
Correlation Bounds and #SAT Algorithms for
Small Linear-Size Circuits

Ruiwen Chen, Valentine Kabanets

School of Informatics, University of Edinburgh, Edinburgh, UK;
rchen2@inf.ed.ac.uk

School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada;
kabanets@cs.sfu.ca

Abstract. We revisit the gate elimination method, generalize it to prove
correlation bounds of boolean circuits with Parity, and also derive deter-
ministic #SAT algorithms for small linear-size circuits. In particular, we
prove that, for boolean circuits of size 3n − n0.51, the correlation with

Parity is at most 2−n
Ω(1)

, and there is a #SAT algorithm running in

time 2n−n
Ω(1)

; for circuit size 2.99n, the correlation with Parity is at
most 2−Ω(n), and there is a #SAT algorithm running in time 2n−Ω(n).
Similar correlation bounds and algorithms are also proved for circuits of
size almost 2.5n over the full binary basis B2.

Keywords: boolean circuit, random restriction, correlation bound, sat-
isfiability algorithm

1 Introduction

Connections between circuit lower bounds and efficient algorithms have been
explicitly exploited in several recent breakthroughs. In particular, the “random
restriction” technique, which was used to prove circuit lower bounds, was ex-
tended to get both satisfiability algorithms and average-case lower bounds for
boolean formulas [22, 16, 17, 6] and AC0 circuits [13, 2].

For de Morgan formulas, Santhanam [22] gave a #SAT algorithm running in
time 2n−Ω(n) for formulas of linear size; the algorithm is based on a generalization
of the “shrinkage under random restrictions” property, which was used to prove
formula lower bounds [25, 11]. Santhanam [22] observed that, one can define
a random process of restrictions such that the formula size shrinks with high
probability. This concentrated shrinkage implies not only #SAT algorithms but
also correlation bounds. As shown in [22], a linear-size de Morgan formula has
correlation at most 2−Ω(n) with Parity; the correlation of two n-input functions
f and g is |Pr[f(x) = g(x)] − Pr[f(x) 6= g(x)]|, where x is chosen uniformly

at random from {0, 1}n. Santhanam’s algorithm was extended to 2n−n
Ω(1)

-time
#SAT algorithms for de Morgan formulas of size n2.49 in [6] and size n2.63 in [7].
For formulas over the full binary basis B2, Seto and Tamaki [24] extended [22]
to give a 2n−Ω(n)-time #SAT algorithm for B2-formulas of linear size, and also
showed that such formulas cannot approximately compute affine extractors.

2 Ruiwen Chen, Valentine Kabanets

Table 1. Worst-case and average-case lower bounds for computing Parity

Worst-Case Lower Bounds Average-Case Upper / Lower Bounds

AC0 s = exp(nθ(
1
d−1

)) [26, 10] ε = 2−Ω(n/(log s)d−1) [12]

De Morgan s = n2−θ(1) [25] ε > 2−Ω(n2/s) ε 6 2−Ω(n/
√
s) [1, 21]

formulas ε 6 2−Ω(n/c2) for s = cn [22]

U2-circuits s = 3n− θ(1) [23] ε > 2−Ω(3n−s) ε 6 2−Ω((3n−s)2/n) [This work]

On the other hand, Komargodski, Raz, and Tal [16, 17] also used the con-
centrated shrinkage property to generalize the worst-case formula lower bounds
to the average case. They gave an explicit function (computable in polynomial
time) such that de Morgan formulas of size n2.99 can compute correctly on at

most 1/2 + 2−n
Ω(1)

fraction of inputs. Combining the techniques in [17, 6], one

can get a randomized 2n−n
Ω(1)

-time #SAT algorithm for de Morgan formulas of
size n2.99.

1.1 Our results and techniques

In this work, we get correlation bounds and #SAT algorithms for general boolean
circuits. We consider circuits over the full binary basis B2 and circuits over the
basis U2 = B2 \ {⊕,≡}.

