
Meta-Algorithms
vs.

Circuit Lower Bounds

Valentine Kabanets

 Simon Fraser University

 Vancouver, Canada

Algorithms vs Lower Bounds

ALGOMANIA SLOWLAND

SAT

PIT

Algorithms Lower Bounds

Algorithms

Lower Bounds

Algorithms yield lower bounds.
Lower bounds yield algorithms.

Meta-Algorithms

Algorithms operating on algorithms

Meta-Algorithm Algorithm

Examples of Meta-Algorithms

• Computability Theory :

 Virus checker ,

 Infinite-loop detector (aka Halting problem)

• Complexity Theory :

 SAT ,

 Polynomial Identity Testing (PIT)

Circuit - SAT

x1 x2 x3 … xn

Given: poly(n)-size circuit
C on n inputs.

Decide: Is C satisfiable ?

Canonical NP -complete problem. [Cook; Levin]

Polynomial Identity Testing

+

*
3

x1 x2 x3 … xn

Given: poly(n)-size
arithmetic circuit C on n
inputs (over integers).

Decide: Is C 0 ?

Extra structure (C is a polynomial) makes PIT easier than UNSAT :
 PIT in BPP [Schwartz, Zippel, DeMillo-Lipton, …]

Randomized PIT-Algorithm

+
* 3

x1 x2 x3 … xn

C(1,17, 9,…,26) = 0 ?
1, 17, 9, …., 26

C

Yes

If C 0, then always correct. Else, correct with high probability. [Schwartz-Zippel]

Meta-Algorithms
from

Circuit Lower Bounds :

“ Black-Box ” use of lower
bounds

Is randomness useful ?

Can we remove the need for random coins
in algorithms, without much slowdown ?

NP

P

NP

BPP=
P

 BPP P

PIT

OR ?
PIT

Derandomization

Computational Hardness

Computational Randomness (pseudorandomness)
 [Blum, Micali, Yao; Nisan & Wigderson, Babai et al., …]

Hard Boolean function (truth table)

PRG

Hardness – into – Randomness Converter

Pseudo-Random Generator (PRG)

PRG

 random seed

 pseudorandom string random string

look “indistinguishable”
to any small circuit

Incompressibility Argument

Each x Bad has “small” description relative to C :
 log |Bad| bits specifying the rank of x in Bad, plus the description of C

 C

 n-bit string

 Bad ={ x |C(x) =0}

all n-bit strings

Any string incompressible relative to C is accepted by C.

Incompressibility Argument

Each x Bad has “small” description relative to C

 C

 n-bit string

 Bad

all n-bit strings

Any string incompressible relative to C is accepted by C.

High circuit complexity
=

incompressibility relative to small circuits

Hardness into Randomness

EXP

P BPP=
P

 Size(2o(n)) P

Hard language

PIT

EXP

 ArithmSize(2o(n))

Hard polynomial

Quasi

P

PIT

EXP requires circuit size 2(n) BPP = P [Impagliazzo & Wigderson]

EXP requires arithmetic circuit size 2(n) PIT in Time(npolylog n) [K. & Impagliazzo]

Non - “ Black-Box ” Use
of

Circuit Lower Bounds

Elusive Circuit Lower Bounds

NEXP

P

EXP

PSPACE

PH

NP

P

PolySize

…

TC0

ACC0

AC0

AC0: Constant depth, unbounded fan-in, poly-size
ACC0: AC0 with MOD m gates
TC0: AC0 with MAJ gates

NEXP in PolySize ?

Natural Proofs [Razborov, Rudich]

 A combinatorial property T of n-variable Boolean
functions is natural against a class C if it is

– Constructive: “f in T” is decidable in poly(2n) time

– Large: |T| > 1/poly(2n) of all n-variable fns

– Useful against C: f in T f not in C

 T

C

Natural Proofs No Crypto

A natural proof of a circuit lower bound =

 a proof using a natural property .

Theorem [Razborov, Rudich]:

A natural proof of a circuit lower bound
against a class C

algorithm breaking every candidate PRG
implemented in C

(i.e., class C cannot compute a strong PRG)

Parity is not in AC0

20

NEXP

P

EXP

PSPACE

PH

NP

P

SIZE(poly)

…

TC0

ACC0

AC0

[FSS+84, Yao85, Hastad86]

Parity

AC0: Constant depth, unbounded fan-in, poly-size

Switching Lemma

Given an AC0 circuit C(x1,…,xn),

• Choose a random subset of variables,

• Assign them to 0 or 1 randomly.

