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Abstract

We give a combinatorial proof of the Chernoff-Hoeffding concentration bound [Che52, Hoe63], which
says that the sum of independent {0, 1}-valued random variables is highly concentrated around the
expected value. Unlike the standard proofs, our proof does not use the method of higher moments,
but rather uses a simple and intuitive counting argument. In addition, our proof is constructive in the
following sense: if the sum of the given random variables is not concentrated around the expectation,
then we can efficiently find (with high probability) a subset of the random variables that are statistically
dependent. As simple corollaries, we also get the concentration bounds for [0, 1]-valued random variables
and Azuma’s inequality for martingales [Azu67].

We interpret the Chernoff-Hoeffding bound as a statement about Direct Product Theorems. Infor-
mally, a Direct Product Theorem says that the complexity of solving all k instances of a hard problem
increases exponentially with k; a Threshold Direct Product Theorem says that it is exponentially hard in
k to solve even a significant fraction of the given k instances of a hard problem. We show the equivalence
between optimal Direct Product Theorems and optimal Threshold Direct Product Theorems. As an
application of this connection, we get the Chernoff bound for expander walks [Gil98] from the (simpler to
prove) hitting property [AKS87], as well as an optimal (in a certain range of parameters) Threshold Direct
Product Theorem for weakly verifiable puzzles from the optimal Direct Product Theorem [CHS05]. We
also get a simple constructive proof of Unger’s result [Ung09] saying that XOR Lemmas imply Threshold
Direct Product Theorems.

Keywords: Concentration bounds, Chernoff-Hoeffding bound, Azuma’s inequality, expander walks,
Direct Product Theorems, Threshold Direct Product Theorems, XOR Lemmas

1 Introduction

Randomized algorithms and random constructions have become common objects of study in modern com-
puter science. Equally ubiquitous are the basic tools of probability theory used for their analysis. Some of
the most widely used such tools are various concentration bounds. Informally, these are statements saying
that the outcome of a random experiment is likely to be close to what is expected (concentrated near the
expectation). The well-known Chernoff bound [Che52] is a prime example, and is probably one of the most-
often used such concentration bounds. Basically, it says that repeating a random experiment many times
independently and taking the average of the outcomes results in a value that is extremely likely to be very
close to the expected outcome of the experiment, with the probability of deviation diminishing exponentially
fast with the number of repetitions.
∗Supported by NSF grants DMS-0835373, CNS-0716790, CCF-0832797, DMS-0635607, Simonyi Foundation, the Bell Com-

pany Fellowship, and Fund for Math.
†Supported by an NSERC Discovery grant and NSF grant DMS-0635607.
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A computational analogue of concentration bounds in complexity are Direct Product Theorems. Infor-
mally, these are statements saying that solving a somewhat hard problem on many independent random
instances becomes extremely hard, with the hardness growing at an exponential rate with the number of
repetitions. The main application of direct product theorems is to hardness amplification: taking a problem
that is somewhat hard-on-average to solve, and turning it into a problem that is extremely hard-on-average
to solve. Such hardness amplification is important for cryptography and complexity; for example, in cryp-
tography, the increased hardness of a function translates into the increased security of a cryptographic
protocol.

In this paper, we show a close connection between probability-theoretic and complexity-theoretic con-
centration bounds. We give a new, constructive proof of the Chernoff bound, and use this proof to establish
an equivalence between two versions of direct product theorems: the standard Direct Product Theorem and
the Threshold Direct Product. In the standard direct product, we want to upperbound the probability of
efficiently solving all given instances of a somewhat hard problem, whereas in the threshold direct product,
we want to upperbound the probability of solving more than a certain fraction of the instances.

To motivate the need for Threshold Direct Product Theorems, we give an example of its typical use
in cryptography. CAPTCHAs [ABHL03] are now widely used to distinguish human users from artificially
intelligent “bots”. Here a user is issued a random puzzle, say distorted text, and is asked to decipher
the text. Say that a legitimate user succeeds with probability c 6 1, whereas an attacker succeeds with
probability at most s < c. To boost our confidence that we are dealing with a legitimate user, we will
issue k random puzzles in parallel, and see how many of them get answered correctly. If c = 1, then we
know that the legitimate user will answer all k instances correctly. A standard Direct Product Theorem for
CAPTCHAs [BIN97, CHS05] could then be used to argue that it’s very unlikely that an attacker will answer
all k instances. In reality, however, even a legitimate user can make an occasional mistake, and so c < 1.
Thus we can’t distinguish between legitimate users and attackers by checking if all k instances are answered
correctly. Intuitively, though, we still expect that a legitimate user should answer almost all instances (close
to c fraction), whereas the attacker can’t answer significantly more than s fraction of them. This intuition
is formalized in the Threshold Direct Product Theorem for CAPTCHAs [IJK09], which thus allows us to
make CAPTCHAs reliably easy for humans but reliably hard for “bots”.

The probability-theoretic analogue of a Direct Product Theorem is the statement that if a random
experiment succeeds with probability at most p, then the probability that it succeeds in k independent
trials is at most pk. The analogue of a Threshold Direct Product is the Chernoff bound saying that the
probability of getting significantly more than the expected pk successes is exponentially small in k. We
give a constructive proof of the equivalence between these two probability-theoretic statements. Namely, we
show that if the probability of getting more than pk successes is noticeably larger than it should be (by the
Chernoff bound), then we can efficiently find a subset S of the k trials such that the random experiment
succeeds in all trials i ∈ S with probability noticeably larger than p|S|.