We prove that, for U2-circuits of size 3n − nε for ε > 0.5, the correlation

with Parity is at most 2−n
Ω(1)

, and there is a #SAT algorithm running in time

2n−n
Ω(1)

; for U2-circuits of size 3n − εn for ε > 0, the correlation is at most
2−Ω(n), and there is a #SAT algorithm running in time 2n−Ω(n). For B2-circuits,
we give a similar #SAT algorithm for circuits of size almost 2.5n, and show the
average-case hardness of computing affine extractors using such circuits.

Our correlation bounds of U2-circuits with Parity are almost optimal, up to
constant factors in the exponents. In fact, one can construct a U2-circuit of size
3n− l which computes Parity on at least 1/2 + 2−Ω(l) fraction of inputs. Table 1
summarizes the known worst-case and average-case lower bounds against Parity
for several restricted circuit models. Note that, for the average-case bounds, we
express the correlation ε as a function of the circuit size s.

However, there is still a gap between our average-case lower bounds and the
worst-case lower bounds. The best known worst-case explicit lower bound is
5n− o(n) for U2-circuits [18, 15], and 3n− o(n) for B2-circuits [3].

For #SAT algorithms, there is a known algorithm for B2-circuits by Nurk [20]
which runs in time O(20.4058s) for circuits of size s. The running time of our
algorithm for B2-circuits is almost the same as Nurk’s [20]. We are not aware of
any #SAT algorithm for U2-circuits.

Our techniques. We extend the gate elimination method which was previ-
ously used to prove worst-case circuit lower bounds [23, 3, 28, 18, 15, 9]. We de-
fine a random process of restrictions such that the circuit size shrinks with high

Correlation Bounds and #SAT Algorithms 3

probability. This is similar to the concentrated shrinkage approach for boolean
formulas [22, 24, 16, 17, 6]. We analyze this random process using the concentra-
tion bound given by a variant of Azuma’s inequality as in [6]. This analysis is
then used to get both correlation bounds and #SAT algorithms. The same ap-
proach works for both U2-circuits and B2-circuits, although we need different
rules on defining restrictions.

As a byproduct of our algorithms, we show that small linear-size circuits
have decision trees of non-trivial size. In particular, U2-circuits of size s have
equivalent decision trees of size 2n−Ω((3n−s)2/n), and B2-circuits of size s have
parity decision trees of size 2n−Ω((2.5n−s)2/n). Our correlation bounds follow
directly from such non-trivial decision-tree representations.

Related work. For U2-circuits, the best known worst-case lower bound is
5n−o(n) by Iwama and Morizumi [15], improving upon a 4.5n−o(n) lower bound
by Lachish and Raz [18], a 4n − c lower bound against symmetric functions
by Zwick [28], and a 3n − c lower bound against Parity by Schnorr [23]. For
B2-circuits, the best known worst-case lower bound is 3n − o(n) by Blum [3];
Demenkov and Kulikov [9] gives an alternative proof of this lower bound against
affine dispersers. Nurk [20] gave a satisfiability algorithm in time O(20.4058s) for
B2-circuits of size s. Nurk’s algorithm [20] is also based on gate elimination and
the running time is similar to ours, although we use a slightly different case
analysis for gate elimination. We are not aware of any previous average-case
lower bounds (correlation bounds) for general circuits.

2 Preliminaries

2.1 Circuits

Let B be a binary basis, i.e., a set of boolean functions on two variables. A
B-circuit on n input variables is a directed acyclic graph with (1) nodes of in-
degree 0 labeled by variables or constants, which we call inputs, and (2) nodes
of in-degree 2 labeled by functions from B, which we call gates. There is a single
node of out-degree 0, designated as the output. Without loss of generality, we
assume, for each variable xi, there is at most one input labeled by xi. A circuit
on n variables computes a boolean function f : {0, 1}n → {0, 1}. For two nodes
u and v, we will write u→ v if u feeds into v.

