
The Complexity of Unique �-SAT:
An Isolation Lemma for �-CNFs

Chris Calabro
Russell Impagliazzo �

Valentine Kabanets �

Ramamohan Paturi�

University of California, San Diego

May 19, 2003

Abstract

We provide some evidence that Unique �-SAT is as
hard to solve as general �-SAT, where �-SAT denotes
the satisfiability problem for �-CNFs and Unique �-
SAT is the promise version where the given formula
has � or � solutions. Namely, defining for each � �

�, �� � ����Æ � � � � a ���Æ�	-time randomized
algorithm for �-SAT� and, similarly, �� � ����Æ � � �
� a ���Æ�	-time randomized algorithm for Unique
�-SAT�, we show that
����� �� �
����� ��. As a
corollary, we prove that, if Unique �-SAT can be solved in
time ��� for every � � �, then so can �-SAT for all � � �.

Our main technical result is an isolation lemma for �-
CNFs, which shows that a given satisfiable �-CNF can be
efficiently probabilistically reduced to a uniquely satisfi-
able �-CNF, with non-trivial, albeit exponentially small,
success probability.

1 Introduction

While NP-complete search problems are presumably in-
tractable to solve, this does not mean that all instances
of these problems are difficult. Many heuristics for NP-
complete problems, e.g., using back-tracking or local
search techniques, take advantage of some structure in the
instance. This leads to the general question: what makes
an instance of a search problem easier than the worst-
case? Conversely, we can ask, what types of structure can-
not be exploited by heuristics? Here, we can consider both
the structure of the instance (e.g. density of constraints to

�Research supported by NSF Award CCR-0098197 and USA-Israel
BSF Grant 97-00188

�Research supported by a Postdoctoral Fellowship from the Natural
Sciences and Engineering Research Council of Canada

�research supported by NSF Award CCR-0098197

variables, or expansion of a formula when viewed as a hy-
pergraph) and the structure of the solution space (e.g. how
correlated are different solutions?).

One particularly natural measure of the solution space
is the number of solutions. One can have different in-
tuitions concerning how the number of solutions should
affect the difficulty of the instance. On the one hand, one
might suspect that the hardest instances would be those
with few solutions, since they become “needles in a large
haystack”. On the other hand, algorithms that use local
search or narrow in on the solution through deductions
might do worse when there are many unrelated solutions.
These algorithms might get caught between two equally
attractive solutions, like Buridan’s ass (who starves to
death, unable to decide between two sources of food).

Valiant and Vazirani [VV86] show that in some for-
mal sense, uniqueness of the solution cannot be used
to solve search problems quickly. They give a random-
ized polynomial-time reduction from Formula SAT to in-
stances of Formula SAT with unique solutions. This
shows that a probabilistic polynomial-time algorithm for
Unique Formula SAT would also give a similar algorithm
for general SAT. The same follows for most other NP-
complete problems, such as �-SAT, by combining this re-
duction with a reduction from Unique SAT to the problem
(which usually preserves uniqueness).

However, there is a large gap between not being solv-
able in polynomial-time and being the “hardest case” of
a problem. For example, it is consistent with the Valiant-
Vazirani result that Unique �-SAT be solvable in ���

�
�	

time, but general �-SAT requires ����� time. This is be-
cause, when combined with the reduction from Formula
SAT to �-SAT, the Valiant-Vazirani reduction squares the
number of variables in the formula.

In this paper, we narrow this gap considerably. We give
a randomized reduction from general �-SAT to Unique �-
SAT that takes expected time ������	 where �� � � as

1

� � �. This implies that if general �-SAT requires time
�Æ� for some � and some Æ � �, then, for any Æ � � Æ,
Unique ��-SAT requires time �Æ

�� for sufficiently large
��. Combining with results from [IPZ98], we show that if
Unique 3-SAT does not require exponential time, then no
search problem in SNP requires exponential time.

