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Abstract

This survey focuses on the recent� developments in the area of derandomization� with the

emphasis on the derandomization of time�bounded randomized complexity classes�

� Introduction

��� History

The last twenty years have witnessed the abundance of e�cient randomized algorithms developed
for a variety of problems �MR���� The class BPP has e�ectively superseded the class P as the class
of problems that are considered e�ciently solvable	 while many researchers believe that BPP 
 P�
There are	 essentially	 two general arguments to support the belief that BPP is �close� to P� The


rst argument is empirical� a large number of randomized algorithms have been implemented and
seem to work just 
ne	 even without access to any source of true randomness� The second argument
is that every language in BPP can be nontrivially derandomized	 i�e�	 decided deterministically in
subexponential time	 if certain combinatorial objects of �high� nonuniform complexity can be
�e�ciently� uniformly constructed�

����� Hardness�randomness tradeo�s

The second argument makes use of so�called hardness�randomness tradeo�s	 the results showing
that �computational hardness� can be e�ciently converted into �computational randomness��
The possibility of trading hardness for randomness was 
rst suggested in �Sha��	 BM��	 Yao����
Yao �Yao��	 BH��� demonstrated that a one�way permutation	 a permutation which is �easy� to
compute but �hard� to invert on the average	 can be used to construct a pseudorandom gen�
erator� later	 the assumption has been weakened to say that any one�way function would suf�

ce �Lev��	 GKL��	 GL��	 HILL���� Informally	 a pseudorandom generator is an e�ciently com�
putable function mapping �short� input strings to �longer� output strings so that the uniform
distribution on the inputs to the generator induces the distribution on the outputs that �looks�
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uniform to any computationally restricted observer� Such a pseudorandom generator can be used
to simulate any BPP algorithm A in deterministic subexponential time as follows� for each input to
the generator	 compute the output w of the generator	 and compute the decision of the algorithm
A using w as a string of random bits� output the majority decision�

����� The Nisan�Wigderson generator

Observe that the running time of the deterministic simulation of a given BPP algorithm using a
pseudorandom generator is dominated by the amount of time needed to enumerate all inputs to
the generator� Thus	 if the goal is to derandomize BPP	 then it makes sense to relax the e�ciency
requirements in the de
nition of a pseudorandom generator by allowing the generator to run in
time exponential in the input size�
Nisan and Wigderson �NW���	 based on �Nis���	 showed how to make use of this observation by

constructing an exponential�time computable hardness�based generator	 the NW generator� This
generator is pseudorandom if the class EXP 
 DTIME��poly�n�� contains a language L hard on the

average with respect to �small� Boolean circuits	 i�e�	 no small circuit can correctly decide the
language L on signi
cantly more than a half of all the inputs of any given length�
The conditional derandomization of BPP obtained in �NW��� was an improvement on Yao�s

result	 since the existence of a one�way function can be shown to imply the existence of a language
L in EXP such that L cannot be well approximated by any family of small circuits� It was natural	
however	 to try to strengthen the Nisan�Wigderson tradeo�s by replacing the assumption of average�
case hardness with that of worst�case hardness�

����� Worst�case hardness�randomness tradeo�s

The 
rst worst�case hardness�randomness tradeo� was achieved by Babai	 Fortnow	 Nisan	 and
Wigderson �BFNW���� They showed that if EXP contains a language of superpolynomial circuit
complexity �i�e�	 EXP �� P�poly�	 then every BPP algorithm can be simulated deterministically in
subexponential time	 for in
nitely many input lengths� The main new idea in �BFNW���	 inspired
by the results on the random self�reducibility of low�degree polynomials �BF��	 Lip��� and the
work on two�prover interactive protocols for NEXP �BFL���	 was the use of error�correcting codes

to convert the truth table of a Boolean function hard in the worst case into that of a Boolean
function hard on the average�
The methods of �BFNW���	 however	 failed to show that the conclusion BPP 
 P can be

derived from some worst�case hardness assumption� the average�case version of such a tradeo� was
known from �NW���� The encoding used in �BFNW���	 the extension of a Boolean function to a
low�degree multivariate polynomial over a 
nite 
eld	 enabled one to obtain a Boolean function
that is only �mildly� hard on the average from the Boolean function that is �very� hard in the
worst case � or so it seemed at the time� Yao�s XOR Lemma �Yao��	 GNW��� could be used to
amplify the average�case hardness of a given Boolean function f by XORing the values f�xi� for
a few independent inputs xi to f � But	 to attain the level of average�case hardness su�cient for
concluding BPP 
 P	 one would need to use too many independent bits�
Impagliazzo and Wigderson �IW���	 using �Imp���	 showed that Yao�s XOR Lemma can be

derandomized in a rather dramatic sense� it remains true even if nO��� inputs xi to f are constructed
using only O�n� independent bits� Combined with the previous results	 this yields the desired �high�
end� worst�case hardness�randomness tradeo�� if E contains a language of circuit complexity ���n�

almost everywhere	 then BPP 
 P�
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����� Hitting�set generators

