No-Repeated-Edge. No-repeated-edge semantics requires thatm

provide an injective mapping from edges in P to edges inG . Hence,
for anti-vertices, the data edges that are already mapped by m
cannot invalidate the match, but vertices fromm can satisfy the

anti-vertex requirement (i.e., allow repeated vertices). C is defined

as follows.

C(u) =
⋂

v :(u ,v)∈EP

N(m(v), (u,v),u) \m(N(v, (u,v),u))

Isomorphism. In isomorphism semantics, m must be injective

with respect to both edges and vertices, with no repetition. Hence,

data vertices already mapped to by m (and implicitly, the edges

incident on those vertices) cannot fulfill the anti-vertex requirement

to invalidate the match. C is defined as follows.

C(u) =
⋂

v :(u ,v)∈EP

N(m(v), (u,v),u) \m(VP)

3.4 Generalization for Property Graphs
The above semantics naturally generalize to property graphs. In

a property graph, each anti-vertex u can be incident on multiple

edges with directions. Thus, to transform the previous definitions

of C(u) to fit property graphs, it suffices to intersect the (e,u)-
neighborhoods of v for every e ∈ EP where ρ(e) = (u,v) or ρ(e) =
(v,u), and perform the same set differences.

Anti-Vertex for Neighborhood Constraints in SubgraphQueries GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA

Table 1: Examples with anti-vertices.

Anti-vertex: PERSONc
Vertex: PERSONa

FOLLOWS edge
LIKES edge
Edge without constraints
anti-edge

Anti-vertex :PERSONVertex :PERSON FOLLOWS edge LIKES edge Edge without constraints

No. Query
Graph Data Graph Description (w.r.t. Isomorphism)

Subgraph Results
Notes

Isomorphism No-Repeated
-Edge

Q1

a
b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s
a

b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s

Find a,b such that

i) b FOLLOWs a, and
ii) a is not FOLLOWed/LIKEd by an-

other PERSON

a b
s p

q p

a b
s p

(q,p) is not a match in no-

repeated-edge semantics

Q2

a
b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s
a

b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s

Find a,b such that

i) b FOLLOWs a, and
ii) a and b do not LIKE another com-

mon PERSON

a b
p q

s q

a b
p q

s q

(p,s) is not a match since

p,s both LIKE r
(s,q) is a match since only

q LIKEs p

Q3

a
b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s
a

b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s

Find a,b,c such that

i) b and c FOLLOW/LIKE a, and
ii) c does not FOLLOW/LIKE another
PERSON

a b c
p r q

a b c
p q q

(p,q,r) is not amatch since

r FOLLOWs s

Q4

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c such that

i) b and c FOLLOW a, and
ii) b does not FOLLOW d, and
iii) c does not LIKE d

a b c
p q r

p r q

q s r

a b c
p q r

p r q

q s r

(q,r,s) is not amatch since

r FOLLOWs t and s LIKEs t

Q5 a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c such that

i) a FOLLOWs b and c, and

ii) a does not FOLLOW/LIKE another
PERSON

a b c
p q s

p s q

t s r

t r s

a b c
p q s

p s q

(t,s,r) and (t,r,s) are not
matches with no-repeated-

edge semantics since t
LIKEs and FOLLOWs r

Q6

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c,d such that

i) a and d FOLLOW/LIKE b and c, and

ii) a and d do not FOLLOW/LIKE an-

other common PERSON

a b c d
p q r s

p r q s

s q r p

s r q p

a b c d
- - - -

No matches with no-

repeated-edge semantics

since p and s LIKE and

FOLLOW q

Q7

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c such that

i) a and b FOLLOW/LIKE c, and
ii) a and c do not FOLLOW another

common PERSON , and
iii) b and c do not LIKE another com-

mon PERSON

a b c
p r s

r p s

q r t

r q t

q p r

a b c
p r s

r p s

q r t

r q t

q p r

q q t

(p,q,r) is not amatch since

p and r both FOLLOW s, and
q and r both LIKE t

Q8

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c such that

i) b and c FOLLOW a, and
ii) the three do not LIKE a common

PERSON

a b c
s p r

s r p

a b c
s p r

s r p

(r,p,q) is not amatch since

r,p,q LIKE s.
(s,p,r) is a match since

r,p LIKE q but s does not

LIKE q

LetG and P be property graphs. The semantics with isomorphism

in property graphs can be expressed by defining C as follows.