It should be mentioned that we do not consider here
the problem of deciding whether a �-CNF formula has a
unique solution, as in [GB97], where it is shown that the
decision version of �-SAT is solvable in time ���Æ�	 iff
the decision version of Unique �-SAT is solvable in time
���Æ�	.

One algorithm that seems to take advantage of unique-
ness is the Unique �-SAT algorithm of [PPZ99]. They
give an �����������	 time algorithm for Unique �-SAT,
which they later extend to an algorithm for general �-SAT;
the latter algorithm is (by their analysis) slightly less ef-
ficient. (Later, [PPSZ98] improved both the Unique and
general algorithms.) We show that the same algorithm
solves an instance of �-SAT with � solutions in expected
time
�
���	���	�	�����, counter to the original intu-
ition that the algorithm takes advantage of uniqueness.

1.1 Known Algorithms for �-SAT

The CNF satisfiability problem was one of the first prob-
lems proved NP-complete [Coo71]. This problem is
widely believed to require a deterministic algorithm of su-
perpolynomial, even exponential, time complexity. This
belief is supported by the fact that there is no known ran-
domized algorithm producing a certificate for the satis-
fiability of �-variable CNFs with probability � �

� and
that runs in significantly less time than ��. The best
known algorithm for general CNF satisfiability runs in
time �������

�
���� �	, where
 is the number of clauses

[Schuler03].
The situation is slightly better for �-SAT, where each

clause of a given CNF contains at most � literals, for some
constant � � �. This syntactic restriction can be exploited
to obtain a ������	-time algorithm for �-SAT, for some
constant � � �� � � dependent on �. The first such
algorithms were obtained in the 1980’s [Dan81, MS85].
Recently, a number of faster algorithms have been pro-
posed [PPZ99, PPSZ98, Sch02, HSSW02, DGH�]. The
best known randomized algorithm for 3-SAT is given
in [HSSW02]. For � � �, the best known random-
ized algorithm is due to [PPSZ98]; its time complexity
on �-CNFs with � variables is ����������������	, where
�� � � is an increasing function of � that approaches
��	� � �
���.

The techniques of [PPSZ98] and its predeces-
sor [PPZ99] crucially rely upon the notion of isolation
of a satisfying assignment. The degree of isolation of a

satisfying assignment � � ��� ��� is the number of coor-
dinates � � � � � such that flipping the value of �� turns
� into a falsifying assignment. Thus, a unique satisfying
assignment has degree � of isolation, whereas any satis-
fying assignment of a tautology has degree � of isolation.

The argument in [PPZ99] proceeds as follows. If a
given �-CNF has “many” satisfying assignments, then
we are likely to find one by random sampling. On the
other hand, if there are “few” satisfying assignments, then
there must be a satisfying assignment of “high” degree
of isolation. However, sufficiently isolated satisfying as-
signments have “short” descriptions (via the Satisfiabil-
ity Coding Lemma), and so these assignments can be
found by enumerating all possible “short” descriptions,
and checking if any such description corresponds to a sat-
isfying assignment. Combining the two cases yields a ran-
domized algorithm of running time
�
���	� ��������.

1.2 Unique �-SAT is a Hard Case of �-SAT

A closer look at the analysis in [PPZ99] reveals that the
more satisfying assignments a given �-CNF has, the faster
we can find one of them. More precisely, as we prove later
in the paper (see Section 4), if a �-CNF on � variables
has � satisfying assignments, then one of them can be
found with probability� �

� in time
�
���	���	�	�����.
This result suggests that the hardest case of �-SAT may
be Unique �-SAT, the set of all �-CNFs with exactly one
satisfying assignment. In the rest of our paper, we provide
further evidence towards the truth of this hypothesis.

Apart from the natural motivation to pinpoint the worst
case for �-SAT, we are guided by the desire to narrow
down any further research of the algorithmic complex-
ity of �-SAT. We would like to argue that the true chal-
lenge in designing an improved �-SAT algorithm is to
solve Unique �-SAT faster than the corresponding algo-
rithm of [PPSZ98].