Independently of �IW���	 and using di�erent methods	 Andreev	 Clementi	 and Rolim �ACR���	
based on �ACR���	 showed that BPP 
 P if there is an e�ciently enumerable sparse language of
high circuit complexity� here �high� means that the circuit complexity of deciding the language is
close to that of generating the language� Rather than constructing a pseudorandom generator	 the
authors of �ACR��� showed that their hardness assumption implies the existence of a hitting�set
generator	 the generator whose output distribution �looks� random to any RP algorithm	 rather
than BPP algorithm� Somewhat surprisingly	 the existence of an e�cient hitting�set generator
implies that BPP 
 P �ACR��� �see also �ACRT��	 BF��	 GW��	 GVW�����

��� Recent developments

From ����	 the research on derandomization can be roughly divided into the following categories�

�� improvements of the hardness�randomness tradeo�s	

�� applications of the hardness�randomness tradeo�s in more general complexity�theoretic and
information�theoretic settings	

�� �uniform� hardness�randomness tradeo�s	

�� limitations of the current derandomization techniques�

These developments will be addressed in the rest of this survey � albeit at a highly intuitive
level� For more information on pseudorandomness and derandomization	 the readers are referred
to the excellent presentations by Goldreich �Gol��	 Chapter �� and Miltersen �Mil����

� Better Tradeo�s

��� Hardness ampli�cation via error�correcting codes

Impagliazzo and Wigderson �IW��� showed how to obtain a Boolean function of high average�case
hardness	 starting with a Boolean function of high worst�case hardness� The 
rst step was the
low�degree polynomial encoding of the truth table of a given worst�case hard Boolean function	 as
in �BFNW���� This produced a Boolean function that is �mildly� hard on the average� any small
circuit can compute the new function correctly on at most � � �

poly�n� fraction of all n�bit inputs�
The second step was the ampli
cation of the average�case hardness via the derandomized version
of Yao�s XOR Lemma	 so that no small circuit can compute the resulting function on more that
�
� �

�
���n�

fraction of all n�bit inputs�
Sudan	 Trevisan	 and Vadhan �STV��� show that the 
rst step alone	 with a di�erent choice

of parameters	 already gives the desired high average�case hardness	 and so no further hardness
ampli
cation is needed� As explained in �STV���	 there is an intimate connection between the
�worst�case to average�case� reductions and the task of list�decoding of error�correcting codes	
which will be sketched below�
Given the truth table of an n�variable Boolean function f 	 of length N 
 �n	 that has circuit

complexity ���n�	 the task of a �worst�case to average�case� reduction is to produce the truth table
of a new Boolean function g on O�n� variables that any circuit of size at most ���n� can compute on
at most �

� �
�

���n�
fraction of all inputs� this reduction must be computable by a uniform algorithm	

which justi
es the use of order notation� To argue that g has the required hardness	 one needs to
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show how a small circuit computing g on at least �
� �

�
���n�

fraction of inputs gives rise to a small
circuit computing f everywhere	 thus contradicting the worst�case hardness of f �
On the other hand	 the goal of an error�correcting encoding is to map	 via the encoding function

Enc	 a given message string m of length N into a codeword string c 
 Enc�m� of bigger length so
that the original message m can be e�ciently recovered	 via the decoding function Dec	 from any
string r that is su�ciently close to c in the Hamming distance�
To see the connection with the �worst�case to average�case� reduction	 we should think of the

message m as the truth table of a Boolean function f 	 the codeword c 
 Enc�m� as the truth table
of a new Boolean function f �	 and the string r as the truth table of a Boolean function computed
by some small circuit�
In order to get the desired parameters in the �worst�case to average�case� reduction	 we would

need the binary error�correcting codes	 given by the encoding and decoding functions Enc and
Dec	 with the following properties�

�� jEnc�m�j � poly�jmj�	

�� the message m can be recovered from a string r whenever r and c 
 Enc�m� agree in at least
�
� �

�
jcj����

fraction of positions�

However	 by the Plotkin bound �Plo���	 it is impossible to achieve both these conditions for any
binary code	 if one insists that decoding be unique� The solution is to allow the decoding procedure
to return a short list containing all the codewords c that are su�ciently close to the received word
r	 i�e�	 to use list�decodable error�correcting codes �see �Sud��� for a survey on list decoding��
Another important issue is the e�ciency of the decoding procedure� In the standard setting	 a

decoding procedure is considered e�cient if it runs in time polynomial in the length of the received
string� This is not good enough in our case� We need the decoding procedure to compute each
individual bit in the recovered codeword c in sublinear �even polylogarithmic� time in order to claim
the existence of a small circuit for the Boolean function whose truth table is c� So	 for our purposes	
an e�cient decoding procedure is the one that	 given oracle access to the received string r	 outputs
a short list of small oracle circuits such that every codeword close to r will be computed by some
circuit on the list	 given oracle access to r� here	 oracle access to r means that each individual bit
of r can be looked up in constant time�
Amazingly	 the binary codes satisfying the requirements stated above do exist	 and can be

constructed using low�degree multivariate polynomials� The existence of an e�cient list�decoding
algorithm for these codes follows from the work of Arora and Sudan �AS���	 using �Sud���� a simpler
algorithm with improved parameters is given in �STV���� The nice properties of these list�decoding
algorithms are based	 in particular	 on the existence of e�cient algorithms for interpolating and
factoring polynomials�

��� Achieving optimal hardness�randomness tradeo�s

To discuss what it means to have an optimal hardness�randomness tradeo�	 we need to recall some
de
nitions� Below	 by a function	 we will actually mean a family of functions	 parameterized by
the input size� Assuming that a circuit need not use all of its inputs	 we may talk about circuits of
size n on n inputs�
A function G � f�� �gn � f�� �gm	 where m 
 m�n� is some function of n	 is called a pseudo�

random generator �PRG� if	 for any Boolean circuit C of size m on m inputs	

jPrx�C�x� 
 ���Pry�C�G�y�� 
 ��j �
�

m
�
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where x and y are chosen uniformly at random from f�� �gm and f�� �gn	 respectively� The PRG
G is said to produce m bits of pseudorandomness using a seed of size n� The PRG computable in
time �O�n� is called quick�
A Boolean function f � f�� �gn � f�� �g has hardness s	 where s 
 s�n� is some function of n	

if the size of the smallest Boolean circuit computing f is at least s�
The following observation has appeared in several papers �e�g�	 �ISW�����

Theorem �� If there is a quick PRG G � f�� �gn � f�� �gm� then there is a �O�n��time computable
Boolean function f � f�� �gn�� � f�� �g of hardness m�

Proof� Consider the Boolean function f de
ned as follows� for every x � f�� �gn��	

f�x� 
 �� x � fG�y����n�� j y � f�� �g
ng�

where G�y����k denotes the k�length pre
x of the string G�y��
It is easy to see that f is �O�n��time computable� Also note that p 
 Prx�f�x� 
 �� �

�
� 	 since

f�x� 
 � for at most �n outputs of the generator�
Suppose that the function f is computable by a Boolean circuit of size at most m� Then the

PRG G can be used to approximate the value p	 to within ��m� However	 f is de
ned so that
Pry�f�G�y�� 
 �� 
 � � p� ��m	 for any m � �� Thus	 f must have hardness at least m�

Theorem � essentially says thatm bits of pseudorandomness	 using a seed of size n	 yield a O�n��
input Boolean function with hardness m� The tradeo�s of �BFNW��	 IW��� prove the converse
to Theorem � for the speci
c values of the parameter s�n�	 the hardness of an n�input Boolean
function� In particular	 �IW��� proves that hardness s�n� 
 ���n� yields m 
 �s�log n������ 
 n����

bits of pseudorandomness via a PRG from logn to m bits�
In general	 the results showing that a �O�n��time computable n�input Boolean function with

hardness s 
 s�n� yields m 
 s���� bits of pseudorandomness via a quick PRG from O�n� to m
bits are considered optimal hardness�randomness tradeo�s	 up to a polynomial� Almost optimal
tradeo�s were established in �ISW��	 ISW���� they were based upon a recursive use of the NW
generator�
Building upon the techniques from �STV��	 MV��	 TSZS���	 Shaltiel and Umans �SU��� prove

an optimal hardness�randomness tradeo� for hitting�set generators	 rather than PRGs� Combined
with the methods from �ACR��	 GVW���	 this implies the following optimal derandomization of
BPP	 assuming the existence of hard functions�

Theorem � �	SU
���� If there is a �O�n��time computable Boolean function f � f�� �gn � f�� �g

of hardness s 
 s�n�� then BPTIME�t� � DTIME��O�s
���tO������� where t 
 t�n� is a function of n�

An interesting aspect of the methods in �SU��� is that they show how to convert worst�case
hardness into pseudorandomness without applying the NW generator� the previous constructions
of PRGs relied upon the NW generator as a method to convert average�case hardness into pseudo�
randomness�
The techniques in �SU��� make essential use of the error�correcting properties of polynomial

codes and the algebraic structure of vector spaces over 
nite 
elds� Extending these techniques	
Umans �Uma��� obtains the following optimal hardness�randomness tradeo� for PRGs	 which also
implies Theorem ��

Theorem � �	Uma
���� If there is a �O�n��time computable n�input Boolean function of hardness

s 
 s�n�� then there is a quick PRG from O�n� to s���� bits�
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� Diverse Applications of the Hardness�Randomness Tradeo�s

��� Beyond BPP

Originally	 the hardness�randomness tradeo�s were motivated by the task of derandomizing such
probabilistic complexity classes as BPP and RP� Following Yao �Yao���	 the goal was to construct
a suitable pseudorandom generator that can be used to approximate the acceptance probability of
any given small Boolean circuit� But	 the existence of such pseudorandom generators would imply
much more than the derandomization of BPP�
As shown by Goldreich and Zuckerman �GZ���	 one fairly straightforward implication is the

derandomization of the class MA de
ned by Babai �Bab��	 BM���� Recall that a language L � MA

if there is a polynomial�time computable relation RL such that	 for any string x	

x � L� 	y � Prz�RL�x� y� z� 
 �� � ����

x �� L� 
y � Prz�RL�x� y� z� 
 �� � ����

where jyj 
 jzj 
 jxjO����
Since RL is polynomial�time computable	 it is also computable by a family of polynomial�sized

Boolean circuits� The existence of a quick PRG	 say from O�log n� to n bits	 would allow us
to estimate the probability Prz�RL�x� y� z� 
 �� deterministically in polynomial time	 and hence
imply that MA � NP� Thus	 the known hardness�randomness tradeo�s show that the existence of
a language in E 
 DTIME��O�n�� of high circuit complexity implies the derandomization of MA�
The situation with the class AM �Bab��	 BM���	 which contains MA	 is trickier� By de
nition	

a language L � AM if there is a polynomial�time computable relation RL such that	 for every string
x	

x � L� Prz�	y � RL�x� y� z� 
 �� � ����

x �� L� Prz�	y � RL�x� y� z� 
 �� � ����

where jyj 
 jzj 
 jxjO����
To derandomize AM	 we would need to estimate the acceptance probability of a nondeterministic

Boolean circuit deciding	 for given x and z	 whether there is a y such that RL�x� y� z� 
 �� Thus	
the existence of a PRG does not seem to su�ce�
Klivans and van Melkebeek �KM��� point out that the Boolean function f�x� z� 
 � � 	y �

RL�x� y� z� 
 � is in P
NP	 and thus is computable by a family of polynomial�sized Boolean circuits

with oracle access to SAT� So	 the existence of a PRG that estimates the acceptance probability of
any small SAT�oracle Boolean circuit would imply the derandomization of AM�
The crucial observation in �KM��� is that all known hardness�randomness tradeo�s relativize�

In particular	 for any oracle A	 the truth table of a Boolean function of high A�oracle circuit
complexity gives rise to a PRG whose output distribution �looks random� to any small Boolean
circuit with A�oracle gates� The relativized hardness�randomness tradeo�s yield	 e�g�	 the following
result� recall that NE 
 NTIME��O�n���

Theorem � �	KM

��� If NE � coNE contains a language of SAT�oracle circuit complexity ���n�

almost everywhere� then AM 
 NP�

Miltersen and Vinodchandran �MV��� improve upon Theorem � by replacing the assumption
of high SAT�oracle circuit complexity with that of high nondeterministic circuit complexity� the
average�case version of such a tradeo� was proved earlier in �AK���� The methods in �MV���
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build upon those from �ACR��	 ACR��� for constructing hitting�set generators� an important new
ingredient in �MV��� is the use of certain polynomial error�correcting codes� Further improvements
are obtained in �SU��	 Uma����
Klivans and van Melkebeek �KM��� apply the relativized hardness�randomness tradeo�s to

get conditional derandomization of a number of probabilistic constructions� In particular	 they
derandomize the Valiant�Vazirani random hashing algorithm �VV����

Theorem � �	KM

��� If E contains a language of SAT�oracle circuit complexity ���n� almost
everywhere� then the following task can be performed deterministically in polynomial time	 given a

propositional formula �� generate a list of propositional formulas such that

� if � is unsatis
able� then so is every formula on the list� and

� if � is satis
able� then at least one of the formulas on the list has exactly one satisfying
assignment�

The proof is based on the fact that there is a PNP algorithm for checking if a given propositional
formula has exactly one satisfying assignment� Hence	 it su�ces to build a PRG whose output
distribution �looks random� to any polynomial�size SAT�oracle circuit�

��� Beyond computational complexity

Viewed abstractly	 a hardness�randomness tradeo� is an e�cient transformation of a binary string
x	 the truth table of a Boolean function on log jxj inputs	 to the distribution Dx on binary strings
y	 where y�s are the outputs of the PRG based on x	 such that the following holds� any statistical
test T �y� distinguishing the distribution Dx from the uniform distribution can be used	 together
with some �short� advice string a dependent on x	 as a description of the string x�
In the applications of hardness�randomness tradeo�s to derandomizing BPP or AM	 the statis�

tical tests T �y� are Boolean functions computable by small circuits or SAT�oracle circuits� The
idea is that if the acceptance probability of a circuit C is not approximated correctly by the given
PRG based on a Boolean function f 	 then C can be used to construct a �small� circuit computing
f � this leads to a contradiction if f is of high circuit complexity�
Trevisan �Tre��� demonstrated the usefulness of hardness�randomness tradeo�s in the information�

theoretic setting	 where the statistical test T �y� can be an arbitrary Boolean function	 not neces�
sarily computable by a small circuit� The reasoning is	 roughly	 as follows�
Let S � f�� �gn be any set� Let T� � f�� �g

k � f�� �g be an arbitrary Boolean function	 possibly
dependent on S� De
ne S� � S to be the subset of all those strings x� such that T� distinguishes
the distribution Dx� from uniform	 where Dx is a distribution on k�bit strings� Then every string
x� � S� is uniquely determined by T� together with some short advice string a �dependent on x��	
where jaj 
 n� Since there are few short strings	 the set S� must be small�
Now	 consider the distribution ES on k�bit strings de
ned as follows� Choose x � S uniformly

at random	 and output a string y sampled according to the distribution Dx� The distribution ES

must be statistically close to uniform�
Indeed	 suppose that ES is far from uniform� Then there is a statistical test T� � f�� �g

k � f�� �g
distinguishing this distribution from uniform� By a Markov�style argument	 there must be a large
subset S� � S such that	 for every x � S�	 the test T� distinguishes Dx from uniform� But this is
impossible since	 by the discussion given above	 S� should be small�
This reasoning led Trevisan �Tre��� to a breakthrough in the construction of extractors	 e��

ciently computable functions E�x� s� that can be used to convert a source of �weak� randomness
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into a source of statistically �almost� uniform randomness	 using a short truly random seed� The
distribution ES described above is an example of an extractor	 where the set S is used as a source
of weak randomness and the additional truly random short seed s is used to sample from Dx�
The connection between PRGs and extractors	 discovered in �Tre���	 has played an important

role in many recent results on extractors� the description of this research deserves a separate survey�

��� Back to computational complexity

Trevisan �Tre��� showed that the proof technique originally used for constructing PRGs can also
be very useful in constructing extractors� The correctness proof of such extractor constructions
relies upon a �decoding� procedure for strings x sampled from a source of weak randomness� Let
Ex be the distribution induced by an extractor E�x� s� when x is 
xed� Then	 given a statistical
test distinguishing the distribution Ex from uniform and a short advice string a	 this �decoding�
procedure must uniquely determine the string x�
The natural question is whether such an extractor construction should yield a PRG construction�

After all	 the correctness proofs in both cases rely upon certain �decoding� procedures� The
important di�erence	 however	 is the e�ciency requirement� the e�ciency of �decoding� is not
important in the setting of extractors	 but it is crucial in the setting of PRGs�
Nonetheless	 the connection between PRGs and extractors has been exploited in the opposite

direction� Shaltiel and Umans �SU��	 Uma��� start with the extractor proposed by Ta�Shma	
Zuckerman	 and Safra �TSZS��� and	 employing a lot of new ideas	 show how to turn it into a PRG�
Moreover	 the resulting PRG gives an optimal hardness�randomness tradeo� �see Section �����

� Towards Uniform Hardness�Randomness Tradeo�s

��� Derandomizing BPP

The hardness�randomness tradeo�s considered so far show that a language in EXP of high nonuni�
form �i�e�	 circuit� complexity yields a quick generator that is pseudorandom with respect to any
nonuniform family of small circuits� That is	 a nonuniform hardness assumption yields a PRG for
nonuniform algorithms�
Intuitively	 it is reasonable to conjecture that a uniform hardness assumption should yield a

PRG for uniform algorithms� In particular	 one might conjecture that EXP �� P should yield a
PRG for any P�uniform family of polynomial�size Boolean circuits� Unfortunately	 the existence of
such a PRG has not been proved yet�
However	 Impagliazzo and Wigderson �IW��� prove the following version of a uniform hardness�

randomness tradeo��

Theorem � �	IW
���� If EXP �� BPP� then� for every � � �� there is a quick generator G �
f�� �gn

�

� f�� �gn that is pseudorandom with respect to any P�sampleable family of n�size Boolean
circuits in
nitely often�

The phrase �G is pseudorandom with respect to any P�sampleable family of circuits in
nitely
often� means the following� Let BG�n� be the set of all Boolean circuits C of size n that are �bad�
for the generator G	 i�e�	 C � BG�n� i�

jPrx�C�x� 
 ���Pry�C�G�y�� 
 ��j �
�

n
�

�



Let R be any probabilistic polynomial�time algorithm that	 on input �n	 outputs a Boolean circuit
of size n� Then there are in
nitely many n such that

Pr�R��n� � BG�n�� �
�

n
�

where the probability is over the internal coin tosses of R�

Proof Sketch of Theorem �� If EXP �� P�poly	 then Theorem � follows by the standard �nonuni�
form� hardness�randomness tradeo� from �BFNW���� On the other hand	 if EXP � P�poly	 then
EXP collapses to �p� �KL���	 and since �

p
� � P�P �Tod���	 we conclude that  P�complete languages

are also complete for EXP� Thus	 it su�ces to consider a generator based on PERMANENT �Val����
Inspecting the correctness proof of the hardness�randomness tradeo� in �BFNW��� reveals

the following� If the PERMANENT�based generator can be broken by a BPP algorithm	 then
a polynomial�size circuit computing PERMANENTn �on n�bit inputs� can be learned in prob�
abilistic polynomial time	 given oracle access to PERMANENTn� the existence of this learning
algorithm depends on the random self�reducibility of PERMANENT�
The fact that PERMANENT is also downward self�reducible can then be exploited to remove the

need for an oracle� Namely	 to construct a circuit Cn computing PERMANENTn	 we 
rst construct
small circuits C�� � � � � Cn�� computing PERMANENT�� � � � � PERMANENTn��	 respectively� Then
we run the probabilistic learning algorithm to construct Cn	 using the previously constructed circuit
Cn�� to answer any oracle queries about PERMANENTn� This shows that PERMANENT is in
BPP	 and hence	 EXP 
 BPP�

An immediate corollary of Theorem � is the �uniform� derandomization of BPP under the
assumption that EXP �
 BPP�

Theorem � �	IW
���� If EXP �
 BPP� then� for any � � �� every BPP algorithm can be simulated

deterministically in time �n
�

so that� for in
nitely many n� this simulation is correct on at least

�� �
n
fraction of all inputs of size n�

Unlike the proofs of standard �nonuniform� hardness�randomness tradeo�s	 the proof of Theo�
rem � relies upon nonrelativizing techniques� in particular	 the proof uses the nonrelativizing result
from �KL��� saying that EXP � P�poly� EXP 
 �p�� It is not known	 however	 whether Theorem �
itself relativizes�
Trevisan and Vadhan �TV��� give a di�erent proof of Theorem �� their proof does not rely

upon the theorems of Toda �Tod��� and Valiant �Val���	 but rather is based on the ideas from the
proof of IP 
 PSPACE �LFKN��	 Sha���� Another result in �TV��� is an optimal �worst�case to
average�case� reduction for EXP in the uniform setting	 with the parameters matching those in the
nonuniform setting �STV����

��� Derandomizing RP

It is possible to prove a version of Theorem � using the weaker assumption EXP �
 ZPP� We need
to modify our setting�
For a generator H � f�� �gk � f�� �gn	 let BH�n� be the set of all circuits C of size n such that