C(u) =
⋂

e ∈EP :
ρ(e)=(u ,v)

N(m(v), e,u) ∩
⋂

e ∈EP :
ρ(e)=(v ,u)

N(m(v), e,u) \m(VP)

Similarly, semantics of anti-vertices with homomorphism and

no-repeated-edge semantics in property graphs can be defined by

translating the definitions from Section 3.3.

4 MORE EXAMPLES
Table 1 shows various subgraph queries where anti-vertices are

used in different ways. The data graphs capture social network

information where vertices represent people and edges represent

LIKES and FOLLOWS relationships. The query graphs contain anti-

vertices, and their textual description is provided to help familiarize

with the concept by demonstrating how anti-vertices are perceived

for social network analysis. For isomorphism and no-repeated-edge

matching semantics, the resulting mappings between query vertices

and data vertices are shown in relational format.

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA Kasra Jamshidi, Mugilan Mariappan, and Keval Vora

pattern ::= pattern° | a = pattern°
pattern° ::= node_pattern

| node_pattern rel_pattern pattern°
▷ | node_pattern rel_pattern pattern+
▷ | pattern+ rel_pattern pattern°
▷ pattern+ ::= anti_node_pattern
▷ | anti_node_pattern rel_pattern pattern°

node_pattern ::= (a? label_list? map?)
▷ anti_node_pattern ::= (! a? label_list? map?)

rel_pattern ::= -[a? type_list? len?]->
| <-[a? type_list? len?]-
| -[a? type_list? len?]-

label_list ::= : l | : l label_list
map ::= { prop_list }

prop_list ::= k : expr | k : expr, prop_list
type_list ::= : t | type_list | t

len ::= * | *d | *d1. . | *. . d2 | *d1 . . d2
d, d1, d2 ∈ N

Figure 4: Syntax of Cypher patterns with anti-vertex. Enhancements to the original grammar are marked with ▷.

5 ANTI-VERTEX IN CYPHER
The anti-vertex construct can be incorporated in existing graph

query languages to express the complex anti-vertex queries as

easily as standard subgraph queries. Recent graph query lan-

guages [4, 11, 17, 41] integrate declarative “ASCII-art” pattern ex-

pressions with familiar SQL constructs. In particular, Cypher [17]

is a popular graph query language, used in both academic and com-

mercial graph databases including Neo4j [32], Amazon Neptune [2],

and GraphFlow [26]. In this section we develop prototype exten-

sions to Cypher’s pattern matching syntax to support anti-vertices.

Cypher pattern matching syntax allows node patterns, relation-

ship patterns, and path patterns. Since anti-vertices express absence

of neighbors, they will be best expressed using relationship patterns

and path patterns. However, the anti-vertex semantics developed

in this paper do not consider the case where two anti-vertices are

connected via an edge (recall the assumption in Section 3.2). This

leaves the semantics of fixed/variable-length path fragments con-

taining anti-vertices ambiguous. While such semantics are left for

future work (Section 8), we envision the grammar to be able to

support arbitrary path patterns with anti-vertices.

Hence, we develop two prototype extensions to Cypher’s pattern

matching syntax: one that allows arbitrary path patterns with anti-

vertices (presented in Section 5.1), and one that limits the grammar

to the anti-vertex semantics defined in this paper (presented in Sec-

tion 5.2). Allowing arbitrary path patterns requires fewer changes

to the original grammar, and thus easier implementation and val-

idation in existing query engines, at the cost of some ambiguity

regarding the semantics of anti-vertices in fixed/variable-length

path patterns. Meanwhile, keeping the grammar limited requires

more complex changes to the original grammar, but has no ambigu-

ity, and provides flexibility for future work to define the semantics

of path patterns involving an anti-vertex consistently (i.e., handle

paths with one or both endpoints being an anti-vertex consistently).

