
Derandomization
vs.

 Circuit Lower Bounds

Valentine Kabanets (IAS & SFU)

Summary

BPP

Your circuit
lower bound,
please !!!

BPP = P

Derandomization

Goal: Do efficiently deterministicaly what
we can do efficiently probabilistically.

Our Focus:
• Randomized decision algorithms
• Randomized search algorithms

Impossible in general: - crypto, - comm. complexity, …

 Decision: BPP vs. P

Poly Id Testing:

Given arithmetic circuit C , decide if C
computes identically zero polynomial.

 Search: Construct “random-like” combinatorial objects

 - expander graphs,

 - error-correcting codes,

 - truth tables of hard Boolean functions

 Decision: BPP vs. P

Poly Id Testing:

Given arithmetic circuit C , decide if C
computes identically zero polynomial.

 Search: Construct “random-like” combinatorial objects

 - expander graphs,

 - error-correcting codes,

 - truth tables of hard Boolean functions

Constructing Hard Functions

s(n) - Hardness Generator :

Given n, output a binary string of length
2n which (as n-variate Boolean function)
has circuit complexity at least s(n).
The running time should be poly(2n).

Trivial: Randomized 2n/n-Hardness

Generator exists (may produce an easy string).

Hardness Generator (HG)

 Deterministic s(n)-Hardness Generator
exists iff E has circuit complexity at
least s(n).

 Open: for s(n) > ! (n).

 Also open:

 - Nondeterministic HG,

 - Zero-Error Randomized HG, …

Hardness Generation

 vs.

Derandomization of BPP

From BPP algorithms to
Boolean circuits

input

BPP
algorithm

output

random string

 circuit C

output

random string

“hardwire”
input

Want to estimate the acceptance probability of circuit C
(or find an accepted string, if C accepts many strings).

PseudoRandom Generator (PRG)

PRG

random seed

pseudorandom string random string

look indistinguishable
to any small circuit

Definition [Nisan,Wigderson]: s(n)-PRG is a function
G: {0,1}n {0,1}s(n), with output distribution
indistinguishable from uniform by any s(n)-size
circuit; G is computable in time 2O(n).

Hardness Generators

 yield

Pseudorandom Generators

Incompressibility Argument

Each r 2 B has “small” description relative to
C : log |B| bits specifying the rank of r in B,
plus the description of C (common to all r in B)

 C

output

n-bit string

rejected
strings

B

all n-bit strings

Corollary: Any string incompressible relative to C
is accepted by C.

Incompressibility Argument

 C

output

n-bit string

rejected
strings

B

all n-bit strings

Assume: |B| < 2n/n, and |C| < n.
Let R be any incompressible n2-bit string.
Partition R into n-bit strings r1,…, rn.

Claim: At least one ri is accepted by C.

Proof: Else R is described by < n (n – log n) + n < n2
bits. QED

Incompressibility Argument

Problem: Generating incompressible
strings is algorithmically impossible !
 (by definition)

[Nisan,Wigderson’88]: Enough to
generate strings of
HIGH CIRCUIT COMPLEXITY !!!

BPP = P

Hardness-Randomness
Tradeoffs

 [NisanWigderson,BabaiFortnowNisanWigderson,Impagliazzo,
ImpagliazzoWigderson,ImpagliazzoShaltielWigderson,
SudanTrevisanVadhan,ShaltielUmans,Umans,…]:

Deterministic s(n)-Hardness Generator
yields

s(n)-Pseudorandom Generator,

and vice versa.

Thm: s(n)-HG exists iff s(n)-PRG exists

Can we prove BPP = P
without proving circuit lower

bounds ?

BPP=P implies circuit lower bounds

Thm [K., Impagliazzo]:

If BPP = P, then

 either NEXP not in P/poly,

 or Permanent does not have polysize
arithmetic circuits.

Why should a fast (deterministic) algorithm
(for BPP) lead to any circuit lower bounds ?

Warm-up

Constructing a hard function
from P = NP

Thm [Kannan]: There is a 2n/n – Hardness
Generator computable in Time(2O(n)), given
§3 oracle.

Proof Idea: Use alternating quantifiers to express

“ f is the first truth table not computable by
any small circuit ”. QED

Corollary: P=NP) 9 deterministic 2n/n-HG
 (, E has language of 2n/n circuit complexity)

How to construct a hard
function

1. By diagonalization, construct a hard
function in a “large” complexity class.

2. Using an efficient meta-algorithm,
collapse the “large” class to a “smaller”
class.

How to construct a hard
function: Application

1. By diagonalization, construct a hard function in
a “large” complexity class.

 E
∑
3 has 2n/n circuit complexity

2. Using an efficient meta-algorithm, collapse the

“large” class to a “smaller” class.

 P = NP) E
∑
3 = E

Constructing a hard function
from BPP = P

Meta-problem: Poly Identity Testing (PIT).

Main Observation: If PIT in P, then can
test in P if a given arithmetic circuit
computes Permanent.

