Meta-Algorithms
VS.
Circuit Lower Bounds

@
Valentine Kabanets

Simon Fraser University

Vancouver, Canada

Algorithms vs Lower Bounds

e

Algorithms < Lower Bounds

Algorithms vyield lower bounds.
Lower bounds vyield algorithms.

Meta-Algorithms

Algorithms operating on algorithms

Algorithm [Al Meta- Algorithm

Examples of Meta-Algorithms

« Computability Theory :
Virus checker |,
Infinite-loop detector (aka Halting problem)

« Complexity Theory :
SAT,
Polynomial Identity Testing (PIT)

Circuit - SAT

Given: poly(n)-size circuit

Q C on n inpufts.
Decide: Is C satisfiable ?
1| | |

x1 x2 X3 eoe x

n

Canonical NP -complete problem. [Cook: Levin]

Polynomial Identity Testing

Given: poly(n)-size
9 arithmetic circuit Conn

inputs (over integers).
I I

x1 x2 X3 eoe x

Decide: Is C =0 ?

n

Extra structure (C is a polynomial) makes PIT easier than UNSAT :
PIT in BPP [Schwartz, Zippel, DeMillo-Lipton, ...]

Randomized PIT-Algorithm

1,17,9, ..., 26 Yes
C(1,17,9,..26)=07?

If C=0, then always correct. Else, correct with high probability. [Schwartz-Zippel]

Meta-Algorithms
from
Circuit Lower Bounds :

" Black-Box " use of lower
bounds

™ —

Is randomness useful ? &

%

Can we remove the need for random coins
in algorithms, without much slowdown ?

PIT
PIT
OR ?

Derandomization

Computational Hardness =

Computational Randomness (pseudorandomness)
[Blum, Micali, Yao; Nisan & Wigderson, Babai et al., ...]

Hard Boolean function (truth table)

Hardness - into - Randomness Converter

Pseudo-Random Generator (PRG)

look “indistinguishable”
Pandom | randomseed to any small circuit

a /|

pseudorandom string random s’rrmg

Incompressibility Argument

n-bit string all n-bit strings

v

l

Bad ={ x |C(x) =0}

Each x € Bad has "small” description relative to C :
log |Bad| bits specifying the rank of x in Bad, plus the description of C

Any string incompressible relative to C is accepted by C.

Incompressibility Argument
all n-bit strings

l

4

!

Each x € Bad has "small” description relative to C

Any string incompressible relative to C is accepted by C.

High circuit complexity

incompressibility relative to small circuits

Hardness into Randomness

Hard language

6- -

EXP requires circuit size 2" = BPP =P [Impagliazzo & Wigderson]

Hard polynomial

e -

EXP requires arithmetic circuit size 2" = PIT in Time(nroveen) [K. & Impagliazzo]

Non - " Black-Box " Use
of

Circuit Lower Bounds

Elusive Circuit Lower Bounds

AC’: Constant depth, unbounded fan-in, poly-size
ACC?: AC® with MOD m gates
TC% AC° with MAJ gates

NEXP in PolySize ?

Natural Proofs [Razborov, Rudich]

A combinatorial property T of n-variable Boolean
functions is natural against aclass C if itis

— Constructive: “f in T" is decidable in poly(2") time
— Large: |'T| > 1/poly(2") of all n-variable fns
— Useful against C¢: finT = fnotin C

Natural Proofs = No Crypto

A natural proof of a circuit lower bound =
a proof using a natural property .

Theorem [Razborov, Rudich]:

A natural proof of a circuit lower bound
againstaclass ¢ =

algorithm breaking every candidate PRG
implemented in C

(i.e., class C cannot compute a strong PRG)

Parnl-ry |S no-r ln ACO [FSS+84, Yao85, Hastad86]

AC’: Constant depth, unbounded fan-in, poly-size

Parity

Y

[

Switching Lemma
E - (0

Givenan ACY circuit C(xy,...,X,),

e Choose a random subset of variables,

» Assign them to O or 1 randomly.

Very likely, the circuit becomes shallow.

[Hastad]

C not too large = can make it a constant
function, with some variables still free.

So, C can't compute PARITY.

ACO-functions are sparse

4 N

small ACP-circuit

N/
N/

sparse Fourier representation
_ /

[Linial, Mansour, Nisan]

Can approximately learn ACY -computable functions.

ACP-SAT faster than “brute-force”

S i \@

X, Xy X3 .. X_
ACO circuit: DNF: < 2n-1) ANDs, with
size cn, depth d u=1/(log c + d log d)d-!

ANDs have disjoint sets of
SAT for such satisfying assignments

DNFs is easy !

[Impagliazzo, Mathews, Paturi]

Circuit Lower Bounds
from
Meta-Algorithms

Circuit - SAT

Given: poly(n)-size circuit

Q C on n inpufts.

Decide: Is C satisfiable ?
1| | |

x1 xz X3 eoe xn

If pigs can fl

EXP = SIZE(2"/n)
= P = NP

//

SAT
@ -

If SATinP, then EXP requires circuit size > 2"/n [Kannan]

Facts:
* Almost all Boolean functions f(x,...,x,) require circuit size >2" /n .
* But, openif NEXP < PolySize .

Can we use this approach to get
any actual
circuit lower bounds ???

Elusive Circuit Lower Bounds

AC’: Constant depth, unbounded fan-in, poly-size
ACC?: AC® with MOD m gates
TC% AC° with MAJ gates

Elusive Circuit Lower Bounds

AC’: Constant depth, unbounded fan-in, poly-size
ACC?: AC® with MOD m gates
TC% AC° with MAJ gates

Elusive Circuit Lower Bounds

AC’: Constant depth, unbounded fan-in, poly-size
ACC?: AC® with MOD m gates
TC% AC° with MAJ gates

NEXP in ACC®?

Williams' Circuit Lower Bound

Theorem 1: If cansolve ¢- SAT slightly

better than "brute-force”, then NEXP
not in C©-PolySize.

Theorem 2: ACCY - SAT can be solved
faster than "brute-force".

Corollary: NEXP not in ACCO.

C- Circuit Satisfiability

Theorem 1. There is k>0 such that :
If ¢ SAT for ncsize n-input circuits is
in time O(2"/n%) for every c,
then NTime(2") is notin € PolySize.

Contrast: "Brute-force” ©-SAT algorithm
IS in time 2" poly(n¢).

Circuit Lower Bounds
from
PIT-Algorithms

Polynomial Identity Testing
(PIT)

Given: poly(n)-size
arithmetic circuit Conn
inputs (over integers).

Decide: Is C =0 ?

PIT

PIT easy = NEXP hard

@

PIT in P = NEXP requires superpoly-
size arithmetic circuits

(i.e., NEXP not in PolySize, OR Permanent not
in Arithmetic PolySize) [K., Impagliazzo]

Important Polynomial Identities

Permanent: For X = (X Jnxn
Perm,, (X) = 2 . IT x; 1y

Defining Identities (expansion by minors):
Perm, (X) = X x;; Perm, 4 (X!)

Permy(x) = X

PIT easy = efficient program-checker for
Permanent

Summary @

ithms (SAT, PIT, Learning)

* Good meta-

strong circuit lower bounds

* Can get unconditional results on each side.

Some Challenges

* Non-black-box "SAT-Algorithms =
Circuit Lower Bounds"” conversions ?

[BPP = P = circuit I.b. for NEXP,
but PRG = circuit I.b. for EXP]

« Better circuit lower bounds for ACO =
better SAT-algorithms ?

[beyond the Switching Lemma ?]

