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Summary   

BPP 

Your circuit 
lower bound, 
please !!!  

BPP = P 



 
Derandomization   

Goal:  Do efficiently  deterministicaly  what 
we can do efficiently probabilistically. 

Our Focus:  
• Randomized decision algorithms 
• Randomized search algorithms 

Impossible in general: - crypto, - comm. complexity, … 



 Decision:  BPP  vs.  P 

Poly Id Testing:  

Given arithmetic circuit C ,   decide  if  C  
computes  identically zero polynomial.  

 

 Search: Construct “random-like” combinatorial objects   

    - expander graphs,  

    - error-correcting codes,   

    - truth tables of hard Boolean functions 
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Constructing Hard Functions 

s(n) - Hardness  Generator : 

Given  n,  output a binary string of length  
2n which   ( as  n-variate  Boolean function )   
has  circuit complexity at least   s(n).  
The running time should be   poly(2n). 

 
Trivial:  Randomized   2n/n-Hardness 

Generator exists  (may produce an easy string). 



Hardness Generator (HG) 

 Deterministic  s(n)-Hardness Generator 
exists  iff  E  has circuit complexity at 
least s(n). 

 

  Open:  for  s(n) > ! (n).  

 

  Also open:   

   - Nondeterministic  HG,   

   - Zero-Error Randomized   HG, … 

 



Hardness Generation 
 

 vs. 
  

Derandomization of BPP 



From BPP algorithms to 
Boolean circuits 

input 

BPP 
algorithm 

output 

random string 

 circuit C 

output 

random string 

“hardwire”  
input  

Want to estimate the acceptance probability of circuit C 
(or find an accepted string, if  C  accepts many strings). 



PseudoRandom Generator (PRG) 

PRG 

random seed 

pseudorandom string    random string       

look indistinguishable 
to any small circuit 

Definition [Nisan,Wigderson]:  s(n)-PRG  is a function 
G: {0,1}n  {0,1}s(n),  with output distribution  
indistinguishable from uniform by any s(n)-size  
circuit;  G  is computable in time  2O(n). 



Hardness Generators 
 

 yield 
  

Pseudorandom Generators 



Incompressibility Argument 

Each r 2 B  has “small” description relative to 
C :  log |B| bits specifying the rank of r in B,  
plus the description of  C  ( common to all r in B ) 

 C 

output 

n-bit string 

rejected 
strings 

B 

all n-bit strings 

Corollary: Any string incompressible relative to C 
is accepted by  C. 



Incompressibility Argument 

 C 

output 

n-bit string 

rejected 
strings 

B 

all n-bit strings 

Assume:  |B| < 2n/n,  and  |C| < n. 
Let  R  be any incompressible n2-bit string. 
Partition  R  into  n-bit strings  r1,…, rn. 
 
Claim:  At least one  ri  is accepted by  C. 
 
Proof: Else R is described by < n ( n – log n) + n < n2  
bits.                                                              QED 



Incompressibility Argument 

Problem:   Generating incompressible  
strings is algorithmically impossible !      
    (by definition) 

[Nisan,Wigderson’88]:  Enough to  
generate strings of  
HIGH CIRCUIT COMPLEXITY !!!  

BPP = P 



Hardness-Randomness 
Tradeoffs 

 [NisanWigderson,BabaiFortnowNisanWigderson,Impagliazzo, 
ImpagliazzoWigderson,ImpagliazzoShaltielWigderson, 
SudanTrevisanVadhan,ShaltielUmans,Umans,…]:  

Deterministic s(n)-Hardness Generator  
yields  

s(n)-Pseudorandom Generator, 
 

and vice versa. 

Thm:  s(n)-HG exists   iff   s(n)-PRG  exists  



Can we prove BPP = P 
without proving circuit lower 

bounds ? 



BPP=P implies circuit lower bounds 

Thm [K., Impagliazzo]: 

If  BPP = P,  then  

 either  NEXP not in  P/poly,  

 or  Permanent does not have polysize 
arithmetic circuits. 

Why should a fast  (deterministic)  algorithm 
(for BPP)   lead to any circuit lower bounds ? 



Warm-up  



Constructing a hard function 
from P = NP 

 

Thm [Kannan]:  There is a 2n/n – Hardness 
Generator  computable in Time(2O(n)), given 
§3 oracle. 

 
Proof Idea:  Use alternating  quantifiers to express    

“ f is the first truth table not computable by  
any small circuit ”.     QED 

 

Corollary:  P=NP )  9 deterministic  2n/n-HG  
        (,  E has language of 2n/n circuit complexity)  



How to construct a hard 
function 

 

1.  By  diagonalization,  construct a hard 
function in a “large” complexity class. 

 

2.  Using an efficient meta-algorithm,  
collapse the “large” class to a “smaller” 
class.    



How to construct a hard 
function: Application 

1. By  diagonalization,  construct a hard function in 
a “large” complexity class.   

  

      E
∑
3  has  2n/n  circuit complexity 

 
2. Using an efficient meta-algorithm,  collapse the 

“large” class to a “smaller” class.    

 

                P = NP   )   E
∑
3 = E 



Constructing a hard function 
from BPP = P 

Meta-problem:   Poly Identity Testing  (PIT). 

        

          

Main Observation:  If  PIT in  P,  then can 
test in  P  if a given arithmetic circuit 
computes  Permanent.  

                          (downward self-reducibility of Perm) 



Downward self-reducibility of Perm 

a1 a2 a3 ak 

A Ai 

ith  minor of A 
along 1st row  

Perm ( A )  =  §i   ai * Perm ( Ai ) 



Polynomial Identities for Perm 

Let  C1, …, Cn  be arithmetic circuits, where Ck  has 
k2  input variables. 