1.3 Why the Valiant-Vazirani Reduction is
Insufficient

Before describing our results, we would like to discuss
how the result of Valiant and Vazirani [VV86] on Unique
Formula SAT is related to our problem of Unique �-SAT;
here, Unique Formula SAT is the set of all Boolean for-
mulas (not necessarily in conjunctive normal form) with
exactly one satisfying assignment. [VV86] describes
a polynomial-time randomized reduction that takes a
Boolean formula � and outputs a new Boolean formula �
such that with probability at least an inverse polynomial,
if � is satisfiable, then � has a unique satisfying assign-
ment, and otherwise, � has no satisfying assignment. This
implies that Formula SAT randomly reduces to Unique

2

Formula SAT.
Unfortunately, the proof in [VV86] does not imply that

Unique �-SAT is the worst case of �-SAT, or even that
Unique CNF-SAT is the worst case of CNF-SAT. The ran-
dom hashing technique of [VV86] consists of intersecting
the set of satisfying assignments of a given �-variable for-
mula � by random hyperplanes over the space ��� , where
�� is the field of two elements. On average, such a hy-
perplane depends on �	� 	 � of the variables. Thus,
almost certainly, the resulting formula � will not be a �-
CNF, even if the original formula � is. Applying the stan-
dard algorithm for converting an arbitrary Boolean for-
mula into a �-CNF will likely yield a �-CNF with ����	
new variables. Thus, we shall convert a satisfiable �-CNF
on � variables into a uniquely satisfiable �-CNF on ����	
variables.

If there were an algorithm for Unique �-SAT on �

variables with running time ����
����

	, then the Valiant-
Vazirani reduction could be used to create an algorithm
for �-SAT with running time ����

����

	 as well. This
reduction is useless, however, if the best algorithm for
Unique �-SAT on � variables runs in time ������	, for
some � � �� � �. Since the common working hypothesis
is that Unique �-SAT requires time �����, we need to use
a different argument to show that �-SAT is no harder than
Unique �-SAT.

1.4 Our Results

For each � � �, let �� � ����Æ � � � � a ���Æ�	-time
randomized algorithm for �-SAT� and, similarly, let
�� � ����Æ � � � � a ���Æ�	-time randomized
algorithm for Unique �-SAT�. Denoting �� �

����� �� and �� �
����� ��, we can state
our main result as follows.

Theorem 1. �� � ��.

This gives strong evidence that Unique �-SAT is as hard
to solve as general �-SAT. Combining Theorem 1 with the
results in [IPZ98] yields the following.

Corollary 2. If Unique �-SAT�
������������	, then
for every � � �, �-SAT�
������������	.

The main technical ingredient in the proof of Theo-
rem 1 is a more refined analysis of the random hash-
ing technique of [VV86]. We modify the construction
of [VV86] so that it uses sparse hyperplanes that depend
on at most �� variables, where � � depends only on � and
an approximation parameter �. We then show that, given
a satisfiable �-CNF �, the modified construction is likely
to produce a new � �-CNF � such that all satisfying as-
signments of � are clustered in a single Hamming ball of

“small” radius. Finally, we argue that a random assign-
ment of “few” randomly chosen variables of � will result
in a uniquely satisfiable � �-CNF ��. This result is formally
stated as Lemma 3 (Isolation Lemma) below.

It is worth pointing out that, unlike the reduction
of [VV86], our randomized reduction has only exponen-
tially small success probability. However, since we are
interested in �����	-time algorithms, such small success
probabilities suffice for our purposes.

Remainder of this paper In Section 2, we state and
prove our main technical result, an Isolation Lemma for
�-CNFs. Section 3 contains the proofs of Theorem 1 and
Corollary 2 stated in the Introduction. In Section 4, we
show that Unique �-SAT is the worst case for the �-SAT
algorithm of [PPZ99].

2 Isolation Lemma for �-CNFs

Recall that ���	 � ��
�� � � �� � �	
���� � �	 is the
binary entropy function.

