
Derandomization: A Brief Overview∗

Valentine Kabanets†

School of Computing Science
Simon Fraser University

Vancouver, Canada
kabanets@cs.sfu.ca

September 6, 2003

Abstract

This survey focuses on the recent (1998–2003) developments in the area of derandomization,
with the emphasis on the derandomization of time-bounded randomized complexity classes.

1 Introduction

1.1 History

The last twenty years have witnessed the abundance of efficient randomized algorithms developed
for a variety of problems [MR95]. The class BPP has effectively superseded the class P as the class
of problems that are considered efficiently solvable, while many researchers believe that BPP = P.

There are, essentially, two general arguments to support the belief that BPP is “close” to P. The
first argument is empirical: a large number of randomized algorithms have been implemented and
seem to work just fine, even without access to any source of true randomness. The second argument
is that every language in BPP can be nontrivially derandomized, i.e., decided deterministically in
subexponential time, if certain combinatorial objects of “high” nonuniform complexity can be
“efficiently” uniformly constructed.

1.1.1 Hardness-randomness tradeoffs

The second argument makes use of so-called hardness-randomness tradeoffs, the results showing
that “computational hardness” can be efficiently converted into “computational randomness”.
The possibility of trading hardness for randomness was first suggested in [Sha81, BM84, Yao82].
Yao [Yao82, BH89] demonstrated that a one-way permutation, a permutation which is “easy” to
compute but “hard” to invert on the average, can be used to construct a pseudorandom gen-
erator; later, the assumption has been weakened to say that any one-way function would suf-
fice [Lev87, GKL88, GL89, HILL99]. Informally, a pseudorandom generator is an efficiently com-
putable function mapping “short” input strings to “longer” output strings so that the uniform
distribution on the inputs to the generator induces the distribution on the outputs that “looks”

∗An earlier version of this survey appeared as [Kab02]
†Most of this survey was written while the author was at the University of California, San Diego, supported by

an NSERC postdoctoral fellowship.

1

uniform to any computationally restricted observer. Such a pseudorandom generator can be used
to simulate any BPP algorithm A in deterministic subexponential time as follows: for each input to
the generator, compute the output w of the generator, and compute the decision of the algorithm
A using w as a string of random bits; output the majority decision.

1.1.2 The Nisan-Wigderson generator

Observe that the running time of the deterministic simulation of a given BPP algorithm using a
pseudorandom generator is dominated by the amount of time needed to enumerate all inputs to
the generator. Thus, if the goal is to derandomize BPP, then it makes sense to relax the efficiency
requirements in the definition of a pseudorandom generator by allowing the generator to run in
time exponential in the input size.

Nisan and Wigderson [NW94], based on [Nis91], showed how to make use of this observation by
constructing an exponential-time computable hardness-based generator, the NW generator. This
generator is pseudorandom if the class EXP = DTIME(2poly(n)) contains a language L hard on the
average with respect to “small” Boolean circuits, i.e., no small circuit can correctly decide the
language L on significantly more than a half of all the inputs of any given length.

The conditional derandomization of BPP obtained in [NW94] was an improvement on Yao’s
result, since the existence of a one-way function can be shown to imply the existence of a language
L in EXP such that L cannot be well approximated by any family of small circuits. It was natural,
however, to try to strengthen the Nisan-Wigderson tradeoffs by replacing the assumption of average-
case hardness with that of worst-case hardness.

1.1.3 Worst-case hardness-randomness tradeoffs

The first worst-case hardness-randomness tradeoff was achieved by Babai, Fortnow, Nisan, and
Wigderson [BFNW93]. They showed that if EXP contains a language of superpolynomial circuit
complexity (i.e., EXP �⊂ P/poly), then every BPP algorithm can be simulated deterministically in
subexponential time, for infinitely many input lengths. The main new idea in [BFNW93], inspired
by the results on the random self-reducibility of low-degree polynomials [BF90, Lip91] and the
work on two-prover interactive protocols for NEXP [BFL91], was the use of error-correcting codes
to convert the truth table of a Boolean function hard in the worst case into that of a Boolean
function hard on the average.

The methods of [BFNW93], however, failed to show that the conclusion BPP = P can be
derived from some worst-case hardness assumption; the average-case version of such a tradeoff was
known from [NW94]. The encoding used in [BFNW93], the extension of a Boolean function to a
low-degree multivariate polynomial over a finite field, enabled one to obtain a Boolean function
that is only “mildly” hard on the average from the Boolean function that is “very” hard in the
worst case — or so it seemed at the time. Yao’s XOR Lemma [Yao82, GNW95] could be used to
amplify the average-case hardness of a given Boolean function f by XORing the values f(xi) for
a few independent inputs xi to f . But, to attain the level of average-case hardness sufficient for
concluding BPP = P, one would need to use too many independent bits.

Impagliazzo and Wigderson [IW97], using [Imp95], showed that Yao’s XOR Lemma can be
derandomized in a rather dramatic sense: it remains true even if nO(1) inputs xi to f are constructed
using only O(n) independent bits. Combined with the previous results, this yields the desired “high-
end” worst-case hardness-randomness tradeoff: if E = DTIME(2O(n)) contains a language of circuit
complexity 2Ω(n) almost everywhere, then BPP = P.

2

1.1.4 Hitting-set generators

Independently of [IW97], and using different methods, Andreev, Clementi, and Rolim [ACR97],
based on [ACR98], showed that BPP = P if there is an efficiently enumerable sparse language of
high circuit complexity; here “high” means that the circuit complexity of deciding the language is
close to that of generating the language. Rather than constructing a pseudorandom generator, the
authors of [ACR97] showed that their hardness assumption implies the existence of a hitting-set
generator, the generator whose output distribution “looks” random to any RP algorithm, rather
than BPP algorithm. Somewhat surprisingly, the existence of an efficient hitting-set generator
implies that BPP = P [ACR98] (see also [ACRT99, BF99, GW99, GVW00]).

1.2 Recent developments

From 1998, the research on derandomization can be roughly divided into the following categories:

1. improvements of the hardness-randomness tradeoffs,

2. applications of the hardness-randomness tradeoffs in more general complexity-theoretic and
information-theoretic settings,

3. “uniform” hardness-randomness tradeoffs,

4. limitations of the current derandomization techniques.