 

The circuits  C1, …, Cn  compute  Permanent  iff  

 C1 ( x )  =  x,     and 

 8   1 < k · n,  and  k£k  matrix X = [ x i, j ]  of 
variables, 

 

               Ck  ( X )  =  §i=1..k    x1,i  *  Ck-1 ( Xi
 ), 

 

where  Xi  is  X  without 1st row and ith column. 



Main Observation 

        

          

If  PIT in  P,  then can test in  P  if a given 
arithmetic circuit computes  Permanent.  

                           



Constructing a hard function 
from PIT in P 

Assume   PIT in P,  and  Perm  has polysize 
arithmetic circuits.  Then   P Perm  µ  NP. 

 

Corollary 1:   P#P µ  NP.                [Valiant] 

 

Corollary 2:   PH µ P#P µ NP = coNP.       [Toda] 

  

Corollary 3:   EPH = NE = coNE   requires  2n/n 
circuit size. 

             Thanks  [Aaronson, van Melkebeek]. 



Derandomization of PIT  
from 

Arithmetic Circuit Lower 
Bounds 



Thm [K., Impagliazzo]:   If  Perm  requires 
arithmetic circuits of size 2n²   (over 
rationals),   then  PIT 2 DTIME (npolylog n ). 

Hitting set  H  for  poly(n)-size  n-variate 
arithmetic circuits  (computing poly(n)-deg polynomials): 

 
      H = { ( Perm( a i, 1 ), …,  Perm ( a i, n 

) )  :    
 
   a i, j  2  [ nc ]d log n   chosen using the NW design } 
 



PIT is easy   
 

iff 
 

can prove circuit lower bounds 
 
 



Meta-algorithms vs. Lower 
Bounds 

Zane’s thesis: Progress on meta-algorithms is 
linked to progress on lower bounds.  

Meta-algorithm  = an algorithm that takes 
algorithms as input  (e.g.,  SAT,  Poly Id Test, …)  

LinialMansourNisan, PaturiPudlakSaksZane,  
RazborovRudich, NisanWigderson, Braverman, … 



Constant Depth 



PIT for constant-depth circuits 
 

[DvirShpilkaYehudayoff]:   Derandomization  iff  
lower bounds   (similar to [KI] ) 

 

Depth-3 derandomization (bounded top fanin):  
[DvirShpilka, KayalSaxena, ArvindMukhopadyay, 
KarninShpilka, SaxenaSeshadri, KayalSaraf, …] 

 

 

Challenge: Depth-3 circuits  (unbounded fanin) 
 



PIT from constant-depth lower 
bounds 

 

[AgrawalVinay]:   

Exponential  depth-4 circuit lower bounds   )  

exponential  (any depth)  circuit lower bounds 

    )  general  Circuit-PIT 2  npolylog n time 

 
[Raz’09]:   

Exponential  depth-3 formula lower bounds  )  

superpoly  (any depth)  formula lower bounds 

    )  general  Formula-PIT 2  ???  time 

 



Derandomization without 
circuit lower bounds ? 



Derandomization without 
circuit lower bounds ? 

Weak from weak 



Typically-correct derandomization 
Relaxation:  Allow derandomized algorithms 

to make mistakes on “few” inputs. 

 

[Impagliazzo, Wigderson ’01]:  

A language   L  is in  Heur-P  if there is a 
determistic polytime algorithm  A  s.t.  

        Pr x Ã  D [ A(x)    L(x) ]  is “small”,  

for any polytime-sampleable   D. 

 

[Goldreich, Wigderson ’ 02]:    D = Uniform 

 



 BPP vs. EXP 
[Impagliazzo, Wigderson ’01]:   

 EXP    BPP    )   BPP  µ   io- Heur-SUBEXP. 

 

Cf. [BabaiFortnowNisanWigderson]:  

EXP  not in  P/poly   )   BPP  µ   io- SUBEXP 

 

“ EXP   BPP ”  is not known to imply any 
circuit lower bounds …  

 

Cf.  [IKW]: NEXP   MA , NEXP not in P/poly 



Typically-correct derandomization 
[IW’01, K’01, TV’07, GSTS’03, SU’07, 

GW’02, Zim’08, Sha’09, KMS’09] 

 

[Kinne, Melkebeek, Shaltiel’09]:  Under  
assumption (*), every BPP language has a  
P-algorithm that is correct on almost all 
inputs   (of every length).  

 

Assumption (*):    P  has a language that is 
average-hard for  nd-size circuits.   



Typically-correct derandomization 
and circuit lower bounds  

 

[Kinne, Melkebeek, Shaltiel’09]:  If every  BPP 
language has a  SUBEXP-algorithm that is 
correct on all but subexp-many inputs,  
then   

 either  NEXP not in  P/poly,  

 or  Perm  is not computable by polysize 
arithmetic circuits. 

 
   (extends [KI’04]  to “typically-correct” setting.) 



More on Hardness  



Hardness Testing 
Given a binary string  x,  test  if  x  has “high”  
circuit complexity. 
 
 Sound test accepting “many”  strings is  
unlikely in P   
( “natural property” [RazborovRudich] ). 
 
 
 Sound test accepting “few” strings ?   
 
[IKW’02] : 9  sound test in NP  ) NEXP not in P/poly. 
 
That is,  NP-constructivity  )  lower bounds 



Open Questions 

  Strongly exponential arithmetic circuit 
lower bounds  )  PIT 2  P  ? 

  

   Strong arithmetic formula lower bounds   
)  derandomization of  Formula-PIT ?   

  

   BPP    EXP  )  circuit lower bounds ? 

       ( extending  [KMS’09]  ??? ) 




