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ABSTRACT
The “direct product code” of a function f gives its values on
all k-tuples (f(x1), . . . , f(xk)). This basic construct under-
lies “hardness amplification” in cryptography, circuit com-
plexity and PCPs. Goldreich and Safra [12] pioneered its
local testing and its PCP application. A recent result by
Dinur and Goldenberg [5] enabled for the first time test-
ing proximity to this important code in the “list-decoding”
regime. In particular, they give a 2-query test which works
for polynomially small success probability 1/kα, and show
that no such test works below success probability 1/k.

Our main result is a 3-query test which works for exponen-
tially small success probability exp(−kα). Our techniques
(based on recent simplified decoding algorithms for the same
code [15]) also allow us to considerably simplify the analysis
of the 2-query test of [5]. We then show how to derandomize
their test, achieving a code of polynomial rate, independent
of k, and success probability 1/kα.

Finally we show the applicability of the new tests to PCPs.
Starting with a 2-query PCP over an alphabet Σ and with
soundness error 1 − δ, Rao [19] (building on Raz’s (k-fold)
parallel repetition theorem [20] and Holenstein’s proof [13])
obtains a new 2-query PCP over the alphabet Σk with sound-
ness error exp(−δ2k). Our techniques yield a 2-query PCP

with soundness error exp(−δ
√
k). Our PCP construction

turns out to be essentially the same as the miss-match proof
system of Feige and Kilian [8], but with simpler analysis and
exponentially better soundness error.

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Modes of Computation;
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems
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1. INTRODUCTION
1.1 Motivation and background

Often in complexity theory, we want to make a some-
what hard problem into a much harder one. One basic
tool for doing this is the direct product construction, where
the new problem requests answers to a large number (say
k) of instances of the original problem. While an intuitive
and very useful general method, its correctness (establishing
a “direct-product theorem”) is frequently non-trivial, often
beset with subtleties, and sometimes just wrong. If the an-
swers for the k instances are decided independently, then
the solver’s probability of success drops exponentially with
k. However, sometimes the solver can benefit from using a
correlated strategy, basing the answer for each instance on
the entire set of instances.

A good example is Raz’s celebrated parallel repetition the-
orem [20]. Here, the measure of hardness being improved is
the soundness of a probabilistically checkable proof (PCP).
Note that the soundness of a PCP often yields a hardness of
approximation result for a related problem, so it is very im-
portant to get PCPs with optimal soundness. Let us recall
how this amplification works. Assume that in the original
PCP, on randomness r, the verifier picks two queries at po-
sitions x, y of the proof A, and decides according to the
“answers”A[x] and A[y]. Then the k-fold parallel repetition
of that proof system has longer proofs C, indexed by all k-
tuples of positions in A, each containing a k-tuple of answers.
The new verifier then picks k independent random tapes
r1, . . . , rk, generating k pairs xi, yi, queries the new proof at
two positions, obtaining C[x1, . . . , xk] and C[y1, . . . , yk], and
finally checks that the original verifier would have accepted
for all corresponding pairs of answers to xi, yi. Assuming
that the acceptance probability of the original verifier was
p, how will it drop with this k-fold repetition?

If C was simply Ak, namely if it recorded the answers of
A faithfully in all k-tuples, the acceptance probability would
drop to pk. But many counterexamples (see the survey [9]
and the recent [21]) show that cleverly constructed “proofs”
C can in some cases force slower decay in terms of each of
the parameters p, k, and moreover must depend on the size
of the answer set. These subtleties were so difficult that even
showing any decay that approaches zero as k increases re-
quired a nontrivial proof [23]. A few years later Raz proved
his parallel repetition theorem [20], showing that indeed the



decay is exponential. Simpler proofs [13, 19] and other re-
sults give us a pretty good understanding of the limits on the
decay in terms of the original parameters, but these remain
far from the potentially optimal pk.