Lemma 3 (Isolation Lemma). For every � � �� � �
��� �� 	, there is a randomized polynomial-time algorithm
���� that, given an �-variable �-CNF �, outputs an �-
variable ��-CNF ��, for �� � ����� ��
� �

�
� ��, such that

1. if � is unsatisfiable, then so is ��, and

2. if � is satisfiable, then, with probability at least
�����		�����	��� �� has a unique satisfying assign-
ment.

Proof. Our proof will consist of two steps. First, we in-
tersect the set � of satisfying assignments of � with ran-
domly chosen hyperplanes on � � variables, and show that,
with reasonable probability, all the surviving satisfying
assignments of � are contained (concentrated) in a Ham-
ming ball of “small” radius. Then we isolate a single sat-
isfying assignment in this Hamming ball by randomly as-
signing a small number of coordinates.

STEP I: CONCENTRATION. With probability at least
�	�, we can guess an integer � � �
�� ����
�� ��� � ��.
For the remainder of our argument, let us assume that our
guess is correct. For
 to be determined later, we inter-
sect the solution space � of � with
 sparse hyperplanes
of the Boolean cube ��� ���, where each hyperplane �� is
chosen independently by the following randomized algo-
rithm: Pick a subset �� � ���

 � �� of size �� uniformly
at random. For each � � ��, pick ���
 � ��� �� uniformly
at random. Pick �� � ��� �� uniformly at random. Out-

put the hyperplane ��

��
�
�

��� ���
�
 � ��, where the
summation is over the field �� .

3

Let us write the system of linear equations ���

 � ��
in the matrix form �� � �, where � is an
 � � �-�
matrix, � � ����

 � ��	

, and � � ����

 � ��	
.
While a random sparse hyperplane is unlikely to sepa-

rate two vectors�� � � ��� ��� that are close to each other,
it has a reasonable chance of separating � and � that are

Hamming distance ��� ��� �	 � �

��
� ���
 apart.

Claim 4. For any �� � � ��� ��� with ��� ��� �	 � �, we
have

������ � ��� �
�

��
���

Proof of Claim 4. For any �� � � ��� ��� with
��� ��� �	 � � and any � � ���

 �
�, we have

������	� �� ���	�� � ������� � �		� �� ��

� ������� � �		� �� � � ��� �	�� �� ��

������� �	�� �� ��

where ��� �	�� is the vector restricted to the coordinates
from��. If ����	�� �� �, then���������		� �� �� � �

� .
We get

������	� �� ���	�� �
�

�
����� � �	�� �� ��

�
�

�
����� � �� �� � �	
 �� ��

�
�

�

�
��

�
���
��

�
�
�
��

�
�

�
�� ��� �	�

�

�

�
�� ��� �	�����
������

�

�
�� ��������
������

�

�
�

�
�

�

�

Thus, ������ � ��� � � �� � �
� 	

� � �
�� ���� as re-

quired.

Now, let us define the set of semi-isolated solutions as

�� � �� � � � �� � �
�
��� ��� �	 � � � �� �� ��

�
�

For each � � �, we have

����� � ��� � �������� � ��
��� ��� �	 � � � �� � ��

�
�

� ��
�

����
����������
������ � ���

� �� ������	��

where the last inequality is by Claim 4. By setting
 �
�� ����
� �� we obtain

����� � ��� � �	�
 (1)

It follows that
�
���

������� � �� � �� � ��

�
�
���

����� � ��������� � � � � � ���

�
�

�
�������

(2)

where the last inequality is by (1) and the fact that the
vector � is chosen independently of the matrix �.

On the other hand, for any given � and �, the number
of semi-isolated solutions � � � such that �� � � is at
most �	����, since every pair of such solutions must be
Hamming distance less than � apart. This implies

�
���

������� � �� � �� � ��

� �	������������ � � �� � �� � �� � �	�
 (3)

Combining inequalities (2) and (3) yields

�������� � �� �� � �� � �����	������

� ������	��������
(4)

concluding Step I of the lemma.
STEP II: ISOLATION. Now suppose that � � �� � �

is satisfiable and its solutions are in a Hamming ball of
radius less than �, and hence, the diameter � � �����.