We consider two binary bases: the full basis B2, which contains all boolean
functions on two variables, and the basis U2 = B2 \ {⊕,≡}. Specifically, the
basis B2 contains the following 16 functions f(x, y): (1) six degenerate functions:
0, 1, x, ¬x, y, ¬y; (2) eight ∧-type functions: x ∧ y, x ∨ y, and the variations
by negating one or both inputs; (3) two ⊕-type functions: x⊕ y, x ≡ y.

The size of a circuit C, denoted by s(C), is the number of gates in C. The
circuit size of a function f : {0, 1}n → {0, 1} is the minimal size of a boolean
circuit computing f . For convenience, we define µ(C) = s(C) + N(C), where
N(C) is the number of inputs that C depends on. We let µ(C) = 0 if C is
constant, and µ(C) = 1 if C is a literal.

4 Ruiwen Chen, Valentine Kabanets

A restriction ρ is a mapping from the input variables to {0, 1, ∗}. For a
circuit C, the restricted circuit C|ρ is obtained by fixing xi = b for all xi such
that ρ(xi) = b ∈ {0, 1}.

It is convenient to work with circuits without redundant nodes or wires. We
will call a non-constant circuit (over U2 or B2) simplified if it does not have
the following: (1) nodes labeled by constants, (2) gates labeled by degenerate
functions, (3) non-output gates with out-degree 0, or (4) any input x and two
gates u, v with three wires x→ u, x→ v, u→ v.

Lemma 1. For any circuit C, there is a polynomial-time algorithm transform-
ing C into an equivalent simplified circuit C ′ such that s(C ′) 6 s(C) and
µ(C ′) 6 µ(C).

Proof (Sketch). Cases (1)-(3) are trivial. For case (4), suppose w is the other
node feeding into u. If C is over B2, then v computes a binary function of x and
w; if C is over U2, then v computes an ∧-type function of x and w (because a ⊕-
type function requires at least 3 gates). In either case, we can connect w directly
to v, remove the wire u→ v, and change the gate label of v. By checking through
each input and gate, the transformation can be done in polynomial time. ut

2.2 Correlation

Definition 1. Let f and g be two boolean functions on n input variables. The
correlation of f and g is defined as

Corr(f, g) = |Pr[f(x) = g(x)]−Pr[f(x) 6= g(x)]| = |2Pr[f(x) = g(x)]− 1| ,

where x is chosen uniformly at random from {0, 1}n.

The correlation of f with a circuit class C is the maximum of Corr(f, C)
for any C ∈ C. Note that, a circuit C has correlation c with f if and only if
C computes f or its negation correctly on a fraction (1 + c)/2 of all inputs.
The correlation bound is also referred to as the average-case lower bound in the
literature.

2.3 Decision Tree

A decision tree is a tree where (1) each internal node is labeled by a variable
x, and has two outgoing edges labeled by x = 0 and x = 1, and (2) each leaf
is labeled by a constant 0 or 1. A decision tree computes a boolean function
by tracking the paths from the root to leaves. The size of a decision tree is the
number of leaves of the tree.

A parity decision tree extends a decision tree such that each internal node is
labeled by the parity of a subset of variables (including one single variable as a
special case). We insist that, for each path from the root to a leaf, the parities
appearing in the internal nodes are linearly independent.

Correlation Bounds and #SAT Algorithms 5

2.4 Concentration bounds

A sequence of random variables X0, X1, . . . , Xn is called a supermartingale with
respect to a sequence of random variables R1, . . . , Rn if E[Xi | Ri−1, . . . , R1] 6
Xi−1, for 1 6 i 6 n. The following is a variant of Azuma’s inequality which
holds for supermartingales with one-side bounded differences.

Lemma 2 ([6]). Let {Xi}ni=0 be a supermartingale with respect to {Ri}ni=1.
Let Yi = Xi − Xi−1. If, for every 1 6 i 6 n, the random variable Yi (con-
ditioned on Ri−1, . . . , R1) assumes two values with equal probability, and there
exists ci > 0 such that Yi 6 ci, then, for any λ > 0, we have Pr[Xn−X0 > λ] 6

exp
(
− λ2

2
∑n
i=1 c

2
i

)
.