These developments will be addressed in the rest of this survey — albeit at a highly intuitive
level. For more information on pseudorandomness and derandomization, the readers are referred
to the excellent presentations by Goldreich [Gol99, Chapter 3] and Miltersen [Mil01].

2 Better Tradeoffs

2.1 Hardness amplification via error-correcting codes

Impagliazzo and Wigderson [IW97] showed how to obtain a Boolean function of high average-case
hardness, starting with a Boolean function of high worst-case hardness. The first step was the
low-degree polynomial encoding of the truth table of a given worst-case hard Boolean function, as
in [BFNW93]. This produced a Boolean function that is “mildly” hard on the average: any small
circuit can compute the new function correctly on at most 1 − 1

poly(n) fraction of all n-bit inputs.
The second step was the amplification of the average-case hardness via the derandomized version
of Yao’s XOR Lemma, so that no small circuit can compute the resulting function on more that
1
2 + 1

2Ω(n) fraction of all n-bit inputs.
Sudan, Trevisan, and Vadhan [STV01] show that the first step alone, with a different choice

of parameters, already gives the desired high average-case hardness, and so no further hardness
amplification is needed. As explained in [STV01], there is an intimate connection between the
“worst-case to average-case” reductions and the task of list-decoding of error-correcting codes,
which will be sketched below.

Given the truth table of an n-variable Boolean function f , of length N = 2n, that has circuit
complexity 2Ω(n), the task of a “worst-case to average-case” reduction is to produce the truth table
of a new Boolean function g on O(n) variables that any circuit of size at most 2Ω(n) can compute on
at most 1

2 + 1
2Ω(n) fraction of all inputs; this reduction must be computable by a uniform algorithm,

which justifies the use of order notation. To argue that g has the required hardness, one needs to

3

show how a small circuit computing g on at least 1
2 + 1

2Ω(n) fraction of inputs gives rise to a small
circuit computing f everywhere, thus contradicting the worst-case hardness of f .

On the other hand, the goal of an error-correcting encoding is to map, via the encoding function
Enc, a given message string m of length N into a codeword string c = Enc(m) of bigger length so
that the original message m can be efficiently recovered, via the decoding function Dec, from any
string r that is sufficiently close to c in the Hamming distance.

To see the connection with the “worst-case to average-case” reduction, we should think of the
message m as the truth table of a Boolean function f , the codeword c = Enc(m) as the truth table
of a new Boolean function f ′, and the string r as the truth table of a Boolean function computed
by some small circuit.

In order to get the desired parameters in the “worst-case to average-case” reduction, we would
need the binary error-correcting codes, given by the encoding and decoding functions Enc and
Dec, with the following properties:

1. |Enc(m)| ∈ poly(|m|),
2. the message m can be recovered from a string r whenever r and c = Enc(m) agree in at least

1
2 + 1

|c|Ω(1) fraction of positions.

However, by the Plotkin bound [Plo60], it is impossible to achieve both these conditions for any
binary code, if one insists that decoding be unique. The solution is to allow the decoding procedure
to return a short list containing all the codewords c that are sufficiently close to the received word
r, i.e., to use list-decodable error-correcting codes (see [Sud00] for a survey on list decoding).

Another important issue is the efficiency of the decoding procedure. In the standard setting, a
decoding procedure is considered efficient if it runs in time polynomial in the length of the received
string. This is not good enough in our case. We need the decoding procedure to compute each
individual bit in the recovered codeword c in sublinear (even polylogarithmic) time in order to claim
the existence of a small circuit for the Boolean function whose truth table is c. So, for our purposes,
an efficient decoding procedure is the one that, given oracle access to the received string r, outputs
a short list of small oracle circuits such that every codeword close to r will be computed by some
circuit on the list, given oracle access to r; here, oracle access to r means that each individual bit
of r can be looked up in constant time.

Amazingly, the binary codes satisfying the requirements stated above do exist, and can be
constructed using low-degree multivariate polynomials. The existence of an efficient list-decoding
algorithm for these codes follows from the work of Arora and Sudan [AS97], using [Sud97]; a simpler
algorithm with improved parameters is given in [STV01]. The nice properties of these list-decoding
algorithms are based, in particular, on the existence of efficient algorithms for interpolating and
factoring polynomials.

2.2 Achieving optimal hardness-randomness tradeoffs

To discuss what it means to have an optimal hardness-randomness tradeoff, we need to recall some
definitions. Below, by a function, we will actually mean a family of functions, parameterized by
the input size. Assuming that a circuit need not use all of its inputs, we may talk about circuits of
size n on n inputs.

A function G : {0, 1}n → {0, 1}m, where m = m(n) is some function of n, is called a pseudo-
random generator (PRG) if, for any Boolean circuit C of size m on m inputs,

|Prx[C(x) = 1] − Pry[C(G(y)) = 1]| <
1
m

,

4

where x and y are chosen uniformly at random from {0, 1}m and {0, 1}n, respectively. The PRG
G is said to produce m bits of pseudorandomness using a seed of size n. The PRG computable in
time 2O(n) is called quick.

A Boolean function f : {0, 1}n → {0, 1} has hardness s, where s = s(n) is some function of n,
if the size of the smallest Boolean circuit computing f is at least s.

The following observation has appeared in several papers (e.g., [ISW99]).

Theorem 1. If there is a quick PRG G : {0, 1}n → {0, 1}m, then there is a 2O(n)-time computable
Boolean function f : {0, 1}n+1 → {0, 1} of hardness m.

Proof. Consider the Boolean function f defined as follows: for every x ∈ {0, 1}n+1,

f(x) = 0 ⇔ x ∈ {G(y)1..n+1 | y ∈ {0, 1}n},
where G(y)1..k denotes the k-length prefix of the string G(y).

It is easy to see that f is 2O(n)-time computable. Also note that p = Prx[f(x) = 1] � 1
2 , since

f(x) = 0 for at most 2n outputs of the generator.
Suppose that the function f is computable by a Boolean circuit of size at most m. Then the

PRG G can be used to approximate the value p, to within 1/m. However, f is defined so that
Pry[f(G(y)) = 1] = 0 < p − 1/m, for any m > 2. Thus, f must have hardness at least m.