Prx�C�x� 
 �� � ��� but Pry�C�H�y�� 
 �� 
 �� that is	 the circuits in BH�n� show that H is not
a hitting�set generator�

�



The generator H is called a hitting�set generator with respect to any P�sampleable family of

n�size Boolean circuits in
nitely often if the following holds� For any probabilistic polynomial�time
algorithm R	 where R��n� outputs a Boolean circuit C of size n	 there are in
nitely many n where

Pr�R��n� � BH�n�� � ��

Theorem � �	Kab

��� If EXP �� ZPP� then� for every � � �� there is a quick generator H �
f�� �gn

�

� f�� �gn that is a hitting�set generator with respect to any P�sampleable family of n�size
Boolean circuits in
nitely often�

The proof of Theorem � uses the �easy witness� generator Easy � f�� �gk � f�� �gn de
ned
as follows� For any y � f�� �gk 	 Easy�y� 
 t where t is the truth table of a logn�input Boolean
function computed by the Boolean circuit described by the string y�

Proof Sketch of Theorem �� The main idea is that if Easy � f�� �gn
�

� f�� �gn can be uniformly
broken for some � � �	 then BPP 
 ZPP�
Indeed	 suppose that the generator Easy is not a hitting�set generator with respect to some P�

sampleable family of n�size Boolean circuits	 almost everywhere� This means that	 for all su�ciently
large n	 we can e�ciently generate some Boolean circuit C of size n such that �i� C accepts at
least ��� of all n�bit strings and �ii� every n�bit string accepted by C has circuit complexity greater
than n�� Consequently	 we can probabilistically guess	 with zero error	 a hard string and convert it
into pseudorandomness via the known hardness�randomness tradeo�s� The conclusion BPP � ZPP

follows�
Thus	 if the generator Easy does not work	 then BPP 
 ZPP� On the other hand	 if the

conclusion of Theorem � is false	 then so is the conclusion of theorem �	 and hence EXP 
 BPP�

A corollary of Theorem � is the following unconditional result about the �easiness� of RP in a
certain uniform setting�

Theorem 
 �	Kab

��� At least one of the following holds�


� RP � ZPP�

�� For any � � �� every RP algorithm can be simulated in deterministic time �n
�

so that� for any

polynomial�time computable function f � f�gn � f�� �gn� there are in
nitely many n where

this simulation is correct on the input f��n��

��� Derandomizing the Graph Nonisomorphism Problem

Lu �Lu��� considers the modi
ed generator EasySAT � f�� �g
k � f�� �gn that	 on input y	 outputs

the truth table of the Boolean function computable by a SAT�oracle circuit whose description is
y� If this modi
ed generator can be uniformly broken almost everywhere	 then we can guess	 with
zero error	 a Boolean function of high SAT�oracle circuit complexity� Plugging this function into
the known hardness�randomness tradeo�s	 we can derandomize AM �see Theorem ���
Using EasySAT to search for NP�witnesses	 i�e�	 checking if any output of EasySAT is a satisfying

assignment for a given propositional formula	 Lu obtains the following�

Theorem �
 �	Lu

��� At least one of the following holds�


� AM � NP�

��



�� For any � � �� every NP �and every coNP� algorithm can be simulated in deterministic

time �n
�

so that� for any polynomial�time computable function f � f�gn � f�� �gn� there are

in
nitely many n where this simulation is correct on the input f��n��

Since the Graph Nonisomorphism Problem �GNI� belongs to both AM �GMW��	 GS��	 BM���
and coNP	 Theorem �� implies that either GNI is in NP or GNI can be simulated in deterministic
subexponential time so that this simulation appears correct with respect to any deterministic
polynomial�time computable function f � f�gn � f�� �gn�

� Hitting the Wall�

Hardness�randomness tradeo�s have been hailed as a step forward in the quest to prove that
BPP 
 P� once superpolynomial circuit lower bounds are proved for some language in EXP	 the
derandomization of BPP will follow� However	 proving superpolynomial circuit lower bounds is a
daunting task that has withstood the e�orts of many researchers over many years� If circuit lower
bounds are indeed necessary to derandomize BPP	 then no such derandomization results are likely
to appear any time soon�
But	 perhaps	 BPP can be derandomized even in the absence of superpolynomial circuit lower

bounds� While the existence of a quick PRG would imply the superpolynomial circuit lower bound
for EXP �see Theorem ��	 no such lower bound is known to be implied by the assumption BPP 
 P	
or even by the stronger assumption that the acceptance probability of a given Boolean circuit can
be approximated in deterministic polynomial time �see also �KRC��	 For��� for further discussion��
However	 Impagliazzo	 Kabanets	 and Wigderson �IKW��� show that the existence of a non�

deterministic subexponential�time algorithm for approximating the circuit acceptance probability
would imply the superpolynomial circuit lower bound for NEXP 
 NTIME��poly�n��� In fact	 they
prove an even stronger result saying that it is impossible to separate NEXP andMA without proving
that NEXP �� P�poly�

Theorem �� �	IKW
���� If NEXP � P�poly� then NEXP 
 MA�

Proof Sketch� Since EXP � P�poly implies EXP 
 MA �BFL���	 it will be su�cient to prove that
NEXP � P�poly implies NEXP 
 EXP�
We use the �easy witness� generator Easy � f�� �gpoly�n� � f�� �g�

n

	 de
ned in Section ���	 to
search for NEXP�witnesses� If this generator succeeds for all NEXP languages	 then NEXP 
 EXP	
and we are done� The rest of the proof argues that Easy must succeed�
Suppose otherwise� Then there is a NEXP Turing machine M for which Easy fails� Using M 	

we can nondeterministically guess n�input Boolean functions of circuit complexity greater than nc	
for any c � ��
Indeed	 let x � f�� �gn be such that x � L�M� but Easy failed to 
nd any NEXP�witness for x�

Then	 using x as an advice string	 we can guess a NEXP�witness for x which must be the truth table
of a hard Boolean function since	 otherwise	 Easy would have found this witness� If NEXP �
 EXP	
there will be in
nitely many such advice strings x	 and so there will be in
nitely many n such
that we can guess n�input Boolean functions of high circuit complexity� Also note that the advice
strings of size n enable us to guess n�input Boolean functions of hardness greater than nc for any
c � ��
Plugging these hard Boolean functions into the known hardness�randomness tradeo�s implies

that MA is in nondeterministic subexponential time	 for in
nitely many input lengths	 and using
sublinear advice� Our assumption that NEXP � P�poly can then be used to show the existence of

��



some universal constant c� such that every language in MA can be computed by Boolean circuits
of size nc� 	 in
nitely often�
Recall that	 under our assumption that NEXP � P�poly	 we have EXP 
 MA� Thus	 we conclude

that every language in EXP can be computed by circuits of size nc� 	 in
nitely often� But this is
impossible by a simple diagonalization argument�

It follows from �BFT��� that Theorem �� does not relativize�
As noted earlier	 no circuit lower bounds for EXP are known to follow from the assumption

that BPP 
 P� Such an implication would be immediate if we could show that BPEXP �� P�poly	
where BPEXP is the exponential�time version of BPP� Indeed	 assume that BPEXP �� P�poly� If
BPP 
 P	 then BPEXP 
 EXP by padding	 and hence	 by our assumption	 EXP �� P�poly�
On the other hand	 the superpolynomial lower bound for MA�EXP	 the exponential�time version

of MA	 is known �BFT���� Curiously	 both the proof of the lower bound for MA�EXP and the proof
of Theorem �� heavily depend on the same result from �BFL���� EXP � P�poly� EXP 
 MA�

	 Other Results

Using hardness�randomness tradeo�s	 Cai	 Nerurkar	 and Sivakumar �CNS��� prove a tight time�
hierarchy theorem for the class BPQP 
 BPTIME��polylog�n��	 under the assumption that EXP

contains a language of circuit complexity �n
����

or that PERMANENT�� ����BPTIME��
n���

Klivans and van Melkebeek �KM��� prove a hardness�randomness tradeo� for space�bounded
computation� In particular	 they show that BPL 
 L if there is a language in LINSPACE that
requires branching programs of size ���n�� here	 BPL is the class of languages accepted by logspace
randomized Turing machines with bounded two�sided error� This answers a question from �CRT����
Raz and Reingold �RR��� obtain improved derandomization results for certain restricted classes

of space�bounded computation�


 What Next�

An interesting open problem is to extend the uniform hardness�randomness tradeo�	 Theorem �	
to other time bounds� For example	 does the assumption EXP �� ����BPTIME��

n�� imply that	 in
the �uniform setting�	 BPP � DTIME��polylog�n�� in
nitely often! Also	 does Theorem � relativize!
Another problem is to decide if circuit lower bounds for EXP are needed for the derandomization

of BPP or promiseBPP� If true	 can the necessity of such lower bounds be proved without showing
BPEXP �� P�poly along the way!
The main open problem is	 of course	 the old one� prove an unconditional derandomization

result for BPP or ZPP�
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