5.1 Grammar with Arbitrary Path Patterns
Following the same notation as Cypher, Figure 4 shows an extended

pattern matching grammar that supports anti-vertices (extensions

added for anti-vertex support are marked with ▷). This syntax only
applies within MATCH clauses of Cypher; the remainder of Cypher’s

syntax is unaffected.

An anti-vertex is defined by the anti_node_pattern construct,

which is identical to node_pattern from the original Cypher gram-

mar, but marked with a ! symbol
2
. This construct only appears

2
The ! symbol typically denotes not operator in programming languages, which fits

the meaning for anti-vertex (data vertex not present).

in pattern+ either by itself or accompanied by rel_pattern. We

compose these fragments with Cypher’s original pattern definition

to allow as much programmer flexibility as possible.

Intuitively, the syntax allows an anti-vertex to be present:

(1) at the beginning of the pattern:

(!a)--

(2) in the middle of the pattern:

--(!a)--

(3) at the end of the pattern:

--(!a)

Since we utilize rel_pattern as defined in the original grammar,

fragments of path patterns with anti-vertices can be expressed in

this grammar. For example, the following are allowed:

(a)-[*3]-(!b)

(!a)--(b)

()-[*2]-(!a)-[*2]-()

The pattern+ separates the anti_node_pattern from pattern°,
which disallows anti-vertices at both endpoints of a relationship.

5.2 Grammar without Arbitrary Path Patterns
Here we limit the syntax to only express anti-vertices where se-

mantics are well-defined in this paper. Figure 5 shows the extended

pattern matching grammar for this case.

The simple_rel_pattern is added to ensure path fragments con-

taining anti-vertices are not length-based (fixed or variable). sim-
ple_rel_pattern is simply rel_pattern without a len parameter.

The anti_node_pattern construct only appears in pre_pattern
and post_pattern, accompanied by simple_rel_pattern. Intu-
itively, pre_pattern represents the syntax fragment

(!a)--

and post_pattern represents the syntax fragments

--(!a) and --(!a)--

These fragments are composed with Cypher’s original pattern

definition to allow as much programmer flexibility as possible.

A pattern either begins with an anti-vertex (through

pre_pattern) or a standard vertex (through pattern°). Anti-

vertices in the middle or at the end of a pattern are supported

through mutual recursion between pattern° and post_pattern.
Two anti-vertices will never form both endpoints of a relationship

because pre_pattern never occurs directly before post_pattern.

Anti-Vertex for Neighborhood Constraints in SubgraphQueries GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA

▷ pattern ::= pattern+ | a = pattern+
▷ pattern+ ::= pattern°| pre_pattern
▷ pre_pattern ::= anti_node_pattern simple_rel_pattern pattern°

pattern° ::= node_pattern
| node_pattern rel_pattern pattern°

▷ | node_pattern simple_rel_pattern post_pattern
▷ post_pattern ::= anti_node_pattern
▷ | anti_node_pattern simple_rel_pattern pattern°
▷ anti_node_pattern ::= (! a? label_list? map?)
▷ simple_rel_pattern ::= -[a? type_list?]->
▷ | <-[a? type_list?]- | -[a? type_list?]-

node_pattern ::= (a? label_list? map?)
rel_pattern ::= -[a? type_list? len?]->

| <-[a? type_list? len?]-
| -[a? type_list? len?]-

label_list ::= : l | : l label_list
map ::= { prop_list }

prop_list ::= k : expr | k : expr, prop_list
type_list ::= : t | type_list | t

len ::= * | *d | *d1. . | * . . d2
| *d1 . . d2

d, d1, d2 ∈ N

Figure 5: Syntax of Cypher patterns with anti-vertex, without arbitrary path patterns. Enhancements marked with ▷.