 (downward self-reducibility of Perm)

Downward self-reducibility of Perm

a1 a2 a3 ak

A Ai

ith minor of A
along 1st row

Perm (A) = §i ai * Perm (Ai)

Polynomial Identities for Perm

Let C1, …, Cn be arithmetic circuits, where Ck has
k2 input variables.

The circuits C1, …, Cn compute Permanent iff

 C1 (x) = x, and

 8 1 < k · n, and k£k matrix X = [x i, j] of
variables,

 Ck (X) = §i=1..k x1,i * Ck-1 (Xi
),

where Xi is X without 1st row and ith column.

Main Observation

If PIT in P, then can test in P if a given
arithmetic circuit computes Permanent.

Constructing a hard function
from PIT in P

Assume PIT in P, and Perm has polysize
arithmetic circuits. Then P Perm µ NP.

Corollary 1: P#P µ NP. [Valiant]

Corollary 2: PH µ P#P µ NP = coNP. [Toda]

Corollary 3: EPH = NE = coNE requires 2n/n
circuit size.

 Thanks [Aaronson, van Melkebeek].

Derandomization of PIT
from

Arithmetic Circuit Lower
Bounds

Thm [K., Impagliazzo]: If Perm requires
arithmetic circuits of size 2n² (over
rationals), then PIT 2 DTIME (npolylog n).

Hitting set H for poly(n)-size n-variate
arithmetic circuits (computing poly(n)-deg polynomials):

 H = { (Perm(a i, 1), …, Perm (a i, n

)) :

 a i, j 2 [nc]d log n chosen using the NW design }

PIT is easy

iff

can prove circuit lower bounds

Meta-algorithms vs. Lower
Bounds

Zane’s thesis: Progress on meta-algorithms is
linked to progress on lower bounds.

Meta-algorithm = an algorithm that takes
algorithms as input (e.g., SAT, Poly Id Test, …)

LinialMansourNisan, PaturiPudlakSaksZane,
RazborovRudich, NisanWigderson, Braverman, …

Constant Depth

PIT for constant-depth circuits

[DvirShpilkaYehudayoff]: Derandomization iff
lower bounds (similar to [KI])

Depth-3 derandomization (bounded top fanin):
[DvirShpilka, KayalSaxena, ArvindMukhopadyay,
KarninShpilka, SaxenaSeshadri, KayalSaraf, …]

Challenge: Depth-3 circuits (unbounded fanin)

PIT from constant-depth lower
bounds

[AgrawalVinay]:

Exponential depth-4 circuit lower bounds)

exponential (any depth) circuit lower bounds

) general Circuit-PIT 2 npolylog n time

[Raz’09]:

Exponential depth-3 formula lower bounds)

superpoly (any depth) formula lower bounds

) general Formula-PIT 2 ??? time

Derandomization without
circuit lower bounds ?

Derandomization without
circuit lower bounds ?

Weak from weak

Typically-correct derandomization
Relaxation: Allow derandomized algorithms

to make mistakes on “few” inputs.

[Impagliazzo, Wigderson ’01]:

A language L is in Heur-P if there is a
determistic polytime algorithm A s.t.

 Pr x Ã D [A(x) L(x)] is “small”,

for any polytime-sampleable D.

[Goldreich, Wigderson ’ 02]: D = Uniform

 BPP vs. EXP
[Impagliazzo, Wigderson ’01]:

 EXP BPP) BPP µ io- Heur-SUBEXP.

Cf. [BabaiFortnowNisanWigderson]:

EXP not in P/poly) BPP µ io- SUBEXP

“ EXP BPP ” is not known to imply any
circuit lower bounds …

Cf. [IKW]: NEXP MA , NEXP not in P/poly

Typically-correct derandomization
[IW’01, K’01, TV’07, GSTS’03, SU’07,

GW’02, Zim’08, Sha’09, KMS’09]

[Kinne, Melkebeek, Shaltiel’09]: Under
assumption (*), every BPP language has a
P-algorithm that is correct on almost all
inputs (of every length).

Assumption (*): P has a language that is
average-hard for nd-size circuits.

Typically-correct derandomization
and circuit lower bounds

[Kinne, Melkebeek, Shaltiel’09]: If every BPP
language has a SUBEXP-algorithm that is
correct on all but subexp-many inputs,
then

 either NEXP not in P/poly,

 or Perm is not computable by polysize
arithmetic circuits.

 (extends [KI’04] to “typically-correct” setting.)

More on Hardness

Hardness Testing
Given a binary string x, test if x has “high”
circuit complexity.

 Sound test accepting “many” strings is
unlikely in P
(“natural property” [RazborovRudich]).

 Sound test accepting “few” strings ?

[IKW’02] : 9 sound test in NP) NEXP not in P/poly.

That is, NP-constructivity) lower bounds

Open Questions

 Strongly exponential arithmetic circuit
lower bounds) PIT 2 P ?

 Strong arithmetic formula lower bounds
) derandomization of Formula-PIT ?

 BPP EXP) circuit lower bounds ?

 (extending [KMS’09] ???)