Theorem 1 essentially says that m bits of pseudorandomness, using a seed of size n, yield a O(n)-
input Boolean function with hardness m. The tradeoffs of [BFNW93, IW97] prove the converse
to Theorem 1 for the specific values of the parameter s(n), the hardness of an n-input Boolean
function. In particular, [IW97] proves that hardness s(n) = 2Ω(n) yields m = (s(log n))Ω(1) = nΩ(1)

bits of pseudorandomness via a PRG from log n to m bits.
In general, the results showing that a 2O(n)-time computable n-input Boolean function with

hardness s = s(n) yields m = sΩ(1) bits of pseudorandomness via a quick PRG from O(n) to m
bits are considered optimal hardness-randomness tradeoffs, up to a polynomial. Almost optimal
tradeoffs were established in [ISW99, ISW00]; they were based upon a recursive use of the NW
generator.

Building upon the techniques from [STV01, MV99, TSZS01], Shaltiel and Umans [SU01] prove
an optimal hardness-randomness tradeoff for hitting-set generators, rather than PRGs. Combined
with the methods from [ACR98, GVW00], this implies the following optimal derandomization of
BPP, assuming the existence of hard functions.

Theorem 2 ([SU01]). If there is a 2O(n)-time computable Boolean function f : {0, 1}n → {0, 1}
of hardness s = s(n), then BPTIME(t) ⊆ DTIME(2O(s−1(tO(1)))), where t = t(n) is a function of n.

An interesting aspect of the methods in [SU01] is that they show how to convert worst-case
hardness into pseudorandomness without applying the NW generator; the previous constructions
of PRGs relied upon the NW generator as a method to convert average-case hardness into pseudo-
randomness.

The techniques in [SU01] make essential use of the error-correcting properties of polynomial
codes and the algebraic structure of vector spaces over finite fields. Extending these techniques,
Umans [Uma02] obtains the following optimal hardness-randomness tradeoff for PRGs, which also
implies Theorem 2.

Theorem 3 ([Uma02]). If there is a 2O(n)-time computable n-input Boolean function of hardness
s = s(n), then there is a quick PRG from O(n) to sΩ(1) bits.

5

3 Diverse Applications of the Hardness-Randomness Tradeoffs

3.1 Beyond BPP

Originally, the hardness-randomness tradeoffs were motivated by the task of derandomizing such
probabilistic complexity classes as BPP and RP. Following Yao [Yao82], the goal was to construct
a suitable pseudorandom generator that can be used to approximate the acceptance probability of
any given small Boolean circuit. But, the existence of such pseudorandom generators would imply
much more than the derandomization of BPP.

As shown by Goldreich and Zuckerman [GZ97], one fairly straightforward implication is the
derandomization of the class MA defined by Babai [Bab85, BM88]. Recall that a language L ∈ MA
if there is a polynomial-time computable relation RL such that, for any string x,

x ∈ L ⇒ ∃y : Prz[RL(x, y, z) = 1] > 3/4,
x �∈ L ⇒ ∀y : Prz[RL(x, y, z) = 1] < 1/4,

where |y| = |z| = |x|O(1).
Since RL is polynomial-time computable, it is also computable by a family of polynomial-sized

Boolean circuits. The existence of a quick PRG, say from O(log n) to n bits, would allow us
to estimate the probability Prz[RL(x, y, z) = 1] deterministically in polynomial time, and hence
imply that MA ⊆ NP. Thus, the known hardness-randomness tradeoffs show that the existence of
a language in E of high circuit complexity implies the derandomization of MA.

The situation with the class AM [Bab85, BM88], which contains MA, is trickier. By definition,
a language L ∈ AM if there is a polynomial-time computable relation RL such that, for every string
x,

x ∈ L ⇒ Prz[∃y : RL(x, y, z) = 1] > 3/4,
x �∈ L ⇒ Prz[∃y : RL(x, y, z) = 1] < 1/4,

where |y| = |z| = |x|O(1).
To derandomize AM, we would need to estimate the acceptance probability of a nondeterministic

Boolean circuit deciding, for given x and z, whether there is a y such that RL(x, y, z) = 1. Thus,
the existence of a PRG does not seem to suffice.

Klivans and van Melkebeek [KM99] point out that the Boolean function f(x, z) = 1 ⇔ ∃y :
RL(x, y, z) = 1 is in PNP, and thus is computable by a family of polynomial-sized Boolean circuits
with oracle access to SAT. So, the existence of a PRG that estimates the acceptance probability of
any small SAT-oracle Boolean circuit would imply the derandomization of AM.

The crucial observation in [KM99] is that all known hardness-randomness tradeoffs relativize.
In particular, for any oracle A, the truth table of a Boolean function of high A-oracle circuit
complexity gives rise to a PRG whose output distribution “looks random” to any small Boolean
circuit with A-oracle gates. The relativized hardness-randomness tradeoffs yield, e.g., the following
result; recall that NE = NTIME(2O(n)).

Theorem 4 ([KM99]). If NE ∩ coNE contains a language of SAT-oracle circuit complexity 2Ω(n)

almost everywhere, then AM = NP.

Miltersen and Vinodchandran [MV99] improve upon Theorem 4 by replacing the assumption
of high SAT-oracle circuit complexity with that of high nondeterministic circuit complexity; the
average-case version of such a tradeoff was proved earlier in [AK97]. The methods in [MV99]

6

build upon those from [ACR98, ACR97] for constructing hitting-set generators; an important new
ingredient in [MV99] is the use of certain polynomial error-correcting codes. Further improvements
are obtained in [SU01, Uma02].

Klivans and van Melkebeek [KM99] apply the relativized hardness-randomness tradeoffs to
get conditional derandomization of a number of probabilistic constructions. In particular, they
derandomize the Valiant-Vazirani random hashing algorithm [VV86].