While fixed/variable length path fragments with anti-vertex are

disallowed, regular fixed/variable length path fragments containing

node_pattern can still be expressed (same as defined in original

Cypher grammar). For example, the following are allowed:

(a)-[*2]-()--(!b)

(!a)--(b)

(a)--(!b)--(c)

5.3 Examples with Cypher
We revisit the use cases from Section 2 to demonstrate how they

can be easily expressed using the extended Cypher grammar.

Figure 6 and Figure 7 show the example Cypher queries in Fig-

ure 1 and Figure 2 rewritten declaratively with this syntax.

Example 5.1. Consider the anomaly detection and maximal

cliques use cases from Example 2.1.

(1) Anomaly Detection. The Cypher query with anti-vertex for

anomaly detection is shown in Figure 6. Instead of a long sub-

query which repeats most of the initial MATCH clause, or one that
must explicitly specify the matching semantics, the query di-

rectly expresses the anomalous subgraph using an anti-vertex

to denote absence of a third fire hydrant. Anti-vertices are

expressed similarly to standard vertices, including specifying

labels and properties.

(2) Maximal Cliques. Figure 7 shows the Cypher query with anti-

vertex for finding maximal cliques of size 4. Previously without

anti-vertex support (shown in Figure 2), the constraints induced

by the matching semantics on the subgraph were explicitly

enforced in a WHERE clause. Now, the query directly expresses

the maximality constraint by connecting all vertices to an anti-

vertex, guaranteeing consistency with the underlying matching

semantics. The anti-vertex e is unconstrained, thus if any data

vertex can be mapped to e (i.e., there is a vertex adjacent to

the matches for all of a,b,c,d), then the subgraph will be

discarded, as matching e would create a clique of size 5.

6 ANTI-VERTEX AND SYMMETRY BREAKING
Subgraph matching frameworks operating under isomorphism se-

mantics [24, 36, 42] often find unique subgraphs and avoid generat-

ing automorphic subgraphs (subgraphs that are isomorphic to each

other). They achieve this by employing a technique known as sym-
metry breaking [18] that ensures a given set of data graph vertices

MATCH (a:SCHOOL)--(b:BUSINESS),

(a)--(fh1:FIRE_HYDRANT)--(b),

(a)--(fh2:FIRE_HYDRANT)--(b),

(a) --(!fh3:FIRE_HYDRANT)--(b)

RETURN a, b

Figure 6: Anomaly detection using anti-vertex in Cypher.

MATCH (a)--(b), (a)--(c), (a)--(d),

(b)--(c), (b)--(d), (c)--(d),

(a) --(!e), (b) --(!e), (c) --(!e), (d) --(!e)

RETURN a, b, c, d

Figure 7: Maximal 4-clique using anti-vertex in Cypher.

is only matched once to the query graph. This section studies how

anti-vertices in the query graph interact with symmetry breaking.

Symmetry breaking works by enforcing an ordering on the ids

of vertices which match symmetric sets of query graph vertices.

The following example illustrates how symmetry breaking avoids

duplicate subgraphs.

Example 6.1. Consider an undirected, unlabeled 3-vertex path

a-b-c as the query graph. The query vertices a and c are symmetric:

they are both constrained only by an edge to b. As a result, any data
vertex matched to a can also be matched to c, hence resulting in

automorphic (duplicate) subgraphs. Symmetry breaking enforces

an additional constraint on a match m, e.g. m(a) < m(b), where
m(a) is the identifier for the data vertex mapped to a. Now, due to
the isomorphism semantics requiring that all data vertices involved

in the match are distinct, the matches for a and c cannot swap roles,
hence ensuring unique subgraph results.

Intuitively, an anti-vertex can be thought of as an additional

constraint on matches. We advocate that anti-vertices should be

considered when breaking symmetries to maximize flexibility. This

is because disregarding anti-vertices during symmetry breaking

can yield unintuitive results as it becomes equivalent to adding

symmetric anti-vertices. We illustrate this case below.