In the language of direct products, this means that there is an equivalence between standard direct
product theorems and threshold direct product theorems. Moreover, the constructive nature of the proof of
this equivalence means that it applies to the uniform setting of computation, where the hardness (security)
is measured with respect to uniform algorithms (rather than non-uniform circuits). In particular, we get
that for a wide variety of classes of cryptographic protocols, there is a Direct Product Theorem for the class
iff there is a Threshold Direct Product theorem.

The formalized equivalence between standard and threshold direct products also allows us to quantify
the information-theoretic limitations of simple reductions between the two. We then show how to overcome
this limitation with slightly more complicated reductions (using conditioning).

1.1 Chernoff-Hoeffding bounds, martingales and expander walks

The well-known Chernoff-Hoeffding bound [Che52, Hoe63] states that the sum of independent {0, 1}-valued
random variables is highly concentrated around the expected value. Numerous variants of this concentration
bound have been proved, with Bernstein’s inequalities from 1920’s and 1930’s being probably the earli-
est [Ber64]. The known proofs of these bounds rely on the idea of Bernstein to use the moment-generating
function of the given sum of independent random variables X1 + · · ·+Xn; recall that the moment-generating
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function of a random variables X is MX(t) = Exp[et·X ], where Exp[·] denotes the expectation.
While not difficult technically, the standard proof, in our opinion, does not provide intuition why con-

centration is likely. One of the main results of our paper is a different proof of the Chernoff bound, using a
simple combinatorial argument (and, in particular, avoiding any use of the moment-generating functions).
We actually prove a generalization of the Chernoff bound, originally due to Panconesi and Srinivasan [PS97]
(who also used the standard method of moment-generating functions in their proof). In this generalization,
the assumption of independence of the variables X1, . . . , Xn is replaced with the following weaker assumption:
There exists some δ > 0 such that, for all subsets S ⊆ [n] of indices, Pr[∧i∈SXi = 1] 6 δ|S|. Observe that if
the variables Xi’s are independent, with each Exp[Xi] 6 δ, then, for all S ⊆ [n], Pr[∧i∈SXi = 1] 6 δ|S|.

Theorem 1.1 (Generalized Chernoff bound [PS97]). Let X1, . . . , Xn be Boolean random variables such
that, for some 0 6 δ 6 1, we have that, for every subset S ⊆ [n], Pr[∧i∈SXi = 1] 6 δ|S|. Then, for any
0 6 δ 6 γ 6 1, Pr [

∑n
i=1Xi > γn] 6 e−nD(γ‖δ), where D(· ‖ ·) is the relative entropy function (defined in

Section 2 below), satisfying D(γ ‖ δ) > 2(γ − δ)2.

We now sketch our proof of Theorem 1.1. Imagine sampling a random subset S ⊆ [n] where each index
i ∈ [n] is put in S independently with some probability q (to be optimally chosen). We compute, in two
ways, Pr[∧i∈SXi = 1], where the probability is over S and X1, . . . , Xn.

On one hand, since Pr[∧i∈SXi = 1] 6 δ|S| for all S ⊆ [n], the probability of choosing S ⊆ [n] with
∧i∈SXi = 1 is small. On the other hand, if p = Pr[

∑n
i=1Xi > γn] is relatively large, we are likely to sample

a n-tuple X1, . . . , Xn with very many (at least γn) 1’s. Given such a tuple, we are then likely to sample
a subset S ⊆ [n] with ∧i∈SXi = 1. Thus the overall probability of choosing S ⊆ [n] with ∧i∈SXi = 1 is
relatively large. The resulting contradiction shows that p must be small. (The complete proof is given in
Section 3.1.)

We also get several other concentration bounds as simple corollaries of Theorem 1.1. First, we get a
version of Theorem 1.1 in the setting of real-valued random variables that take their values in the interval
[0, 1], the Hoeffding bound [Hoe63] (Theorem 3.3). Then we prove a concentration bound for martingales,
known as Azuma’s inequality [Azu67] (Theorem 3.4). In another application of our Theorem 1.1, we obtain
a Chernoff-type concentration bound for random walks on expander graphs (Theorem 3.8), almost matching
the parameters of [Gil98, Hea08].

1.2 Applications to Direct Product Theorems

We interpret Theorem 1.1 as giving an equivalence between certain versions of Direct Product Theorems
(DPTs), which are statements of the form “k-wise parallel repetition increases the complexity of a prob-
lem at an exponential rate in the number of repetitions k”. Such theorems are known for a variety of
models: Boolean circuits [Yao82, GNW95], 2-prover games [Raz98], decision trees [NRS94], communica-
tion complexity [PRW97], polynomials [VW08], puzzles [BIN97], and quantum XOR games [CSUU07], just
to mention a few. However, there are also examples where a direct product statement is false (see, e.g.,
[BIN97, PW07, Sha03]).

More formally, for a function F : U → R, its k-wise direct product is the function F k : Uk → Rk, where
F k(x1, . . . , xk) = (F (x1), . . . , F (xk)). The main application of this construction is to hardness amplification.
Intuitively, if F (x) is easy to compute on at most p fraction of inputs x (by a certain resource-bounded
class of algorithms), then we expect F k(x1, . . . , xk) to be easy on at most (close to) pk fraction of k-tuples
(x1, . . . , xk) (for a related class of algorithms).