3 U2-circuits

All known lower bounds for U2-circuits [15, 18, 28, 23] were proved using the gate
elimination method. We will generalize this method by defining a random process
of restrictions under which the circuit size reduces with high probability. This
allows us to get a #SAT algorithm for U2-circuits of size almost 3n, and also
prove a correlation bound against Parity.

3.1 Concentrated shrinkage under restrictions

We call an ∧-type function of two variables a twig. We now define a random
process of restrictions where, at each step, we pick a variable or a twig and
randomly assign it a value 0 or 1; we also simplify the circuit by eliminating
unnecessary gates. The choice of variables or twigs at each step is determined by
the following cases: (1) If the circuit is a literal, choose the variable in the literal.
(2) If there is an input x with out-degree at least two, choose x. (3) Otherwise,
there must be a gate u fed by two variables having out-degree 1; we choose u
(which is a twig).

Let C be a simplified U2-circuit on inputs x1, . . . , xn. Let C ′ be the simplified
circuit obtained after one step of restriction. Then we have the following lemma
on the reduction of µ(C).

Lemma 3. Suppose µ(C) > 4. Let σ = µ(C)−µ(C ′). Then we have σ > 3, and
E[σ] > 4.

Proof. Consider the following cases (see also Figure 3.1):

(1) Suppose there is an input xi feeding into two gates u and v. By Lemma 1,
there is no edge between u and v. We randomly assign 0 or 1 to xi, and
consider the following sub-cases on the successors of u and v.

(a) If u and v feed into two different successors, we have the following pos-
sibilities. If under one assignment to xi, none of u, v become constants,
then we can eliminate xi, u, v; and under the other assignment to xi,

6 Ruiwen Chen, Valentine Kabanets

u v

xi

(1.a)

w

u v

xi

(1.b)

u

xi xj

(2)

Fig. 1. Cases in Lemma 3

since both of u, v will be constants, we can eliminate two more gates
(successors of u, v); thus we have Pr[σ > 5] > 1/2, and σ > 3. If under
each assignment to xi, only one of u, v becomes a constant, then we can
eliminate xi, u, v and one successor; thus σ > 4.

(b) If u and v feed into one single common successor w, we have similar
situations as above. If under one assignment to xi, both u and v become
constants, then we can eliminate xi, u, v, w and a successor of w; and
under the other assignment to xi, we can eliminate xi, u, v. If under
each assignment to xi, only one of u, v becomes a constant, then we can
eliminate xi, u, v, w.

(2) If all inputs have out-degree 1, find a gate u fed by two inputs, say xi and
xj . We randomly assign 0 and 1 to u; for each assignment, eliminate xi, xj , u
and at least one successor of u. Then we have σ > 4.

In all cases, we have σ > 3, and E[σ] > 4. ut

Next consider the reduction of µ(C) under a sequence of restrictions. Let
C0 := C, and, for i = 1, . . . , d, let Ci be the circuit obtained after the i-th step.
For convenience, we let µi := µ(Ci). Let Ri be the random value assigned to the
variable or twig at each step. We define a sequence of random variables {Zi} as
follows:

Zi =

{
µi − (µi−1 − 4), µi−1 > 4,

0, µi−1 < 4.

Note that 0 < µi−1 < 4 holds only when Ci−1 itself is a literal or a twig, which
means Ci will be a constant.

Lemma 4. Let X0 = 0 and Xi =
∑i
j=1 Zi. Then we have Zi 6 1, and {Xi} is

a supermartingale with respect to {Ri}.

Proof. By Lemma 3, conditioning on R1, . . . , Ri−1, when µi−1 > 4, we have µi 6
µi−1−3 and E[µi] 6 µi−1−4. Therefore, we get Zi 6 1, E[Zi | Ri−1, . . . , R1] 6 0,
and E[Xi | Ri−1, . . . , R1] 6 Xi−1. Thus {Xi} is a supermartingale with respect
to {Ri}. ut

Correlation Bounds and #SAT Algorithms 7

Lemma 5. For λ > 0, Pr [µd > max{µ0 − 4d+ λ, 1}] 6 exp(−λ2/2d).

