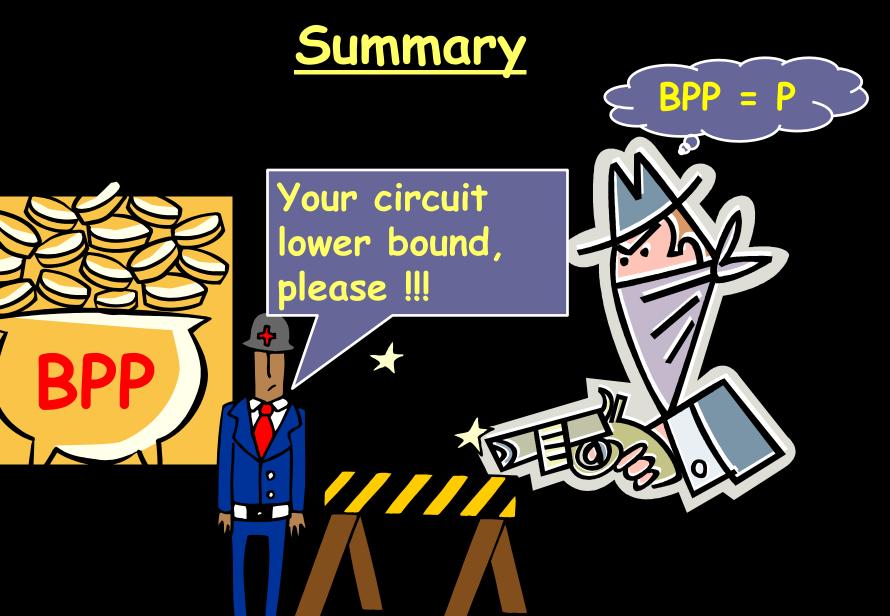
Derandomization vs. Circuit Lower Bounds

Valentine Kabanets (IAS & SFU)



Derandomization

Goal: Do efficiently deterministicaly what we can do efficiently probabilistically.

Impossible in general: - crypto, - comm. complexity, ...

Our Focus:

- Randomized decision algorithms
- Randomized search algorithms

Decision: BPP vs. P Poly Id Testing:

Given arithmetic circuit C, decide if C computes identically zero polynomial.

Search: Construct "random-like" combinatorial objects

- expander graphs,
- error-correcting codes,
- truth tables of hard Boolean functions

Decision: BPP vs. P Poly Id Testing:

Given arithmetic circuit C, decide if C computes identically zero polynomial.

Search: Construct "random-like" combinatorial objects

- expander graphs,
- error-correcting codes,
- truth tables of hard Boolean functions

Constructing Hard Functions

s(n) - Hardness Generator :

Given n, output a binary string of length 2ⁿ which (as n-variate Boolean function) has circuit complexity at least s(n). The running time should be poly(2ⁿ).

Trivial: Randomized 2ⁿ/n-Hardness Generator exists (may produce an easy string).

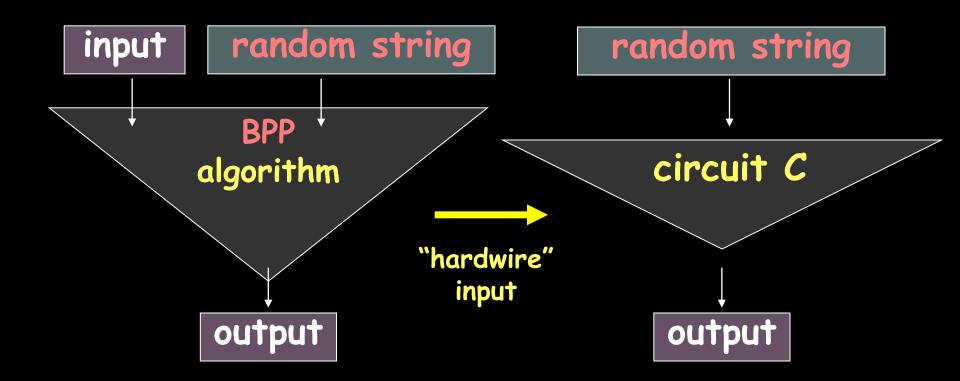
Hardness Generator (HG)

- Deterministic s(n)-Hardness Generator exists iff E has circuit complexity at least s(n).
- Open: for $s(n) > \omega(n)$.
- Also open:
 - Nondeterministic HG,
 - Zero-Error Randomized HG, ...

Hardness Generation vs.

