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Abstract. We show that derandomizing Polynomial Identity Testing
is essentially equivalent to proving arithmetic circuit lower bounds for
NEXP. More precisely, we prove that if one can test in polynomial
time (or even nondeterministic subexponential time, infinitely often)
whether a given arithmetic circuit over integers computes an identically
zero polynomial, then either (i) NEXP ¢ P/poly or (ii) Permanent is
not computable by polynomial-size arithmetic circuits. We also prove
a (partial) converse: If Permanent requires superpolynomial-size arith-
metic circuits, then one can test in subexponential time whether a given
arithmetic circuit of polynomially bounded degree computes an identi-
cally zero polynomial.

Since Polynomial Identity Testing is a coRP problem, we obtain the fol-
lowing corollary: If RP = P (or even coRP C N~ oNTIME(2™"), infinitely
often), then NEXP is not computable by polynomial-size arithmetic cir-
cuits. Thus establishing that RP = coRP or BPP = P would require
proving superpolynomial lower bounds for Boolean or arithmetic cir-
cuits. We also show that any derandomization of RNC would yield new
circuit lower bounds for a language in NEXP.

We also prove unconditionally that NEXPRP does not have polynomial-
size Boolean or arithmetic circuits. Finally, we show that NEXP ¢
P/poly if both BPP = P and low-degree testing is in P; here low-degree
testing is the problem of checking whether a given Boolean circuit com-
putes a function that is close to some low-degree polynomial over a finite
field.
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1. Introduction

1.1. Derandomization from circuit lower bounds. In the early 1980’s,
Yao (Boppana & Hirschfeld 1989; Yao 1982) showed that one-way functions
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whose inverses have high average-case circuit complexity can be used to con-
struct pseudorandom generators, which suffice for the derandomization of such
probabilistic complexity classes as RP and BPP. Yao’s approach to derandom-
ization was extended by Nisan and Wigderson (Nisan & Wigderson 1994) to ar-
bitrary hard functions which are not necessarily one-way (in particular, to hard
Boolean functions). The sequence of papers (Andreev et al. 1998; Babai et al.
1993; Impagliazzo et al. 1999, 2000; Impagliazzo & Wigderson 1997; Shaltiel
& Umans 2001; Sudan et al. 2001; Umans 2003) significantly strengthened
this result by replacing the assumption of high average-case circuit complexity
with that of high worst-case circuit complexity. For instance, Impagliazzo and
Wigderson (Impagliazzo & Wigderson 1997) showed that BPP = P, provided
that some language in E = DTIME(2°) requires Boolean circuits of size 2™,

These results showing that computational hardness can be used as a source
of computational pseudorandomness, termed hardness-randomness tradeoffs,
are considered as evidence that BPP can be derandomized. However, in or-
der to derandomize BPP using such an approach, one would need to prove
superpolynomial circuit lower bounds for some language in EXP. Establish-
ing superpolynomial lower bounds for general models of computation (such as
Boolean circuits) is one of the biggest challenges in complexity theory that
has withstood several decades of sustained effort by many researchers. If prov-
ing superpolynomial circuit lower bounds is indeed necessary for derandomizing
BPP, then it seems unlikely that such a derandomization result will be obtained
in the near future.

This raises an obvious question: Can we derandomize BPP without proving
superpolynomial circuit lower bounds for EXP?

It is well-known that derandomizing BPP using a pseudorandom generator
(as in Yao’s original approach) does indeed require proving that EXP ¢ P/poly
(see, e.g., (Impagliazzo et al. 1999) for a proof). Moreover, there is a very tight
connection between the quality of a pseudorandom generator and the strength
of circuit lower bounds for EXP. Roughly, the existence of a pseudorandom
generator that stretches n-bit inputs to s(n)-bit outputs, for n < s(n) < 2", is
equivalent to the existence of a language in E that requires Boolean circuits of
size s(n) (Shaltiel & Umans 2001; Umans 2003).

On the other hand, Impagliazzo, Kabanets, and Wigderson (Impagliazzo
et al. 2002) showed that derandomizing promise-BPP would require proving
that NEXP ¢ P/poly; here the derandomized algorithm for a promise-BPP
problem is allowed to be nondeterministic subexponential-time.

These results may explain why no unconditional derandomization of the
class promise-BPP has been achieved so far. But they leave open the case of
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BPP. Presumably it is possible to derandomize BPP without derandomizing
promise-BPP. However, the results in this paper show that even derandomizing
RP requires a circuit lower bound of some form.

1.2. Polynomial Identity Testing. Deriving general consequences from
the assumption BPP = P seems difficult due to the apparent lack of BPP-
complete problems. However, we focus on a particular BPP problem, and
argue that derandomizing this problem implies a circuit lower bound.

One of the most natural problems in BPP (in fact, in coRP) is Polynomial
Identity Testing: Given an arithmetic circuit, decide if it computes the identi-
cally zero polynomial. By the well-known Schwartz-Zippel lemma (DeMillo &
Lipton 1978; Schwartz 1980; Zippel 1979), evaluating a degree d multivariate
polynomial on an tuple of random elements from a finite subset S yields a
probabilistic algorithm whose error probability is at most d/|S|. The impor-
tance of this problem is witnessed by a plethora of its applications to perfect
matching (Chari et al. 1995; Lovasz 1979; Mulmuley et al. 1987), equivalence
testing of read-once branching programs (Blum et al. 1980), multiset equality
testing (Blum & Kannan 1995), primality testing (Agrawal & Biswas 2003;
Agrawal et al. 2002), a number of complexity-theoretic results on probabilis-
tically checkable proofs (Arora et al. 1998; Arora & Safra 1998; Babai et al.
1991; Lund et al. 1992; Shamir 1992), as well as sparse multivariate polynomial
interpolation (Clausen et al. 1991; Grigoriev et al. 1990; Roth & Benedek 1991;
Zippel 1979).

Recently, a number of probabilistic algorithm for the polynomial identity
testing were proposed that use fewer random bits than the standard Schwartz-
Zippel algorithm (Agrawal & Biswas 2003; Chen & Kao 2000; Klivans & Spiel-
man 2001; Lewin & Vadhan 1998). However, these algorithms do not deran-
domize Polynomial Identity Testing in the strong sense. It is still a big open
problem to come up with a deterministic polynomial-time (or even nondeter-
ministic subexponential-time) algorithm for that problem.

The deterministic polynomial-time algorithm for Primality Testing discov-
ered by Agrawal, Kayal, and Saxena (Agrawal et al. 2002) achieves derandom-
ization of a very special case of Univariate Polynomial Identity Testing. One
may hope that similar techniques will be useful to obtain derandomization of
the general problem of Polynomial Identity Testing. However, our results show
that this seemingly innocuous problem is, in fact, basically equivalent to the
classic, notoriously difficult problem of proving arithmetic circuit lower bounds.
For instance, we show that designing a (nondeterministic) subexponential-time
algorithm to test whether a given symbolic determinant is identically zero is as
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hard as proving superpolynomial arithmetic formula lower bounds.

1.3. Extending hardness-randomness tradeoffs. Originally, hardness-
randomness tradeoffs were aimed at derandomizing BPP algorithms. Goldreich
and Zuckerman (Goldreich & Zuckerman 1997) showed that the same hard-
ness assumptions imply the derandomization of the class MA introduced by
Babai (Babai 1985; Babai & Moran 1988). Klivans and van Melkebeek (Kli-
vans & Melkebeek 2002) extended the tradeoffs to another class introduced by
Babai, the class AM, as well as to some other randomized algorithms, e.g., the
Valiant-Vazirani hashing technique (Valiant & Vazirani 1986).

On the other hand, no hardness-randomness tradeoffs were known for the
algebraic (rather than Boolean) complexity setting. There are at least two
reasons why one might be interested in such algebraic tradeoffs. The first
reason is purely aesthetic. Showing that hardness-randomness tradeoffs hold
in another complexity setting would be another indication of the fundamental
nature of the idea of converting computational hardness into computational
pseudorandomness.

The second reason is a bit more practical. Suppose that it is eventually
shown that Permanent requires superpolynomial-size arithmetic circuits. It
would be important to know whether such lower bounds could be used to de-
randomize some algebraic algorithms. Of course, it is doubtful that derandom-
ized algorithms derived from circuit lower bounds could be useful in practice,
but even just proving their existence is interesting.

A final motivation is that it shows another example of duality between
meta-algorithms for a model and lower bounds for that same model. Often,
the techniques used to prove lower bounds for some class of circuits also yield
positive results for algorithms taking such circuits as inputs. For example,
(Linial et al. 1993) give a learning algorithm for constant-depth circuits based
on lower bounds for such circuits; (Paturi et al. 1998, 1999, 2000) develop a
new algorithm for £-SAT and a new lower bound for depth-3 circuits, using the
same technique analyzing the solution space of CNF’s. In his thesis, Zane (Zane
1998) made the interesting empirical point that progress on meta-algorithms
is linked to progress in lower bounds. A few formalizations of this principle
are known, e.g., natural proofs (Razborov & Rudich 1997) (“a natural lower
bound yields a cryptanalysis tool”) or hardness-randomness tradeoffs (“a pseu-
dorandom generator can be constructed if and only if Boolean circuit lower
bounds for E can be proved”). Here, we get a formal statement of such a con-
nection for arithmetic circuits: Identity testing for arithmetic circuits can be
derandomized if and only if lower bounds can be proved.
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We should point out that (Linial et al. 1993; Paturi et al. 1998, 1999, 2000)
do not just show the connection between meta-algorithms for a model and lower
bounds for that model, but actually use that connection to obtain new algo-
rithms and new lower bounds. On the other hand, our result just demonstrates
such a connection for the arithmetic circuit model. Similarly to the known
Boolean hardness-randomness tradeoffs, our result shows that a nontrivial (non-
deterministic subexponential-time) algorithm for Polynomial Identity Testing
exists if and only if NEXP contains functions of superpolynomial Boolean or
arithmetic circuit complexity. Thus, in general, progress in designing efficient
deterministic algorithms is linked to progress in proving superpolynomial cir-
cuit lower bounds of some sort.

1.4. Our results. In this paper, we show that derandomizing Polynomial
Identity Testing is essentially equivalent to proving superpolynomial circuit
lower bounds for NEXP. More precisely, we prove that if one can test in poly-
nomial time (or even nondeterministic subexponential time, infinitely often)
whether a given arithmetic circuit over integers computes an identically zero
polynomial, then either (i) NEXP ¢ P/poly or (ii) Permanent is not com-
putable by polynomial-size arithmetic circuits. This implies that proving that
RP = ZPP or BPP = P is as hard as proving superpolynomial (Boolean or
arithmetic) circuit lower bounds for NEXP.

We also consider a special case of Polynomial Identity Testing, Symbolic
Determinant Identity Testing: Given a matrix A of constants and variables,
decide whether the determinant of A is an identically zero polynomial. We
show that any nontrivial derandomization of this problem would also yield
new arithmetic formula lower bounds. Since this problem belongs to the class
coRNC, we conclude that derandomizing RNC is as hard as proving arithmetic
formula lower bounds.

For the converse direction, we extend the known hardness-randomness trade-
offs to the algebraic-complexity setting by showing the following. Polynomial
Identity Testing of n-variate poly(n)-degree polynomials computed by poly(n)-
size arithmetic circuits can be done deterministically in subexponential time,
provided that Permanent (or some other family of exponential-time computable
multivariate polynomials) has superpolynomial arithmetic circuit complexity.