Proof. Conditioning on R1, . . . , Ri−1, the variable Zi assumes two values with
equal probability. By Lemma 4, we have {Xi} is a supermartingale with respect
to {Ri}, and Zi 6 ci ≡ 1. Applying the bound in Lemma 2, we have

Pr

[
d∑
i=1

Zi > λ

]
6 exp

(
−λ

2

2d

)
.

When µd > 0, we have
∑d
i=1 Zi = µd − µ0 + 4d. Let E1 be the event that

µd > 0; let E2 be the event that
∑d
i=1 Zi > λ. Then the final probability is

Pr[E1 ∧ E2] 6 Pr[E2] 6 exp(−λ2/2d). ut

3.2 #SAT algorithms

We now give a #SAT algorithm for circuits of size almost 3n based on the
concentrated reduction of circuit size.

Theorem 1. For U2-circuits of size s < 3n, there is a deterministic #SAT
algorithm running in time 2n−Ω((3n−s)2/n).

Proof. Let C be a circuit on n inputs x1, . . . , xn with size s < 3n. Let µ0 :=
µ(C) 6 s+n. We use the following procedure to construct a generalized decision
tree, where each internal node is labeled by a variable or a twig. We start with
the root node and C.

– If C is a constant, label the current node by this constant and return.
– Use the cases in Lemma 3 to find either a variable or a twig; denote it by u.

Label the current node by u.
– Build two outgoing edges labeled by u = 0 and u = 1. For each child node,

simplify the circuit, and recurse.

We say a complete assignment to x1, . . . , xn is consistent with a path (from
the root to a leaf) if it satisfies the restrictions along the path. Since each as-
signment a ∈ {0, 1}n is consistent with only one path, the paths give a disjoint
partitioning of the boolean cube {0, 1}n. To count the number of satisfying as-
signments for C, one can count for each path with leaf labeled by 1, and return
the summation. Restrictions along each path is essentially a read-once 2-CNF,
for which counting is easy. We next only need to bound the size of the tree.

We wish to bound the probability that a random path has length larger than
n− k, for k to be chosen later. Let λ = 4(n− k)−µ0 + 1. Then by Lemma 5, at
depth n− k, the restricted circuit becomes a constant with probability at least
1− exp(−λ2/2(n− k)) > 1− 2−cλ

2/n for a constant c > 0. The total number of

paths with length larger than n − k is at most 2n−k · 2−cλ2/n · 2k 6 2n−cλ
2/n.

Therefore, the size of the tree is at most 2n−k+2n−cλ
2/n. Choosing k = (3n−s)/8,

both the tree size and the running time of the counting algorithm are bounded
by 2n−Ω((3n−s)2/n). ut

8 Ruiwen Chen, Valentine Kabanets

The following corollary is immediate.

Corollary 1. (1) For U2-circuits of size 3n − εn with ε > 0, there is a deter-
ministic #SAT algorithm running in time 2n−Ω(n). (2) For U2-circuits of size
3n− nε with ε > 0.5, there is a deterministic #SAT algorithm running in time

2n−n
Ω(1)

.

3.3 Correlation with Parity

Schnorr [23] proved a 3n−c lower bound for computing Parity using the following
fact: a simplified U2-circuit computing Parity cannot have any input variable
with out-degree exactly 1. Indeed, if such an input x exists, one can fix all other
variables such that the gate fed by x becomes a constant, but this makes the
function independent of x, which is impossible for Parity.

We next generalize this lower bound to the average case by showing that a
U2-circuit of size s < 3n cannot approximate well with Parity. The proof is by
converting the generalized decision tree constructed in the proof of Theorem 1
into a normal decision tree without twigs, and argue that the tree size will not
increase too much, as stated in the next lemma (the proof is left in the full
version [5] of the paper).