What can be done to salvage the situation and push the
soundness amplification towards optimality? (After all, we
are the PCP designers, and pure parallel repetitions as above
is only one way to go.) Many ideas, both algebraic and
combinatorial, were applied to reduce PCP error, and these
are beautifully explained in the recent survey of Dinur [4].
The best current result is the tour-de-force of Moshkovitz
and Raz [18]. Here we focus on using direct-product testing
for this purpose, an idea pioneered by Goldreich and Safra
[12]. The idea is to somehow “force” the new proof C to
behave like the “direct product”Ak of (some) proof A (or at
least reject with high probability those which are not), since
if C has this property we could hope for optimal decay.

To survey known results, we view this property as a code.
Imagine that (the truth table of) a function f : U → R is

encoded by f (k) : Uk → Rk, defined by f (k)(x1, · · ·xk) =
(f(x1), · · · f(xk)). Given oracle access to C : Uk → Rk
we’d like to test if C is a codeword, or is far from it. In
other words, we’d like a test (with few queries to C) that, if
passes with a “significant” probability q, will certify that C
is “sufficiently close” to f (k) for some f . The smaller we can
make the value of q that has such implication, the better
amplification we can hope for in PCPs.

One should observe immediately that unlike typical error-
correcting codes (in particular polynomial-based codes of-
ten used in PCPs) this direct-product code is a particularly
bad one in standard parameters. For one, its rate is lousy
– superpolynomial as soon as k is not a constant (we will
return to this point when discussing derandomized direct-
product codes). For another, its distance is even worse –
some codewords (e.g., of the Boolean function AND) have
exponentially few non-zero entries. Some of the subtleties
of direct-product testing arise precisely from these issues.
Luckily (and this observation makes the testing possible),
for the intended hardness amplification it suffices to certify
that, for some f , many entries of C agree with f on many1

(rather than all) of the k answers. In other words, C must
be close to an approximate direct-product codeword. With
that notion of “proximity” or “decoding” in mind, one tries
to devise a test to certify it for small success probability q,
hopefully approaching the optimal pk. We note that such
“proximity testers” were formalized in a general setting un-
der the name “spot-checkers” in [7].

Initial work addressed the case in which the success prob-
ability q of the test is very close to 1. This is sometimes
called the “unique decoding” regime, since in this case it is
possible to show that “decoded” function f is unique. The
original paper [12] described a test with a constant number
of queries, and this was improved to the optimal two-query
test by Dinur and Reingold [6]. Even for these results, with
q extremely high, the proofs are quite nontrivial.

But for PCPs with small soundness error we need to tackle
small q, and one can easily see that as soon as q 6 1/2
unique decoding is impossible. Indeed, let C agree with

each of t direct product codewords f
(k)
i in a q-fraction of

its coordinates, for some (random) functions f1, . . . , ft and t

1In the PCP application, “many” means a p-fraction, where
p is the success probability of the original verifier

about 1/q. Thus if C passes the test with a small probability
q, the best “explanation” we can hope for is such a short list
of codewords. This is the “list-decoding” regime, which has
been so important in recent developments in coding theory
and complexity theory, and requires subtle tests and analysis
even for far better codes than the direct-product code.

The first result to test the direct-product code in the list-
decoding regime was obtained a few months ago by Dinur
and Goldenberg [5] (building on the earlier work by Feige
and Kilian [8]). They give a 2-query test which, if C passes
with probability q > 1/kα (for some fixed α > 0), certifies
that C can be approximately list-decoded as above. In par-
ticular, one codeword in the list must approximately agree
with a q-fraction of the entries in C. The proof is quite
involved. Moreover, they dash the hope of achieving expo-
nential decay of q in terms of k, showing it impossible for
2-query tests even for q < 1/k.

1.2 Our results
Our main result is that one can achieve exponential de-

cay if allowed one additional query! We give a 3-query test
which, if passed by C with probability q > exp(−k1/3), cer-
tifies that C can be approximately list-decoded, and in par-
ticular one codeword in the list approximately agrees with
a q-fraction of the entries in C. Our techniques (see below)
also allow us to considerably simplify the analysis of the
2-query test of [5] (for poly(1/k)-agreement).