While almost all of our results are reductions among certain complexity-
theoretic assumptions, we do prove one unconditional circuit lower bound,
albeit for a somewhat unnatural complexity class NEXPR?. We show that
either NEXPRP ¢ P/poly or Permanent is not computable by polynomial-size
arithmetic circuits. It is well-known that MA-EXP ¢ P/poly (Buhrman et al.
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1998). A simple argument shows that NPR” C MA and hence, by padding,
NEXPRP € MA-EXP. Thus NEXPRP is the smallest known uniform complex-
ity class that is proved to contain a language of superpolynomial (Boolean or
arithmetic) circuit complexity.

We also prove that a certain version of Polynomial Identity Testing can
be derandomized under the assumption that EXP # NPRP. This is similar to
the result of Babai, Fortnow, Nisan, and Wigderson (Babai et al. 1993) saying
that BPP can be derandomized under the assumption that EXP # MA. Our
assumption is weaker since, as mentioned above, NPR® C MA.

Our last result gives a connection between Low-Degree Testing (i.e., test-
ing whether a given function is sufficiently close to some low-degree polyno-
mial) and the problem of showing implications such as “BPP = P = NEXP ¢
P/poly”. We prove that NEXP ¢ P/poly, provided that both BPP = P and
Low-Degree Testing can be done deterministically in polynomial time; note that
Low-Degree Testing can be placed in deterministic polynomial time, assuming
the existence of a pseudorandom generator from O(logn) to n bits.

Before describing our techniques, we would like to say a few words about
the assumption that NEXP contains a function of superpolynomial Boolean or
arithmetic circuit complexity. Proving such lower bounds for NEXP is certainly
a difficult open problem. On the other hand, NEXP ¢ P/poly is technically a
weaker statement than NP ¢ P/poly, and so may be easier to prove. Moreover,
a superpolynomial circuit lower bound is already known for the probabilistic
version of NEXP, the class MA-EXP (Buhrman et al. 1998), and we prove in
our paper that the smaller class NEXPRP C MA-EXP contains a function hard
for Boolean or arithmetic circuits. So we seem to be getting closer to proving
circuit lower bounds for NEXP. Being optimistic, one may even view the main
result of this paper as pointing to another approach to proving such lower
bounds — by designing a nondeterministic subexponential-time algorithm for
Polynomial Identity Testing.

1.5. Our techniques.

Circuit lower bounds from RP = P The proof that the assumption RP = P
implies circuit lower bounds is fairly simple. The main ingredients are the
implication NEXP C P/poly = NEXP = MA (Impagliazzo et al. 2002) as well
as the downward self-reducibility of the Permanent.

We now outline our argument that shows how the assumption RP = P
implies circuit lower bounds. Later in the paper we give a formal proof that
works also for the case where RP C coNSUBEXP infinitely often. That proof
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will differ from the present outline in some technical details, but the main idea
will be the same.

First we show that testing whether a given arithmetic circuit is a correct cir-
cuit for the Permanent of n x n integer matrices can be reduced to n polynomial
identity tests for multivariate polynomials represented by arithmetic circuits.
In turn, testing whether a given arithmetic circuit computes an identically zero
polynomial is a coRP problem by the Schwartz-Zippel lemma. Hence, testing
whether a given arithmetic circuit computes the Permanent is a coRP-problem.

Thus the assumption RP = P yields a deterministic polynomial-time algo-
rithm to test if an arithmetic circuit computes the Permanent. Assuming that
the Permanent is computable by polynomial-size arithmetic circuits, we get
a nondeterministic polynomial-time algorithm for the Permanent: we simply
guess a polynomial-size arithmetic circuit for the Permanent, check the cor-
rectness of our guess, and then evaluate the guessed arithmetic circuit on an
input integer matrix.

Finally, if NEXP C P/poly, then NEXP = MA = X! (Impagliazzo et al.
2002) and so, by the results of Valiant (Valiant 1979b) and Toda (Toda 1991),
computing the Permanent is NEXP-hard. But this means that NEXP C NP,
which is impossible by diagonalization (the Nondeterministic Time Hierarchy
theorem).

Derandomization of Polynomial Identity Testing from circuit lower
bounds The conditional derandomization result for the Polynomial Iden-
tity Testing is proved by combining the Nisan-Wigderson generator (Nisan &
Wigderson 1994) with the straight-line factorization algorithm for multivariate
polynomials by Kaltofen (Kaltofen 1989).

As in (Chen & Kao 2000; Lewin & Vadhan 1998), we consider the search
problem: Given a multivariate polynomial f over a field F, find its non-zero
if it exists. The points at which we evaluate f will be chosen with the help
of a “hard” function, a multivariate polynomial p of high arithmetic circuit
complexity, using the combinatorial designs of Nisan and Wigderson (Nisan
& Wigderson 1994). As a result, we convert the polynomial f into a new
polynomial g on significantly fewer variables and of total degree polynomial in
the total degrees of f and p. The polynomial g will have the property that g = 0
iff f = 0. Then we look for a non-zero of g by a “brute-force” deterministic
algorithm; the saving in running time is achieved since ¢ has few variables.

The proof of correctness of our construction involves showing that any poly-
nomial f for which our derandomization procedure fails to produce a non-zero
can be used in designing a small arithmetic circuit for the supposedly hard
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polynomial p. Roughly speaking, if our NW generator based on p fails for
a polynomial f, then p is a root of a certain polynomial f derived from f.
Thus, an arithmetic circuit for p can be found by factoring the polynomial f,
using (Kaltofen 1989).

We should point out that the Nisan-Wigderson generator has been already
used in the setting of arithmetic circuits by Raz, Reingold, and Vadhan (Raz
et al. 2002). Also, the proof by Sudan, Trevisan, and Vadhan (Sudan et al.
2001) of Boolean hardness-randomness tradeoffs based on Reed-Muller error-
correcting codes made an essential use of efficient algorithms for factoring mul-
tivariate polynomials; an efficient procedure for polynomial factorization was
one of the main ingredients in the beautiful algorithm of Sudan (Sudan 1997)
for list-decoding Reed-Solomon error-correcting codes. The correctness proof
of our algebraic pseudorandom generator was inspired by Sudan’s list-decoding
algorithm. An important difference in our case is the use of Kaltofen’s al-
gorithm (Kaltofen 1989) that takes as input an arithmetic circuit computing
some multivariate polynomial and produces a list of arithmetic circuits com-
puting the factors of this polynomial; this should be contrasted with the more
common setting where the factors are computable by efficient algorithms which
need not be purely arithmetic (i.e., may use operations other than + and x).
For our analysis, it is crucial that factors of any multivariate polynomial which
is computable by a small arithmetic circuit are themselves computable by small
arithmetic circuits. It is rather surprising that such a factorization is possible,
and, even more so, is constructible in randomized polynomial time.

Organization of the paper. We give the necessary background in Section 2.
Section 3 contains the results about testing correctness of arithmetic circuits for
the Permanent. In Section 4, we derive circuit lower bounds for NEXP from the
assumption that variants of Polynomial Identity Testing can be derandomized.
In Section 5, we obtain an unconditional circuit lower bound for a function in
NEXPRP. In Section 6, we look at the problem of Low-Degree Testing (LDT),
and establish some implications of the assumption that LDT can be done in
deterministic polynomial time. In Section 7, we present conditional derandom-
ization of Polynomial Identity Testing. Some concluding remarks are contained
in Section 8.

2. Preliminaries

In this section we recall some basic definitions of computational complexity,
define several variants of the problem of Polynomial Identity Testing to be
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considered later in the paper, and state the complexity results that we will use.

2.1. Complexity classes. We use the standard definitions of complexity
classes RP, BPP, RNC, PH, EXP, NEXP, #P, and P/poly (Papadimitriou 1994);
we define SUBEXP = N TIME(2™) and NSUBEXP = N.(NTIME(2""). The
class MA (Babai 1985; Babai & Moran 1988) contains exactly those languages
L that satisfy the property: there is a polynomial-time computable predicate
R(z,y, z) and a constant ¢ € N such that, for every z € {0,1}",

r€L=3y: Pr,[R(zx,y,z) =1] > 2/3, and
r ¢ L=VYy: Pr,[R(zx,y,2z) =1] < 1/3,

where y,z € {0,1}". For a complexity class C, its “infinitely-often” version,
i0-C, is defined as the set of all languages L over an alphabet ¥ for which there
is a language M € C over X such that L N¥" = M N X" for infinitely many
n € N.

DEFINITION 2.1. The Permanent of an n x n matrix A = (a; ;) of integers is
defined as Perm(A) = Y T[, air@), where the summation is over all per-
mutations o of {1,...,n}. Sometimes we will be interested in computing the
permanent of integer matrices whose entries are 0 and 1 only. We denote this
restriction of Permanent to 0-1 matrices by 0-1 Permanent.

It is well-known that the complexity of computing the permanent of 0-1
matrices is the same as that of general integer matrices: they both are #P-
complete (Valiant 1979b). Toda (Toda 1991) shows that every language in the
polynomial-time hierarchy can be decided in polynomial time with oracle access
to some #P-complete problem. Together these results show that computing 0-1
Permanent is PH-hard. We formally state these two theorems below.

THEOREM 2.2 (Valiant 1979b). 0-1 Permanent is #P-complete.

THEOREM 2.3 (Toda 1991). PH C P#P,

Since 0-1 Permanent is an integer-valued (rather than Boolean-valued) func-
tion, it is not a language, and so we cannot talk, for example, about 0-1 Per-
manent being in the class NP. Instead, we will consider the graph of 0-1
Permanent, which is the language defined as follows.

DEFINITION 2.4. The graph of 0-1 Permanent is the set
{(M,v) | M is a0-1 matrix and v = Perm(M)}.
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LEMMA 2.5. If the graph of 0-1 Permanent is in NP (respectively, NSUBEXP ),
then P#? C NP (respectively, P#P C NSUBEXP).

Proor. We will only prove the lemma for the case of polynomial time; the
case of subexponential time is completely analogous.

Let G be the assumed nondeterministic polynomial-time Turing machine
that decides the graph of 0-1 Permanent. Let L € PY~'Fer™ he any language,
and let A be an oracle Turing machine deciding L. On a given input z of size
n, A may ask for up to a polynomial number of queries to 0-1 Permanent. Let
M, ..., My, for k € poly(n), denote these queries.

On input x, our nondeterministic polynomial-time Turing machine for L
will nondeterministically guess the queries M, ..., M} and poly(n)-bit integers
U1,...,Ug. Then it will simulate the nondeterministic Turing machine G' on
each of the pairs (M;,v;), for i = 1,... k. If G rejects on any of these pairs,
we also reject. If G accepts on all of these pairs, we know that Perm(M;) = v;
for all 1 < ¢ < k, and so we deterministically simulate the machine A on =,
answering the query M; of A with the value v;. If, for any ¢, the ith query asked
by A is different from M;, we reject. Otherwise, we accept iff the simulation of
A on z leads to acceptance. 0]

REMARK 2.6. We could say that 0-1 Permanent is in functional NP if there is
a nondeterministic polynomial-time Turing machine such that, for every input
0-1 matrix M, (i) there is at least one accepting computation of the Turing
machine, and (ii) every accepting computation of the Turing machine halts
with the value Perm(M) written on the output tape. It is easy to show that
0-1 Permanent is in functional NP iff the graph of 0-1 Permanent is in NP.