For assignments � and to disjoint sets of variables,
let � denote the union of these assignments. Let � and
�! be two distinct solutions to � � �� � � that are fur-
thest apart. Let ! be the set of variables on which �
and �! differ. Note that �!� � �. Fix " � ! such
that �"� � �. Consider the assignment #� to the vari-
ables in " consistent with the assignment � : �� � �
for � � ! and �� � �� for � � " � !. The reduc-
tion chooses a random set " � of � variables and a random
assignment $�� to these variables. Define �� to be the for-
mula ���� � ����� � $�� . If "� � " and $�� � #�,
then � is the unique solution to ��, since any other solu-
tion % to �� would also be a solution to � ��� � �, but
��� �% � �! 	 � ��� �� � �! 	.

The probability of correctly guessing a set of variables
" containing ! and correctly assigning them is at least

����
�
�

� � ������	������
 (5)

Combining equations (4) and (5), we conclude that the
probability of correctly guessing �, �, �, " �, and $�� so

4

that the resulting formula ��
���
� ���� � ����� � $��

is uniquely satisfiable is at least �
	����		�����, as claimed.

3 Applications of the Isolation
Lemma

3.1 Proof of Theorem 1

Lemma 5. �� � �� ���
�
� �
� 	.

Proof. Let � � �
� �
� . Then � � �

�
� �
� . For every & � �

and every �, we have a randomized algorithm '��� for
Unique �-SAT that runs in time ����������	. Applying
the Isolation Lemma 3, there is a polynomial time algo-
rithm ���� for reducing a given satisfiable �-CNF � to
a uniquely satisfiable �-CNF �� with success probability

(� ����	����� � ���� ��
�
�

�
��. By running the algorithm

���� ��(��	 times and applying algorithm '��� to every
output �-CNF ��, we obtain a randomized algorithm for

�-SAT that has running time ����������� ��
�
�

�
���	. As

& � �, we have the lemma.

Theorem 1 then follows by taking the limit of the in-
equality in the previous lemma as � tends to infinity.

3.2 Proof of Corollary 2

We shall need the following result.

Lemma 6 (Sparsification Lemma [IPZ98]). For all �
and � � �, there is a
�
���	���-time algorithm ����
that, given an �-variable �-CNF �, returns an �-variable
�-CNF � that has at most ���� �	� clauses, for some func-
tion � of �� �, and such that

1. every solution to � is also a solution to �, and

2. if � is satisfiable, then so is �, with probability at
least � ����.

We also need a simple clause-width-reducing algorithm
�	 which takes as input a �-CNF � in � variables and

clauses and returns a �-CNF � in �� �� � �	
 variables
whose solution set has a trivial bijective correspondence
to that of �. We describe �	. For each clause)��� � ��)�,
where the)� are literals, introduce � � � new variables
�	�

 � ����. The idea is to express)� � � � � �)� as

�)� �)� � �		 � ��	 � !)		 � � � � � ��	 � !)�	

� �!�	 �)	 � � � � �)�	�

and then recurse on the last clause. The above is equiva-
lent to

�)� �)� � �		 � ��	 � �)	 � � � � �)�		�

and so we can see that for each solution � of �, there is
exactly one solution � to � and that we can compute �
from � simply by throwing away the new variables.

Proof of Corollary 2. We combine sparsification, isola-
tion, and clause-width reduction. Suppose that for each
Æ � �, there is a randomized algorithm '	�Æ that solves
Unique �-SAT in time ���Æ�	.

For any � � ��� �
� 	, the algorithm *

��
� �	 Æ ���� Æ����,

composed of the three algorithms �	, ����, and ����, re-
turns a 3-CNF with at most ���� �	� variables for some
function � of �� � since the construction in the Isola-
tion Lemma adds at most ����� � ���	 clauses to
the sparsified formula. Composing '	�Æ with * , we ob-
tain a ������Æ��	-time algorithm for �-SAT that has suc-
cess probability (� ����	�����. Running this algorithm
��(��	 times independently, we get a randomized algo-
rithm for �-SAT of running time ���Æ

��	, for arbitrarily
small Æ� � �.

