Derandomization
VS.
Circuit Lower Bounds

Valentine Kabanets (IAS & SFU)

Derandomization

Do efficiently deterministicaly what
we can do efficiently probabilistically.

Impossible in general: - crypto, - comm. complexity, ..

« Randomized decision algorithms
* Randomized search algorithms

Decision: BPP vs. P

Given arithmetic circuit C, decide if C
computes identically zero polynomial.

Search: Construct “random-like" combinatorial objects
- expander graphs,

- error-correcting codes,

- truth tables of hard Boolean functions

Decision: BPP vs. P

Given arithmetic circuit C, decide if C
computes identically zero polynomial.

Search: Construct “random-like" combinatorial objects
- expander graphs,
- error-correcting codes,

Constructing Hard Functions

s(n) - Hardness Generator :

Given n, output a binary string of length
2" which (as n-variate Boolean function)
has circuit complexity at least s(n).
The running time should be poly(2").

Trivial: Randomized 2"/n-Hardness
Generator exists (may produce an easy string).

Hardness Generator (HG)

s(n)-Hardness Generator
exists iff E has circuit complexity at
least s(n).

Open: for s(n) > w (n).
Also open:

- Nondeterministic HG,
- Zero-Error Randomized HG, ...

Hardness Generation
VS.

Derandomization of BPP

From BPP algorithms to
Boolean circuits

input | | random string random string
| |
* BPP * |
algorithm circuit C
—
“hardwire”
l input l
output output

Want to estimate the acceptance probability of circuit C
(or find an accepted string, if C accepts many strings).

PseudoRandom Generator (PRG

Definition

s(n)-PRG is a function

G: {0,1}" — {0,133, with output distribution
indistinguishable from uniform by any s(n)-size
circuit; G is computable in time 20",

random seed

pseudor'cmdom string

look indistinguishable
to any small circuit

e Y

random string

Hardness Generators
yield

Pseudorandom Generators

Incompressibility Argument

n-bit string all n-bit strings

l

C

rejectec
strings

l B

output

Each r € B has "small” description relative to
C : log |B| bits specifying the rank of r in B,
p|LIS the descr'iption of C (common to all r in B)

Any string incompressible relative to C
is accepted by C.

Incompressibility Argument
__n-bit string | all n-bit strings

Assume: |B| <2"/n, and |C| < n.
Let R be any incompressible n2-bit string.
Partition R intfo n-bit strings ry,.., r,.

Claim: At least one r; is accepted by C.

Proof: Else R is described by <n (n-logn) + n<n?
bits. QED

Incompressibility Argument

Generating incompressible
strings is algorithmically impossible |
(by definition)

Enough to

generate strings of
HIGH CIRCUIT COMPLEXITY Il

Hardness-Randomness

'radeoffs

Deterministic s(n)-Hardness Generator
yields
s(n)-Pseudorandom Generator,

and vice versa.

Thm: s(n)-HG exists iff s(n)-PRG exists

Can we prove BPP = P

without proving circuit lower
bounds ?

BPP=P implies circuit lower bounds

Thm
If BPP =P, then
either NEXP not in P/poly,

or Permanent does not have polysize
arithmetic circuits.

Why should a fast (deterministic) algorithm
(for BPP) lead to any circuit lower bounds ?

Warm-up

Constructing a hard function
rom P =

Thm There is a 2"/n - Hardness
Generator computable in Time(2°M), given
X, oracle.

Proof Idea: Use alternating quantifiers to express
" f is the first truth table not computable by
any small circuit “. QED

Corollary: P=NP = 3 deterministic 2"/n-HG
(& E has language of 2"/n circuit complexity)

How to construct a hard
function

By diagonalization, construct a hard
function in a “large” complexity class.

Using an efficient meta-algorithm,
collapse the “large” class to a "smaller”
class.

How to construct a hard
~ function: Application

By diagonalization, construct a hard function in
a "large” complexity class.

E*3 has 2"/n circuit complexity

Using an efficient meta-algorithm, collapse the
“large” class to a "smaller” class.