A DPT may be viewed as a computational analogue of the following (obvious) probabilistic statement:
Given k random independent Boolean variables X1, . . . , Xk, where each Xi = 1 with probability at most p, we
have Pr[∧ki=1Xi = 1] 6 pk. The Chernoff bound says that with all but exponentially small probability at most
about pk of the random variables X1, . . . , Xk will be 1. The computational analogue of this concentration
bound is often called a Threshold Direct Product Theorem (TDPT), saying that if a function F is easy to
compute on at most p fraction of inputs (by a certain class of algorithms), then computing F k(x1, . . . , xk)
correctly in significantly more than pk positions 1 6 i 6 k is possible for at most a (negligibly more than)
exponentially small fraction of k-tuples (x1, . . . , xk) (for a related class of algorithms). TDPTs are also
known for a number of models, e.g., Boolean circuits (follows from [Imp95, Hol05]), 2-prover games [Rao08],
puzzles [IJK09], and quantum XOR games [CSUU07].
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Observe that Theorem 1.1 says that the Chernoff concentration bound for random variables X1, . . . , Xn

follows from the assumption that Pr[∧i∈SXi = 1] 6 p|S| for all subsets S of [n]. In the language of direct
products, this means that Threshold Direct Product Theorems follow from Direct Product Theorems. We
explain this connection in more detail next.

1.2.1 Equivalence between DPTs and TDPTs

Let us call a DPT optimal if has perfect exponential increase in complexity: A function F that is computable
on at most p fraction of inputs gives rise to the function F k that is computable on at most pk fraction of
inputs. Similarly, we call a TDPT optimal, if its parameters match exactly its probabilistic analogue, the
Chernoff-Hoeffding bound.

As an immediate application of Theorem 1.1, we get that an optimal DPT implies an optimal TDPT.
We illustrate it for the case of the DPT for Boolean circuits. Suppose F is a Boolean function that can
be computed on at most p fraction of inputs (by circuits of certain size s). The optimal DPT for circuits
(provable, e.g., using [Imp95, Hol05]) says that for any k, the function F k is computable on at most pk

fraction of inputs (by any circuit of appropriate size s′ < s).
Towards a contradiction, suppose there is an algorithm A that computes F k(x1, . . . , xk) in significantly

more than pk positions 1 6 i 6 k, for more than the exponentially small fraction of inputs (x1, . . . , xk). Define
Boolean random variables X1, . . . , Xk, dependent on F , A, and a random k-tuple (x1, . . . , xk), so that Xi = 1
iff A(x1, . . . , xk)i = F (xi). By our assumption, these variables X1, . . . , Xk fail the Chernoff concentration
bound. Hence, by Theorem 1.1, there is a subset S ⊆ {1, . . . , k} such that Pr[∧i∈SXi = 1] > p|S|. But the
latter means that our algorithm A, restricted to the positions i ∈ S, computes F |S| with probability greater
than p|S|, contradicting the optimal DPT.

In an analogous way, we get an optimal TDPT for every non-uniform model where an optimal DPT is
known: e.g., decision trees [NRS94] and quantum XOR games [CSUU07]; for the latter model, an optimal
TDPT was already proved in [CSUU07].

1.2.2 A constructive version of Theorem 1.1

For non-uniform models (as in the example of Boolean circuits considered above), it suffices to use Theo-
rem 1.1 which only says that if the random variables X1, . . . , Xn fail to satisfy the concentration bound,
then there must exist a subset S of them such that ∧i∈SXi = 1 with large probability. To obtain the Direct
Product Theorems in the uniform model of computation, it is important that such a subset S be efficiently
computable by a uniform algorithm.

Our combinatorial proof of Theorem 1.1 immediately yields such an algorithm. Namely, we just randomly
sample a subset S by including each index i, 1 6 i 6 n, into S with probability q, where q is chosen as a
function of how far the variables X1, . . . , Xn are from satisfying the concentration bound. We then output S
if ∧i∈SXi = 1 has “high” probability; otherwise we sample another set S. Here we assume that our algorithm
has a way to sample from the distribution X1, ..., Xn. This reasoning yields the following.

Theorem 1.2. There is a randomized algorithm A such that the following holds. Let X1, . . . , Xn be 0-
1-valued random variables. Let 0 < δ < γ 6 1 be such that Pr[

∑n
i=1Xi > γn] = p > 2α, for some

α > e−nD(γ‖δ). Then, on inputs n, γ, δ, α, the algorithm A, using oracle access to the distribution X1, . . . , Xn,
runs in time poly(α−1/((γ−δ)δ), n) and outputs a set S ⊆ [n] such that, with probability at least 1 − o(1),
Pr[∧i∈SXi = 1] > δ|S| + Ω(α4/((γ−δ)δ)).

Using this constructive version, we prove an optimal TDPT also for uniform models. In particular,
we get such a result for the case of CAPTCHA-like puzzles, called weakly verifiable puzzles [CHS05] (see
Theorem 4.2).1 DPTs for puzzles are known [BIN97, CHS05], with [CHS05] giving an optimal DPT. Also
TDPTs are known [IJK09, Jut10], but they are not optimal. Here we immediately get an optimal TDPT
for puzzles, using the optimal DPT of [CHS05], when the success probabilities of the legitimate user and the
attacker are constant.