Example 6.2. Consider Q3 in Table 1. When disregarding the anti-

vertex d, query graph vertices b and c are symmetric, which induces

the orderingm(b) < m(c) on any matchm. This means the sole

match p-r-q under isomorphism semantics would be discarded,

sincem(b) = r > q =m(c). Such a result would be expected if the

query graph has a new anti-vertex adjacent to b.
When d participates in symmetry breaking, b and c are no longer

symmetric since b is not adjacent to an anti-vertex while c is. Hence,
no ordering constraint is enforced, which yields the match p-r-q.

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA Kasra Jamshidi, Mugilan Mariappan, and Keval Vora

By considering anti-vertices when breaking symmetries, the re-

sulting subgraphs are intuitive as they align with the basic ideology

of constraining the neighborhood of matched vertices. Moreover,

this also retains flexibility for cases where the anti-vertex constraint

needs to be enforced on symmetric vertices in the match; this can

be achieved by simply adding symmetric anti-vertices.

7 RELATEDWORK
Graph Query Languages. Graph query languages and their data

models have been extensively researched [5]. SPARQL [22] is one of

the first graph query languages to provide pattern matching along-

side SQL constructs, and operates on sets of RDF triples. It can

support property graphs through [40], which translates SPARQL

queries into Gremlin queries. Cypher [17] is a query language on

property graphs first developed as part of Neo4j [32] that introduced

“ASCII-art” syntax to specify path patterns. PGQL [41] offers regular

path expressions in the pattern matching syntax, and introduces

novel operators to construct new graphs as the result of a query.

G-CORE [4] proposes a new graph query language using similar

syntax to Cypher and PGQL, but operating in the path property
graph data model, where paths are treated as a first-class entity with

labels and properties. GSQL [12] allows for computing aggregate

values from the results of graph queries for sophisticated graph an-

alytics. GQL [11] is a recent effort to create a standard graph query

language for property graphs. It provides several novel constructs

for query expression, such as partial edge direction restrictions and

edge predicates. Gremlin [37] is a functional graph traversal lan-

guage with a simple grammar meant to facilitate embedding within

a general-purpose programming language. Unlike the SQL-like

syntax, Gremlin users define queries as trees of functions through

method-chaining in a host language.

These query languages expose syntax and operators for spec-

ifying edges, paths, and constraints on query results, but cannot

easily express neighborhood constraints. The anti-vertex construct

provides a declarative method for specifying neighborhood con-

straints. Anti-vertex is a generic concept and can be incorporated

in any modern query language in a similar fashion to our proposed

extensions to Cypher.

Querying Constructs. There has also been work on subgraph

query models and programming constructs for subgraph queries.

Anti-vertex originated from Peregrine [24, 25], where it was

used in simple undirected graphs without edge labels. Due to lack

of formal semantics, the behavior remained ambiguous when ex-

tended to general graph models like the property graph model with

different matching semantics. By contrast, this paper formalizes

anti-vertex semantics consistent with all three commonly used

matching semantics, under the property graph model where graphs

can have directions and edge labels. We also study how native

anti-vertex support can be added in existing graph query languages

by extending the Cypher language and analyze how anti-vertices

should participate in symmetry breaking.

[16] allows expressing functional dependencies on graphs (GFD).

GFDs cannot be used to implement the anti-vertex construct, be-

cause they only constrain vertices within a match, without access

to the surrounding data graph. [15] proposes the concept of condi-

tional graph pattern (CGP) which enforces conditions on edges, but

it cannot express absence of a vertex like the anti-vertex construct.

Absence of entities has been studied in other contexts. Graph

grammars [14] provide rule-based mechanisms for generating and

manipulating graphs, where the productions are applied to a graph

in order to obtain its derived graph when certain application con-

ditions are met. [19] studies negative application conditions that

include non-existence of nodes and edges in order to restrict how

and where productions get applied. In relational algebra [9], the

antijoin operator is similar to semijoin, except its result contains

tuples from one relation that do not match on the common at-

tribute from the other relation. Antijoins in SQL are achieved using

WHERE clause coupled with logical operators like NOT EXISTS,
limited in a similar manner as shown in Figure 1 and Figure 2.