Very likely, the circuit becomes shallow.

 [Hastad]

C not too large can make it a constant
function, with some variables still free.

So, C can’t compute PARITY.

AC0-functions are sparse

small AC0-circuit

sparse Fourier representation

 [Linial, Mansour, Nisan]

Can approximately learn AC0 –computable functions.

AC0-SAT faster than “brute-force”

 DNF : 2n (1 -) ANDs, with
 = 1/(log c + d log d)d-1

[Impagliazzo, Mathews, Paturi]

x1 x2 x3 … xn

AC0 circuit:
size cn, depth d

ANDs have disjoint sets of
satisfying assignments

SAT for such
DNFs is easy !

 Circuit Lower Bounds
from

Meta-Algorithms

Circuit - SAT

x1 x2 x3 … xn

Given: poly(n)-size circuit
C on n inputs.

Decide: Is C satisfiable ?

 If pigs can fly ...

If SAT in P, then EXP requires circuit size > 2n/n

EXP SIZE(2n/n)
 P NP

[Kannan]

Facts:
• Almost all Boolean functions f(x1,…,xn) require circuit size > 2n /n .
• But, open if NEXP PolySize .

EXP

 Size(2n /n)
NP=P

SAT

Can we use this approach to get
any actual

circuit lower bounds ???

Elusive Circuit Lower Bounds

NEXP

P

EXP

PSPACE

PH

NP

P

PolySize

…

TC0

ACC0

AC0

AC0: Constant depth, unbounded fan-in, poly-size
ACC0: AC0 with MOD m gates
TC0: AC0 with MAJ gates

Elusive Circuit Lower Bounds

NEXP

P

EXP

PSPACE

PH

NP

P

PolySize

…

TC0

ACC0

AC0

AC0: Constant depth, unbounded fan-in, poly-size
ACC0: AC0 with MOD m gates
TC0: AC0 with MAJ gates

Elusive Circuit Lower Bounds

NEXP

P

EXP

PSPACE

PH

NP

P

PolySize

…

TC0

ACC0

AC0

AC0: Constant depth, unbounded fan-in, poly-size
ACC0: AC0 with MOD m gates
TC0: AC0 with MAJ gates

NEXP in ACC0 ?

Williams’ Circuit Lower Bound

Theorem 1: If can solve C – SAT slightly
better than “brute-force”, then NEXP
not in C – PolySize.

Theorem 2: ACC0 – SAT can be solved
faster than “brute-force”.

Corollary: NEXP not in ACC0.

C - Circuit Satisfiability

Theorem 1. There is k>0 such that :

 If C – SAT for nc-size n-input circuits is
in time O(2n /nk) for every c,

 then NTime(2n) is not in C - PolySize.

Contrast: “Brute-force” C-SAT algorithm
is in time 2n poly(nc).

Circuit Lower Bounds
from

PIT-Algorithms

Polynomial Identity Testing
(PIT)

+

*
3

x1 x2 x3 … xn

Given: poly(n)-size
arithmetic circuit C on n
inputs (over integers).

Decide: Is C 0 ?

NP

P BPP P

PIT

PIT easy NEXP hard

PIT in P NEXP requires superpoly-
size arithmetic circuits

 (i.e., NEXP not in PolySize, OR Permanent not
in Arithmetic PolySize) [K., Impagliazzo]

NEXP

 ArithmSize(poly)
P

PIT

Important Polynomial Identities
 Permanent: For X = (xi,j)n x n
 Permn (X) = xi,(i)

Defining Identities (expansion by minors):
 Permn (X) x1,j Permn-1 (X1,j)
 . . .
 Perm1(x) x

PIT easy efficient program-checker for
 Permanent

Summary

• Good meta-algorithms (SAT, PIT, Learning)

 strong circuit lower bounds

• Can get unconditional results on each side.

Some Challenges

• Non-black-box “SAT-Algorithms
Circuit Lower Bounds” conversions ?

 [BPP = P circuit l.b. for NEXP,

but PRG circuit l.b. for EXP]

• Better circuit lower bounds for AC0
better SAT-algorithms ?

 [beyond the Switching Lemma ?]

