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Algorithms  Lower Bounds 

Algorithms 

Lower Bounds 

Algorithms  yield  lower bounds. 
Lower bounds  yield  algorithms. 



Meta-Algorithms 

Algorithms  operating  on algorithms 

 

 

 

 

 

 

 

Meta-Algorithm Algorithm 



Examples of Meta-Algorithms 

•  Computability Theory : 

 Virus checker ,   

 Infinite-loop detector (aka Halting problem) 

 

•  Complexity Theory : 

  SAT , 

  Polynomial Identity Testing  (PIT) 



Circuit - SAT  

 

 
 

x1    x2     x3        …         xn 

Given:  poly(n)-size circuit  
C on n inputs. 
 
Decide:  Is  C  satisfiable ? 

Canonical  NP -complete  problem.          [ Cook;  Levin ] 



Polynomial Identity Testing 

+ 

* 
3 

x1    x2     x3        …         xn 

Given:  poly(n)-size 
arithmetic circuit  C on n 
inputs (over integers). 
 
Decide:  Is  C   0  ? 

Extra structure ( C is a polynomial ) makes  PIT  easier than  UNSAT : 
 PIT  in  BPP                                 [ Schwartz, Zippel, DeMillo-Lipton, … ] 



Randomized  PIT-Algorithm 

+ 
* 3 

x1    x2     x3        …         xn 

C(1,17, 9,…,26) = 0 ? 
1, 17, 9, …., 26 

C 

Yes 

If  C  0,  then always correct.   Else, correct with high probability.       [Schwartz-Zippel] 



Meta-Algorithms 
from  

Circuit Lower Bounds : 
 

“ Black-Box ” use of lower 
bounds 



Is randomness useful ? 

Can we remove the need for random coins 
in algorithms, without much slowdown ? 
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NP 
 
 
 
 

BPP= 
P 

            BPP P 

PIT 

OR ? 
PIT 



Derandomization 

Computational Hardness     

Computational Randomness (pseudorandomness) 
        [ Blum, Micali, Yao; Nisan & Wigderson, Babai et al., … ] 

Hard Boolean function  (truth table) 

PRG 

Hardness – into – Randomness  Converter 



Pseudo-Random Generator (PRG) 

PRG 

     random seed 

       pseudorandom string               random string       

look “indistinguishable” 
to any small circuit 



Incompressibility Argument 

Each  x  Bad   has “small” description relative to C :  
 log |Bad| bits specifying the rank of x in Bad,  plus the description of  C 

       C 

  n-bit string 

 Bad ={ x |C(x) =0} 

all n-bit strings 

Any string incompressible relative to C  is accepted by  C. 



Incompressibility Argument 

Each  x  Bad   has “small” description relative to C  

       C 

  n-bit string 

 Bad 

all n-bit strings 

Any string incompressible relative to C  is accepted by  C. 

High circuit complexity   
=   

incompressibility relative to small circuits   
 



Hardness into Randomness 

 
 

EXP 
 
 
 
 

P BPP= 
P 

                Size(2o(n)) P 

Hard language 

 

PIT 

EXP 
 
 
 
 

                ArithmSize(2o(n)) 

Hard polynomial 

 
Quasi 

P 

PIT 

 

EXP  requires circuit size  2(n)     BPP = P    [Impagliazzo & Wigderson ] 

EXP  requires arithmetic circuit size   2(n)      PIT  in  Time(npolylog n )       [ K. & Impagliazzo ] 



Non - “ Black-Box ” Use  
of 

Circuit Lower Bounds 



Elusive Circuit Lower Bounds 

NEXP 
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EXP 
 
 
 
 
 
 
 
 
 
 
 
 

PSPACE 
 
 
 
 
 
 
 
 
 
 

PH 
 
 
 
 
 
 
 
 

NP 
 
 
 
 
 

P 

PolySize 
 
 
 
 
 
 
 
 
 
 
 
 

… 

 
 
 
 
 
 
 
 
 
 

TC0 

 
 
 
 
 
 
 
 

ACC0 

 
 
 
 
 

AC0 

AC0:   Constant depth, unbounded fan-in, poly-size 
ACC0: AC0 with MOD m gates 
TC0:   AC0 with MAJ gates 
 

NEXP  in  PolySize ?   



Natural Proofs  [ Razborov, Rudich ]  

  A combinatorial property  T of  n-variable  Boolean 
functions is  natural against  a class  C  if it is 

– Constructive:   “f in T” is decidable in  poly(2n)  time  

– Large:             |T| > 1/poly(2n)  of all n-variable  fns 

– Useful against  C: f in T    f not in  C 

 T 
 
 

C 



Natural Proofs    No Crypto  
   

A natural proof of a circuit lower bound   = 

 a proof using a natural property . 
 