Lemma 6. Any function computed by a U2-circuit of size s < 3n has a decision
tree of size 2n−Ω((3n−s)2/n).

The following lemma gives a simple relationship between the size of a decision
tree and its correlation with Parity. It was previously used to derive correlation
bounds for de Morgan formulas [22] and AC0 circuits [13].

Lemma 7 ([22]). A decision tree of size 2n−k has correlation at most 2−k with
Parity.

Theorem 2. Let C be a U2-circuit of size s < 3n. Then its correlation with
Parity is at most 2−Ω((3n−s)2/n). In particular, for s = 3n − εn with ε > 0, the
correlation is at most 2−Ω(n); for s = 3n− nε with ε > 0.5, the correlation is at

most 2−n
Ω(1)

.

Proof. The proof is immediate by Lemmas 6 and 7. ut

The above correlation bounds with Parity almost match with the upper
bounds. To see this, we can construction an approximate circuit for Parity in
the following way. Divide n inputs into l groups each of size n/l, use circuits of
size 3(n/l− 1) to compute Parity exactly for each group, and then take the dis-
junction of the outputs from all groups. This circuit outputs 0 with probability
2−l, but whenever it outputs 0, it agrees with Parity. Thus its correlation with
Parity is at least 2−l. The circuit size is 3(n/l − 1) · l + l = 3n− 2l.

Correlation Bounds and #SAT Algorithms 9

4 B2-circuits

In this section, we give #SAT algorithms and correlation bounds for B2-circuits
of size almost 2.5n.

4.1 Concentrated shrinkage and #SAT algorithms

Given a simplified B2-circuit C, we will construct a generalized parity decision
tree, where each internal node is labeled by either a twig or a parity of a subset
of variables. Starting from the root with the given circuit C, we use the following
case analysis to identify labels and build branches recursively.

If the circuit becomes a constant, we label the current node by the constant;
then this node is a leaf. If the circuit is a literal or a gate fed by two variables,
then we choose the variable of the literal or the circuit itself as the label, and
build two branches. Otherwise, consider a topological order on the gates of the
circuit, and let u be the first gate which is either ⊕-type of out-degree at least
2 or ∧-type. Consider the following cases (see also Figure 4.1):

(1) If u is a ⊕-type gate of out-degree at least 2, then it computes ⊕i∈Ixi (or
its negation) for some subset I ⊆ [n]. We choose ⊕i∈Ixi as the label, and
build two branches; for the branch ⊕i∈Ixi = b ∈ {0, 1}, we replace u by a
constant, and substitute an arbitrary variable xj for j ∈ I by a sub-circuit
⊕i∈I\{j}xi ⊕ b. In both branches, we can eliminate one variable xj , and at
least 3 gates (u and its two successors).

(2) If u is an ∧-type gate fed by some ⊕-type gate v, suppose w is the other
node feeding into u.

– If w has out-degree 1, then we choose the parity function computed at v
as the label, and build two branches similar to Case (1). In one branch,
we can eliminate some input xj and two gates v, u; in the other branch,
we can eliminate two more nodes: w and a successor of u.

– If w has out-degree at least 2, then it must be a variable. We choose w
as the label, and build two branches. In one branch, we can eliminate w
and its two successors; in the other branch, we can eliminate two more
gates: v and a successor of u.

(3) If u is an ∧-type gate fed by two inputs xi and xj where at least one of them,
say xi, has out-degree at least 2, then we choose xi as the label and build
two branches. In one branch, we can eliminate xi and its two successors; in
the other branch, we can eliminate one more gate: a successor of u.

(4) If u is an ∧-type gate fed by two inputs each of out-degree 1, then choose the
twig computed at u as the label. In both branches, we can eliminate xi, xj , u
and a successor of u.

Consider a random path from the root of the decision tree to its leaves. Let
C0 := C, and let Ci be the restricted circuit obtained at depth i. Let µi := µ(Ci).
The next lemma follows directly from the above case analysis.