Theorem 5 ([KM99]). If E contains a language of SAT-oracle circuit complexity 2Ω(n) almost
everywhere, then the following task can be performed deterministically in polynomial time: given a
propositional formula φ, generate a list of propositional formulas such that

• if φ is unsatisfiable, then so is every formula on the list, and

• if φ is satisfiable, then at least one of the formulas on the list has exactly one satisfying
assignment.

The proof is based on the fact that there is a PNP algorithm for checking if a given propositional
formula has exactly one satisfying assignment. Hence, it suffices to build a PRG whose output
distribution “looks random” to any polynomial-size SAT-oracle circuit.

3.2 Beyond computational complexity

Viewed abstractly, a hardness-randomness tradeoff is an efficient transformation of a binary string
x, the truth table of a Boolean function on log |x| inputs, to the distribution Dx on binary strings
y, where y’s are the outputs of the PRG based on x, such that the following holds: any statistical
test T (y) distinguishing the distribution Dx from the uniform distribution can be used, together
with some “short” advice string a dependent on x, as a description of the string x.

In the applications of hardness-randomness tradeoffs to derandomizing BPP or AM, the statis-
tical tests T (y) are Boolean functions computable by small circuits or SAT-oracle circuits. The
idea is that if the acceptance probability of a circuit C is not approximated correctly by the given
PRG based on a Boolean function f , then C can be used to construct a “small” circuit computing
f ; this leads to a contradiction if f is of high circuit complexity.

Trevisan [Tre99] demonstrated the usefulness of hardness-randomness tradeoffs in the information-
theoretic setting, where the statistical test T (y) can be an arbitrary Boolean function, not neces-
sarily computable by a small circuit. The reasoning is, roughly, as follows.

Let S ⊆ {0, 1}n be any set. Let T0 : {0, 1}k → {0, 1} be an arbitrary Boolean function, possibly
dependent on S. Define S0 ⊆ S to be the subset of all those strings x0 such that T0 distinguishes
the distribution Dx0 from uniform, where Dx is a distribution on k-bit strings. Then every string
x0 ∈ S0 is uniquely determined by T0 together with some short advice string a (dependent on x0),
where |a| n. Since there are few short strings, the set S0 must be small.

Now, consider the distribution ES on k-bit strings defined as follows. Choose x ∈ S uniformly
at random, and output a string y sampled according to the distribution Dx. The distribution ES

must be statistically close to uniform.
Indeed, suppose that ES is far from uniform. Then there is a statistical test T0 : {0, 1}k → {0, 1}

distinguishing this distribution from uniform. By a Markov-style argument, there must be a large
subset S0 ⊆ S such that, for every x ∈ S0, the test T0 distinguishes Dx from uniform. But this is
impossible since, by the discussion given above, S0 should be small.

This reasoning led Trevisan [Tre99] to a breakthrough in the construction of extractors, effi-
ciently computable functions E(x, s) that can be used to convert a source of “weak” randomness

7

into a source of statistically “almost” uniform randomness, using a short truly random seed. The
distribution ES described above is an example of an extractor, where the set S is used as a source
of weak randomness and the additional truly random short seed s is used to sample from Dx.

The connection between PRGs and extractors, discovered in [Tre99], has played an important
role in many recent results on extractors; see [Sha02] for a survey.

3.3 Back to computational complexity

Trevisan [Tre99] showed that the proof technique originally used for constructing PRGs can also
be very useful in constructing extractors. The correctness proof of such extractor constructions
relies upon a “decoding” procedure for strings x sampled from a source of weak randomness. Let
Ex be the distribution induced by an extractor E(x, s) when x is fixed. Then, given a statistical
test distinguishing the distribution Ex from uniform and a short advice string a, this “decoding”
procedure must uniquely determine the string x.

The natural question is whether such an extractor construction should yield a PRG construction.
After all, the correctness proofs in both cases rely upon certain “decoding” procedures. The
important difference, however, is the efficiency requirement: the efficiency of “decoding” is not
important in the setting of extractors, but it is crucial in the setting of PRGs.

Nonetheless, the connection between PRGs and extractors has been exploited in the opposite
direction! Shaltiel and Umans [SU01, Uma02] start with the extractor proposed by Ta-Shma,
Zuckerman, and Safra [TSZS01] and, employing a lot of new ideas, show how to turn it into a PRG.
Moreover, the resulting PRG gives an optimal hardness-randomness tradeoff (see Section 2.2).

4 Towards Uniform Hardness-Randomness Tradeoffs

4.1 Derandomizing BPP

The hardness-randomness tradeoffs considered so far show that a language in EXP of high nonuni-
form (i.e., circuit) complexity yields a quick generator that is pseudorandom with respect to any
nonuniform family of small circuits. That is, a nonuniform hardness assumption yields a PRG for
nonuniform algorithms.

Intuitively, it is reasonable to conjecture that a uniform hardness assumption should yield a
PRG for uniform algorithms. In particular, one might conjecture that EXP �⊆ P should yield a
PRG for any P-uniform family of polynomial-size Boolean circuits. Unfortunately, the existence of
such a PRG has not been proved yet.

However, Impagliazzo and Wigderson [IW98] prove the following version of a uniform hardness-
randomness tradeoff.

Theorem 6 ([IW98]). If EXP �⊆ BPP, then, for every ε > 0, there is a quick generator G :
{0, 1}nε → {0, 1}n that is pseudorandom with respect to any P-sampleable family of n-size Boolean
circuits infinitely often.

The phrase “G is pseudorandom with respect to any P-sampleable family of circuits infinitely
often” means the following. Let BG(n) be the set of all Boolean circuits C of size n that are “bad”
for the generator G, i.e., C ∈ BG(n) iff

|Prx[C(x) = 1] − Pry[C(G(y)) = 1]| � 1
n

.

8

Let R be any probabilistic polynomial-time algorithm that, on input 1n, outputs a Boolean circuit
of size n. Then there are infinitely many n such that

Pr[R(1n) ∈ BG(n)] <
1
n

,

where the probability is over the internal coin tosses of R.