We shall also need the following complexity results.

THEOREM 2.7 (Babai et al. 1991). EXP C P/poly = EXP = MA.

COROLLARY 2.8. If EXP C P/poly, then EXP C P#P,

Proor. If EXP C P/poly, then EXP = MA by Theorem 2.7. Since MA C PH,
the result follows by Theorem 2.3. U

THEOREM 2.9 (Impagliazzo et al. 2002). NEXP C P/poly = NEXP = MA.
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COROLLARY 2.10. If NEXP C P/poly, then NEXP C P#P,

ProOOF. The proof is identical to that of Corollary 2.8, except we use Theo-
rem 2.9 instead of Theorem 2.7. U

THEOREM 2.11 (Babai et al. 1993). If MA ¢ io-NTIME(2™) for some ¢ > 0,
then EXP = MA C P/poly.

2.2. Diagonalization lemmas. Here we state some useful diagonalization
results.

LEMMA 2.12. coNEXP Z io-NTIME(2").

PROOF. The following coNEXP machine diagonalizes against all NTIME(2")
machines. On an input x of length n, simulate the xth nondeterministic Tur-
ing machine M, on x for 2" steps, and reject iff M, accepts; note that a
co-nondeterministic Turing machine can easily “fip” the decision of the non-
deterministic machine M,. Since we can assume that each nondeterministic
Turing machine has descriptions of size n for all sufficiently large n € N, the
result follows. O

LEMMA 2.13. For any constant ¢, EXP ¢ io-SIZE(n®).

Proor. Consider the following exponential-time algorithm. For a given in-
put x of size n, enumerate all circuits of size at most n°. Let S be the set of
all such circuits; note that |S| < 2", for all sufficiently large n.

Let ay,...,as be an enumeration of all n-bit strings, say in the lexico-
graphical order. For i = 1,...,n"!, do the following. Evaluate each circuit
in S on the input «;, noting the value b; computed by the majority of these
circuits. Remove from the set S all the circuits that compute b; on input ay;
this removes at least half of the elements of S. Continue with the next . Once
S becomes empty at some stage i’ < n°"!, assign the value 0 to all by, ..., ban.

By construction, the complement of the binary string by ... bsn is the truth
table of an n-variable Boolean function that cannot be computed by any cir-
cuit of size at most n°. Once our algorithm obtained this truth table, it finds
the input string x on the list of a;’s, and outputs the complement of the cor-
responding bit b;. Clearly, the language decided by this algorithm is not in
i0-SIZE(n®). O
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LEMMA 2.14. Suppose NEXP C P/poly. Then EXP ¢ io-NTIME(2")/ log® n.

ProOOF. Let U be a universal language for the class NTIME(2"), i.e., U =
{(M,z) | nondeterministic TM M accepts x in time 2"}. Clearly, U € NEXP.
Hence, there is a fixed constant ¢ such that U € SIZE(n®). It follows that,
for every language L € NTIME(2")/log’n, we have L € SIZE(n¢™!) for all
sufficiently large input lengths n.

If EXP C io-NTIME(2")/log? n, then we would get EXP C io-SIZE(n®t?).
But, this contradicts Lemma 2.13. O

LEMMA 2.15. Let O be any language, and suppose NEXP? C P/poly. Then
EXP & io-NTIME?(27)/ log? n.

ProOF. The proof is the same as that of Lemma 2.14, except we use a
universal language U € NEXP? for the class NTIME® (2"). O

2.3. Arithmetic circuits. We consider arithmetic circuits whose gates can
be labeled by +, —, and x; multiplication by constants is also allowed. The
size of a circuit is determined by the number of its gates together with the sizes
of all constants used by the circuit. An arithmetic circuit where each gate has
fan-out at most one is called an arithmetic formula. These are the definitions of
so-called division-free circuits and formulas. Later in this subsection, we shall
also discuss the case of more general circuits where divisions are also allowed.

Every division-free arithmetic circuit C' on n inputs computes the n-variate
polynomial pc(zq,...,x,) defined inductively as follows. The ith input gate
of C' computes the identity polynomial x;; a “4” gate that receives its inputs
from gates v and v computes the sum of the two polynomials corresponding to
u and v; etc. The polynomial pc is the polynomial computed by the output
gate of C.

Let g(z1,...,x,) be an arbitrary polynomial over some integral domain I.
There are two ways of defining what it means for an arithmetic circuit C' to
compute q. The first option is to say that an arithmetic circuit C' computes ¢ if
q and pc are identical polynomials, denoted ¢ = pe. That is, if we write each
polynomial as a linear combination of monomials with coefficients from I, we
obtain exactly the same expression (up to the order of monomials).

The second option is to say that an arithmetic circuit C' computes ¢ if ¢
and pc agree at every point in I, i.e., pc(@) = ¢(@) for all @ € I™.

We should remark that these two options are equivalent in the case of infinite
integral domains, since any two distinct polynomials may agree on only finitely
many points.
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In this paper, we use both of these possible definitions. When we talk about
Polynomial Identity Testing, we use the first definition: given an arithmetic
circuit C, decide if the polynomial p¢ is identically zero. When we talk about
the arithmetic circuit complexity of a polynomial ¢ over an integral domain 1,
we use the second definition: the arithmetic circuit complexity of a polynomial
q(z1,...,x,) over I is defined as the size of a smallest arithmetic circuit C' such
that po and ¢ agree over I™. This distinction means that some results that we
prove for infinite fields have only weak analogues for finite fields.

The following simple lemma bounds the degree of a polynomial computed
by an arithmetic circuit (or formula) of a given size.

LEMMA 2.16. An arithmetic circuit (respectively, formula) of size s on input
variables x1, ..., x, computes a polynomial of total degree at most 2° (respec-
tively, s).

ProOOF. Every multiplication gate in an arithmetic circuit can at most double
the degree of the resulting polynomial, and so the total degree is bounded by
2%. In the case of arithmetic formulas, each multiplication gate can at most
add the degrees of its two subformulas, and so the total degree of the resulting
polynomial is bounded by s. O

If we allow divisions in arithmetic circuits over the field Q of rationals, then
these circuits will compute rational functions of the form f/g, where f and
g are polynomials over the ring Z of integers. An arithmetic circuit C' over
Q with divisions is said to compute an integer polynomial h if the rational
function f/g computed by C' satisfies the equality f = g x h. That is, for every
integer vector @ such that ¢(@) # 0 (and hence C'is defined on this @), we have
that f(@)/g(@) = h(d).

Later in the paper, we will talk about arithmetic circuits computing Per-
manent of integer matrices. If a division-free circuit over integers computes
Permanent, then obviously it also computes 0-1 Permanent. However, accord-
ing to the definition just given for circuits with divisions, an arithmetic circuit
with divisions over Q that computes Permanent may be undefined on some
inputs, and in particular, it may be undefined on input 0-1 matrices. One way
to deal with this problem is to use Strassen’s result (Strassen 1973).

THEOREM 2.17 (Strassen 1973). Let C' be an arithmetic circuit of size s over
Q with divisions such that C' computes a degree d polynomial f(x1,...,x,).
Let @ = (ay,...,a,) € Z" be such that C is defined at d. Then, given C" and
d, one can construct in time poly(s, d, |@|) a new circuit C" of size poly(s, d, |d|)
such that
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(i) C" also computes f,

(ii) the only divisions in C" are by non-zero constants (independent of the
input to C").

PrROOF. The upper bound on the size of C’ will follow immediately from the
upper bound on the running time of the algorithm constructing C' from C'. We
describe this algorithm, following (Kaltofen 1988, Section 7).

Define the polynomial g(z,41,...,yn) = f(y12 + a1,...,ynz + a,). Note
that ¢g is computable by the new arithmetic circuit C’(z, Yly -y Yn) = Clyp X
Z+ag,...,Yn X 2+ ay,) of size only slightly bigger than s. Also note that C at

z = 0 computes C(ay,...,a,), and hence is defined.
The Taylor series of g about z = 0is g(2,y1,...,yn) = Z?:o Ci(Yiy- - Yn)2’,
where ¢;’s are polynomials in the variables yi,...,y,. The series is truncated

at d because the degree of f is d, and hence so is the degree of ¢ in z. Thus,
flyr +ar, . syn +an) = g(Lyr, .o yn) = Z?:o ¢i(yi, -, yn), and we can

d
compute f(21,...,2n) =D i o1 — a1,..., 2, — ap).
So we can compute f if we can compute the ¢;’s. The crucial step of the
proof is an efficient construction of d + 1 new arithmetic circuits Cy, C4, ..., Cy

from the circuit C' such that each C; computes ci(yiy ..y Yn), for 0 < i < d,
and the only divisions in C}’s are by non-zero constants.

The construction proceeds by associating with each gate u of the circuit
C the d + 1 gates uyg, ..., uq of the new circuit. Each such u; computes the
coefficient at 2’ in the Taylor expansion of the rational function computed by
gate u. Suppose that gate u in C receives inputs from some gates v and w. Then
gates uyg, . .., uqg will receive its inputs from the corresponding gates vy, ..., v4
and wy, ..., wy. The actual circuitry involved in computing u;’s will depend on
the type of the operation computed by gate u.

If wis +, then u; = v;+w;. If uis x, then u; = Zj7k:j+k:i v; X wy, is the convo-
lution. The most difficult case is when u is <. We first invert Z?ZO w;z" modulo
291 by computing to,...,ts such that (Z?:o w;z' )t = Z?ZO t;2* mod z4*T.
This can be done using the Newton iteration as follows. Compute ay = wio, and
fori =1,2,...,[log(d +1)], a5 = 20, 1 — O‘?A(Z?:o w;z7) mod Zmimid+12'%,
the last computed afiogas1y Will equal the inverse (3¢ w;z")~! mod 2%+ .
Note that the only division incurred in this process is by wy. But wy equals
the value at z = 0 of the rational function computed by gate w in C, which is
a non-zero constant by the definition of C'. Once we have computed Z?:o tizt,
we compute u; as the convolution u; = Zj,k:ﬂk:i vj X t. d
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2.4. Polynomial identity testing and self-correction. We will consider
multivariate polynomials over some integral domain, e.g., the ring Z of integers.
The degree of a monomial z{" .. .:L‘Zk is defined as Zle d;; the total degree of
a polynomial is defined to be the maximum degree over all its monomials.

For a polynomial p = ) _ ¢, * m, where the summation ranges over all
monomials m of p, we define the mazimum coefficient size of p as the maximum
bit complexity over the coefficients ¢,,, i.e., [log, max{|c,,|}].

We say that the polynomial p(z1,...,x,) is identically 0, denoted p = 0,
if all coefficients of p are 0. Clearly, if p = 0, then p(@) = 0 at every point
d. On the other hand, a polynomial may vanish over a large domain and yet
not be identically zero. For example, the polynomial " | z;(1 — ;) vanishes
at each point of the Boolean cube {0,1}", but obviously is not an identically
zero polynomial. However, if p(z,...,x,) is defined over an infinite field, say
@, and vanishes at each point of Q*, then p = 0; this is because any non-zero
polynomial may have only a finite number of roots. The same implication holds
also for finite fields F, provided that the degree of the given polynomial p is
significantly smaller than the size of F, and so the number of possible roots of
p is smaller than the size of F". The following lemma provides a more precise
statement of this.