Derandomization of BPP

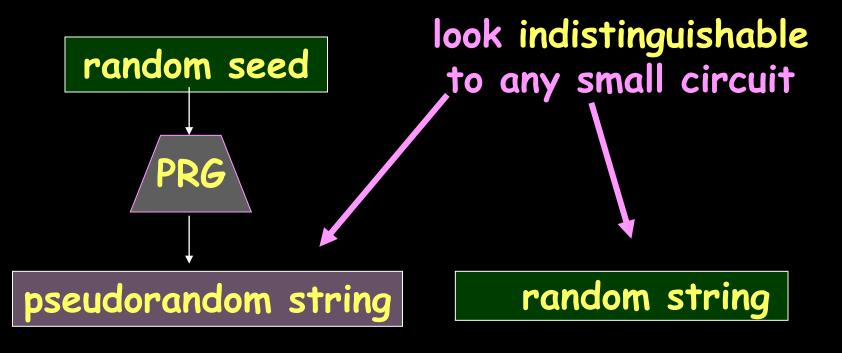
<u>From BPP algorithms to</u> <u>Boolean circuits</u>



Want to estimate the acceptance probability of circuit C (or find an accepted string, if C accepts many strings).

PseudoRandom Generator (PRG)

Definition [Nison, Wigderson]: s(n)-PRG is a function G: $\{0,1\}^n \rightarrow \{0,1\}^{s(n)}$, with output distribution indistinguishable from uniform by any s(n)-size circuit; G is computable in time $2^{O(n)}$.



Hardness Generators yield

Pseudorandom Generators

Incompressibility Argument

Each $r \in B$ has "small" description relative to $C: \log |B|$ bits specifying the rank of r in B, plus the description of C (common to all r in B)

Corollary: Any string incompressible relative to C is accepted by C.

Incompressibility Argument

Assume: $|B| < 2^n/n$, and |C| < n. Let R be any incompressible n^2 -bit string. Partition R into n-bit strings $r_1, ..., r_n$.

Claim: At least one r_i is accepted by C.

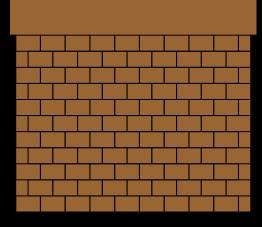
Proof: Else R is described by < n (n - log n) + n < n^2 bits. QED

Incompressibility Argument

Problem: Generating incompressible strings is algorithmically impossible ! (by definition)

[Nisan,Wigderson'88]: Enough to generate strings of HIGH CIRCUIT COMPLEXITY !!!





<u>Hardness-Randomness</u> <u>Tradeoffs</u>

[NisanWigderson, BabaiFortnowNisanWigderson, Impagliazzo, ImpagliazzoWigderson, ImpagliazzoShaltielWigderson, SudanTrevisanVadhan, ShaltielUmans, Umans, ...]:

> Deterministic s(n)-Hardness Generator yields s(n)-Pseudorandom Generator,

> > and vice versa.

Thm: s(n)-HG exists iff s(n)-PRG exists

Can we prove BPP = P without proving circuit lower bounds ?

<u>BPP=P implies circuit lower bounds</u>

- Thm [K., Impagliazzo]:
- If BPP = P, then
 - either NEXP not in P/poly,
 - or Permanent does not have polysize arithmetic circuits.

Why should a fast (deterministic) algorithm (for BPP) lead to any circuit lower bounds?

$\frac{\text{Constructing a hard function}}{\text{from P = NP}}$

Thm [Kannan]: There is a $2^n/n$ - Hardness Generator computable in Time($2^{O(n)}$), given Σ_3 oracle.

Proof Idea: Use alternating quantifiers to express "f is the first truth table not computable by any small circuit". QED

Corollary: $P=NP \Rightarrow \exists$ deterministic $2^n/n-HG$ ($\Leftrightarrow E$ has language of $2^n/n$ circuit complexity)

<u>How to construct a hard</u> <u>function</u>

- 1. By diagonalization, construct a hard function in a "large" complexity class.
- Using an efficient meta-algorithm, collapse the "large" class to a "smaller" class.

<u>How to construct a hard</u> <u>function: Application</u>

1. By diagonalization, construct a hard function in a "large" complexity class.

E^{Σ_3} has $2^n/n$ circuit complexity

2. Using an efficient meta-algorithm, collapse the "large" class to a "smaller" class.

$\mathsf{P} = \mathsf{N}\mathsf{P} \implies \mathsf{E}^{\Sigma_3} = \mathsf{E}$

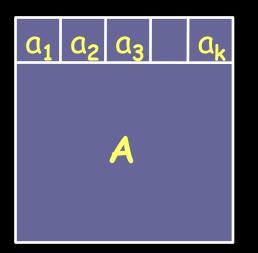
$\frac{Constructing a hard function}{from BPP = P}$

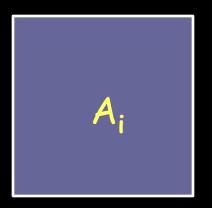
Meta-problem: Poly Identity Testing (PIT).

Main Observation: If PIT in P, then can test in P if a given arithmetic circuit computes Permanent.

(downward self-reducibility of Perm)

<u>Downward self-reducibility of Perm</u>





ith minor of A along 1st row

Perm (A) = Σ_i $a_i * Perm (A_i)$

Polynomial Identities for Perm

Let $C_1, ..., C_n$ be arithmetic circuits, where C_k has k^2 input variables.