Proof Sketch of Theorem 6. If EXP �⊂ P/poly, then Theorem 6 follows by the standard (nonuni-
form) hardness-randomness tradeoff from [BFNW93]. On the other hand, if EXP ⊂ P/poly, then
EXP collapses to Σp

2 [KL82], and since Σp
2 ⊆ P#P [Tod91], we conclude that #P-complete languages

are also complete for EXP. Thus, it suffices to consider a generator based on PERMANENT [Val79].
Inspecting the correctness proof of the hardness-randomness tradeoff in [BFNW93] reveals

the following. If the PERMANENT-based generator can be broken by a BPP algorithm, then
a polynomial-size circuit computing PERMANENTn (on n-bit inputs) can be learned in prob-
abilistic polynomial time, given oracle access to PERMANENTn; the existence of this learning
algorithm depends on the random self-reducibility of PERMANENT.

The fact that PERMANENT is also downward self-reducible can then be exploited to remove the
need for an oracle. Namely, to construct a circuit Cn computing PERMANENTn, we first construct
small circuits C1, . . . , Cn−1 computing PERMANENT1, . . . , PERMANENTn−1, respectively. Then
we run the probabilistic learning algorithm to construct Cn, using the previously constructed circuit
Cn−1 to answer any oracle queries about PERMANENTn. This shows that PERMANENT is in
BPP, and hence, EXP = BPP.

An immediate corollary of Theorem 6 is the “uniform” derandomization of BPP under the
assumption that EXP �= BPP.

Theorem 7 ([IW98]). If EXP �= BPP, then, for any ε > 0, every BPP algorithm can be simulated
deterministically in time 2nε

so that, for infinitely many n, this simulation is correct on at least
1 − 1

n fraction of all inputs of size n.

Unlike the proofs of standard (nonuniform) hardness-randomness tradeoffs, the proof of Theo-
rem 6 relies upon nonrelativizing techniques; in particular, the proof uses the nonrelativizing result
from [KL82] saying that EXP ⊂ P/poly ⇒ EXP = Σp

2. It is not known, however, whether Theorem 6
itself relativizes.

Trevisan and Vadhan [TV02] give a different proof of Theorem 6; their proof does not rely
upon the theorems of Toda [Tod91] and Valiant [Val79], but rather is based on the ideas from the
proof of IP = PSPACE [LFKN92, Sha92]. Another result in [TV02] is an optimal “worst-case to
average-case” reduction for EXP in the uniform setting, with the parameters matching those in the
nonuniform setting [STV01].

4.2 Derandomizing RP

It is possible to prove a version of Theorem 6 using the weaker assumption EXP �= ZPP. We need
to modify our setting.

For a generator H : {0, 1}k → {0, 1}n, let BH(n) be the set of all circuits C of size n such that
Prx[C(x) = 1] � 1/2 but Pry[C(H(y)) = 1] = 0; that is, the circuits in BH(n) show that H is not
a hitting-set generator.

9

The generator H is called a hitting-set generator with respect to any P-sampleable family of
n-size Boolean circuits infinitely often if the following holds. For any probabilistic polynomial-time
algorithm R, where R(1n) outputs a Boolean circuit C of size n, there are infinitely many n where

Pr[R(1n) ∈ BH(n)] < 1.

Theorem 8 ([Kab01]). If EXP �⊆ ZPP, then, for every ε > 0, there is a quick generator H :
{0, 1}nε → {0, 1}n that is a hitting-set generator with respect to any P-sampleable family of n-size
Boolean circuits infinitely often.

The proof of Theorem 8 uses the “easy witness” generator Easy : {0, 1}k → {0, 1}n defined
as follows. For any y ∈ {0, 1}k , Easy(y) = t where t is the truth table of a log n-input Boolean
function computed by the Boolean circuit described by the string y.

Proof Sketch of Theorem 8. The main idea is that if Easy : {0, 1}nε → {0, 1}n can be uniformly
broken for some ε > 0, then BPP = ZPP.

Indeed, suppose that the generator Easy is not a hitting-set generator with respect to some P-
sampleable family of n-size Boolean circuits, almost everywhere. This means that, for all sufficiently
large n, we can efficiently generate some Boolean circuit C of size n such that (i) C accepts at
least 1/2 of all n-bit strings and (ii) every n-bit string accepted by C has circuit complexity greater
than nε. Consequently, we can probabilistically guess, with zero error, a hard string and convert it
into pseudorandomness via the known hardness-randomness tradeoffs. The conclusion BPP ⊆ ZPP
follows.

Thus, if the generator Easy does not work, then BPP = ZPP. On the other hand, if the
conclusion of Theorem 8 is false, then so is the conclusion of theorem 6, and hence EXP = BPP.

A corollary of Theorem 8 is the following unconditional result about the “easiness” of RP in a
certain uniform setting.

Theorem 9 ([Kab01]). At least one of the following holds.

1. RP ⊆ ZPP.

2. For any ε > 0, every RP algorithm can be simulated in deterministic time 2nε
so that, for any

polynomial-time computable function f : {1}n → {0, 1}n, there are infinitely many n where
this simulation is correct on the input f(1n).

4.3 Derandomizing AM

Lu [Lu00] considers the modified generator EasySAT : {0, 1}k → {0, 1}n that, on input y, outputs
the truth table of the Boolean function computable by a SAT-oracle circuit whose description is
y. If this modified generator can be uniformly broken almost everywhere, then we can guess, with
zero error, a Boolean function of high SAT-oracle circuit complexity. Plugging this function into
the known hardness-randomness tradeoffs, we can derandomize AM (see Theorem 4).

Using EasySAT to search for NP-witnesses, i.e., checking if any output of EasySAT is a satisfying
assignment for a given propositional formula, Lu obtains the following.

Theorem 10 ([Lu00]). At least one of the following holds.

1. AM ⊆ NP.

10

2. For any ε > 0, every NP (and every coNP) algorithm can be simulated in deterministic
time 2nε

so that, for any polynomial-time computable function f : {1}n → {0, 1}n, there are
infinitely many n where this simulation is correct on the input f(1n).

Since the Graph Nonisomorphism Problem (GNI) belongs to both AM [GMW91, GS89, BM88]
and coNP, Theorem 10 implies that either GNI is in NP or GNI can be simulated in deterministic
subexponential time so that this simulation appears correct with respect to any deterministic
polynomial-time computable function f : {1}n → {0, 1}n.