LEMMA 2.18 (DeMillo & Lipton 1978; Schwartz 1980; Zippel 1979). For an ar-
bitrary non-zero polynomial p(xy,...,xz,) of total degree d over an integral
domain F, and any finite set S C F, we have Pr,cg-[p(a) = 0] < ‘%‘é'.

In general, the problem of testing whether a given polynomial vanishes over
a given domain is harder than the problem of testing if a given polynomial is
identically zero. This paper is concerned only with the latter, easier problem.
We define the following versions of Polynomial Identity Testing Problem.

DEFINITION 2.19 (Polynomial Identity Testing).

Arithmetic Circuit Identity Testing Problem (ACIT)

Given: An arithmetic circuit C' computing a polynomial p(x, ..., xy).
Decide: Isp=07?

Arithmetic Formula Identity Testing Problem (AFIT)
Given: An arithmetic formula F computing a polynomial p(z1, ..., xy).
Decide: Isp =07

Symbolic Determinant Identity Testing Problem (SDIT)
Given: Ann x n matrix A over ZU {x1,...,x,}.
Decide: Is the determinant Det(A) = 07
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Note that, for an n x n matrix A of indeterminates, Det(A) is a degree n
polynomial. This polynomial is computable by a polynomial-size division-free
arithmetic circuit (Strassen 1973) (see also (Kaltofen 1992) for a more efficient
division-free algorithm). Thus, the problem of testing whether the determinant
of a given symbolic matrix is identically zero is a very natural special case of
Polynomial Identity Testing.

LEMMA 2.20 (Ibarra & Moran 1983). ACIT over Z is in coRP.

Proor. By Lemma 2.16, a given arithmetic circuit C' computes an n-variate
polynomial p of total degree at most 2°, where n,s € O(|C|). Let S =
{1,...,2°"}. We would like to test whether C'(a) = 0 for a randomly cho-
sen n-tuple a € S™, and accept iff the equality holds. Obviously, if p = 0, then
we would accept with probability one. On the other hand, if p # 0, then, by
Lemma 2.18, we would accept with probability at most 25/252 < 275,

The only problem is that, since p can have degree 2%, the value of p on a
given n-tuple a € S™ can be as big as 25"2" " double-exponential in s; obviously,
such a value cannot be computed in time poly(s). The way out is to use modular
arithmetic: carry out the computation of p(a) modulo a random number m €
[25%, 25%].

Clearly, if p(a) = 0, then p(a) = 0 mod m for every m. To analyze the
probability that p(a) =0 mod m for a random m when p(a) # 0, we consider
two cases: (i) m is composite, and (ii) m is prime. By the Prime Number
Theorem, the fraction of primes in the given interval [25°,25°] is at least 5%,
and so the probability that case (i) occurs is at most 1 — s™*. On the other
hand, at most 2* of the primes in our interval can divide p(a) # 0; therefore,
the probability that p(a) = 0 modulo a random prime from our interval is at
most 275" Consequently, the probability that p(a) = 0 mod m for a random
m € [2°°,25°] when p(a) # 0 is at most (1 —s™*) +275" < 1 — s7°.

Thus, if p = 0, then p(a) = 0 mod m for every a and m. On the other
hand, if p # 0, then

Pronmpla) =0 modm] <27 +(1—-s7°)<1—s"

By repeating the calculations for s” independently chosen m’s and accepting iff
p(a) = 0 modulo every m, this error probability can be made less than 1/2. O

By Lemma 2.18 and the well-known facts that the evaluation of arithmetic
formulas is in NC (Brent 1974) (see also (Buss et al. 1992)) and that the deter-
minant of an integer matrix is computable in NC? (Chistov 1985), we get the
following.
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COROLLARY 2.21. Both AFIT and SDIT are in coRNC.

Another important property of polynomials is their robustness, as witnessed
by the following result due to Beaver, Feigenbaum, and Lipton; for complete-
ness, we include the proof. Recall that two functions f,g : F* — F, over a
finite field F, are said to be e-close, for some € > 0, if f(a) = g(a) for all but
an € fraction of points a € F".

LEMMA 2.22 (Beaver & Feigenbaum 1990; Lipton 1991). For a finite field F,
let f : F» — F be a function that is e-close to some n-variate polynomial
p of total degree d. Then there is a probabilistic poly(n,d)-time algorithm
that, given oracle access to f, computes p(a) on every point a € F* with high
probability, provided that e < 1/(4(d + 1)) and |F| > d + 1.

Proor. Consider the following randomized algorithm. Given an input a €
™, choose a point b € F" uniformly at random, and evaluate f(a+tb) for d+1
distinct values of ¢ € F\ {0}. Using these values, interpolate the univariate
polynomial ¢(t), and return the value ¢(0).

For the analysis, note that the point a + tb, for every fixed ¢t € F \ {0}, is
uniformly distributed in F*. Hence, the probability that f(a + tb) = p(a + tb)
for all d + 1 values of t is at least 1 — (d 4+ 1)e > 3/4. Since the restriction of p
to the line {a + tb | t € F} is a univariate polynomial in ¢ of degree at most d,
it follows that ¢(t) = p(a + tb) with probability greater than 3/4. Thus, with
probability greater than 3/4, the described algorithm will output ¢(0) = p(a),
as required. O

Using a more complicated algorithm, one can tolerate higher values of €. In

particular, e can be arbitrarily close to 1/2 (Gemmell & Sudan 1992).

2.5. The Nisan-Wigderson designs. Our derandomization procedure for
ACIT will use a generalization of the Nisan-Wigderson generator (Nisan &
Wigderson 1994) that is based on the following construction of combinatorial
designs.

LEmMMA 2.23 (Nisan & Wigderson 1994). For every m,n € N, n < 2™, there
exists a family of sets Sy,...,S, C{1,...,l} such that

(i) 1 € O(m?/logn),
(ii) for all 1 < i < n, |S;| = m, and
(iii) for all 1 < i < j < n, |S;NS;| <logn.

Such a family can be constructed deterministically in time poly(n, 2').
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3. Testing an Arithmetic Circuit for Permanent

In this section, we show that testing whether a given arithmetic circuit com-
putes Permanent can be efficiently reduced to the problem of Arithmetic Circuit
Identity Testing (ACIT). This will allow us to prove that, if ACIT is in NP and
if Permanent is computable by polynomial-size arithmetic circuits, then the
graph of 0-1 Permanent is in NP.

3.1. Case of division-free arithmetic circuits over Z. Let p, be a poly-
nomial on n” variables {z;;}7";_, over Z. If p, computes Perm of n x n integer
matrices, then appropriate restrictions of p,, will compute Perm on ¢ x ¢ integer
matrices, for 1 < ¢ < n: we can just place an ¢ X 7 matrix A in the lower
right corner, assigning 1 to the diagonal variables above A and 0 to the rest of
variables. Let p; denote such a restriction of p, to i x ¢ matrices, for 1 <i < n.
It follows immediately from the definition of Perm that

(3.1) pi(z) =,

and, for all 1 <7 < n,
(3.2) pi(X) =) w1 i (X5),
7j=1

where X is a matrix of i? variables T, and X is the jth minor of the matrix
X along the first row.

Conversely, by induction on i, if arbitrary polynomials py, ..., p, satisfy all
the identities given by (3.1) and (3.2) above, then each p; computes Perm of
1 X ¢ matrices over Z, for 1 < i < n.

Given oracle access to ACIT, we can easily test in polynomial time that all
equations (3.1) and (3.2) hold. This would give us a polynomial-time Turing
reduction from the language

Acp ¥ {C'| C is an arithmetic circuit computing Perm of integer matrices}

to ACIT. With just a bit of extra work, we can achieve a many-one reduction.
This will be useful since NP and NSUBEXP are not known to be closed under
Turing reductions, but they are closed under many-one reductions.

LEMMA 3.3. The language ACP defined above is polynomial-time many-one
reducible to ACIT.
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PRrROOF. Let p, be a polynomial on n? variables {xiyj}?,j:l computed by a
given arithmetic circuit C'. Let p; be the restrictions of p, to ¢ x i matrices of
variables, defined so that if p,, = Perm, then each p; computes Perm on i x i
matrices.

Note that testing equation (3.1) and equations (3.2), for each 1 < i < n,

def

is equivalent to testing whether h,(z) o () —z =0 and h(X) = pi(X) —

> i1 T1,;Pi-1(X;) = 0. Equivalently, we need to test whether

WXY, X2 X" ) S by (X7 X " hy(X2) x " 2 By (X7) =0,
where X' is a set of ¢ variables, and y is a new variable.

Clearly, C' computes Perm of n x n integer matrices iff h = 0. Also note
that the polynomial h is computable by an arithmetic circuit of size poly(|C),
since every h; is; the size of the circuit for h is also polynomial in n, but this
dependence is taken into account because the size of C' must be at least the
number n? of its inputs. O

COROLLARY 3.4. If ACIT over Z is in NP (respectively, NSUBEXP ), then the
language ACP of Lemma 3.3 is also in NP (respectively, NSUBEXP ).

PRrRooOF. This is immediate from Lemma 3.3. O

COROLLARY 3.5. Suppose Permanent over 7Z is computable by polynomial-
size arithmetic circuits. If ACIT is in NP (respectively, NSUBEXP), then the
graph of 0-1 Permanent is in NP (respectively, NSUBEXP ).

ProoF. We only prove the NP part of the claim; the proof of the NSUBEXP
part is analogous.

Let (M, v) be an input, where M is a 0-1 nxn matrix, and v is an O(nlogn)-
bit integer. Our goal is to design a nondeterministic polynomial-time Turing
machine that accepts the input (M, v) iff Perm (M) = v.

Since Permanent over Z is computable by polynomial-size arithmetic cir-
cuits, we can nondeterministically guess a poly(n)-size arithmetic circuit C
computing Perm on n X n integer matrices. By Corollary 3.4, we can test in
NP whether the guessed circuit C'is a correct circuit for Perm. If it is wrong, we
reject. If it is correct, we evaluate C' on the 0-1 matrix M in deterministic poly-
nomial time, by performing all arithmetic operations modulo 278"+ Since
Perm(M) < 27987 the result of our evaluation actually gives us Perm(M).
Finally, we compare this value with the input v, accepting iff they are equal. [

Finally, we state analogous results for arithmetic formulas.
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LEMMA 3.6. The language

AFP Y {F | F is an arithmetic formula computing Perm of integer matrices}

is polynomial-time many-one reducible to Arithmetic Formula Identity Testing
(AFIT).

Proor. The proof is exactly the same as that of Lemma 3.3. Just observe
that, if we start with an arithmetic formula F that supposedly computes Perm,
then the polynomial h defined in the proof of Lemma 3.3 will also be computable
by an arithmetic formula of size poly(|F|). O

COROLLARY 3.7. If AFIT over Z is in NP (respectively, NSUBEXP ), then the
language AF P of Lemma 3.6 is also in NP (respectively, NSUBEXP ).

PRrRooOF. This is immediate from Lemma 3.6. O

COROLLARY 3.8. Suppose Permanent over Z is computable by polynomial-
size arithmetic formulas. If AFIT is in NP (respectively, NSUBEXP), then the
graph of 0-1 Permanent is in NP (respectively, NSUBEXP).