1Unger [Ung09] claims to get a TDPT for puzzles, but in fact only proves a TDPT for circuits from Yao’s XOR Lemma.
Actually, no XOR Lemma for puzzles is known, and so Unger’s methods don’t apply.
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We also show that the limitation on the success probabilities being constant is unavoidable for the naive
reductions between DPTs and TDPTs, as those in Theorem 1.2. Namely, we give an example of a distribution
X1, . . . , Xn where the dependence on γ − δ in the exponent of α (stated in Theorem 1.2) is necessary.

Lemma 1.3. There are Boolean random variables X1, . . . , Xn, and parameters 0 < δ < γ < 1 such that
Pr[
∑n
i=1Xi > γn] = p/2 > 2α, for α > e−nD(γ‖δ), but, for every subset S ⊆ [n], Pr[∧i∈SXi = 1] − δ|S| 6

(4α)δ(ln 1/δ)/(γ−δ).

We also show that this limitation can be overcome by conditioned reductions which are allowed to use
conditioning (albeit the concentration bound we get in this case is not as tight as before).

Theorem 1.4. There is a randomized algorithm A satisfying the following. Let X1, . . . , Xn be Boolean-
valued random variables, and let 0 6 δ < γ 6 1. Suppose that Pr

[
1
n

∑n
i=1Xi > γ

]
> α, where α >

(32/(γ − δ)) · e−(γ−δ)2n/64. Then, the algorithm A on inputs n, γ, δ, α, using oracle access to the conditional
distribution (X1, . . . , Xn |

∑
j∈S Xj > γn/2), runs in time poly(n, 1/α, 1/γ, 1/δ) and outputs a subset S ⊂

[n] (of size n/2) and an index i0 ∈ S̄ (where S̄ = [n] − S) such that, with probability at least 1 − o(1),
Pr
[
Xi0 = 1 |

∑
j∈S Xj > γn/2

]
> δ + (γ − δ)/16.

Remark 1.5. Naive reductions between DPT and TDPT (as in Theorem 1.2) are applicable in any setting,
whereas conditioned reductions (as in Theorem 1.4) need an additional assumption (sampleability from a
conditional distribution). The universality of naive reductions, however, comes at an unavoidable cost, as
witnessed by Lemma 1.3. Together with Theorem 1.4, this shows that there is an actual quantitative difference
between naive and conditioned reductions. In particular, while, surprisingly, naive reductions are optimal
in terms of quantitative hardness amplification, they are suboptimal in terms of preserving the adversary’s
advantage, which is only polynomailly preserved if γ − δ = Ω(1). In contrast, conditioned reductions can
preserve this advantage linearly.

Finally, our Theorem 1.1 implies some TDPT even when we only have a weak (suboptimal) DPT for the
model. For example, we can get some version of a TDPT for 2-prover games, using the best available DPT
for such games [Raz98, Hol07, Rao08];2 however, a better TDPT for 2-prover games is known [Rao08]. Also,
as shown by Haitner [Hai09], for a wide class of cryptographic protocols (interactive arguments), even if the
original protocol doesn’t satisfy any DPT, there is a slight modification of the protocol satisfying some weak
DPT. Then, our results imply that these modified protocols also satisfy some weak TDPT.

1.2.3 Direct Product Theorems vs. XOR Lemmas

A close relative of DPTs is an XOR Theorem. For a Boolean function F : {0, 1}n → {0, 1}, its k-wise XOR
function is F⊕k : ({0, 1}n)k → {0, 1}, where F⊕k(x1, . . . , xk) = ⊕ki=1F (xi). Intuitively, taking XOR of the k
independent copies of a function F , where F can be computed on at most p fraction of inputs, is similar to
taking the XOR of k independent random Boolean variables X1, . . . , Xk, where each Xi = 1 with probability
at most p. In the latter case, it is easy to compute that Pr[⊕ki=1Xi = 1] 6 1/2 + (2p − 1)k/2, i.e., the
k-wise XOR approaches a fair coin flip exponentially fast in k. In the computational setting, one would like
to argue that F⊕k becomes essentially unpredictable. Such XOR results are also known, the most famous
being Yao’s XOR Lemma for Boolean circuits [Yao82, Lev87, GNW95] (many proofs of this lemma have
been given over the years, see, e.g., [IJKW10] for the most recent proof, and the references).

We call an XOR lemma optimal if its parameters exactly match the probabilistic analogue given above.
Recently, Unger [Ung09] essentially showed that an optimal XOR result implies an optimal TDPT (and hence
also an optimal DPT). More precisely, he proved the following generalization of the Chernoff-Hoeffding
bound: Let X1, . . . , Xk be Boolean random variables such that for some −1 6 β 6 1, we have that, for
every subset S ⊆ {1, . . . , k}, Pr[⊕i∈SXi = 1] 6 1/2 + β|S|/2. Then for any β 6 ρ 6 1, Pr[

∑k
i=1Xi >

(1/2 + ρ/2)k] 6 e−kD(1/2+ρ/2‖1/2+β/2).
Unger’s original proof uses the method of moment-generating functions and some basic tools from Fourier

analysis. In contrast, we give a simple reduction showing that the assumption in Unger’s theorem implies
2In fact, for 2-prover games, it is impossible to achieve the “optimal” decrease in the success probability from p to pk, for k

parallel repetitions of the game [Raz08].
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the assumption in Theorem 1.1, and thus we immediately get an alternative (and simpler) proof of Unger’s
result. For a random variable X ∈ {0, 1}, we define bias(X) = Pr[X = 0] − Pr[X = 1]. We show the
following.