Graph Query Engines. The backends to graph query languages

are graph query engines. Recent works include PGX.D [23, 38]

using PGQL [41]; GraphFlow [26] using Cypher [17]; and GAIA [34]

using Gremlin [37]. These works consider backend systems details

regarding efficiently executing graph queries, whereas this paper

focuses on the expression of graph queries.

Subgraph Matching. There is a broad literature concerned with

matching subgraphs [3, 6, 7, 20, 21, 25, 27–31, 35, 36, 39, 42] in large

graphs. These works develop novel methods for efficientlymatching

query graphs according to isomorphism semantics in simple graphs.

These works do not consider graph query expression. The set-based

anti-vertex semantics can be incorporated into subgraph matching

algorithms, where set operations compute match candidates.

8 CONCLUSION AND FUTUREWORK
In this paper, we described anti-vertex, a declarative construct that
expresses absence of vertices in the subgraph. We formalized the

semantics of anti-vertex for isomorphism, homomorphism and no-

repeated-edgematching semantics, and generalized for the property

graph model. Several examples were presented to illustrate how

anti-vertices simplify expressing constraints on subgraph neighbor-

hoods. We further studied how anti-vertex construct can be added

to graph query languages by showcasing extensions to Cypher

language’s pattern matching grammar. Finally, we discussed how

anti-vertices in the query graph interact with the symmetry break-

ing technique employed in subgraph matching frameworks.

As future work, we aim to generalize the philosophy of anti-

vertex to be able to express higher-order constraints on neighbor-

hoods. For example, path patterns are commonly used subgraph

queries that look for multi-hop paths between input vertices. Ab-

sence of paths, or anti-path, can potentially be a useful construct.

For example, querying vertices that are separated by at least a few

hops could be declaratively expressed using anti-paths. This can be

further generalized to queries where certain subgraphs may not be

induced between the vertices in the data graph. For instance, iden-

tifying triplets that are connected to a common neighbor, but that

are themselves pairwise-disconnected from each other can be ex-

pressed using an anti-triangle pattern (abusing the ‘anti’ keyword).

There are several open questions in this direction, ranging from

semantics of such higher-order constraints to systematically incor-

porating them in graph query languages. Since this paper does not

consider edges between anti-vertices, formalizing those semantics

would be crucial. We envision the final semantics of anti-vertices

would naturally capture the higher-order extensions.

Anti-Vertex for Neighborhood Constraints in SubgraphQueries GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA

REFERENCES
[1] Roberto Alonso and Stephan Günnemann. Mining contrasting quasi-clique

patterns. CoRR, abs/1810.01836, 2018.
[2] Amazon, Inc. Amazon Neptune, 2022. Version 1.1.0.0.

[3] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. Dis-

tributed Evaluation of SubgraphQueries UsingWorst-Case Optimal Low-Memory

Dataflows. Proceedings of the VLDB Endowment, 11(6):691–704, February 2018.

[4] Renzo Angles, Marcelo Arenas, Pablo Barcelo, Peter Boncz, George Fletcher,

Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan Se-

queda, Oskar van Rest, and Hannes Voigt. G-CORE: A core for future graph query

languages. In Proceedings of the ACM International Conference on Management of
Data, SIGMOD ’18, page 1421–1432, 2018.

[5] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. Foundations of Modern Query Languages for Graph Databases.

ACM Computing Surveys, 50(5), September 2017.

[6] Bibek Bhattarai, Hang Liu, and H. Howie Huang. CECI: Compact Embedding

Cluster Index for Scalable Subgraph Matching. In Proceedings of the ACM In-
ternational Conference on Management of Data, SIGMOD ’19, page 1447–1462,

2019.

[7] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient Sub-

graph Matching by Postponing Cartesian Products. In Proceedings of the ACM
International Conference on Management of Data, SIGMOD ’16, pages 1199–1214,

2016.

[8] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu.

Finding Maximal Cliques in Massive Networks. ACM Transactions on Database
Systems, 36(4), December 2011.