PrOOF. The proof is the same as that of Corollary 3.5. Simply replace
“circuits” with “formulas”, and “Corollary 3.4” with “Corollary 3.7”. U

3.2. Case of arithmetic circuits over Q with divisions. Here we will ar-
gue that if ACIT over Z is in NSUBEXP and if Perm over Z has polynomial-size
arithmetic circuits (possibly using divisions), then we still get the conclusion
that the graph of 0-1 Permanent is in NSUBEXP.

First we use Theorem 2.17 to show that if Perm has polynomial-size arith-
metic circuits over Q using divisions, then it has only slightly bigger arithmetic
circuits that are defined everywhere.

COROLLARY 3.9. Ifthere is a family of polynomial-size arithmetic circuits over
Q with divisions that compute Perm of integer matrices, then there is a family
of pairs of polynomial-size division-free circuits (C7T,C%) over Z such that C¥
computes an integer constant ¢ # 0, and C7 = cPerm over all n x n integer
matrices.
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Proor. For any arithmetic circuit C' of size s computing a rational function
f/g, where f, g are polynomials over Z, we get that both f and g are also com-
putable by arithmetic circuits of size poly(s). This is because we can associate
with each gate of C' a pair of new gates, one for the numerator and the other
for the denominator, and then simulate C' using these pairs of gates.

Hence, the denominator g has bounded degree 2P°Y() by Lemma 2.16. It
follows by Lemma 2.18 that there is a tuple of integers (ay, ..., a,) at which g is
non-zero, and such that the bit size of each a; is polynomial in s. We conclude
that the size of a “good” point @ at which the given arithmetic circuit C' of size
s (over Q, with divisions) is defined is bounded by a polynomial in s.

Finally, suppose a poly(n)-size circuit C' computes Perm of n x n matrices.
Since the degree of Perm is n, we obtain from C' by Theorem 2.17 a new poly(n)-
size circuit C' for Perm such that the numerator of C’ computes an integer

polynomial h(z1,...,x,) and the denominator computes an integer constant
¢ # 0. Both the numerator and the denominator of C' are computable by
division-free arithmetic circuits over Z of size poly(|C’|). O

Now we can prove an analogue of Corollary 3.5 for the case of arithmetic
circuits with divisions.

THEOREM 3.10. Suppose Permanent is computable by polynomial-size arith-
metic circuits over Q with divisions. If ACIT over 7 is in NP (respectively,
NSUBEXP), then the graph of 0-1 Permanent is in NP (respectively, NSUBEXP ).

Proor. We prove the NP part only; the NSUBEXP part has an analogous
proof.

We need to describe a nondeterministic polynomial-time Turing machine
that, on input (M, v), where M is a 0-1 n X n matrix and v is an O(nlogn)-bit
integer, accepts iff Perm(M) = v.

By Corollary 3.9, we know that there exist two division-free polynomial-size
circuits C; and Cy over Z such that C', computes a non-zero integer constant
¢ and C; = cPerm. So, we nondeterministically guess two polynomial-size
division-free arithmetic circuits C; and Cy over Z, where C; depends on n?
variables, and C5 has no input variables (and so Cy just computes some integer
constant ¢). We want to test whether C(X) = cPerm(X) for n x n integer
matrices X.

As in the previous subsection, let us define the restrictions C?, 1 < i < n,
of C; so that if C; computes cPerm over Z, then each C* computes cPerm
of i x i integer matrices. Then equations (3.1) and (3.2) become C'(z) =
cr, and C*(X) = 370, 21;C71(X;) for 2 < i < n. Note that all these are
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polynomial identity tests for polynomial-size division-free arithmetic circuits
over Z. Similarly to the proof of Lemma 3.3, we use our assumption that
ACIT is in NP to conclude that testing whether C;(X) = cPerm(X) for n x n
integer matrices X is also in NP. If C1(X) # cPerm(X), we reject; otherwise,
we continue.

We nondeterministically guess a prime 2 <m < 2'02‘2“2, testing whether
the guessed number is prime by the deterministic polynomial-time algorithm
of (Agrawal et al. 2002). ! If m is not prime, we reject. Otherwise, we test if
¢ Z 0 mod m; the latter test can be done efficiently by evaluating the circuit
C5 modulo m. If ¢ # 0, such a prime m always exists since ¢ < |C’2|2‘02‘. Ife=0
mod m, then we reject. Otherwise, we compute Perm(M) by simulating the
computation of Cy(M)/c modulo the prime m; remember that m was chosen so
that both ¢ 2 0 mod m and Perm(M) < m for every 0-1 matrix M. Finally,
we compare the computed value with the input v, accepting iff they are equal.

OJ

4. Circuit Lower Bounds via Derandomization

Here we prove that the existence of a nondeterministic subexponential-time
algorithm for Polynomial Identity Testing would yield Boolean or arithmetic
circuit lower bounds for some problem in NEXP. We prove this by showing the
inconsistency of the assumptions that both Polynomial Identity Testing is easy
and every problem in NEXP is computable by small circuits.

4.1. If ACIT can be derandomized. In this subsection we consider what
happens if Arithmetic Circuit Identity Testing (ACIT) has a nontrivial algo-
rithm.

THEOREM 4.1. The following three assumptions cannot be simultaneously true.
(i) NEXP C P/poly,

(ii) Perm is computable by polynomial-size arithmetic circuits over Q with
divisions,

(iii) ACIT over Z is in NSUBEXP.

Proor. Assuming that all three assumptions of the theorem hold, we will
derive a contradiction. First, if assumption (i) holds, then NEXP = MA by

!Here the use of a deterministic polynomial-time primality testing algorithm is not crucial.
Instead we can nondeterministically guess Pratt’s certificates of primality (Pratt 1975).
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Theorem 2.9. Since MA C EXP, we also get that NEXP = EXP = coNEXP. By
Corollary 2.10, we conclude that

(4.2) coNEXP C pO-tFerm

Assumptions Theorem 4.1(ii) and Theorem 4.1(iii) imply by Theorem 3.10
that the graph of 0-1 Permanent is in NSUBEXP. Hence, by Lemma 2.5, we
have

(4.3) pO—1Perm — NSUBEXP.

Combining inclusions (4.2) and (4.3), we get that coNEXP C NSUBEXP.
But this contradicts Lemma 2.12. O

REMARK 4.4. It is possible to prove a version of Theorem 4.1 where assump-
tion (ii) is that Perm is computable by 2" -size arithmetic circuits for every
€ > 0, and assumption (iii) is that ACIT over Z is in NP.

With extra care, we also obtain the “infinitely often” version of Theorem 4.1.

THEOREM 4.5. The following three assumptions cannot be simultaneously true.
(i) NEXP C P/poly,

(ii) Perm is computable by polynomial-size arithmetic circuits over Q with
divisions,

(iii) ACIT over Z is in Nesgio-NTIME(2™).

Proor. By modifying the proof of Theorem 3.10, we show that assumptions
(ii) and (iii) imply that, for every ¢ > 0, the graph of 0-1 Permanent is in
io-NTIME(2")/O(logn). Indeed, for a given input size n, the output of the
many-one reduction of Lemma 3.3 has size n? for some fixed constant d. We
can use an advice string of size (d + 1)logn to encode the “good” input size
between n? and (n + 1)? at which a given NTIME(2"") algorithm for ACIT is
correct; if there is no good input size in this interval, then the advice string can
be arbitrary. By padding up the output of our many-one reduction so that it is
of the “good” size, we can construct a correct polynomial-size arithmetic circuit
for 0-1 Permanent in nondeterministic subexponential time, for infinitely many
input sizes, using logarithmic advice.
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Next we appropriately modify the proof of Lemma 2.5 to argue that, for
every € > 0,

(4.6) po=tPerm C io-NTIME(2")/ log® n.

Indeed, consider an arbitrary language L that is Turing-reducible to Perm of
0-1 matrices in time n*. We use O(logn)-size advice string to encode the
“good” input size in the interval between n°c and (n + 1) at which our
NTIME(2")/O(log n)-time algorithm for the graph of 0-1 Permanent is cor-
rect. Then we pad up to the “good” size all the queries to Perm made by the
reduction from L to 0-1 Perm. By combining the advice strings of the reduction
and the algorithm for the graph of 0-1 Perm, we conclude that

L € io-NTIME(2™) /¢, logn

for some constant ¢; dependent on L. Since log”>n > clogn for every constant
¢ whenever n gets large, the inclusion (4.6) follows.

Finally, as in the proof of Theorem 4.1, assumption Theorem 4.5(i) yields
that NEXP = EXP C PO~'Perm  Combined with inclusion (4.6), this means
that, for every € > 0, EXP C io-NTIME(2"")/log® n. But this, combined with
our assumption that NEXP C P/poly, contradicts Lemma 2.14. O

We end this subsection with the following variation on Theorem 4.1, where
we weaken assumption (i) at the expense of strengthening assumption (iii).

THEOREM 4.7. The following three assumptions cannot be simultaneously true.
(i) NEXP N coNEXP C P/poly,

(ii) Perm is computable by polynomial-size arithmetic circuits over Q with
divisions,

(iii) ACIT over Z is in NP.

ProOOF.  Assumptions (ii) and (iii) imply by Theorem 3.10 that the graph of
0-1 Permanent is in NP. Hence, by Lemma 2.5, PO~Ferm C NP,

Using Theorem 2.2 and Theorem 2.3, we conclude that PH = NP = coNP.
Thus, by padding, we have that NEXP = coNEXP = NEXP NcoNEXP. Appeal-
ing to Theorem 4.1 concludes the proof. O
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4.2. If RP can be derandomized. Since ACIT is in coRP by Lemma 2.20,
we immediately obtain that Theorem 4.5 and Theorem 4.7 remain true if we
replace their assumptions (iii) by the assumptions coRP C N+ io-NTIME(2")
and coRP C NP, respectively.

As a consequence, we obtain the following.

COROLLARY 4.8. If BPP =P or if RP = ZPP, then one of the following must
be true.

(i) NEXP N coNEXP ¢ P/poly, or

(ii) Permanent is not computable by polynomial-size arithmetic circuits over
Q with divisions.

Proor. If BPP = P or if RP = ZPP, then coRP C NP. Hence, ACIT is in
NP, and the result follows by Theorem 4.7. U

4.3. If AFIT or SDIT can be derandomized. Here we show that the ex-
istence of nontrivial algorithms for special cases of Polynomial Identity Testing,
Arithmetic Formula Identity Testing (AFIT) or Symbolic Determinant Iden-
tity Testing (SDIT), would also yield Boolean or (somewhat weaker) arithmetic
circuit lower bounds for some problem in NEXP.

THEOREM 4.9. The following three assumptions cannot be simultaneously true.
(i) NEXP C P/poly,

(ii) Perm is computable by polynomial-size division-free arithmetic formulas
over 7,

(iii) AFIT over Z is in Nesgio-NTIME(2™).
Proor. The proof is analogous to that of Theorem 4.5, except for using
Lemma 3.6 instead of Lemma 3.3. U

We need the following result of Valiant (Valiant 1979a) (see also (Gathen
1987)).

THEOREM 4.10 (Valiant 1979a). There is a deterministic polynomial time al-
gorithm that, given an arithmetic formula of size s computing a polynomial
f € Zlxy, ..., x,], outputs an (s + 2) X (s + 2) matrix A over ZU {xy,...,x,}
such that Det(A) = f.