More recently, Gutfreund, Shaltiel, and Ta-Shma [GSTS03] proved a version of Theorems 6 and
8 for the class AM.

Theorem 11 ([GSTS03]). If E �⊆ AM-TIME(2εn) for some ε > 0, then every language L ∈ AM has
an NP algorithm A such that, for every polynomial-time computable function f : {1}n → {0, 1}n,
there are infinitely many n where the algorithm A correctly decides L on the input f(1n).

Like Theorems 6 and 8, Theorem 11 can be interpreted as a “gap” theorem. Informally, it says
that either AM is almost as powerful as E, or AM is no more powerful than NP from the point of
view of any efficient observer.

The proof of Theorem 11 relies on certain special properties of a hitting-set generator for AM
constructed in [MV99]. This generator allows one to obtain only a “high-end” tradeoff: if E requires
exponential time to be decided by an AM protocol, then AM is “close” to NP. It is an interesting
open question whether a “low-end” tradeoff for AM is also true: if EXP �⊆ AM, then AM can
be simulated in nondeterministic subexponential time so that the simulation looks correct to any
efficient observer, infinitely often.

5 Hitting the Wall?

5.1 Circuit lower bounds from the derandomization of MA

Hardness-randomness tradeoffs have been hailed as a step forward in the quest to prove that
BPP = P: once superpolynomial circuit lower bounds are proved for some language in EXP, the
derandomization of BPP will follow. However, proving superpolynomial circuit lower bounds is a
daunting task that has withstood the efforts of many researchers over many years. If circuit lower
bounds are indeed necessary to derandomize BPP, then no such derandomization results are likely
to appear any time soon.

But, perhaps, BPP can be derandomized even in the absence of superpolynomial circuit lower
bounds. While the existence of a quick PRG would imply a superpolynomial circuit lower bound
for EXP (see Theorem 1), no such lower bound is known to be implied by the assumption BPP = P,
or even by the stronger assumption that the acceptance probability of a given Boolean circuit can
be approximated in deterministic polynomial time (see also [KRC00, For01] for further discussion).

However, Impagliazzo, Kabanets, and Wigderson [IKW02] show that the existence of a non-
deterministic subexponential-time algorithm for approximating the circuit acceptance probability
would imply a superpolynomial circuit lower bound for NEXP = NTIME(2poly(n)). In fact, they
prove an even stronger result saying that it is impossible to separate NEXP and MA without prov-
ing that NEXP �⊂ P/poly.

Theorem 12 ([IKW02]). If NEXP ⊂ P/poly, then NEXP = MA.

11

Proof Sketch. Since EXP ⊂ P/poly implies EXP = MA [BFL91], it will be sufficient to prove that
NEXP ⊂ P/poly implies NEXP = EXP.

We use the “easy witness” generator Easy : {0, 1}poly(n) → {0, 1}2n
, defined in Section 4.2, to

search for NEXP-witnesses. If this generator succeeds for all NEXP languages, then NEXP = EXP,
and we are done. The rest of the proof argues that Easy must succeed.

Suppose otherwise. Then there is a NEXP Turing machine M for which Easy fails. Using M ,
we can nondeterministically guess n-input Boolean functions of circuit complexity greater than nc,
for any c > 0.

Indeed, let x ∈ {0, 1}n be such that x ∈ L(M) but Easy failed to find any NEXP-witness for x.
Then, using x as an advice string, we can guess a NEXP-witness for x which must be the truth table
of a hard Boolean function since, otherwise, Easy would have found this witness. If NEXP �= EXP,
there will be infinitely many such advice strings x, and so there will be infinitely many n such
that we can guess n-input Boolean functions of high circuit complexity. Also note that the advice
strings of size n enable us to guess n-input Boolean functions of hardness greater than nc for any
c > 0.

Plugging these hard Boolean functions into the known hardness-randomness tradeoffs implies
that MA is in nondeterministic subexponential time, for infinitely many input lengths, and using
sublinear advice. Our assumption that NEXP ⊂ P/poly can then be used to show the existence of
some universal constant c0 such that every language in MA can be computed by Boolean circuits
of size nc0, infinitely often.

Recall that, under our assumption that NEXP ⊂ P/poly, we have EXP = MA. Thus, we conclude
that every language in EXP can be computed by circuits of size nc0, infinitely often. But this is
impossible by a simple diagonalization argument.

It follows from [BFT98] that Theorem 12 does not relativize.

5.2 Circuit lower bounds from the derandomization of BPP

As noted earlier, no Boolean circuit lower bounds for EXP, or even for NEXP, are known to fol-
low from the assumption that BPP = P. However, as recently shown by Impagliazzo and Ka-
banets [KI03], BPP = P implies either Boolean circuit lower bounds for NEXP or algebraic circuit
lower bounds for the Permanent function. Recall that the permanent of an n × n integer matrix
A = (ai,j) is

∑
σ

∏n
i=1 ai,σ(i), where the summation is over all permutations σ of {1, . . . , n}.

The main result in [KI03] actually shows that derandomizing a specific BPP problem, Polynomial
Identity Testing, is essentially equivalent to proving circuit lower bounds for NEXP.

Theorem 13 ([KI03]). If one can test in polynomial time (or, even, nondeterministic subexponen-
tial time, infinitely often) whether a given arithmetic circuit over integers computes an identically
zero polynomial, then either

1. NEXP �⊂ P/poly, or

2. Permanent is not computable by polynomial-size arithmetic circuits.

Proof Sketch. Our proof is by contradiction. The main observation is that the Permanent of an
n × n matrix A is downward self-reducible via the expansion by minors formula:

perm(A) =
n∑

j=1

a1,j ∗ perm(A|j), (1)

12

where A|j denotes the submatrix of A obtained by removing the first row and the jth column.
Viewing A as a matrix of integer variables, equality (1) is just a polynomial identity. By our
assumption, we can test polynomial identities in polynomial time.

Now suppose that C is an arithmetic circuit that purports to compute the permanent of n× n
integer matrices. Then by testing whether C satisfies n identities of type (1) (one for each matrix
size from 1 to n), we can test if C is indeed a correct circuit. Assuming that Permanent is
computable by polynomial-size arithmetic circuits implies that Permanent is in NP: we can guess
a small arithmetic circuit, and then verify the correctness of our guess (by testing a small number
of polynomial identities).