P=NP = E>==E

Constructing a hard function
from BPP = P

Meta-problem: Poly Identity Testing (PIT).

Main Observation: If PIT in P, then can
test in P if a given arithmetic circuit
computes Permanent.

(downward self-reducibility of Perm)

Downward self -reducibility of Perm

Perm (A) =

i minor of A
along 1s' row

S/

]

a, * Perm (A;)

Polynomial Identities for Perm

Let Ci, .., C, be arithmetic circuits, where C, has
k? input variables.

The circuits C,, ..., C, compute Permanent iff
¢ (x)=x, and

v 1<k <n, and kxk matrix X=[x; ;] of
variables,

Ch (X) = Xk X * G (X)),

where X. is X without 15f row and ith column.

Main Observation

If PITin P, then can test in P if a given
arithmetic circuit computes Permanent.

Constructing a hard function
from PIT in P

PIT inP, and Perm has polysize
arithmetic circuits. Then P Perm C NP,

Corollary 1: P#* C NP. [Valiant]
Corollary 2: PH C P#” C NP = coNP. [Toda]

Corollary 3: EPH = NE = coNE requires 2"/n
circuit size.

Thanks

Derandomization of PIT
from
Arithmetic Circuit Lower
Bounds

Thm If Perm requires

arithmetic circuits of size 2" (over
rationals), then PIT € DTIME (nrolylogn)

Hitting set H for poly(n)-size n-variate
arithmetic circuits (computing poly(n)-deg polynomials):
H={(Perm(a;), .., Perm(a;,)) :

a,:. € [nc]dloan chosen using the NW design }

)

PIT is easy
iff

can prove circuit lower bounds

Meta-algorithms vs. Lower
Bounds

Meta-algorithm = an algorithm that takes
algorithms as input (e.g., SAT, Poly Id Test, ..)

Zane's thesis: Progress on meta-algorithms is
linked to progress on lower bounds.

Constant Depth

PIT for constant-depth circuits

Derandomization iff
lower bounds (similar to)

Depth-3 derandomization (bounded top fanin):

Challenge: Depth-3 circuits (unbounded fanin)

PIT from constant-depth lower
bounds

Exponential depth-4 circuit lower bounds =
exponential (any depth) circuit lower bounds
= general Circuit-PIT € npolylogn time

Exponential depth-3 formula lower bounds =
superpoly (any depth) formula lower bounds
= general Formula-PIT € ??? time

Derandomization without
circuit lower bounds ?

De.r'angiomiza'rion withiout
circuit lower bounds ?

Typically-correct derandomization

Relaxation: Allow derandomized algorithms
to make mistakes on "few" inputs.

A language L isin Heur-P if thereisa
determistic polytime algorithm A s.t.

Pr.. o[A(x) # L(x)] is "small”,
for any polytime-sampleable D.

D = Uniform

BPP vs. EXP

EXP BPP = BPP C io- Heur-SUBEXP.

Cf.
EXP notin P/poly = BPP C io- SUBEXP

"EXP = BPP" is not known to imply any
circuit lower bounds ...

Cft. NEXP = MA < NEXP not in P/poly

Typically-correct derandomization

Under
assumption (*), every BPP language has a
P-algorithm that is correct on almost all
inputs (of every length).

Assumption (*): P has a language that is
average-hard for nd-size circuits.

Typically-correct derandomization
and circuit lower bounds

If every BPP
language has a SUBEXP-algorithm that is
correct on all but subexp-many inputs,
then

either NEXP not in P/poly

or Perm is not computable by polysize
arithmetic circuits.

(extends to "typically-correct” setting.)

More on Hardness

Hardness Testing

Given a binary string x, test if x has “high”
circuit complexity.

» Sound test accepting "many” strings is
unlikely in P
("natural property”).

» Sound test accepting "few" strings ?
: 3 sound test in NP = NEXP not in P/poly.

That is, NP-constructivity = lower bounds

Open Questions

Strongly exponential arithmetic circuit
lower bounds = PIT e P ?

Strong arithmetic formula lower bounds
= derandomization of Formula-PIT ?

BPP = EXP = circuit lower bounds ?
(extending 2??)