To explain our next result, derandomized direct product
testing, we revisit the PCP motivation, and another param-
eter of the amplification quality which we have ignored so
far, namely proof size. Note that the k-fold direct-product
code blows up the “message” (namely the truth table of f ,
which would be the original PCP size) to the kth power.
To achieve subconstant soundness q, even assuming optimal
decay q = pk, we must take k to be nonconstant, which
immediately makes the proof size superpolynomial2. A nat-
ural way around this is to have the encoding of f provide
its values not on all k-tuples, but rather on a much smaller
subset of these tuples. The hope would be that such small
(but carefully chosen) subset will still allow testing, in that
an oracle C which passes the test would still be close to an
approximate direct product function.

Goldreich and Safra [12] gave the first derandomized di-
rect product test in the unique decoding regime (for con-
stant acceptance probability ε), using a constant number
of queries. The possibility of a derandomized 2-query test
(even in the unique decoding regime) was raised in [5] as
an open question. We solve it here for their 2-query test in
the list-decoding regime! We show that, for any k, there is
a polynomial family of k-tuples, such that if C passes the
2-query test of [5] with probability q > 1/kα then it must
have poly(q)-agreement with an approximate direct-product
codeword. In coding language, we provide a locally testable,
list-decodable k-fold direct-product code of polynomial rate.

Finally we return to the motivation of using direct-product
testing to improve the soundness amplification of PCPs. The
naive approach to do so would involve both the direct prod-
uct test and then a parallel repetition test3. Here, we show,

2This in effect precludes inapproximability results to depend
on P 6= NP
3Even this is not guaranteed to work directly from the def-
inition of direct product testing. One needs that a strategy
passing the direct product test is basically a probability dis-



as a“proof of concept”, a general construction improving the
soundness of a PCP from 1 − δ to exp(−δ

√
k) that makes

only two queries.
Our PCP construction turns out to be closely related to

the 2-prover protocol defined and analyzed by Feige and
Kilian [8]. Our analysis, however, yields a much better (ex-
ponential, as opposed to polynomial) decay in the number
k of repetitions, and is arguably simpler than that of [8].
We also want to stress that our PCP analysis does not use
our direct product testing result as a black-box. We see no
reason in principle why our test should not be improvable
to have better decay, or even a derandomized variant. Clar-
ifying the limits of our approach, compared with parallel
repetition, is an extremely interesting direction.

1.3 Our techniques, and DP decoding
The direct-product code we have been discussing all along

has been under study in complexity theory long before PCPs
were invented. Yao’s XOR Lemma [24, 17], and its sibling,
the “concatenation lemma” (proved equivalent by Goldreich
and Levin [10]), served for almost three decades as the ba-
sic hardness amplification tool. It received many different
proofs (e.g,. [11, 16]) worthy of its many uses.

Trevisan [22], motivated by proving the concatenation
lemma in the “uniform setting”, was the first to express it in
the coding language as follows: Given C with the promise
that it has q-agreement with some direct-product function,
find a list of all such functions.

There is no clear reduction between direct product testing
and direct product decoding.4 In direct product decoding,
you are guaranteed that a function is close to a direct prod-
uct; in testing, you wish to decide whether this is the case.
In decoding, you need to find the function; in testing, you
simply need to accept or reject. Finally, in decoding, you
typically are allowed a number of queries that is polyno-
mial in the agreement parameter. In testing, it is vital to
absolutely minimize the number of queries, ideally with a
small number that does not depend on the agreement at
all. Despite these differences, there seem to be deep con-
nections between the two concepts. In particular, testing
almost always seems harder, with an empirical reason being
that essentially the only way to analyze a test is to show
how it decodes a small list.