4 The More Satisfying Assignments,
the Better

Here we present a randomized algorithm for �-
SAT whose expected running time on an �-variable

�
���	-size �-CNF with � satisfying assignments is

�
���	���	�	�����. The algorithm is the same as that
in [PPZ99]; our analysis of this algorithm is somewhat
more refined.

Below, we say that a variable � is forced in a CNF �
if � contains a unit clause which consists of � or !� only.
Clearly, the forced variable will have the same value in
every satisfying assignment to �.

Consider the algorithm � given in Figure 1. Clearly,

INPUT: �-CNF � on variables ���

 � ��

1. Pick a permutation � of the set ���

 � �� uniformly
at random.

2. For � � � to �, if the variable ����� is forced, then
set ����� so that the corresponding unit clause is sat-
isfied; otherwise, set ����� to � (TRUE) or � (FALSE)
uniformly at random.

3. If the constructed assignment + satisfies �, then out-
put +.

Algorithm 1: ALGORITHM �

algorithm A is polynomial-time. We shall lower-bound
the probability that this algorithm succeeds at finding a
satisfying assignment.

5

Lemma 7. Let � be a �-CNF on � vari-
ables that has � satisfying assignments. Then
������	 outputs some satisfying assignment� �

�����	�����.

Proof. Let � be the set of satisfying assignments of �,
+ � �, and let � be any permutation. For this fixed �,
consider the run of� that results in outputting the assign-
ment +. We denote by ���+	 the number of variables that
were not forced during this run of �. Since each non-
forced variable is chosen uniformly at random, we have
������	 � + � �� � �������� where the probability is
over the random choices of the algorithm A for non-forced
variables, given the fixed permutation �.

It is easy to see that

������	 outputs some satisfying assignment�

�
�
���

���� ��
������� �

�
���

��Exp
�
��������

where the last step uses Jensen’s inequality.
We can bound Exp�����+	� using the argument

from [PPZ99]. Let)�+	 denote the number of satisfy-
ing assignments +� of � such that the Hamming distance
��� �+� +�	 � �. Then there are ��)�+	 variables such that
each of them occurs as a unique true literal in some clause;
such a clause is called critical in [PPZ99]. It follows that
each such variable ����� will be forced for a random per-
mutation � if ����� occurs last in the corresponding crit-
ical clause. The latter happens with probability at least
�	� since each clause of � is of size at most �. By the
linearity of expectation, we obtain that the expected num-
ber of forced variables is at least �� �)�+			�. Hence,
Exp� ����+	� � �� ���)�+			�.

Thus,

������	 outputs some satisfying assignment�

�
�
���

������������������

After factoring out ����������, we need to lower-bound
the sum

�
��� ��������. Let , � Exp��� �)�+	�. By

Jensen’s inequality, we obtain

�
���

�������� � ������� (6)

where � � ���.
Finally, to bound ,, we use the well-known edge

isoperimetric inequality due to [Har67]. This inequal-
ity implies that, for any subset � � of the �-dimensional
Boolean cube ��� ���,

���+� +�	 � +� +� � �� and ��� �+� +�	 � ��� � ����
�� ����

Hence, for � � � �, we obtain
�

���)�+	 � �
�� �, and
so, , � Exp��� �)�+	� �
�� �.

Continuing inequality (6), we get

�
���

�������� � ����
�� ���� � ������

So, ������	 outputs some satisfying assignment� �

�����	����� � as required.

Lemma 7 immediately implies the following.

Theorem 8. There is a randomized algorithm for �-SAT
that, given a satisfiable �-CNF � on � variables with �
satisfying assignments, will output one of the satisfying
assignments of � in expected time
�
���	���	�	�����.