Theorem  [Razborov, Rudich]:    

A natural proof of a circuit lower bound 
against a class  C           

algorithm  breaking every candidate PRG  
implemented in  C                          

(i.e., class  C  cannot compute a strong  PRG ) 



Parity is not in AC0 
 

20 

NEXP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P 

EXP 
 
 
 
 
 
 
 
 
 
 
 
 

PSPACE 
 
 
 
 
 
 
 
 
 
 

PH 
 
 
 
 
 
 
 
 

NP 
 
 
 
 
 

P 

SIZE(poly) 
 
 
 
 
 
 
 
 
 
 
 
 

… 

 
 
 
 
 
 
 
 
 
 

TC0 

 
 
 
 
 
 
 
 

ACC0 

 
 
 
 
 

AC0 

[FSS+84, Yao85, Hastad86]  

Parity 

AC0:   Constant depth, unbounded fan-in, poly-size 
 



Switching Lemma 

Given an  AC0  circuit C(x1,…,xn), 

• Choose a random subset of variables, 

• Assign them to  0  or  1  randomly.  

Very likely, the circuit becomes  shallow. 

                                                       [ Hastad ] 

 

C  not too large    can make it a constant 
function, with some variables still free.  

So,  C  can’t compute  PARITY. 

 



AC0-functions are sparse  

small  AC0-circuit  

  

sparse Fourier representation    

 [ Linial, Mansour, Nisan ] 

Can approximately learn  AC0 –computable functions. 



AC0-SAT  faster than “brute-force” 

 DNF :    2n (1 -  )   ANDs, with 
 = 1/(log c + d log d)d-1 

[ Impagliazzo, Mathews, Paturi ] 

 

 
 
x1    x2     x3        …         xn 

AC0 circuit:   
size  cn,  depth  d  

ANDs  have  disjoint  sets of 
satisfying  assignments  

 

   

SAT  for such 
DNFs  is  easy ! 



 Circuit Lower Bounds 
from 

Meta-Algorithms 



Circuit - SAT  

 

 
 

x1    x2     x3        …         xn 

Given:  poly(n)-size circuit  
C on n inputs. 
 
Decide:  Is  C  satisfiable ? 



      If pigs can fly ...  

If SAT in P, then  EXP  requires circuit size > 2n/n  

 

EXP  SIZE(2n/n)  
  P  NP 

[ Kannan ] 

Facts:  
•  Almost all  Boolean functions f(x1,…,xn)  require circuit size  > 2n /n . 
•  But, open if   NEXP    PolySize  . 

EXP 
 
 
 
 

                Size(2n /n) 
NP=P 

SAT 

 



Can we use this approach to get  
any actual  

circuit lower bounds ??? 
 
 

 
 



Elusive Circuit Lower Bounds 
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Elusive Circuit Lower Bounds 

NEXP 
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AC0 

AC0:   Constant depth, unbounded fan-in, poly-size 
ACC0: AC0 with MOD m gates 
TC0:   AC0 with MAJ gates 
 

NEXP  in  ACC0 ?   



Williams’ Circuit Lower Bound 

Theorem 1:  If can solve  C – SAT  slightly 
better  than “brute-force”,  then   NEXP  
not  in   C – PolySize. 

 

Theorem 2:  ACC0 – SAT can be solved 
faster than “brute-force”. 

 

Corollary:  NEXP  not  in ACC0. 

 



C - Circuit Satisfiability 

Theorem 1. There is  k>0  such that :  

   If  C – SAT  for nc-size  n-input circuits is 
in time  O( 2n /nk )  for every  c,  

   then  NTime( 2n )  is  not in  C - PolySize. 

 

 

Contrast:  “Brute-force” C-SAT algorithm 
is in time  2n poly(nc).  

   



Circuit Lower Bounds 
from 

PIT-Algorithms 



Polynomial Identity Testing 
(PIT) 

+ 

* 
3 

x1    x2     x3        …         xn 

Given:  poly(n)-size 
arithmetic circuit  C on n 
inputs (over integers). 
 
Decide:  Is  C   0  ? 

NP 
 
 
 
 

P             BPP P 

PIT 



PIT easy    NEXP hard 

 

 

 

 

 

PIT  in  P      NEXP requires superpoly-
size arithmetic circuits  

  (i.e., NEXP not in PolySize,  OR Permanent not 
in Arithmetic PolySize )      [ K.,  Impagliazzo ] 

NEXP 
 
 
 
 

                ArithmSize(poly) 
P 

PIT 

 



Important Polynomial Identities 
 Permanent:  For  X = ( xi,j )n x n 
                Permn (X) =    xi,(i) 

 
Defining Identities (expansion by minors): 
               Permn (X)     x1,j Permn-1 (X1,j ) 
                              . . . 
               Perm1(x)      x  
 
 
PIT easy    efficient program-checker for 
                      Permanent 
 



Summary 
 

• Good meta-algorithms (SAT, PIT, Learning)    

                             

 

        

   strong circuit lower bounds 

 

• Can get unconditional results on each side.  



Some Challenges 

•  Non-black-box  “SAT-Algorithms   
Circuit Lower Bounds” conversions ? 

 
 [  BPP = P  circuit l.b. for  NEXP,                    

but PRG   circuit l.b. for  EXP  ]  

 

•  Better circuit lower bounds for  AC0    
better  SAT-algorithms ?                       

 [ beyond the Switching Lemma ? ] 