Theorem 1.6. Let X1, . . . , Xn be 0-1-valued random variables. Suppose that there is −1 6 β 6 1 such that,
for every S ⊆ [n], bias(⊕i∈SXi) 6 β|S|. Then, for every S ⊆ [n], Pr[∧i∈S(Xi = 0)] 6 (1/2 + β/2)|S|.

Moreover, the reduction in the proof of Theorem 1.6 is constructive. Combining it with the constructive
version of Theorem 1.1, we get a constructive version of Unger’s result: if the variables X1, . . . , Xn fail to
satisfy the concentration bound, then we can efficiently find (using a randomized algorithm) a subset S of
indices such that ⊕i∈SXi has “large” bias. Such a constructive version is not implied by the original proof
of [Ung09].

1.3 Related work

1.3.1 Chernoff bounds for negatively correlated random variables

The assumption on the random variables X1, . . . , Xn used in Theorem 1.1 is similar to the assumption
that the Xi’s are negatively correlated ; the latter means that for every subset S ⊆ [n], Pr[∧i∈SXi = 1] 6∏
i∈S Pr[Xi = 1]. The only difference between the negative correlation assumption and the assumption in

Theorem 1.1 is that the latter upperbounds Pr[∧i∈SXi = 1] by some δ|S|, where δ is an upper bound on
Pr[Xi = 1]. Panconesi and Srinivasan [PS97] observed that the Chernoff-Hoeffding bound continues to hold
for the case of random variables that satisfy this generalized version of negative correlation. The proof in
[PS97] follows the standard, Bernstein-style, proof of the Chernoff-Hoeffding bound.

1.3.2 TDPTs from DPTs, and DPTs from XOR lemmas

A simple idea for converting DPTs into TDPTs by randomly sampling a subset of a given n-tuple of instances
was also suggested by Ben-Aroya et al. [BARW08, Theorem 10], but their reduction doesn’t give the optimal
parameters. In the setting of interactive protocols, Chung and Liu [CL10] show how to obtain an almost-
optimal TDPT from an optimal DPT, also using a very similar sampling-based argument. The fact that
XOR Lemma implies DPT was also shown by Viola and Wigderson [VW08, Proposition 1.4]. Our proof of
Theorem 1.6 (showing that optimal XOR Lemma implies optimal DPT) is a very similar argument.

While the idea of using sampling to get weak versions of TDPTs from DPTs has been used in earlier works,
the difference in our paper is to use it in the abstract setting of probability-theoretic concentration bounds,
and achieve tight parameters. It is actually surprising that such a simple idea is powerful enough to yield
tight concentration bounds. The advantage of the abstract framework is also that it suggests applications in
settings where one doesn’t usually think in terms of standard direct products and threshold direct products.
For example, we use our Theorem 1.1 to prove the Chernoff concentration bound for expander walks [Gil98]
from the hitting property of [AKS87]. We also show the information-theoretic limitations of simple reductions
between DPTs and TDPTs, and suggest a way to overcome these limitations with stronger reductions.

We consider the new proof of Chernoff-type concentration bounds more revealing and intuitive than the
standard Bernstein-style proofs, and hope that its constructiveness will have other applications in computer
science.

2 Preliminaries

For a natural number n, we denote by [n] the set {1, 2, . . . , n}. For 0 6 ρ, σ 6 1, let D(ρ ‖ σ) be the
binary relative entropy defined as D(ρ ‖ σ) = ρ ln ρ

σ + (1 − ρ) ln 1−ρ
1−σ , with 0 ln 0 = 0. We shall also use the

following simple estimate: D(σ+ ε ‖ σ) > 2ε2 (obtained by considering the Taylor expansion of the function
g(x) = D(p+ x ‖ p) up to the second derivative).

For parameters 0 6 δ 6 γ 6 1, we define the function fδ,γ(q) = 1−q(1−δ)
(1−q)1−γ ; we shall be interested in the

case where 0 6 q < 1. When δ, γ are clear from the context, we drop the subscripts and simply write f(q).
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Taking the derivative of the function f(q), we get that f(q) achieves its minimum at q∗ = γ−δ
γ(1−δ) . It is easy

to see that f(q∗) =
(
δ
γ

)γ (
1−δ
1−γ

)1−γ
= e−D(γ‖δ).

For parameters n ∈ N and 0 6 q 6 1, we denote by Bin(n, q) the binomial distribution on sets S ⊆ [n],
where a set S is obtained by picking each index 1 6 i 6 n, independently, with probability q. We will denote
by S ∼ Bin(n, q) the random choice of S ⊆ [n] according to Bin(n, q).

We use the following “mean is median” result of Jogdeo and Samuels [JS68] for general binomial distri-
butions (where the probabilities of choosing an index i may be different for different i’s).

Lemma 2.1 ([JS68]). For every n-tuple of real numbers p1, . . . , pn, 0 6 pi 6 1 for all 1 6 i 6 n, and for
the Boolean random variables X1, . . . , Xn where each Xi = 1 with probability pi, and Xi = 0 with probability
1 − pi, let S =

∑n
i=1Xi and let µ =

∑n
i=1 pi. Then the median of the distribution S is either bµc or dµe

(and is equal to µ if µ is an integer). In particular, we have Pr [S > bµc] > 1/2.