5 Open Problems

While we are able to show that �� � ��, we conjecture
that ��� �� � �� . However, our techniques do not lend
themselves to proving this conjecture. To prove the con-
jecture, it would be sufficient to prove an Isolation Lemma
for �-CNF with an inverse polynomial probability of suc-
cess. While it takes a family of size �
�-+���	 to isolate
an element of an arbitrary set of size �� by intersecting
with a randomly chosen set from the family, it would be
interesting if one can construct polynomial size families
to isolate elements from sets of satisfying solutions of �-
CNF.

In fact, we could hope to prove an even stronger version
of the conjecture to the effect that satisfiability for for-
mulas with many satisfying assignments is strictly easier
than for the formulas with fewer solutions. To prove such
a result, one might show that adding additional random
constraints to a formula with many satisfying assignments
preserves satisfiability while implicitly reducing the num-
ber of variables. For example, in our proof of Isolation
Lemma, we added a number of random sparse linear equa-
tions, which implicitly define some variables in terms of
the others. Can we show that these constraints can be
used to simplify search? A less ambitious formulation
would just prove the above for Davis-Putnam algorithms
and their variants.

References

[Coo71] S.A. Cook. The complexity of theorem-
proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of
Computing, pages 151–158, 1971.

6

[Dan81] E. Dantsin. Two propositional proof sys-
tems based on the splitting method. Za-
piski Nauchnykh Seminarov LOMI, 105:24–
44, 1981. (in Russian). English translation in
Journal of Soviet Mathematics, 22(3):1293–
1305, 1983.

[DGH�] E. Dantsin, A. Goerdt, E.A. Hirsch,
R. Kannan, J. Kleinberg, C. Papadimitriou,
P. Raghavan, and U. Schöning. A determin-
istic �� � �	�� � �		� algorithm for �-SAT
based on local search. Theoretical Computer
Science. to appear.

[GB97] E. Grandjean, H. Buning. SAT-problems and
reductions with respect to the number of vari-
ables. Journal of Logic and Computation,
7(4):457–471, 1997.

[Har67] L.H. Harper. A necessary condition on min-
imal cube numberings. Journal of Applied
Probability, 4:397–401, 1967.

[HSSW02] T. Hofmeister, U. Schöning, R. Schuler, and
O. Watanabe. A probabilistic 3-SAT algo-
rithm further improved. In Proceedings of
the Nineteenth Annual Symposium on Theo-
retical Aspects of Computer Science, pages
192–202, 2002.

[IP01] R. Impagliazzo, R. Paturi. On the complexity
of �-SAT. Journal of Computer and Systems
Sciences, 62(2):367–375, 2001.

[IPZ98] R. Impagliazzo, R. Paturi, and F. Zane.
Which problems have strongly exponential
complexity? In Proceedings of the Thirty-
Ninth Annual IEEE Symposium on Founda-
tions of Computer Science, pages 653–662,
1998.

[MS85] B. Monien and E. Speckenmeyer. Solving
satisfiability in less than �� steps. Discrete
Applied Mathematics, 10:287–295, 1985.

[PPSZ98] R. Paturi, P. Pudlák, M.E. Saks, and F. Zane.
An improved exponential-time algorithm for
k-SAT. In Proceedings of the Thirty-Ninth
Annual IEEE Symposium on Foundations of
Computer Science, pages 628–637, 1998.

[PPZ99] R. Paturi, P. Pudlák, and F. Zane. Satisfiabil-
ity coding lemma. Chicago Journal of Theo-
retical Computer Science, 1999. (preliminary
version in FOCS’97).

[Sch02] U. Schöning. A probabilistic algorithm for �-
SAT based on limited local search and restart.
Algorithmica, 32:615–623, 2002.

[Schuler03] R. Schuler. An algorithm for the satisfiability
problem of formulas in conjunctive normal
form. Technical Report, Universit at Ulm,
2003.

[VV86] L. Valiant and V. Vazirani. NP is as easy as
detecting unique solutions. Theoretical Com-
puter Science, 47:85–93, 1986.

7