[9] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communi-
cations of the ACM, 13(6):377–387, June 1970.

[10] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and

Abstract Syntax. Technical report, W3 Consortium, 2014.

[11] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,

Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak,

Stefan Plantikow, Petra Selmer, Hannes Voigt, Oskar van Rest, Domagoj Vrgoc,

Mingxi Wu, and Fred Zemke. Graph Pattern Matching in GQL and SQL/PGQ.

CoRR, abs/2112.06217, 2021.
[12] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. Aggregation Support for

Modern Graph Analytics in TigerGraph. In Proceedings of the ACM International
Conference on Management of Data, SIGMOD ’20, page 377–392, 2020.

[13] William Eberle and Lawrence Holder. Discovering structural anomalies in graph-

based data. In Seventh IEEE international conference on data mining workshops
(ICDMW 2007), pages 393–398. IEEE, 2007.

[14] Hartmut Ehrig, Annegret Habel, and Hans-Jörg Kreowski. Introduction to Graph

Grammars with Applications to Semantic Networks. Computers & Mathematics
with Applications, 23(6-9):557–572, 1992.

[15] Grace Fan, Wenfei Fan, Yuanhao Li, Ping Lu, Chao Tian, and Jingren Zhou.

Extending graph patterns with conditions. In Proceedings of the ACM International
Conference on Management of Data, pages 715–729, 2020.

[16] Wenfei Fan, Yinghui Wu, and Jingbo Xu. Functional Dependencies for Graphs. In

Proceedings of the 2016 International Conference on Management of Data, SIGMOD

’16, page 1843–1857, 2016.

[17] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. Cypher: An Evolving Query Language for Property Graphs. In

Proceedings of the ACM International Conference on Management of Data, SIGMOD

’18, page 1433–1445, 2018.

[18] Joshua A. Grochow andManolis Kellis. NetworkMotif Discovery Using Subgraph

Enumeration and Symmetry-Breaking. In Research in Computational Molecular
Biology, pages 92–106, 2007.

[19] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph Grammars with

Negative Application Conditions. Fundamenta Informaticae, 26(3-4):287–313,
1996.

[20] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han.

Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive

Matching Order, and Failing Set Together. In Proceedings of the ACM International
Conference on Management of Data, SIGMOD ’19, pages 1429–1446, 2019.

[21] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. TurboISO : Towards Ultrafast

and Robust Subgraph Isomorphism Search in Large Graph Databases. In Proceed-
ings of the ACM International Conference on Management of Data, SIGMOD ’13,

pages 337–348, 2013.

[22] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. Technical report,

W3 Consortium, 2013.

[23] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt, Merijn

Verstraaten, and Hassan Chafi. PGX.D: A Fast Distributed Graph Processing

Engine. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15, 2015.

[24] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: A Pattern-Aware

Graph Mining System. In Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, 2020.

[25] Kasra Jamshidi and Keval Vora. A Deeper Dive into Pattern-Aware Subgraph

Exploration with Peregrine. ACM SIGOPS Operating Systems Review, 55(1):1–10,
2021.

[26] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and

Semih Salihoglu. Graphflow: An Active Graph Database. In Proceedings of
the ACM International Conference on Management of Data, SIGMOD ’17, page

1695–1698, 2017.

[27] Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick, Wook-Shin Han, JeongHoon

Lee, Seongyun Ko, and Moath H.A. Jarrah. DUALSIM: Parallel Subgraph Enu-

meration in a Massive Graph on a Single Machine. In Proceedings of the ACM
International Conference on Management of Data, SIGMOD ’16, pages 1231–1245,

2016.

[28] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong,

Hassan Chafi, Hyungyu Shin, and Geonhwa Jeong. TurboFlux: A Fast Continuous

Subgraph Matching System for Streaming Graph Data. In Proceedings of the ACM
International Conference on Management of Data, SIGMOD ’18, pages 411–426,

2018.

[29] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable Subgraph Enumer-

ation in MapReduce. Proceedings of the VLDB Endowment, 8(10):974–985, June
2015.