3 Concentration bounds

3.1 Boolean random variables

Theorem 1.1 is the special case of the following theorem (when δ1 = · · · = δn).

Theorem 3.1. Let X1, . . . , Xn be 0-1-valued random variables. Suppose that there are 0 6 δi 6 1, for
1 6 i 6 n, such that, for every set S ⊆ [n], Pr [∧i∈SXi = 1] 6

∏
i∈S δi. Let δ = (1/n)

∑n
i=1 δi. Then, for

any γ such that δ 6 γ 6 1, we have Pr [
∑n
i=1Xi > γn] 6 e−nD(γ‖δ).

Proof. For a parameter 0 6 q 6 1 to be chosen later, consider the following random experiment. Pick a
random n-tuple (x1, . . . , xn) from the given distribution X1, . . . , Xn. Pick a set S ∼ Bin(n, q) (i.e., each
position 1 6 i 6 n, independently, is in S with probability q).

Let E be the event that
∑n
j=1Xj > γn, and let p = Pr[E ]. By conditioning,

Exp[∧i∈SXi = 1] > Exp[∧i∈SXi = 1 | E ] · p, (1)

where the expectations are over random choices of S ∼ Bin(n, q) and X1, . . . , Xn.
For every S ⊆ [n], we have Pr[∧i∈SXi = 1] 6

∏
i∈S δi. Hence,

Exp[∧i∈SXi = 1] 6
∑
S⊆[n]

[
q|S|(1− q)n−|S|

∏
i∈S

δi

]
. (2)

Let us denote by (z1, . . . , zn) ∈ {0, 1}n the characteristic vector of a set S chosen in the random experiment
above. That is, each zi is 1 with probability q, and 0 with probability 1− q; all zi’s are independent. In this
new notation, the expression in (2) equals Expz1,...,zn [

∏n
i=1 δ

zi
i ] =

∏n
i=1 Expzi [δ

zi
i ] =

∏n
i=1(qδi+1−q), where

the first equality is by the independence of the zi’s. By convexity, (1/n)
∑n
i=1 ln(qδi+1−q) 6 ln(qδ+1−q),

and hence
∏n
i=1(qδi + 1 − q) 6 (qδ + 1 − q)n. (When δ1 = · · · = δn, the same upper bound on the r.h.s. of

(2) follows immediately from the binomial formula.)
On the other hand, Exp[∧i∈SXi = 1 | E ] is the probability that a random S ∼ Bin(n, q) misses all

the 0 positions in the chosen sample from X1, . . . , Xn, conditioned on E . Since there are at most n − γn
such 0 positions, we get Exp[∧i∈SXi = 1 | E ] > (1 − q)n−γn. Combining this with Eqs. (1)–(2), we get

p 6
(

qδ+1−q
(1−q)(1−γ)

)n
= (f(q))n, where f(q) is the function defined in Sect. 2 above. Choosing q = q∗ to

minimize f(q) (see Sect. 2), we get p 6 e−nD(γ‖δ).

Remark 3.2. For γ = 1, Theorem 3.1 is tight, as e−nD(1‖δ) = δn.
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3.2 Real-valued random variables, and martingales

We prove a version of Theorem 1.1 for the case of real-valued random variables.

Theorem 3.3. Let X1, . . . , Xn ∈ [0, 1] be real-valued random variables. Suppose that there is a 0 6
δ 6 1 such that, for every set S ⊆ [n], Exp

[∏
i∈S Xi

]
6 δ|S|. Then, for any γ such that δ 6 γ 6 1,

Pr [
∑n
i=1Xi > dγne] 6 2 · e−nD(γ‖δ).

Proof. Let p = Pr [
∑n
i=1Xi > dγne]. Suppose that p > 2 · exp(−nD(γ ‖ δ)). Our proof is by a reduction to

the Boolean case. Consider Boolean random variables Y1, . . . , Yn, where Pr[Yi = 1] = Xi, for all 1 6 i 6 n;
that is, we think of the real value Xi as the probability that a Boolean variable Yi is 1. Suppose we sample
x1, . . . , xn from the distribution X1, . . . , Xn. Conditioned on

∑n
i=1 xi > dγne, we have by Lemma 2.1 that

Pr[
∑n
i=1 Yi > dγne] > 1/2. Lifting the conditioning (and using the assumed lower bound on the probability

p), we get Pr [
∑n
i=1 Yi > dγne] > p/2 > e−nD(γ‖δ), where the probability is over Xi’s and Yi’s.

By Theorem 1.1, we have that there is a subset S ⊆ [n] such that Pr[∧i∈SYi = 1] > δ|S|. Denote ~X =
(X1, . . . , Xn), and similarly for ~Y . We can equivalently write Pr[∧i∈SYi = 1] = Exp ~X

[
Exp~Y

[∏
i∈S Yi

]]
=

Exp ~X

[∏
i∈S Exp~Y [Yi]

]
= Exp ~X

[∏
i∈S Xi

]
, where the second equality is by the independence of Yi’s (given

any fixing of Xi’s), and the last equality by the definition of Yi’s. Thus, Exp[
∏
i∈S Xi] > δ|S|, which is a

contradiction.

A sequence of random variables X0, . . . , Xn is a martingale if Exp[Xi+1 | Xi, Xi−1, . . . , X0] = Xi, for all
0 6 i < n. Suppose that X0 = 0. The concentration bound for martingales (Azuma’s inequality [Azu67])
says that if |Xi+1 −Xi| 6 1 for all 1 6 i 6 n, then Xn is unlikely to deviate from 0 by more than

√
n. More

precisely, for any λ > 0, Pr[Xn > λ
√
n] 6 exp(−λ2/2).