An immediate corollary of this result is the following.
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COROLLARY 4.11. AFIT is polynomial-time many-one reducible to SDIT.

ProOOF. The requisite polynomial-time many-one reduction is the algorithm
from Theorem 4.10. U

Now we can prove an analogue of Theorem 4.5 for Symbolic Determinant
Identity Testing (SDIT).

THEOREM 4.12. The following three assumptions cannot be simultaneously
true.

(i) NEXP C P/poly,

(ii) Perm is computable by polynomial-size division-free arithmetic formulas
over 7,

(iii) SDIT over Z is in Nesgio-NTIME(2™).

Proor. First, we observe that assumption (iii) implies by Corollary 4.11
that AFIT is in io-NTIME(2")/O(logn). Here, similarly to the proof of Theo-
rem 4.5, we use O(log n)-size advice to identify the “good” input lengths where
our subexponential-time algorithm for SDIT is correct. The rest of the proof
is the same as that of Theorem 4.9, except we add our O(logn)-size advice to
the advice introduced there. 0

4.4. If RNC can be derandomized. Usually, the question whether the class
RNC can be derandomized is stated as whether RNC = NC. However, it is not
yet known whether an even much weaker derandomization of RNC is possible,

e.g., RNC C SUBEXP. The next result shows that resolving this question would
require a proof of new circuit lower bounds.

COROLLARY 4.13. If coRNC C N.gio-NTIME(2™), then one of the following
must be true:

(i) NEXP ¢ P/poly, or

(ii) Perm is not computable by polynomial-size division-free arithmetic for-
mulas over 7Z.

Proor. Since AFIT is in coRNC by Corollary 2.21, the claim follows from
Theorem 4.9. O
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5. A Hard Language in NEXPR?

Currently, the smallest complexity class known to contain a language of su-
perpolynomial Boolean circuit complexity is MA-EXP, the exponential-time
analogue of the class MA.

THEOREM 5.1 (Buhrman et al. 1998). MA-EXP ¢ P/poly.

While we cannot strengthen Theorem 5.1, we can prove that a (seemingly)
smaller complexity class than MA-EXP contains a language of superpolynomial
Boolean or arithmetic circuit complexity.

THEOREM 5.2. At least one of the following holds:

(i) Perm over Z is not computable by polynomial-size arithmetic circuits, or
(i) NEXPR® ¢ P/poly.

By a fairly straightforward argument, NP’? C MA. Hence, by padding,
we have that NEXPBPP C MA-EXP, and so Theorem 5.2 shows the existence
of a hard language in a smaller complexity class than MA-EXP. As a side
remark, we want to point out that MA C NPPP™RP (the proof is implicit
in (Buhrman & Fortnow 1999)); hence, MA-EXP C NEXPP™<RP " This means
that the main difference between the previous result and our result is that we
get rid of “promise” at the expense of using the arithmetic circuit model.

For the proof of Theorem 5.2, we shall need the following.

LEMmMA 5.3. If Perm is computable by polynomial-size arithmetic circuits,
then P#P ¢ NPRP.

Proor. By Lemma 2.20 and Lemma 3.3, we know that the problem of testing
whether a given arithmetic circuit computes Perm of integer matrices is many-
one reducible to the coRP problem ACIT. Hence, we can nondeterministically
guess a small arithmetic circuit for Perm and test its correctness with access
to the RP oracle. It follows that the graph of 0-1 Permanent is in NPR®.
Proceeding similarly to the proof of Lemma 2.5 yields the required inclusion. [

PROOF (Proof of Theorem 5.2). Suppose that both NEXPR” < P/poly and
Permanent is computable by polynomial-size arithmetic circuits. The first as-
sumption implies that NEXP C P/poly and hence, by Corollary 2.10, NEXP C
PO-1Perm By Temma 5.3, we get that NEXP C NPRP. But, combined with the
assumption NEXPRP ¢ P/poly, this contradicts Lemma 2.15 (for ACIT used as
the oracle language O). 0
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Later we shall need the following result.

THEOREM 5.4. IfEXP C P/poly and Permanent is computable by polynomial-
size arithmetic circuits, then EXP C NPRP,

PRrROOF. If EXP C P/poly, then EXP C PO~!Perm by Corollary 2.8. Applying
Lemma 5.3 concludes the proof. O

6. Low-Degree Testing and Derandomization

Here we argue that the assumption BPP = P would imply Boolean circuit lower
bounds for NEXP, provided one could solve in deterministic polynomial time
the problem of Low-Degree Testing (see Definition 6.1 below).

6.1. Testing a Boolean circuit for Permanent. In Section Section 3, we
showed how to test in probabilistic polynomial time whether a given arithmetic
circuit computes the Permanent. The main reason our probabilistic algorithm
is a coRP-style algorithm is that we are dealing with an arithmetic circuit,
and hence, we know that the given circuit computes some polynomial of total
degree bounded by the size of the circuit. If testing whether a given Boolean
circuit computes a polynomial of low degree were in P, then we would be able
to adapt our arguments from Section Section 3 to the Boolean setting. We
formalize this idea below.

The problem of Low-Degree Testing is to check whether a given function
f:F" — T (e.g., represented by a Boolean circuit) is close to some “low-degree”
polynomial p(x1, ..., z,) over a finite field F. This problem has been extensively
studied in the context of program testing and probabilistically checkable proofs
(see, e.g., (Rubinfeld & Sudan 1996) and the references therein). We define
Low-Degree Testing as the following promise problem.

DEFINITION 6.1. Low-Degree Testing Problem (LDT)

PARAMETERS: s,d,k,n € N; a prime ¢ defining the field F = GF(q).
Positive inputs: A size s Boolean circuit computing a function f : F* — F
that agrees with some degree d polynomial over a finite field FF.

Negative inputs: A size s Boolean circuit computing a function f : F* — F
that is not 1/k-close to any degree d polynomial over F.

The known randomized algorithms for low-degree testing (Arora et al. 1998;
Arora & Safra 1998; Arora & Sudan 1997; Babai et al. 1991; Feige et al. 1996;

Raz & Safra 1997; Rubinfeld & Sudan 1996) imply that LDT is in promise-BPP.
That is, there is a probabilistic polynomial-time algorithm that accepts each
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positive input with high probability, and rejects each negative input with high
probability, but it may have arbitrary acceptance probability on an input that
is neither positive nor negative.

It is not known if LDT is hard for promise-BPP. We will argue below that
if LDT can be solved in deterministic polynomial time, and if BPP = P, then
NEXP ¢ P/poly.

DEFINITION 6.2. We say that LDT is in promise-P if there is a deterministic
polynomial-time algorithm accepting all positive inputs and rejecting all neg-
ative inputs. More precisely, there must exist a constant ¢, € N and a deter-
ministic Turing machine T' such that, given d, k € N, a prime ¢, and a Boolean
circuit C' of size s computing a function f : F* — F, where F = GF(q) is a finite
field of size at least (d+k+s)®, the machine T runs in time poly(s, d, k,n,logq),
accepting if C' is a positive input, and rejecting if C' is a negative input to LD'T.

Let us assume that LDT is in promise-P. Consider the following algorithm
TEST (see Algorithm 1 below).

INPUT: (q,C, M,b), where q € N, C is a Boolean circuit with n?logq inputs,
M is an n X n matrix of elements from Z/qZ, and b € Z/qZ.

1. Deterministically test if ¢ is a prime, and that ¢ > (n + n? + |C|)%. If
either test fails, then REJECT.

2. Viewing C' as a circuit on input n x n matrices over GF(q), define C;,
1 < i < n, to be the restriction of C' to i x i matrices over GF(q) satisfying
the property: If C' computes Perm of n x n matrices over GF(q), then
each C; computes Perm of i x i matrices over GF(¢q). For every 1 < i < n,
run the deterministic LDT algorithm on C; for F = GF(q), d = i, and
k =n?. If any C; is rejected by the LDT algorithm, then REJECT.

3. Probabilistically test that equations (3.1) and (3.2) hold for the functions
fi computed by C;, 1 < 7 < n, when matrix elements are chosen uniformly
at random from GF(q). If any C; fails the test, then REJECT.

4. Apply Lemma 2.22 to C, getting a randomized circuit C that computes
a degree n polynomial over GF(¢q). Probabilistically test if C'(M) = b. If
the equality holds, then ACCEPT; otherwise, REJECT.

Algorithm 1: TEST
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The properties of Algorithm TEST are summarized in the following lemma.

LEMMA 6.3. Suppose that LDT is in promise-P. Then the following conditions
hold.

(i) Algorithm TEST is a BPP algorithm.

(ii) If C' is a Boolean circuit correctly computing Perm of n X n matrices over
GF(q), for prime q, then the tuple (q,C, M,C(M)) is accepted by TEST
with probability one.

(iii) If a tuple (q, C, M, b) is accepted by TEST with probability at least 3/4,
then Perm(M) = b mod g.

Proor. Clearly, the running time of TEST is polynomial in ¢,n,|C|. We
need to argue that every input to TEST is accepted or rejected with high
probability.

Observe that Steps 1 and 2 of TEST are deterministic. If an input is not
rejected after these first two steps, then we know that C;’s compute functions
fi that are 1/n%-close to some (uniquely determined) degree i polynomials p;
over the finite field GF(g). At this point there are three possibilities:

I. for some 1 < i < n, p; Z Perm of i x i matrices over GF(q),
I1. all p;’s compute Perm, and Perm(M) = b mod ¢, and

III. all p;’s compute Perm, and Perm(M) # b mod q.

Below we shall argue that in cases I and III, TEST rejects with probability close
to one, and in case II, TEST accepts with probability close to one.

In Step 3, n polynomial identity tests are run on f;’s. Since each f; is 1/n*-
close to a polynomial p;, we can assume, with probability at least 1 —1/n, that
all these tests are run on the polynomials p;. If at least one of p;’s is different
from Perm, then this will be detected with probability at least 1 —1/n. Hence,
if all p;’s compute Perm, then Step 3 will pass with probability at least 1 —1/n;
if, on the other hand, at least one of the p;’s is not equal to Perm, then Step 3
will fail with probability at least (1 —1/n)*> > 1 —2/n.

If Step 3 did not fail with high probability, then the circuit C correctly
computes Perm(M) with probability close to one. Thus, Step 4 decides if
Perm(M) = b mod q correctly with probability close to one.

Thus, claim (i) of the lemma is proved. Claim (ii) is obvious. Claim (iii)
follows since TEST accepts with high probability only in case II. 0
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By analogy with Corollary 3.5, we obtain the following.

COROLLARY 6.4. Suppose that the Permanent of integer n X n matrices with
n-bit entries is computable by polynomial-size Boolean circuits. If both BPP C
NSUBEXP and LDT is in promise-P, then the graph of 0-1 Permanent is in
NSUBEXP.

PROOF.  Observe that our assumptions imply that the language L(TEST) of
the BPP algorithm TEST of Lemma 6.3 is in NSUBEXP. The following is a
nondeterministic subexponential-time algorithm for computing the graph of
0-1 Permanent.

