Meta-Algorithms vs. Circuit Lower Bounds

Valentine Kabanets

Simon Fraser University

Vancouver, Canada

Algorithms yield lower bounds. Lower bounds yield algorithms.

Meta-Algorithms

Algorithms operating on algorithms

Examples of Meta-Algorithms

- Computability Theory :
- Virus checker,
- Infinite-loop detector (aka Halting problem)
- Complexity Theory : SAT , Polynomial Identity Testing (PIT)

Circuit - SAT

<u>Given:</u> poly(n)-size circuit C on n inputs.

<u>Decide:</u> Is C satisfiable?

Canonical NP -complete problem.

[Cook; Levin]

Polynomial Identity Testing

<u>Given:</u> poly(n)-size arithmetic circuit C on n inputs (over integers).

<u>Decide</u>: Is $C \equiv 0$?

Extra structure (C is a polynomial) makes PIT easier than UNSAT: PIT in BPP [Schwartz, Zippel, DeMillo-Lipton, ...]

Randomized PIT-Algorithm

If $C \equiv 0$, then always correct. Else, correct with high probability.

[Schwartz-Zippel]

Meta-Algorithms from Circuit Lower Bounds :

" Black-Box " use of lower bounds

Can we remove the need for random coins in algorithms, without much slowdown?

Derandomization

Computational Hardness \Rightarrow

Computational Randomness (pseudorandomness)

[Blum, Micali, Yao; Nisan & Wigderson, Babai et al., ...]

Pseudo-Random Generator (PRG)

Incompressibility Argument

Each $x \in Bad$ has "small" description relative to C: log |Bad| bits specifying the rank of x in Bad, plus the description of C

Any string incompressible relative to C is accepted by C.

Incompressibility Argument

Each x
Bad has "small" description relative to C
Any string incompressible relative to C is accepted by C.
High circuit complexity
=
incompressibility relative to small circuits

EXP requires arithmetic circuit size $2^{\Omega(n)} \Rightarrow PIT$ in Time(n^{polylog n}) [K. & Im

[K. & Impagliazzo]

Non - "Black-Box "Use of Circuit Lower Bounds

Natural Proofs [Razborov, Rudich]

A combinatorial property T of n-variable Boolean functions is natural against a class C if it is

- Constructive: "f in T" is decidable in $poly(2^n)$ time
- Large: $|T| > 1/poly(2^n)$ of all n-variable fns
- Useful against C: f in $T \Rightarrow f$ not in C

Natural Proofs \Rightarrow No Crypto

A natural proof of a circuit lower bound = a proof using a natural property .

Theorem [Razborov, Rudich]:
A natural proof of a circuit lower bound against a class C ⇒
algorithm breaking every candidate PRG implemented in C

(i.e., class C cannot compute a strong PRG)

Parity is not in AC⁰ [FSS+84, Yao85, Hastad86]

AC⁰: Constant depth, unbounded fan-in, poly-size

Switching Lemma

Given an AC^0 circuit $C(x_1,...,x_n)$,

- Choose a random subset of variables,
- Assign them to 0 or 1 randomly.
 Very likely, the circuit becomes shallow.
 - [Hastad]
- C not too large ⇒ can make it a constant function, with some variables still free.
 So, C can't compute PARITY.

AC⁰-functions are sparse

[Linial, Mansour, Nisan]

Can approximately learn AC⁰ - computable functions.

AC⁰ circuit: size cn, depth d

SAT for such DNFs is easy!

DNF : $\leq 2^{n(1-\mu)}$ ANDs, with $\mu = 1/(\log c + d \log d)^{d-1}$

ANDs have disjoint sets of satisfying assignments

[Impagliazzo, Mathews, Paturi]

Circuit Lower Bounds from Meta-Algorithms

Circuit - SAT

<u>Given:</u> poly(n)-size circuit C on n inputs.

<u>Decide:</u> Is C satisfiable?

If SAT in P, then EXP requires circuit size > $2^{n}/n$ [Kannan]

Facts:

- Almost all Boolean functions $f(x_1,...,x_n)$ require circuit size > $2^n / n$.
- But, open if $NEXP \subset PolySize$.

Can we use this approach to get any actual circuit lower bounds ???

AC⁰: Constant depth, unbounded fan-in, poly-size ACC⁰: AC⁰ with MOD m gates TC⁰: AC⁰ with MAJ gates PolySize . . . TC⁰ ACC⁰ AC^0

AC⁰: Constant depth, unbounded fan-in, poly-size ACC⁰: AC⁰ with MOD m gates TC⁰: AC⁰ with MAJ gates PolySize . . . TC⁰ ACC⁰ AC^0

AC⁰: Constant depth, unbounded fan-in, poly-size ACC⁰: AC⁰ with MOD m gates PolySize TC⁰ ACC⁰ AC^0

NEXP in ACC⁰?

Williams' Circuit Lower Bound

Theorem 1: If can solve *C* - SAT slightly better than "brute-force", then NEXP not in *C* - PolySize.

Theorem 2: ACC⁰ - SAT can be solved faster than "brute-force".

Corollary: NEXP not in ACC⁰.

Circuit Satisfiability

Theorem 1. There is k>0 such that : If C- SAT for n^c-size n-input circuits is in time O(2ⁿ/n^k) for every c, then NTime(2ⁿ) is not in C-PolySize.

Contrast: "Brute-force" C-SAT algorithm is in time 2ⁿ poly(n^c).

Circuit Lower Bounds from PIT-Algorithms

Polynomial Identity Testing (PIT)

<u>Given:</u> poly(n)-size arithmetic circuit C on n inputs (over integers).

<u>Decide</u>: Is $C \equiv 0$?

PIT in $P \implies NEXP$ requires superpolysize arithmetic circuits

(i.e., NEXP not in PolySize, OR Permanent not in Arithmetic PolySize) [K., Impagliazzo] **Important Polynomial Identities Permanent:** For X = $(x_{i,j})_{n \times n}$ $\operatorname{Perm}_{n}(X) = \sum_{\pi} \prod x_{i,\pi(i)}$

Defining Identities (expansion by minors): $Perm_n(X) \equiv \sum x_{1,j} Perm_{n-1}(X^{1,j})$... $Perm_1(x) \equiv x$

Summary

Good meta-algorithms (SAT, PIT, Learning)

strong circuit lower bounds

• Can get unconditional results on each side.

Some Challenges

 Non-black-box "SAT-Algorithms ⇒ Circuit Lower Bounds" conversions ?

[BPP = P \Rightarrow circuit l.b. for NEXP, but PRG \Rightarrow circuit l.b. for EXP]

• Better circuit lower bounds for $AC^0 \Rightarrow$ better SAT-algorithms?

[beyond the Switching Lemma?]