To conclude the proof, note that, by Theorem 12, if NEXP ⊂ P/poly, then NEXP = MA. The
class MA is contained in the second level of the polynomial-time hierarchy, and hence, by the results
of Toda [Tod91] and Valiant [Val79], it can be simulated in PPermanent. But, as we just observed, if
Permanent is computable by polynomial-size arithmetic circuits, then Permanent is in NP, and so,
we get NEXP = MA = NP, which is impossible by diagonalization.

The following is a partial converse of Theorem 13.

Theorem 14 ([KI03]). If Permanent cannot be computed by polynomial-size arithmetic circuits,
then one can test in subexponential time, infinitely often, whether a given arithmetic formula com-
putes an identically zero polynomial.

6 Other Results

Using hardness-randomness tradeoffs, Cai, Nerurkar, and Sivakumar [CNS99] prove a tight time-
hierarchy theorem for the class BPQP = BPTIME(2polylog(n)), under the assumption that EXP

contains a language of circuit complexity 2nΩ(1)
or that PERMANENT �∈ ∩ε>0BPTIME(2nε

).
Klivans and van Melkebeek [KM99] prove a hardness-randomness tradeoff for space-bounded

computation. In particular, they show that BPL = L if there is a language in LINSPACE that
requires branching programs of size 2Ω(n); here, BPL is the class of languages accepted by logspace
randomized Turing machines with bounded two-sided error. This answers a question from [CRT98].

Raz and Reingold [RR99] obtain improved derandomization results for certain restricted classes
of space-bounded computation.

7 What Next?

An interesting open problem is to extend the uniform hardness-randomness tradeoff, Theorem 6,
to other time bounds. For example, does the assumption EXP �⊆ ∩ε>0BPTIME(2nε

) imply that, in
the “uniform setting”, BPP ⊆ DTIME(2polylog(n)) infinitely often? Also, does Theorem 6 relativize?

Another problem is to decide if circuit lower bounds for EXP (rather than NEXP) are needed
for the derandomization of BPP or promiseBPP. It is still an open question whether any Boolean
circuit lower bounds for NEXP are implied by the assumption BPP = P.

The main open problem is, of course, the old one: prove an unconditional derandomization
result for BPP or ZPP. In view of the results in Section 5, derandomizing the class BPP is quite
hard. Potentially, it may be easier to derandomize ZPP, as there are no known circuit lower bounds
implied by the assumption that ZPP = P.

13

Acknowledgments I want to thank Lance Fortnow, Oded Goldreich, Russell Impagliazzo, Dieter
van Melkebeek, Chris Umans, Salil Vadhan, and Avi Wigderson for a number of helpful comments
and suggestions that significantly improved the quality of this presentation.

References

[ACR97] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. Worst-case hardness suffices for de-
randomization: A new method for hardness vs. randomness trade-offs. In Proceedings of
the Twenty-Fourth International Colloquium on Automata, Languages, and Program-
ming, pages 177–187, 1997.

[ACR98] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general derandomization
method. Journal of the Association for Computing Machinery, 45(1):179–213, 1998.
(preliminary version in ICALP’96).

[ACRT99] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim, and L. Trevisan. Weak random sources,
hitting sets, and BPP simulations. SIAM Journal on Computing, 28(6):2103–2116,
1999. (preliminary version in FOCS’97).

[AK97] V. Arvind and J. Köbler. On pseudorandomness and resource-bounded measure. In
Proceedings of the Seventeenth Conference on the Foundations of Software Technology
and Theoretical Computer Science, volume 1346 of Lecture Notes in Computer Science,
pages 235–249. Springer Verlag, 1997.

[AS97] S. Arora and M. Sudan. Improved low-degree testing and its applications. In Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 485–495,
1997.

[Bab85] L. Babai. Trading group theory for randomness. In Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, pages 421–429, 1985.

[BF90] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Proceedings
of the Seventh Annual Symposium on Theoretical Aspects of Computer Science, volume
415 of Lecture Notes in Computer Science, pages 37–48, Berlin, 1990. Springer Verlag.

[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic com-
putation. In C. Meinel and S. Tison, editors, Proceedings of the Sixteenth Annual
Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes
in Computer Science, pages 100–109. Springer Verlag, 1999.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Complexity, 3:307–318, 1993.

[BFT98] H. Buhrman, L. Fortnow, and L. Thierauf. Nonrelativizing separations. In Proceedings
of the Thirteenth Annual IEEE Conference on Computational Complexity, pages 8–12,
1998.

14

[BH89] R. Boppana and R. Hirschfeld. Pseudo-random generators and complexity classes. In
S. Micali, editor, Randomness and Computation, volume 5 of Advances in Computing
Research, pages 1–26. JAI Press, Greenwich, CT, 1989.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13:850–864, 1984.

[BM88] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36:254–
276, 1988.

[CNS99] J.-Y. Cai, A. Nerurkar, and D. Sivakumar. Hardness and hierarchy theorems for prob-
abilistic quasi-polynomial time. In Proceedings of the Thirty-First Annual ACM Sym-
posium on Theory of Computing, pages 726–735, 1999.

[CRT98] A.E.F. Clementi, J.D.P. Rolim, and L. Trevisan. Recent advances towards proving
P=BPP. Bulletin of the European Association for Theoretical Computer Science,
(64):96–103, February 1998.

[For01] L. Fortnow. Comparing notions of full derandomization. In Proceedings of the Sixteenth
Annual IEEE Conference on Computational Complexity, pages 28–34, 2001.

[GKL88] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudo-random genera-
tors. In Proceedings of the Twenty-Ninth Annual IEEE Symposium on Foundations of
Computer Science, pages 12–24, 1988.

[GL89] O. Goldreich and L.A. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
pages 25–32, 1989.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the Association
for Computing Machinery, 38:691–729, 1991.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma. Electronic Collo-
quium on Computational Complexity, TR95-050, 1995.

[Gol99] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness, vol-
ume 17 of Algorithms and Combinatorics series. Springer Verlag, 1999.