On input (M, b), where M is a 0-1 n x n matrix, and b is an O(nlogn)-bit
integer, we nondeterministically guess a polynomial-size Boolean circuit C' for
Perm of n x n matrices with n-bit integer entries. Let C* be the Boolean circuit
computing the value of C' modulo the ith prime g; in the interval [|C|?, |C%], for
1 < i < n?; the Prime Number Theorem guarantees that there are sufficiently
many primes in the chosen interval. Note that, if C' is indeed a correct circuit
computing Perm over integers, then each C? is a correct circuit computing Perm
modulo ¢;.

For 1 < i< n? set M; = M mod ¢, and b; = b mod ¢;. Then nondeter-
ministically check in subexponential time whether (g;, C*, M;,b;) € L(TEST).
If these tests pass for every i, then accept; otherwise, reject.

For correctness, we have by Lemma 6.3(ii) that all tests (g;, C*, M;, b;) €
L(TEsT) will pass for the correct circuit C' computing Perm and the value
b = Perm(M). On the other hand, by Lemma 6.3(iii), if these tests pass, then
b; = Perm(M) mod ¢; for each i, and so, by the Chinese Remainder Theorem,
b = Perm(M). O

6.2. Derandomization of MA. In general, it is not known whether the
assumption that BPP = P should imply any derandomization of the class MA.
However, under the additional assumption that the LDT is easy, we get the
following.

THEOREM 6.5. Suppose that LDT is in promise-P. If BPP C NSUBEXP, then
MA C Nesio-NTIME(2™).

PROOF. Suppose, for the sake of contradiction, that for some € > 0,

(6.6) MA ¢ io-NTIME(2™)
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By Theorem 2.11, we then have EXP = MA C P/poly. Hence, EXP C PO~1Perm
by Corollary 2.8.

Observe that, given an nxn matrix M with n-bit integer entries, and a value
i, 1 < i < n? one can compute the ith bit of Perm(M) in time exponential
in n. The inclusion EXP C P/poly then implies that the Permanent of integer
n X n matrices with n-bit entries is computable by polynomial-size Boolean
circuits. It now follows by Corollary 6.4 that the graph of 0-1 Permanent is in
NSUBEXP. Hence, by Lemma 2.5, we get that EXP = MA C NSUBEXP, which
contradicts (6.6). O

REMARK 6.7. It is possible to prove a version of Theorem 6.5 with the class
MA being replaced by promise-BPP (or the class APP introduced in (Kabanets
et al. 2000)). That is, the assumptions of Theorem 6.5 imply that promise-BPP
can be computed in nondeterministic subexponential time, infinitely often.
It is an interesting open question whether one can achieve a deterministic
subexponential-time simulation of promise-BPP under the assumptions that
both BPP = P and LDT is in promise-P.

6.3. Circuit lower bounds. As a corollary of Theorem 6.5, we obtain the
following result: if both LDT and BPP can be derandomized, then NEXP does
not have polynomial-size Boolean circuits.

THEOREM 6.8. Suppose that LDT is in promise-P. If BPP C NSUBEXP, then
NEXP ¢ P/poly.

PrOOF. By Theorem 6.5, we get MA C io-NTIME(2").
This implies that NEXP # MA. Indeed, if NEXP = MA, then NEXP =
EXP = coNEXP, but we know by Lemma 2.12 that coNEXP ¢ io-NTIME(2").
Finally, since NEXP # MA, the result follows by Theorem 2.9. 0

Theorem 6.8 strengthens one of the results in (Impagliazzo et al. 2002) say-
ing that if promise-BPP can be derandomized, then NEXP ¢ P/poly. This is
because the assumption that promise-BPP can be done in deterministic poly-
nomial time implies that both BPP = P and that LDT is in promise-P.

7. Conditional Derandomization of Polynomial Identity
Tests

Here we explain how arithmetic circuit lower bounds imply derandomization
of certain versions of Polynomial Identity Testing.
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7.1. Finding roots of multivariate polynomials. Our derandomization
procedure will use the existence of an efficient algorithm for the following prob-
lem of finding roots of multivariate polynomials over a field F, where T is either
a finite field GF(q") of prime characteristic ¢, or the field Q of rationals; we
assume that for GF(¢") we are given a prime ¢ and an irreducible degree ¢
polynomial over GF(q).

DEFINITION 7.1. Root Finding Problem

GIVEN: An arithmetic circuit computing a non-zero polynomial g(x1, ..., Ty, y)
of total degree d over a field F.
FIND: A list of arithmetic circuits such that, for every polynomial p(xy, ..., x,)

satisfying the identity

g(xy, ., p(T1, .. x,)) =0,

there is a circuit on the list that agrees with p over F".

Recall that the maximum coefficient size of a polynomial is the maximum
bit complexity of its coefficients (when the polynomial is written as a linear
combination of monomials). The following result of Kaltofen will be essential
for us.

THEOREM 7.2 (Kaltofen 1989). There is a probabilistic polynomial-time al-
gorithm that, given an arithmetic circuit of size s computing a polynomial
f € Flzq,...,x,] of total degree at most d, with probability at least 3/4 outputs
the numbers e; > 1 and irreducible polynomials h; € Flzy,...,z,], 1 <i <,
given by arithmetic circuits of size poly(s, d,log |F|) such that

f=11n
=1

In case the characteristic q of F divides any e;, i.e., e; = qFiel with e} not divisible
by q, the algorithm returns € instead of e;, and the corresponding arithmetic

circuit computes hgki instead of h;. For F = Q, the sizes of produced arithmetic
circuits are poly(s,d, a), where a is the maximum coefficient size of f.

We also use the following basic fact.

LEMMA 7.3 (Gauss). For a field F, let f(z1,...,2,,y) € Flzy,...,2,,y] and
p(z1,...,2,) € Flzy,...,z,] be any polynomials such that

0.

f(xla'"7xn7p(x17"'7xn))
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Then y — p(z1,...,x,) is an irreducible factor of f(xi,...,x,,y) in the ring
Flzy,..., 20,y

Now we can prove that the Root Finding problem is efficiently solvable.

COROLLARY 7.4. The root finding problem for a polynomial g € Flxq, ..., %y, y]
of total degree d computable by an arithmetic circuit of size s can be solved
probabilistically in time poly(s,d,log|F|); for F = Q, the running time is
poly(s,d,a), where a is the maximum coefficient size of g.

Proor. For the case of F = Q, this follows immediately from Lemma 7.3 and
Theorem 7.2. Indeed, with high probability, the algorithm of Theorem 7.2 will
produce a small arithmetic circuit computing y — p(z1, ..., 2,). Substituting 0
for y, and multiplying by —1, we obtain an arithmetic circuit for p(z1, ..., x,).

For the case of a finite field F = GF(¢') for some prime ¢, the same reasoning
as above gives us a small arithmetic circuit for p(z1,...,x,), provided that the
multiplicity e of the linear factor y — p(z1,...,x,) of ¢ is not divisible by the
characteristic ¢ of the field F. If ¢ does divide e, i.e., if e = ¢¥e’ where €’ is
not divisible by ¢, we will get an arithmetic circuit computing p(z1,. .., x,) =
p(zy,. .. ,xn)qk. By raising the function p to the power ¢’ %, we obtain an
arithmetic circuit computing a function that agrees with the polynomial p over
™. Since we do not know k, we output a circuit for every 0 < k& < t. The size
of the new arithmetic circuit increases by at most polylog(|F|). O

REMARK 7.5. In the case of a finite field F = GF(q") of characteristic g, the
proof of Corollary 7.4 does not guarantee the existence of a small arithmetic
circuit that is identically equal to the requisite n-variate polynomial p. Instead,
we are guaranteed to have a small arithmetic circuit computing a function that
coincides with the polynomial p at all tuples from F". For precisely this reason,
we defined the arithmetic circuit complexity of a polynomial p over a finite field
F as the size of a smallest arithmetic circuit that agrees with p over F".

7.2. Generalized NW generator. First, we define a generalization of the
NW generator to arbitrary fields. It is given oracle access to a supposedly
hard polynomial p, and will be denoted NW?. The algorithm for NW? is
described below (see Algorithm 2). Such a generalization of the NW generator
was used earlier by Raz, Reingold, and Vadhan (Raz et al. 2002) in the context
of randomness extractors.

Given an n-variate polynomial f of total degree d; over a field F, we will
search for non-zeros of f among the outputs of the NW generator. Let NW? be
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PARAMETERS: [,m,n € N.
INPUT: a = (ay,...,q) € F', where F is a field.
ORACLE ACCESS: p(z1,...,Zy) € Flzy, ..., xy].

1. Construct the set system Sy,...,5, as given in Lemma 2.23.

2. Output (p(als,),...,p(als,)) € F*, where a|s denotes the tuple of the
elements of a indexed by the set S.

Algorithm 2: Generator NW?”

the NW generator based on an m-variate polynomial p of total degree d,,, where
m < n. For [ given by Lemma 2.23, we enumerate all I-tuples a = (ay,...,q),
where each a; € S C F for a subset S of the field F with |S| > d;d,, and
check whether f(NWP?(a)) # 0. The running time of this procedure is at most
~ 2108151 not counting the time of oracle calls to p.

Suppose that the polynomial f # 0, but we have not found any non-zero
of f among the outputs of the NW generator based on the polynomial p. We
shall argue that the arithmetic circuit complexity of p over F is “small”.

LEMMA 7.6. Let f € Flyy,...,y,] and p € Flzy, ..., z,,]| be any non-zero poly-
nomials of total degrees d; and d,, respectively, where |F| > d;d,. Let f be com-
putable by an arithmetic circuit of size s, let S C F be any set of size | S| > dyd,,
and let | € N be given by Lemma 2.23. Suppose that f(NWP(a)) = 0 for all
ac S

Then the arithmetic circuit complexity of the polynomial p over F is at most
poly(m,n,d;,d,, s,log |F|, M), where M < (d, +1)"%6™; when p is a multilinear
polynomial, we have M < n. For the case F = Q, the circuit complexity of p is
at most poly(m,n,dy,d,, s,a, M), where a is the maximum size of coefficients
in f and p.

Proor. Our proof is in two parts. First, by a “hybrid” argument, we obtain
from f a non-zero polynomial g(xi,...,zm,y) such that p(z,...,xy) is a y-
root of this polynomial g. Then we appeal to Corollary 7.4 to conclude that p
is computable by an arithmetic circuit with required parameters.

I. HyBRID ARGUMENT. We define the following collection of polynomials:

o gU(xla"'axlayla"'ayn) :f(yla"'ayn)a

o for 1 <i<n, gi(x1,...,21,Yis1,---,Yn) is obtained from f by replacing
the first ¢ variables in f by the polynomials p((x1, ..., 7)[s;) for 1 < j <.




36 Valentine Kabanets & Russell Impagliazzo

Note that g,(z1,...,2;) = f(NWP(zy,...,17)), and so the total degree of
gn is at most D = d;d,. Since g, vanishes on S’ where |S| > D, we have, by
Lemma 2.18, that g, = 0.

If go # 0, but g, = 0, then there must be a smallest 0 < 7 < n such that g; #
0 but g;11 = 0. Since g;(z1,..., %, Yir1,---,Yn) Z 0, we can fix the variables
Yit2, - - -» Yn as well as the variables z; for j € S;;1 to some field elements from
the set S C F' so that the restricted polynomial g;(z;,,...,2;,,,Yit1) remains
a non-zero polynomial. For notational convenience, let us denote this new
polynomial by g(x1, ..., Zm,y).