10 Ruiwen Chen, Valentine Kabanets

u⊕

(1)

u∧

v⊕ w

(2)

u∧

xi xj

v

(3)

u∧

xi xj

(4)

Fig. 2. Cases for eliminating gates in B2-circuits

Lemma 8. If µi > 4, then µi − µi+1 > 3, and E[µi − µi+1] > 3.5. If µi 6 4,
then µi+1 = 0.

Then we have the following concentrated shrinkage.

Lemma 9. For λ > 0, Pr [µd > max{µ0 − 3.5d+ λ, 1}] 6 exp(−λ2/2d).

Theorem 3. For B2-circuits of size s < 2.5n, there is a deterministic #SAT
algorithm running in time 2n−Ω((2.5n−s)2/n). In particular, for s = 2.5n − εn
with ε > 0, the algorithm runs in time 2n−Ω(n); for s = 2.5n− nε with ε > 0.5,

the algorithm runs in time 2n−n
Ω(1)

.

We omit the proofs of Lemma 9 and Theorem 3 since they are similar to the
proofs of Lemma 5 and Theorem 1.

4.2 Correlation bounds

Demenkov and Kulikov [9] proved that affine dispersers for sources of dimension
d requires B2-circuits of size 3n−Ω(d). We next extend this result to the average
case by showing that affine extractors have small correlations with B2-circuits
of size less than 2.5n.

Definition 2. Let F2 be the finite field with elements {0, 1}. A function AE : Fn2 →
F2 is a (k, ε)-affine extractor if for any uniform distribution X over some k-
dimensional affine subspace of Fn2 , |Pr[AE(X) = 1]− 1/2| 6 ε.

We will need the following constructions of affine extractors.

Theorem 4 ([4, 27, 19]). (1) For any δ > 0 there exists a polynomial-time
computable (k, ε)-affine extractor AE1 : {0, 1}n → {0, 1} with k = δn and ε =
2−Ω(n). (2) There exists a constant c > 0 and a polynomial-time computable
(k, ε)-affine extractor AE2 : {0, 1}n → {0, 1} with k = cn/

√
log log n and ε =

2−n
Ω(1)

.

We will prove our correlation bounds using the following representation of
B2-circuits by parity decision trees.

Correlation Bounds and #SAT Algorithms 11

Lemma 10. Any function computed by a B2-circuit of size s < 2.5n is com-
putable by a parity decision tree of size 2n−Ω((2.5n−s)2/n).

The proof, which we omit here, is almost the same as the proof of Lemma 6.
That is, using the algorithm in Theorem 3, one can construct a generalized parity
decision tree which may have twigs, and then expand the twigs and argue that
the tree size does not increase much. Note that, when we restrict a twig, the two
variables in the twig are completely eliminated; when we restrict a parity, since
one variable is substituted, all parity restrictions are linearly independent.

The following lemma gives the correlation of (relatively small) parity decision
trees with affine extractors given in Theorem 4. It was implicit in [24] and was
also given in [8].

Lemma 11 ([24, 8]). (1) For any δ > 0, a parity decision tree of size 2n−k

for k = δn has correlation at most 2−Ω(n) with AE1. (2) There is a constant
c > 0 such that a parity decision tree of size 2n−k for k = cn/

√
log log n has

correlation at most 2−n
Ω(1)

with AE2.

The next theorem follows by Lemma 10 and Lemma 11.

Theorem 5. (1) For any δ > 0 and B2-circuit of size 2.5n− δn, its correlation
with AE1 is at most 2−Ω(n). (2) There exists a constant c > 0 such that, for
any B2-circuit of size 2.5n − cn/ 4

√
log log n, its correlation with AE2 is at most

2−n
Ω(1)

.

5 Open questions

It is open whether our correlation bounds (for the size almost 3n for U2-circuits,
and almost 2.5n for B2-circuits) can be improved to match with the best known
worst-case lower bounds (for the size almost 5n for U2-circuits, and almost 3n
forB2-circuits). Pseudorandom generators for boolean formulas were constructed
in [14] based on concentrated shrinkage and decomposition of the formula tree. It
would be interesting to get pseudorandom generators for general boolean circuits.

