
Meta-Algorithms
vs.

Circuit Lower Bounds

Valentine Kabanets

 Simon Fraser University

 Vancouver, Canada

Algorithms vs Lower Bounds

ALGOMANIA SLOWLAND

SAT

PIT

Algorithms  Lower Bounds

Algorithms

Lower Bounds

Algorithms yield lower bounds.
Lower bounds yield algorithms.

Meta-Algorithms

Algorithms operating on algorithms

Meta-Algorithm Algorithm

Examples of Meta-Algorithms

• Computability Theory :

 Virus checker ,

 Infinite-loop detector (aka Halting problem)

• Complexity Theory :

 SAT ,

 Polynomial Identity Testing (PIT)

Circuit - SAT






x1 x2 x3 … xn

Given: poly(n)-size circuit
C on n inputs.

Decide: Is C satisfiable ?

Canonical NP -complete problem. [Cook; Levin]

Polynomial Identity Testing

+

*
3

x1 x2 x3 … xn

Given: poly(n)-size
arithmetic circuit C on n
inputs (over integers).

Decide: Is C  0 ?

Extra structure (C is a polynomial) makes PIT easier than UNSAT :
 PIT in BPP [Schwartz, Zippel, DeMillo-Lipton, …]

Randomized PIT-Algorithm

+
* 3

x1 x2 x3 … xn

C(1,17, 9,…,26) = 0 ?
1, 17, 9, …., 26

C

Yes

If C  0, then always correct. Else, correct with high probability. [Schwartz-Zippel]

Meta-Algorithms
from

Circuit Lower Bounds :

“ Black-Box ” use of lower
bounds

Is randomness useful ?

Can we remove the need for random coins
in algorithms, without much slowdown ?

NP

P

NP

BPP=
P

 BPP P

PIT

OR ?
PIT

Derandomization

Computational Hardness 

Computational Randomness (pseudorandomness)
 [Blum, Micali, Yao; Nisan & Wigderson, Babai et al., …]

Hard Boolean function (truth table)

PRG

Hardness – into – Randomness Converter

Pseudo-Random Generator (PRG)

PRG

 random seed

 pseudorandom string random string

look “indistinguishable”
to any small circuit

Incompressibility Argument

Each x  Bad has “small” description relative to C :
 log |Bad| bits specifying the rank of x in Bad, plus the description of C

 C

 n-bit string

 Bad ={ x |C(x) =0}

all n-bit strings

Any string incompressible relative to C is accepted by C.

Incompressibility Argument

Each x  Bad has “small” description relative to C

 C

 n-bit string

 Bad

all n-bit strings

Any string incompressible relative to C is accepted by C.

High circuit complexity
=

incompressibility relative to small circuits

Hardness into Randomness

EXP

P BPP=
P

 Size(2o(n)) P

Hard language



PIT

EXP

 ArithmSize(2o(n))

Hard polynomial

Quasi

P

PIT



EXP requires circuit size 2(n)  BPP = P [Impagliazzo & Wigderson]

EXP requires arithmetic circuit size 2(n)  PIT in Time(npolylog n) [K. & Impagliazzo]

Non - “ Black-Box ” Use
of

Circuit Lower Bounds

Elusive Circuit Lower Bounds

NEXP

P

EXP

PSPACE

PH

NP

P

PolySize

…

TC0

ACC0

AC0

AC0: Constant depth, unbounded fan-in, poly-size
ACC0: AC0 with MOD m gates
TC0: AC0 with MAJ gates

NEXP in PolySize ?

Natural Proofs [Razborov, Rudich]

 A combinatorial property T of n-variable Boolean
functions is natural against a class C if it is

– Constructive: “f in T” is decidable in poly(2n) time

– Large: |T| > 1/poly(2n) of all n-variable fns

– Useful against C: f in T  f not in C

 T

C

Natural Proofs  No Crypto

A natural proof of a circuit lower bound =

 a proof using a natural property .

Theorem [Razborov, Rudich]:

A natural proof of a circuit lower bound
against a class C 

algorithm breaking every candidate PRG
implemented in C

(i.e., class C cannot compute a strong PRG)

Parity is not in AC0

20

NEXP

P

EXP

PSPACE

PH

NP

P

SIZE(poly)

…

TC0

ACC0

AC0

[FSS+84, Yao85, Hastad86]

Parity

AC0: Constant depth, unbounded fan-in, poly-size

Switching Lemma

Given an AC0 circuit C(x1,…,xn),

• Choose a random subset of variables,

• Assign them to 0 or 1 randomly.