In the past couple of years we have been developing (with
Jaiswal) [14, 15] a set of tools which allowed us to get op-
timal list-decoding of the direct product code, as well as to
derandomize some of its versions (for the purpose of decod-
ing). A central part of that work, as is of all mentioned work
on testing, is understanding the following, extremely natu-
ral 2-query test applied to an oracle C: Pick two k-tuples
at random, under the condition that they agree on some
subset of size k′ of the coordinates. The main question is
what structural information can be obtained about C if it
passes the test (namely answers consistently on the com-
mon queries) with probability q. Precisely such structural
information is obtained in the decoding papers. This cur-
rent work draws much from these, and adapts them to the
testing problem. As explained above, in the testing world
one wants to certify what is given as an assumption in the

tribution over independent strategies, rather than merely
correlated with an independent strategy.
4Our comments below also apply to testing/decoding of
other codes (and properties).

decoding world, and so this adaptation is sometimes im-
possible (as the [5] counterexample shows) and sometimes
possible but intricate. But many of the technical notions
and lemmas nevertheless apply here. We feel that clarifying
the connections between the testing and decoding problems
will be extremely enlightening.

1.4 Formal statements of our main results
1.4.1 DP Testing

Here we formally state our direct product testing results.
Let C be a given oracle (circuit) that presumably computes
the direct product fk, for some function f : U → R.5 It will
be more convenient for us to view the k-wise direct product
as defined over sets of size k, rather than ordered k-tuples;
however, our results work for k-tuples as well.

We will argue that the following 3-query test, which we
call a Z-test, can certify this. Below, for disjoint sets A and
B, we denote by (A,B) the union A ∪ B. Also, for A ⊂ S,
we denote by C(S)|A the answers C(S) for the subset A.

Z-Test:
1. Pick a random k-set (A0, B0) ⊆ U , where

|A0| = k′ = Θ(
√
k).

2. Pick a random set B1 ⊆ U\A0 of size k−k′. If
C(A0, B0)|A0 6= C(A0, B1)|A0 , then reject; oth-
erwise continue.
3. Pick a random set A1 ⊆ U \ B1 of size k′. If
C(A0, B1)|B1 6= C(A1, B1)|B1 , then reject; oth-
erwise, accept.

The test makes 3 queries to the oracle C, and makes two
checks for agreement: first on a subset A0, then on a sub-
set B1. The three intersecting sets (B0, A0), (A0, B1), and
(B1, A1) can be pictured to form a shape of the letter “Z” –
whence the name of the test.

If we restrict the test above to just the first two steps, we
get the 2-query test analyzed by [6, 5]. We will call this 2-
query test a V-test (as two intersecting sets can be pictured
to form a letter “V”). As proved by [5], the V-test is useless
for the acceptance probability below 1/k. Here we show
that, with just one extra query, the resulting Z-test is useful
even for inverse-exponentially small acceptance probability.
For the proof of the following theorem, see Section 3.

Theorem 1.1 (DP Testing). There are constants 0 <
η1, η2 < 1 such that, if the Z-test accepts with probability ε,
for ε > e−k

η1
, then there is a function g : U → R such that,

for each of at least ε/4 fraction of k-sets S from U , the or-
acle value C(S) agrees with the direct product gk(S) for all
but at most k−η2 fraction of elements in S.

Next we describe our derandomized DP test. We de-
fine the derandomized direct product similarly to [15]. Let
k = qd for some prime power q, and some constant d (to
be determined). We identify the domain U with some m-
dimensional linear space over the field Fq, i.e., U = Fmq . The
k-wise direct product of a function f : U → R is defined as
follows: Given a d-dimensional linear6 subspace A of U , we
set fk(A) to be the values of f on all k = qd points in the

5Think of Boolean functions f for simplicity. However, as
we show in the full version of the paper, our tests work for
arbitrary ranges R.
6[15] uses affine subspaces, but one could also use just linear
subspaces, with a tiny loss in parameters.



subspace A (ordered according to some fixed ordering of U).
For subspaces A and B of U , we denote by A + B the set
{a + b | a ∈ A, b ∈ B}, where a + b means component-wise
addition of the vectors a and b.

The following is an analogue of the Z-test for the deran-
domized case.