Theorem 3.4. Let 0 = X0, X1, . . . , Xn be a martingale such that |Xi+1 −Xi| 6 1 for all 0 6 i < n. Then,
for any λ > 0, Pr[Xn > dλ

√
ne] 6 2 · exp(−λ2/2).

Proof. Define new random variables Yi = Xi − Xi−1, for all 1 6 i 6 n; the sequence Y1, . . . , Yn is a mar-
tingale difference sequence. Note that each Yi ∈ [−1, 1]. Clearly, Exp[Yi+1 | Yi, Yi−1, . . . , Y1] = Exp[Yi+1 |
Xi, Xi−1, . . . , X0] = 0. Let us also define the random variables Zi = (1 + Yi)/2, for 1 6 i 6 n. Observe
that each Zi ∈ [0, 1]. We want to apply Theorem 3.3 to the Zi’s. To this end, we show that, for every
subset S ⊆ [n], Exp[

∏
i∈S Zi] = (1/2)|S|. The proof of this is by induction on |S|, and using the martingale

property of Yi’s.
Applying Theorem 3.3 to the Zi’s (with δ = 1/2 and γ = 1/2 + ε), we get that, for every 0 6 ε 6 1/2,

Pr[
∑n
i=1 Zi > d(1/2 + ε)ne] 6 2 · exp(−nD(1/2 + ε ‖ 1/2)) 6 2 · exp(−2ε2n). Since

∑n
i=1 Zi = n/2 +

(
∑n
i=1 Yi)/2, we get Pr[

∑n
i=1 Yi > d2εne] 6 2 · exp(−2ε2n). Using the fact that

∑n
i=1 Yi = Xn and choosing

ε so that λ = 2ε
√
n, we conclude that Pr[Xn > dλ

√
ne] 6 2 · exp(−λ2/2).

3.3 Expander walks

We recall some basic definitions (for more details on expanders, see the excellent survey [HLW06]). For
a d-regular undirected graph G = (V,E) on n vertices, let A = (ai,j) be its normalized adjacency matrix
(where each entry of the adjacency matrix is divided by d). All eigenvalues of A are between −1 and 1,
with the largest eigenvalue being equal to 1. Order all eigenvalues according to their absolute values. For
0 6 λ 6 1, we call G a λ-expander if the second largest (in absolute value) eigenvalue of A is at most λ.

Expanders have numerous applications in computer science and mathematics (cf. [HLW06]), in particular,
due to the following sampling properties. The hitting property of expanders, first shown by Ajtai, Komlos,
and Szemeredi [AKS87], and later improved by Alon et al. [AFWZ95], is the following.

Theorem 3.5 (Hitting property of expander walks [AKS87, AFWZ95]). Let G = (V,E) be a λ-expander,
and let W ⊂ V be any vertex subset of measure µ, with µ > 6λ. Then the probability that a (t − 1)-step
random walk started from a uniformly random vertex stays inside W is at most µ(µ+ 2λ)t−1. Moreover, for
any subset S ⊆ [t], the probability that, in each of the time steps i ∈ S, the random walk hits a vertex in W
is at most (µ+ 2λ)|S|.
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The second sampling property, originally proved by Gillman [Gil98], is similar to the Chernoff-Hoeffding
concentration bound, and is sometimes called the Chernoff bound for expander walks.

Theorem 3.6 (Chernoff bound for expander walks [Gil98]). Let G = (V,E) be a λ-expander, and let
W ⊂ V be any vertex subset of measure µ. Then the probability that a (t− 1)-step random walk started from
a uniformly random vertex contains at least (µ+ ε)t vertices from W is at most e−ε

2(1−λ)t/4.

The hitting property of Theorem 3.5 is fairly easy to prove, using basic linear algebra. In contrast,
the original proof of Theorem 3.6 relied on some tools from perturbation theory and complex analysis.
Subsequently, the proof was significantly simplified by Healy [Hea08], who used only basic linear algebra.

We first observe the following.

Theorem 3.7. Let G = (V,E) be a λ-expander, and let W ⊂ V be of measure µ, where µ > 6λ. Let
1 > ε > 2λ. Then the probability that (t − 1)-step random walk started from a uniformly random vertex
contains at least (µ+ ε)t vertices from W is at most e−tD(µ+ε‖µ+2λ) 6 e−2(ε−2λ)2t.

Proof. Define the 0-1-valued random variables X1, . . . , Xt where Xi = 1 if the ith step of a random walk in
G lands in W , and Xi = 0 otherwise. By Theorem 3.5, we have that for every subset S ⊆ [t], Pr[∧i∈SXi =
1] 6 (µ+ 2λ)|S|. By Theorem 1.1, the probability that a random walk in G contains at least (µ+ ε)t vertices
from W is at most e−tD(µ+ε‖µ+2λ). Using D(σ + ρ ‖ σ) > 2ρ2, we can upperbound this probability by
e−2(ε−2λ)2t.