II. FACTORING. Thus, we know that g is a non-zero polynomial, but
g(x1, ..., Ty, p(T1, ..., 2,)) = 0. By Corollary 7.4, the polynomial p has cir-
cuit complexity at most polynomial in the degree of g, the size of an arithmetic
circuit computing g, and either log |F|, for a finite field F, or the maximum size
of a coefficient of ¢, for F = Q.

The degree of ¢g is at most D. The arithmetic circuit for g can be obtained
from that of f together with at most n circuits computing the restrictions
of p, where each restriction is a polynomial of degree at most d, on at most
logn variables (by Lemma 2.23(iii)). Every such polynomial contains at most
M = (d,+1)"8™ distinct monomials, and so can be computed by an arithmetic
circuit of size poly(M). In the case where p is a multilinear polynomial, its
restrictions to logn variables will have at most 21" = n distinct monomials.
Thus, the size of an arithmetic circuit computing ¢ is at most s + npoly(M),
and the conclusion of the lemma follows. 0

7.3. Algebraic hardness-randomness tradeoffs. We give our conditional
derandomization result for Arithmetic Circuit Identity Testing (ACIT) where
the given arithmetic circuit C' computes an n-variate polynomial of total de-
gree poly(n). Clearly, this condition is satisfied in the case of polynomial-size
arithmetic formulas by Lemma 2.16. The theorem below is stated for the case
of polynomials both over Z and over a finite field F. In the case of a finite
field F = GF(q"), we assume to be given a prime ¢ and an irreducible degree ¢
polynomial over GF(q) as part of the input.

THEOREM 7.7. Let p = {pm}m>0 be a family of exponential-time computable
multilinear non-zero m-variate polynomials over Z (respectively, finite field F).
Suppose that the arithmetic circuit complexity of p over Q (respectively, F) is
sp(m) for some function s, : N — N, and that the maximum coefficient size of
Pm over Z is at most poly(m).

Let C' be a poly(n)-size arithmetic circuit over Z (respectively, F) computing
an n-variate polynomial f, of total degree ds(n) € poly(n) and maximum
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coefficient size at most poly(n). Then, for all sufficiently large n, testing whether
fn =0 can be done deterministically in time

(i) 2™ for any € > 0, if s,(m) € me

(1)

(ii) 2pPoWloe(™) if s (m) € 2™

Proor. We first give the proof for the case of the polynomial p and the
circuit C' over Z. Then we explain how this proof should be modified for the
case of finite fields.

(i) For m = n¢, Lemma 2.23 gives [ < n*. Let S be a subset of Z of size
at least nd; € poly(n). Then the size of the set S’ is at most (ndy)' < 27 If
p is computable on an input of size w in time 2¥°, for some fixed constant c,
then running the generator NW? on the set S! takes time |S%|2"* < 27 We
enumerate all elements of S*, computes the output 7 of NW? on each, and then
evaluate the circuit C' at 7. We output “f, is non-zero” iff C'(7) # 0 for some
T

Note that by our assumption about the degree and the coefficient sizes of
Pm, the outputs 7 of NW? will have bit size at most poly(n). Also, by our
assumption about the degree and the coefficient sizes of f,, the values f,(7)
will have bit sizes bounded by poly(n), and hence they can be computed by
simulating C' on ¥ modulo Q”d, for some sufficiently large constant d. Thus, we
can test whether f,(7) = 0 in deterministic time poly(n), for every output 7 of
the generator.

Since € can be arbitrarily small, this leads to a subexponential-time de-
terministic algorithm for testing whether f, = 0. By Lemma 7.6, this testing
algorithm must succeed for f,,, since otherwise the arithmetic circuit complexity
of p would be polynomial.

(ii) We can choose m = (logn)?, for some sufficiently large d to be specified
later. This choice yields the NW generator on [ < (logn)?? variables, where, as
above, each variable assumes values in a set S C F of size at least ndy € poly(n).

Thus, running the NW generator takes time 9logm)? for some constant ¢'.
If this generator fails for f, then, by Lemma 7.6, p,, is computable by an
arithmetic circuit of size n*, for some constant k¥ independent of d. Since d can
be arbitrarily large, the failure of the NW generator on f would imply that p,,
is computable by arithmetic circuits of size 2™ for any € > 0, contrary to our
assumption on the hardness of p.

Now we show how to deal with finite fields. The only difference in this case
is that the field F may be too small, and so we cannot choose a polynomial-size
subset S of F. However, since we test whether the polynomial f,, computed
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by C' is identically zero, we may consider f, over a sufficiently large extension
field of F. Since we only need a O(logn)-degree extension of F, we can find
such an extension in deterministic time poly(n) by exhaustive search. Once we
have found such an extension field F', we can evaluate f, on elements from
F' by performing the operations of the circuit C' over F'. Finally, we take a
polynomial-size subset S C I, and proceed as in the case of polynomials over
Z considered above. O]

REMARK 7.8. Recall that an arithmetic formula F' of poly(n) size computes a
polynomial f of poly(n) degree, by Lemma 2.16. The coefficient sizes of f are
also bounded by poly(n), by an argument similar to the proof of Lemma 2.16.
Hence, by Theorem 7.7, arithmetic circuit lower bounds imply derandomization
of Arithmetic Formula Identity Testing (AFIT).

REMARK 7.9. Theorem 7.7 is stated for the assumption of almost everywhere
high circuit complexity of a given polynomial p. The infinitely often versions
of the tradeoffs also hold. That is, if p has high arithmetic circuit complexity
infinitely often, then the polynomial identity testing problem is easy also in-
finitely often. Also, as one might suspect, a “uniform” version of Theorem 7.7
can be proved, along the lines of (Impagliazzo & Wigderson 2001); the details
are omitted.

We should point out that, unlike in the Boolean circuit complexity case
(cf. (Impagliazzo & Wigderson 1997)), the assumption of 2*(™) arithmetic cir-
cuit complexity for polynomials p,, does not seem to imply a polynomial-time
derandomization procedure. The reason is that even though we can get an
NW generator from O(logn) to n variables, each variable assumes values from
some set of size poly(n), and we need to enumerate all O(logn)-tuples of field
elements of bit-size O(logn) each. Thus, we still get only quasipolynomial-time
algorithm in this case.

We conclude this subsection by stating a weak converse of Theorem 4.1. Re-
call that Theorem 4.1 states that, if ACIT is in NSUBEXP infinitely often, then
either NEXP ¢ P/poly or Permanent does not have polynomial-size arithmetic
circuits. We show the following.

THEOREM 7.10. If either NEXP ¢ P/poly or Permanent is not computable
by polynomial-size arithmetic circuits over Q, then ACIT for size n circuits

computing polynomials of degree and the maximum coefficient size at most
poly(n) is in io-[NTIME(2"") /nf] for every € > 0.
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Before giving the proof of Theorem 7.10, we would like to explain why it
is only a weak converse of Theorem 4.1. First, we can test for zero only those
arithmetic circuits C' that compute polynomials of degree at most poly(|C|),
whereas in general, a circuit C' may compute a polynomial of degree 2/¢/. Sec-
ondly, our derandomization (of this restricted version of ACIT) also needs
advice, albeit the size of that advice is sublinear.

The proof of Theorem 7.10 will use the following result implicit in (Impagli-
azzo et al. 2002).

LEMMA 7.11 (Impagliazzo et al. 2002). If NEXP ¢ P/poly, then, for every € >
0, coRP C io-[NTIME(2™) /).

PROOF (Proof of Theorem 7.10). If Perm is not computable by polynomial-
size arithmetic circuits, then, for every € > 0, our restricted version of ACIT is
in io-TIME(2™) by Theorem 7.7. On the other hand, if NEXP ¢ P/poly, then
the coRP language ACIT is in Nesgio-[NTIME(2")/n¢] by Lemma 7.11. O

7.4. Derandomization from EXP # NPRP. Babai, Fortnow, Nisan, and
Wigderson show that BPP can be derandomized if EXP # MA.

THEOREM 7.12 (Babai et al. 1993). At least one of the following holds:
(i) BPP C io-TIME(2™) for every € > 0, or
(i) EXP = MA C P/poly.

Here we show that a certain version of Polynomial Identity Testing can be
derandomized if EXP # NPRP.

THEOREM 7.13. At least one of the following holds:

(i) For circuits C' computing degree poly(|C|) polynomials, testing whether
C computes an identically zero polynomial is in N¢sgio-TIME(2™), or

(i) EXP = NPRP.

PROOF.  Suppose that the restricted version of ACIT in item (i) cannot be de-
randomized. Then, by Theorem 7.7, Perm over Z is computable by polynomial-
size arithmetic circuits. Also, since ACIT is in coRP C BPP, the lack of de-
randomization for ACIT means that BPP is not in io-TIME(2") for some e.
Hence, by Theorem 7.12, we know that EXP C P/poly.

Thus EXP C P/poly and Perm is computable by polynomial-size arithmetic
circuits. The conclusion EXP = NP follows by Theorem 5.4. 0
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Note the following difference between Theorem 7.12 and Theorem 7.13. Our
Theorem 7.13 says that if a particular BPP problem cannot be derandomized,
then we get a deeper collapse for EXP; the collapse is deeper since, as we
mentioned earlier, NPB"" C MA. Thus, we get weaker derandomization, or a
stronger collapse.

8. Conclusions

We proved the necessity of circuit lower bounds for achieving even weak deran-
domization of RP and BPP. Thus any general derandomization results for RP
would need to be preceded by a proof of a superpolynomial circuit lower bound
for some language in NEXP. This relation between derandomizing RP and
proving circuit lower bounds for NEXP may explain the lack of unconditional
derandomization results for RP.

It is worth pointing out that although Kabanets (Kabanets 2001) proved
an unconditional derandomization result for RP in a certain “uniform” setting,
the condition of “uniformity” makes the result in (Kabanets 2001) too weak
for Theorem 4.5 to be applicable.

The results in the present paper do not rule out that ZPP = P can be proved
without having to prove any circuit lower bounds first. This leaves some hope
that unconditional derandomization of ZPP could be achieved.

Also, on the positive side, one can view our results as providing another
approach towards establishing circuit lower bounds — through derandomiza-
tion. As we have seen, finding an (even nondeterministic) subexponential-time
algorithm for Polynomial Identity Testing would yield nontrivial circuit lower
bounds.

We conclude with some open problems. Can our result “NEXP C P/poly
and Permanent is computable by polynomial-size arithmetic circuits = BPP ¢
Ne>0io-NTIME(2™)” be strengthened to get “BPP = NEXP” in the conclusion?
If so, then this would say that even proving that NEXP ## BPP is impossible
without proving superpolynomial circuit lower bounds.

Does the assumption BPP = P imply Boolean circuit lower bounds for
NEXP? Does the assumption that LDT is in promise-P imply any circuit lower
bounds for NEXP? The related question is to decide whether the assumptions
that both BPP = P and LDT is in promise-P should imply that promise-BPP C
promise-SUBEXP.

Our final question concerns the conditional derandomization of the Polyno-
mial Identity Testing. Assuming the existence of polynomials of high arithmetic
circuit complexity, can one test whether a univariate polynomial of degree d is



Derandomizing Polynomial Identity Tests 41

identically zero in deterministic time sublinear (e.g., polylogarithmic) in d?
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