References

1. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower
bounds by polynomials. JACM, 48(4):778–797, 2001.

2. P. Beame, R. Impagliazzo, and S. Srinivasan. Approximating ac0 by small height
decision trees and a deterministic algorithm for #ac0 sat. In Proceedings of the
2012 IEEE Conference on Computational Complexity, CCC ’12, 2012.

3. N. Blum. A Boolean function requiring 3n network size. Theoretical Computer
Science, 28:337–345, 1984.

4. J. Bourgain. On the construction of affine-source extractors. Geometric and Func-
tional Analysis, 17(1):33–57, 2007.

5. R. Chen and V. Kabanets. Correlation bounds and #sat algorithms for small
linear-size circuits. ECCC, 21:184, 2014.

12 Ruiwen Chen, Valentine Kabanets

6. R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining
circuit lower bound proofs for meta-algorithms. In CCC’14, 2014.

7. R. Chen, V. Kabanets, and N. Saurabh. An improved deterministic #sat algorithm
for small de morgan formulas. In MFCS’14, pages 165–176, 2014.

8. G. Cohen and I. Shinkar. The complexity of DNF of parities. ECCC, 21:99, 2014.
9. E. Demenkov and A. Kulikov. An elementary proof of a 3n - o(n) lower bound on

the circuit complexity of affine dispersers. In MFCS’11, pages 256–265, 2011.
10. J. H̊astad. Almost optimal lower bounds for small depth circuits. In STOC’86,

pages 6–20, 1986.
11. J. H̊astad. The shrinkage exponent of de Morgan formulae is 2. SIAM Journal on

Computing, 27:48–64, 1998.
12. J. H̊astad. On the correlation of parity and small-depth circuits. ECCC, 19:137,

2012.
13. R. Impagliazzo, W. Matthews, and R. Paturi. A satisfiability algorithm for AC0.

In SODA’12, pages 961–972, 2012.
14. R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrinkage.

In FOCS’12, pages 111–119, 2012.
15. K. Iwama and H. Morizumi. An explicit lower bound of 5n − o(n) for boolean

circuits. In MFCS’02, pages 353–364, 2002.
16. I. Komargodski and R. Raz. Average-case lower bounds for formula size. In

STOC’13, pages 171–180, 2013.
17. I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for

demorgan formula size. In FOCS’13, pages 588–597, 2013.
18. O. Lachish and R. Raz. Explicit lower bound of 4.5n − o(n) for boolena circuits.

In STOC ’01, pages 399–408, New York, NY, USA, 2001. ACM.
19. X. Li. A new approach to affine extractors and dispersers. In CCC’11, pages

137–147, 2011.
20. S. Nurk. An o(20.4058m) upper bound for circuit sat. PDMI Preprint, 2009.
21. B. Reichardt. Reflections for quantum query algorithms. In SODA ’11, pages

560–569, 2011.
22. R. Santhanam. Fighting perebor: New and improved algorithms for formula and

qbf satisfiability. In FOCS’10, pages 183–192, 2010.
23. C. Schnorr. Zwei lineare untere schranken für die komplexität boolescher funktio-

nen. Computing, 13(2):155–171, 1974.
24. K. Seto and S. Tamaki. A satisfiability algorithm and average-case hardness for

formulas over the full binary basis. In CCC’12, pages 107–116, 2012.
25. B.A. Subbotovskaya. Realizations of linear functions by formulas using and, or,

not. Soviet Math. Doklady, 2:110–112, 1961.
26. A.C. Yao. Separating the polynomial-time hierarchy by oracles. In FOCS’85, pages

1–10, 1985.
27. A. Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256,

2011.
28. U. Zwick. A 4n lower bound on the combinational complexity of certain symmetric

boolean functions over the basis of unate dyadic boolean functions. SIAM J.
Comput., 20(3):499–505, 1991.