Very likely, the circuit becomes shallow.

 [Hastad]

C not too large  can make it a constant
function, with some variables still free.

So, C can’t compute PARITY.

AC0-functions are sparse

small AC0-circuit



sparse Fourier representation

 [Linial, Mansour, Nisan]

Can approximately learn AC0 –computable functions.

AC0-SAT faster than “brute-force”

 DNF :  2n (1 - ) ANDs, with
 = 1/(log c + d log d)d-1

[Impagliazzo, Mathews, Paturi]





x1 x2 x3 … xn

AC0 circuit:
size cn, depth d

ANDs have disjoint sets of
satisfying assignments



  

SAT for such
DNFs is easy !

 Circuit Lower Bounds
from

Meta-Algorithms

Circuit - SAT






x1 x2 x3 … xn

Given: poly(n)-size circuit
C on n inputs.

Decide: Is C satisfiable ?

 If pigs can fly ...

If SAT in P, then EXP requires circuit size > 2n/n

EXP  SIZE(2n/n)
 P  NP

[Kannan]

Facts:
• Almost all Boolean functions f(x1,…,xn) require circuit size > 2n /n .
• But, open if NEXP  PolySize .

EXP

 Size(2n /n)
NP=P

SAT



Can we use this approach to get
any actual

circuit lower bounds ???

Elusive Circuit Lower Bounds

NEXP

P

EXP

PSPACE

PH

NP

P

PolySize

…

TC0

ACC0

AC0

AC0: Constant depth, unbounded fan-in, poly-size
ACC0: AC0 with MOD m gates
TC0: AC0 with MAJ gates

Elusive Circuit Lower Bounds

NEXP

P

EXP

PSPACE

PH

NP

P

PolySize

…

TC0

ACC0

AC0

AC0: Constant depth, unbounded fan-in, poly-size
ACC0: AC0 with MOD m gates
TC0: AC0 with MAJ gates

Elusive Circuit Lower Bounds

NEXP

P

EXP

PSPACE

PH

NP

P

PolySize

…

TC0

ACC0

AC0

AC0: Constant depth, unbounded fan-in, poly-size
ACC0: AC0 with MOD m gates
TC0: AC0 with MAJ gates

NEXP in ACC0 ?

Williams’ Circuit Lower Bound

Theorem 1: If can solve C – SAT slightly
better than “brute-force”, then NEXP
not in C – PolySize.

Theorem 2: ACC0 – SAT can be solved
faster than “brute-force”.

Corollary: NEXP not in ACC0.

C - Circuit Satisfiability

Theorem 1. There is k>0 such that :

 If C – SAT for nc-size n-input circuits is
in time O(2n /nk) for every c,

 then NTime(2n) is not in C - PolySize.

Contrast: “Brute-force” C-SAT algorithm
is in time 2n poly(nc).

Circuit Lower Bounds
from

PIT-Algorithms

Polynomial Identity Testing
(PIT)

+

*
3

x1 x2 x3 … xn

Given: poly(n)-size
arithmetic circuit C on n
inputs (over integers).

Decide: Is C  0 ?

NP

P BPP P

PIT

PIT easy  NEXP hard

PIT in P  NEXP requires superpoly-
size arithmetic circuits

 (i.e., NEXP not in PolySize, OR Permanent not
in Arithmetic PolySize) [K., Impagliazzo]

NEXP

 ArithmSize(poly)
P

PIT



Important Polynomial Identities
 Permanent: For X = (xi,j)n x n
 Permn (X) =    xi,(i)

Defining Identities (expansion by minors):
 Permn (X)   x1,j Permn-1 (X1,j)
 . . .
 Perm1(x)  x

PIT easy  efficient program-checker for
 Permanent

Summary

• Good meta-algorithms (SAT, PIT, Learning)

 strong circuit lower bounds

• Can get unconditional results on each side.

Some Challenges

• Non-black-box “SAT-Algorithms 
Circuit Lower Bounds” conversions ?

 [BPP = P  circuit l.b. for NEXP,

but PRG  circuit l.b. for EXP]

• Better circuit lower bounds for AC0 
better SAT-algorithms ?

 [beyond the Switching Lemma ?]