The circuits C₁, ..., C_n compute Permanent iff
C₁(x) = x, and
∀ 1 < k ≤ n, and k×k matrix X = [x_{i,j}] of variables,

$$C_{k}$$
 (X) = $\Sigma_{i=1..k}$ $X_{1,i} * C_{k-1}$ (X_i),

where X_i is X without 1^{st} row and i^{th} column.

If PIT in P, then can test in P if a given arithmetic circuit computes Permanent.

<u>Constructing a hard function</u> <u>from PIT in P</u>

Assume PIT in P, and Perm has polysize arithmetic circuits. Then $P^{Perm} \subseteq NP$.

Corollary 1: $P^{\#P} \subseteq NP$. [Valiant]

Corollary 2: $PH \subseteq P^{\#P} \subseteq NP = coNP$. [Toda]

Corollary 3: E^{PH} = NE = coNE requires 2ⁿ/n circuit size. <u>Thanks [Aaronson, van Melkebeek]</u>.

Derandomization of PIT from Arithmetic Circuit Lower Bounds

Thm [K., Impagliazzo]: If Perm requires arithmetic circuits of size $2^{n^{\epsilon}}$ (over rationals), then PIT \in DTIME ($n^{polylog n}$).

Hitting set H for poly(n)-size n-variate arithmetic circuits (computing poly(n)-deg polynomials):

 $H = \{ (Perm(a_{i,1}), ..., Perm(a_{i,n}) \} :$

 $a_{i,j} \in [n^{c}]^{d \log n}$ chosen using the NW design }

PIT is easy iff

can prove circuit lower bounds

<u>Meta-algorithms vs. Lower</u> <u>Bounds</u>

Meta-algorithm = an algorithm that takes algorithms as input (e.g., SAT, Poly Id Test, ...)

Zane's thesis: Progress on meta-algorithms is linked to progress on lower bounds.

LinialMansourNisan, PaturiPudlakSaksZane, RazborovRudich, NisanWigderson, Braverman, ...

Constant Depth

PIT for constant-depth circuits

[DvirShpilkaYehudayoff]: Derandomization iff lower bounds (similar to [KI])

Depth-3 derandomization (bounded top fanin): [DvirShpilka, KayalSaxena, ArvindMukhopadyay, KarninShpilka, SaxenaSeshadri, KayalSaraf, ...]

Challenge: Depth-3 circuits (unbounded fanin)

[Raz'09]:
Exponential depth-3 formula lower bounds ⇒
superpoly (any depth) formula lower bounds
⇒ general Formula-PIT ∈ ??? time

[AgrawalVinay]: Exponential depth-4 circuit lower bounds ⇒ exponential (any depth) circuit lower bounds ⇒ general Circuit-PIT ∈ n^{polylog n} time

<u>PIT from constant-depth lower</u> <u>bounds</u>

Derandomization without circuit lower bounds ?

Weak Derandomization without circuit lower bounds ?

Typically-correct derandomization

Relaxation: Allow derandomized algorithms to make mistakes on "few" inputs.

[Impagliazzo, Wigderson '01]:

A language L is in Heur-P if there is a determistic polytime algorithm A s.t. $\Pr_{x \leftarrow D} [A(x) \neq L(x)]$ is "small", for any polytime-sampleable D.

[Goldreich, Wigderson '02]: D = Uniform

[Impagliazzo, Wigderson '01]: $EXP \neq BPP \implies BPP \subseteq io-Heur-SUBEXP.$

Cf. [BabaiFortnowNisanWigderson]: EXP not in P/poly \Rightarrow BPP \subseteq io- SUBEXP

" EXP ≠ BPP " is not known to imply any circuit lower bounds ...

Cf. [IKW]: NEXP \neq MA \Leftrightarrow NEXP not in P/poly

Typically-correct derandomization [IW'01, K'01, TV'07, GSTS'03, SU'07, GW'02, Zim'08, Sha'09, KMS'09]

[Kinne, Melkebeek, Shaltiel'09]: Under assumption (*), every BPP language has a P-algorithm that is correct on almost all inputs (of every length).

Assumption (*): P has a language that is average-hard for n^d-size circuits.

<u>Typically-correct derandomization</u> <u>and circuit lower bounds</u>

- [Kinne, Melkebeek, Shaltiel'09]: If every BPP language has a SUBEXP-algorithm that is correct on all but subexp-many inputs, then
 - either NEXP not in P/poly,

or Perm is not computable by polysize arithmetic circuits.

(extends [KI'04] to "typically-correct" setting.)

More on Hardness

Hardness Testing

- Given a binary string x, test if x has "high" circuit complexity.
- Sound test accepting "many" strings is unlikely in P ("natural property" [RazborovRudich]).

- Sound test accepting "few" strings ?
- [IKW'02]: \exists sound test in NP \Rightarrow NEXP not in P/poly.
- That is, NP-constructivity \Rightarrow lower bounds

Strongly exponential arithmetic circuit lower bounds \Rightarrow PIT \in P ?

Strong arithmetic formula lower bounds \Rightarrow derandomization of Formula-PIT?

 BPP ≠ EXP ⇒ circuit lower bounds ? (extending [KM5'09] ???)