We can lift the assumption of Theorem 3.7 that ε > 2λ, thereby getting

Theorem 3.8. Let G = (V,E) be a λ-expander, and let W ⊂ V be of measure µ. Then the probability that
a (t − 1)-step random walk started from a uniformly random vertex contains at least (µ + ε)t vertices from
W (where ε 6 (2/3)µ) is at most e−ε

2(1−λ)t/(2 ln 4/ε).

sketch. The idea is to view random t-vertex walks in the graph G also as t/c-vertex walks in the graph Gc

(the cth power of the graph G), for a suitably chosen integer c. The second largest eigenvalue of Gc is at
most λc. By choosing c so that λc < ε/2, we will satisfy the assumptions of Theorem 3.7, for walks of
length t/c, thus getting an exponentially small upper bound on the fraction of imbalanced walks in G. Since
this probability is computed based on walks of length t/c rather than t, we lose an extra factor (namely,
(1− λ)/(ln 1/ε)) in the exponent.

4 Application: Uniform TDPTs for CAPTCHAs

CAPTCHAs are a special case of weakly verifiable puzzles defined by [CHS05]. A weakly verifiable puzzle
has two components: (1) a polynomial-time sampleable distribution ensemble D = {Dn}n>1 on pairs (x, α),
where x is called the puzzle and α the check string (n is the security parameter); and (2) a polynomial-time
computable relation R((x, α), y), where y is a string of a fixed polynomially-related length. Here we think of
α as a uniform random string used to generate the puzzle x. The k-wise direct product puzzle P k is defined
in the obvious way.

A puzzle P is called δ-hard (for some 0 6 δ 6 1) if, for every randomized polynomial-time algorithm A,
there is a negligible function negl so that the success probability of A on a random P -instance is at most
(1− δ) + negl.

Theorem 4.1 ([CHS05]). If a puzzle P is (1− ρ)-hard, for some 0 6 ρ 6 1, then P k is (1− ρk)-hard.

We show the following optimal threshold direct-product result for P k.

Theorem 4.2. Suppose a puzzle P is (1 − ρ)-hard, for a constant 0 6 ρ 6 1. Let γ = ρ + ν 6 1, for any
constant 0 6 ν 6 1. Then, for every randomized polynomial-time algorithm A, there is a negligible function
negl such that the following holds: The fraction of k-tuples ~x = (x1, . . . , xk) of instances of P k where A
solves correctly at least γk of the xi’s, is at most e−kD(γ‖ρ) + negl.
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Proof. Suppose A is a randomized polynomial-time algorithm that violates the conclusion of the theorem.
For random strings α1, . . . , αk, define the 0-1-valued random variables Z1, . . . , Zk so that, for each 1 6 i 6 k,
Zi = 1 iff the algorithm A(x1, . . . , xk) is correct on xi, where x1, . . . , xk are the puzzles determined by
the random strings α1, . . . , αk. Note that the distribution of Z1, . . . , Zk is efficiently sampleable since A is
efficient (and since the puzzle P is defined for a polynomial-time sampleable distribution D).

By assumption, there is some nonnegligible function η > e−kD(γ‖ρ) so that Pr[
∑k
i=1 Zi > γk] >

e−kD(γ‖ρ) +2η. By Theorem 1.2, we can efficiently find a subset S ⊆ [k] such that Pr[∧i∈SZi = 1] > ρ|S|+η′,
where η′ = Ω(η4/(νρ)) is nonnegligible. Thus we have an efficient algorithm that solves P |S| with success
probability noticeably higher than ρ|S|, contradicting Theorem 4.1.

Remark 4.3. The proof argument of Theorem 4.2 applies to any cryptographic interactive protocol as long
as the protocol can be efficiently simulated (so that the corresponding distribution Z1, . . . , Zk is efficiently
sampleable). Hence, for every class of protocols that can be efficiently simulated, there is an optimal DPT
for the class iff there is an optimal TDPT; here the hardness parameters (as ρ and ν in Theorem 4.2) are
assumed to be constants.

Theorem 4.2 provides an optimal concentration bound, but under the assumption that the probabilities
γ and ρ are constant; the same assumption is also needed for the similar result of [CL10]. The earlier bounds
of [IJK09, Jut10] do not make such an assumption, but they are not optimal. Using conditioning in the
reductions, we can remove the said limitation on γ and δ, albeit at the expense of losing the tightness of the
probability bound.

5 Summary

Let X1, . . . , Xn be Boolean random variables such that, for some 0 6 δ 6 1, Pr[Xi = 0] 6 δ, for 1 6 i 6 n.
Let bias(Xi) = Pr[Xi = 0]−Pr[Xi = 1] 6 β = 2δ − 1, for 1 6 i 6 n. Consider the following statements.

1. X1, . . . , Xn are independent.

2. ∀S ⊆ [n], bias(⊕i∈SXi) 6 β|S|.

3. ∀S ⊆ [n], Pr[∧i∈S(Xi = 0)] 6 δ|S|.

4. ∀S ⊆ [n], ∀0 6 δ 6 γ 6 1, Pr[{Xi}i∈S has > γ|S| zeros ] 6 e−|S|·D(γ‖δ).

Theorem 5.1. (1)⇒ (2)⇒ (3)⇔ (4).

Proof. (1)⇒ (2) is trivial. For (2)⇒ (3), see Theorem 1.6. For (3)⇒ (4), see Theorem 3.1 (the implication
(4)⇒ (3) is trivial).

The analogous statement for direct product theorems is: optimal XOR Theorems ⇒ optimal DPTs ⇔
optimal TDPTs. Moreover, the implications have constructive proofs.
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