Derandomized Z-Test:
1. For d0 = d/25 (for some constant d > 25),
pick a random d0-dimensional subspace A0, and
a random (d− d0)-dimensional subspace B0 of U
that is linearly independent from A0.
2. Pick a random (d−d0)-dimensional linear sub-
space B1 of U that is linearly independent from
A0. If C(A0 + B0)|A0 6= C(A0 + B1)|A0 , then
reject; otherwise, continue.
3. Pick a random d0-dimensional subspace A1

linearly independent fromB1. If C(A0+B1)|B1 6=
C(A1 +B1)|B1 , then reject; otherwise, accept.

Theorem 1.2 (Derandomized DP Testing). There are
constants 0 < η1, η2 < 1 such that, if the derandomized Z-
test accepts with probability ε, for ε > k−η1 , then there is a
function g : U → R such that, for each of at least ε/4 frac-
tion of d-dimensional subspaces S from U , the oracle value
C(S) agrees with the direct product gk(S) for all but at most
k−η2 fraction of elements in S.

Our techniques also allow us to get a simpler analysis
of the V-test for the case of acceptance probability ε >
poly(1/k), first shown by [5]; see Section 3.4 for the proof.
Moreover, the same analysis shows that the derandomized
V-test (the first two steps of the derandomized Z-test) also
works.

Theorem 1.3. There is a constant 0 < η < 1 such that, if
the derandomized V-test accepts with probability ε�

p
k′/k,

then there is a function g : U → R such that for at least
ε′ = Ω(ε6) fraction of subspaces S, the oracle C(S) agrees
with g(S) in all but at most k−η fraction of inputs x ∈ S.

Due to space limitations, we defer the analysis of deran-
domized DP tests to the full version of the paper. We re-
mark that, in both independent and derandomized cases, we
also get approximate, local, list-decoding algorithms for the
corresponding DP codes.

1.4.2 PCP
As another application of our techniques, we get a generic

reduction from 2-query PCPs, over an alphabet Σ with com-
pleteness σ and soundness 1− δ, to 2-query PCPs, over the
alphabet Σk with completeness 1−exp(−σk) and soundness

exp(−δk′), for k′ = Θ(
√
k). Our reduction preserves perfect

completeness: if the initial PCP has σ = 1, then so does the
resulting PCP. We describe this construction next.

Consider a constraint satisfaction problem (CSP) for reg-
ular undirected graphs, over an alphabet Σ. An instance
of such a CSP consists of a regular undirected graph G =
(U,E) on n nodes and a family Φ = {φe}e∈E of constraints,
where each edge e = (x, y) ∈ E has an associated con-
straint φe : Σ2 → {0, 1} (which need not be symmetric).
For 0 6 σ, δ 6 1, a CSP instance is σ-satisfiable if there is
an assignment f : U → Σ that satisfies at least σ fraction of
edge constraints; a CSP instance is δ-unsatisfiable if every

assignment f : U → Σ violates at least δ fraction of edge
constraints. For simplicity, here we consider CSPs with per-
fect completeness (i.e., with σ = 1); however, we can easily
handle CSPs with imperfect completeness (σ < 1) by appro-
priately relaxing the acceptance condition in our PCPs.

Given a CSP-instance (G,Φ) (where G is a regular undi-
rected graph on n nodes), we will ask for an assignment CE
that, given a set of k edges in the constraint graph G, returns
assignments to all of the end-points of these edges. We give
a 2-query verifier that always accepts an honest proof CE for
a satisfiable CSP instance, and almost certainly rejects any
proof for a δ-unsatisfiable CSP instance, where the rejection
probability is independent of the size of the alphabet Σ.

Let k′ = Θ(
√
k) be the parameter from our DP test above.

Our 2-query verifier is the following.

Verifier Y:
1. Pick a set of k′ random vertices A. For each
vertex v ∈ A, pick a random incident edge (v, v′)
in G. Let AE,1 be the set of these k′ edges. In-
dependently, pick another set AE,2 of k′ random
edges incident on the vertices in A. Finally, pick
two random sets of edges BE,1 and BE,2, of size
k − k′ each.
2. Query CE(AE,1, BE,1) and CE(AE,2, BE,2).
Accept iff the following checks pass:
(a) the query answers satisfy all constraints on
each of the BE,i’s

7, and
(b) they assign the same values to A.