[GS89] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof
systems. In S. Micali, editor, Advances in Computing Research, volume 5, pages 73–90.
JAI Press, 1989.

[GSTS03] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. Uniform hardness vs. randomness tradeoffs
for Arthur-Merlin games. In Proceedings of the Eighteenth Annual IEEE Conference
on Computational Complexity, pages 28–42, 2003.

[GVW00] O. Goldreich, S. Vadhan, and A. Wigderson. Simplified derandomization of BPP using a
hitting set generator. Electronic Colloquium on Computational Complexity, TR00-004,
2000.

15

[GW99] O. Goldreich and A. Wigderson. Improved derandomization of BPP using a hitting set
generator. In D. Hochbaum, K. Jansen, J.D.P. Rolim, and A. Sinclair, editors, Random-
ization, Approximation, and Combinatorial Optimization, volume 1671 of Lecture Notes
in Computer Science, pages 131–137. Springer Verlag, 1999. (RANDOM-APPROX’99).

[GZ97] O. Goldreich and D. Zuckerman. Another proof that BPP⊆PH (and more). Electronic
Colloquium on Computational Complexity, TR97-045, 1997.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28:1364–1396, 1999.

[IKW02] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Ex-
ponential time vs. probabilistic polynomial time. Journal of Computer and System
Sciences, 65(4):672–694, 2002. (preliminary version in CCC’01).

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of
the Thirty-Sixth Annual IEEE Symposium on Foundations of Computer Science, pages
538–545, 1995.

[ISW99] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness
into pseudo-randomness. In Proceedings of the Fortieth Annual IEEE Symposium on
Foundations of Computer Science, pages 181–190, 1999.

[ISW00] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudorandom gen-
erators with optimal seed length. In Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, pages 1–10, 2000.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing, pages 220–229, 1997.

[IW98] R. Impagliazzo and A. Wigderson. Randomness vs. time: De-randomization under a
uniform assumption. In Proceedings of the Thirty-Ninth Annual IEEE Symposium on
Foundations of Computer Science, pages 734–743, 1998.

[Kab01] V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error.
Journal of Computer and System Sciences, 63(2):236–252, 2001. (preliminary version
in CCC’00).

[Kab02] V. Kabanets. Derandomization: A brief overview. Bulletin of the European Association
for Theoretical Computer Science, 76:88–103, 2002. (also available as ECCC TR02-008).

[KI03] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means prov-
ing circuit lower bounds. In Proceedings of the Thirty-Fifth Annual ACM Symposium
on Theory of Computing, pages 355–364, 2003.

[KL82] R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28(3-4):191–209, 1982. (preliminary version in STOC’80).

[KM99] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial hierarchy collapses. In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing, pages 659–667, 1999.

16

[KRC00] V. Kabanets, C. Rackoff, and S. Cook. Efficiently approximable real-valued functions.
Electronic Colloquium on Computational Complexity, TR00-034, 2000.

[Lev87] L.A. Levin. One-way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the Association for Computing Machinery, 39(4):859–868, 1992.

[Lip91] R. Lipton. New directions in testing. In J. Feigenbaum and M. Merrit, editors,
Distributed Computing and Cryptography, pages 191–202. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Volume 2, AMS, 1991.

[Lu00] C.-J. Lu. Derandomizing Arthur-Merlin games under uniform assumptions. In Proceed-
ings of the Eleventh Annual International Symposium on Algorithms and Computation
(ISAAC’00), 2000.

[Mil01] P.B. Miltersen. Derandomizing complexity classes. In S. Rajasekaran P. Pardalos,
J. Reif, and J. Rolim, editors, Handbook of Randomized Computing, volume II. Kluwer
Academic Publishers, 2001. (a draft is available at www.brics.dk/∼bromille).

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
New York, 1995.

[MV99] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-Merlin games using
hitting sets. In Proceedings of the Fortieth Annual IEEE Symposium on Foundations
of Computer Science, pages 71–80, 1999.

[Nis91] N. Nisan. Pseudo random bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49:149–167, 1994.

[Plo60] M. Plotkin. Binary codes with specified minimum distance. IRE Transactions on
Information Theory, 6:445–450, 1960.

[RR99] R. Raz and O. Reingold. On recycling the randomness of states in space bounded
computation. In Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, pages 168–178, 1999.

[Sha81] A. Shamir. On the generation of cryptographically strong pseudo-random sequences. In
Proceedings of the Eighth International Colloquium on Automata, Languages, and Pro-
gramming, volume 62 of Lecture Notes in Computer Science, pages 544–550. Springer
Verlag, 1981.

[Sha92] A. Shamir. IP=PSPACE. Journal of the Association for Computing Machinery,
39(4):869–877, 1992.

[Sha02] R. Shaltiel. Recent develpments in extractors. Bulletin of the European Association for
Theoretical Computer Science, 77:67–95, 2002.

17

[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001. (preliminary
version in STOC’99).

[SU01] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-
random generator. In Proceedings of the Forty-Second Annual IEEE Symposium on
Foundations of Computer Science, pages 648–657, 2001.

[Sud97] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. Journal
of Complexity, 13(1):180–193, 1997.

[Sud00] M. Sudan. List decoding: Algorithms and applications. In J. van Leeuwen, O. Watan-
abe, M. Hagiya, P.D. Mosses, and T. Ito, editors, Proceedings of the International
Conference IFIP TCS 2000, volume 1872 of Lecture Notes in Computer Science, pages
25–41. Springer Verlag, August 2000.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

[Tre99] L. Trevisan. Construction of extractors using pseudorandom generators. In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, pages 141–148,
1999.

[TSZS01] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller codes. In
Proceedings of the Forty-Second Annual IEEE Symposium on Foundations of Computer
Science, 2001.

[TV02] L. Trevisan and S. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. In Proceedings of the Seventeenth Annual IEEE Conference on Computa-
tional Complexity, pages 103–112, 2002.

[Uma02] C. Umans. Pseudo-random generators for all hardnesses. In Proceedings of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing, pages 127–134, 2002.

[Val79] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85–93, 1986.

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Foundations of Computer Science, pages 80–91,
1982.

18