[30] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu Yang.

Scalable Distributed Subgraph Enumeration. Proceedings of the VLDB Endowment,
10(3):217–228, November 2016.

[31] Amine Mhedhbi and Semih Salihoglu. Optimizing Subgraph Queries by Combin-

ing Binary and Worst-Case Optimal Joins. Proceedings of the VLDB Endowment,
12(11):1692–1704, July 2019.

[32] Neo4j, Inc. Neo4j Graph Database, 2022. Version 4.4.

[33] Caleb C. Noble and Diane J. Cook. Graph-Based Anomaly Detection. In Proceed-
ings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’03, page 631–636, 2003.

[34] Zhengping Qian, Chenqiang Min, Longbin Lai, Yong Fang, Gaofeng Li, Youyang

Yao, Bingqing Lyu, Xiaoli Zhou, Zhimin Chen, and Jingren Zhou. GAIA: A System

for Interactive Analysis on Distributed Graphs Using a High-Level Language. In

18th USENIX Symposium on Networked Systems Design and Implementation, NSDI
’21, pages 321–335. USENIX Association, April 2021.

[35] Miao Qiao, Hao Zhang, and Hong Cheng. Subgraph Matching: On Compression

and Computation. Proceedings of the VLDB Endowment, 11(2):176–188, October
2017.

[36] Xuguang Ren, Junhu Wang, Wook-Shin Han, and Jeffrey Xu Yu. Fast and Ro-

bust Distributed Subgraph Enumeration. Proceedings of the VLDB Endowment,
12(11):1344–1356, July 2019.

[37] Marko A. Rodriguez. The Gremlin Graph Traversal Machine and Language. In

Proceedings of the 15th Symposium on Database Programming Languages, DBPL
2015, page 1–10, 2015.

[38] Nicholas P. Roth, Vasileios Trigonakis, Sungpack Hong, Hassan Chafi, Anthony

Potter, Boris Motik, and Ian Horrocks. PGX.D/Async: A Scalable Distributed

Graph PatternMatching Engine. In Proceedings of the Fifth InternationalWorkshop
on Graph Data-Management Experiences & Systems, GRADES ’17, 2017.

[39] Shixuan Sun and Qiong Luo. In-Memory Subgraph Matching: An In-Depth

Study. In Proceedings of the ACM International Conference on Management of
Data, SIGMOD ’20, page 1083–1098, 2020.

[40] Harsh Thakkar, Dharmen Punjani, Jens Lehmann, and Sören Auer. Two for

One: Querying Property Graph Databases Using SPARQL via Gremlinator. In

Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network Data Analytics (NDA),
GRADES-NDA ’18, 2018.

[41] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.

PGQL: A property graph query language. In Proceedings of the Fourth International
Workshop on Graph Data Management Experiences and Systems, GRADES ’16,

2016.

[42] Zhengyi Yang, Longbin Lai, Xuemin Lin, Kongzhang Hao, and Wenjie Zhang.

HUGE: An Efficient and Scalable Subgraph Enumeration System. In Proceedings
of the ACM International Conference on Management of Data, SIGMOD ’21, page

2049–2062, 2021.

[43] Stéphane Zampelli, Yves Deville, and Pierre Dupont. Approximate Constrained

SubgraphMatching. In Peter van Beek, editor, Principles and Practice of Constraint
Programming, CP 2005, pages 832–836, Berlin, Heidelberg, 2005. Springer Berlin

Heidelberg.

	Abstract
	1 Introduction
	2 Use Cases
	3 Anti-Vertex: Concept and Semantics
	3.1 What is an Anti-Vertex?
	3.2 Preliminaries
	3.3 Formal Semantics
	3.4 Generalization for Property Graphs

	4 More Examples
	5 Anti-Vertex in Cypher
	5.1 Grammar with Arbitrary Path Patterns
	5.2 Grammar without Arbitrary Path Patterns
	5.3 Examples with Cypher

	6 Anti-Vertex and Symmetry Breaking
	7 Related Work
	8 Conclusion and Future Work
	References