Theorem 1.4. (i) If a CSP-instance (G,Φ) is satisfiable,
then there is a proof CE accepted by verifier Y with probabil-
ity 1. (ii) There is a constant c > 0 such that, if the CSP-
instance is δ-unsatisfiable, then no proof CE is accepted by

Y with probability greater than ε = e−(1/c)δk′
, for any δ, k′

such that k′ > c/δ.

The proof of this theorem is given in Section 4. Together
with the PCP Theorem [2, 1] (e.g., using [3]), but with-
out the parallel repetition theorem of [20], Theorem 1.4
implies that NP has 2-query PCPs with perfect complete-
ness, soundness exp(−

√
k), and proof size nO(k). In fact,

this theorem can be interpreted as a new parallel repeti-
tion theorem for certain 2-prover games, where the value of
the repeated game decreases exponentially with the number
of repetitions, independent of the alphabet size; see Theo-
rem 4.1 in Section 4.

Before Raz’s celebrated result [20], Feige and Kilian [8]
and Verbitsky [23] gave the first proofs that (some version
of) parallel repetition indeed decreases the soundness of 2-
prover games. It turns out that our techniques yield a signif-
icantly improved analysis of the construction from [8]. More
precisely, we can analyze the following 2-prover protocol,
which is essentially the same as the miss-match proof sys-
tem introduced by Feige and Kilian [8].

As before, let (G,Φ) be a regular graph CSP with the
vertex set U and the alphabet Σ. The first prover C1 gets as
input a k′-subset of vertices of G and returns an assignment
to all these vertices. The second prover is a function CE
that, given a set of k edges of G, returns assignments to
all the 2k end-points of these edges. Consider the following
protocol.

7Actually, we only need this for BE,2.



Verifier Y ′:
1. Pick a set of k′ random vertices A. For each
vertex v ∈ A, pick a random incident edge (v, v′)
in G. Let AE,2 be the set of these k′ edges. Pick
a set of (k − k′) random edges BE,2.
2. Query C1(A) and CE(AE,2, BE,2). Accept iff
the following checks pass:
(a) the query answers satisfy all constraints of
BE,2, and
(b) they assign the same values to A.

The advantage of Y ′ over Y is that Y ′ satisfies the pro-
jection property : the answers of the prover CE determine
the answers of the prover C1. We prove in Section 4.3 that
Y ′ has soundness exp(−δk′); in contrast, the analysis of [8]
yields only inverse polynomial soundness.

Theorem 1.5. (i) If a CSP-instance (G,Φ) is satisfiable,
then there are proofs (C1, CE) accepted by verifier Y ′ with
probability 1. (ii) There is a constant c > 0 such that, if the
CSP-instance is δ-unsatisfiable, then no proofs (C1, CE) are

accepted by Y ′ with probability greater than ε = e−(1/c)δk′
,

for any δ, k′ such that k′ > c/δ.

Currently, our rate of soundness decay exp(−δ
√
k) in The-

orems 1.4 and 1.5 is never better than Rao’s bound exp(−δ2k)
for projection games [19]. However, we see no reason why
the soundness decay in our PCP constructions cannot be
improved to exp(−δk).

2. PRELIMINARIES
For a natural number n ∈ N, we denote by [n] the set
{1, 2, . . . , n}. For 0 6 α 6 1, and k-tuples a and b, we write

a
>α

6= b to denote that a and b differ in more than α fraction
of positions.

For a graph G and a vertex v of G, we denote by NG(v)
the set of all neighbors of v in G; usually we will drop the
subscript G if the graph is clear from the context.

For our analysis of DP tests, we use basic sampling lem-
mas, which (as in [15]) can be stated in the graph-theoretic
language. Let G(L,R) = (L∪R,E) be a bipartite bi-regular
graph, where we think of L as left vertices, and R as right
vertices. For 0 6 α, β 6 1, we call G a (α, β)-sampler if,
for every subset F ⊆ L of measure µ > α, there are at most
β|R| vertices r ∈ R where

˛̨
Pr`∈N(r)[` ∈ F ]− µ

˛̨
> µ/2. In-

clusion graphs are graphs whose vertices are subsets of some
finite universe, and two vertices (subsets) are connected by
an edge iff one is contained in the other. We usually think
of these inclusion graphs as bi-partite, with smaller subsets
as the left vertices.

Let U be a finite universe. We will need the following
inclusion graphs G(L,R):

• Independent: L are all sl-subsets of U , and R are all
sr-subsets of U , where sr = t · sl for an integer t > 1.

• Subspaces: For U = Fmq , L are all dl-dimensional
linear subspaces of U , and R are all dr-dimensional
linear subspaces of U , where dr = c · dl for an integer
c > 1.

We show that these inclusion graphs are samplers.

Lemma 2.1 (Subset/Subspace Samplers). Both In-
dependent and Subspaces inclusion graphs G(L,R) defined
above are (α, β)-samplers, where

• Independent: β = e−Ω(αt), for (t · sl)2/|U| 6 e−Ω(αt)

and αt > Ω(ln 1/α).

• Subspaces: β = O(1/
p
αq(c−1)dl), for α3/2q(c−1)dl/2 >

10.

The proof idea is to use the Chernoff-Hoeffding bound for
Independent, and the Chebyshev bound for Subspaces. We
omit the details due to space limitations.

We will also need the following basic properties of sam-
plers; the proofs are straightforward.

Lemma 2.2. Let G = G(L,R) be any (α, β)-sampler. Let
0 6 λ, ρ 6 1 be any values such that λ > α and λρ/10 > β.
For any subset L′ ⊆ L of measure λ and any subset R′ ⊆ R
of measure ρ, we have

˛̨
Prr∈R′,`∈N(r)[` ∈ L′]− λ

˛̨
6 (2/3)λ.

Lemma 2.3. Let G = G(L,R) be any (α, β)-sampler. Let
R′ ⊆ R be any subset of measure ρ, and let λ = max{α, 10β/ρ}.
Then for all but at most 2λ fraction of vertices ` ∈ L, we
have

˛̨
Prr∈N(`)[r ∈ R′]− ρ

˛̨
6 (2/3)ρ.

For sampler graphs in the Independent case, we can show
a tighter version of Lemma 2.3, as follows; the proof is by a
careful application of the standard Chernoff bounds.

Lemma 2.4. Let G = (L∪R,E) be the bipartite inclusion
graph where L = U , and R is a collection of all k-subsets.
Let R′ ⊆ R be any subset of measure ρ. For any constant
0 < ν < 1, we have that for all but at most O((log 1/ρ)/k)8

fraction of vertices ` ∈ L, we have
˛̨
Prr∈N(`)[r ∈ R′]− ρ

˛̨
6

νρ.

Corollary 2.5. Let G = (L ∪ R,E) be the bipartite in-
clusion graph where L is the collection of all k′-subsets of
the universe U , and R is the collection of all k-subsets of
U , for some k′ < k. Let R′ ⊆ R be any subset of measure
ρ < 1/2. For any constant 0 < ν < 1, we have that for all
but at most O((log 1/ρ)/(k/k′)) fraction of vertices ` ∈ L,
we have

˛̨
Prr∈N(`)[r ∈ R′]− ρ

˛̨
6 νρ.

Proof. Think of each r ∈ R as a k/k′-tuple of sets of
size k′, and apply Lemma 2.4.

3. ANALYSIS OF THE DP TESTS
Our proof of Theorem 1.1 (and Theorem 1.2) is done in

three stages, as described next.
Stage I: Low probability consistency implies high

probability conditional consistency. In this stage, we
show that any function C that has non-negligible chance of
passing the V-test has very high probability of being simi-
larly consistent on the subset of instances for which it has
good conditional probability of passing.

More precisely, we show (in Section 3.1) that if the test
accepts with probability at least ε, then the collection of all
k-sets has the following structure. There are many (close
to ε/2 fraction) of k-sets (A0, B0) (with A0 of size k′) such
that C(A0, B0)|A0 = C(A0, B)|A0 for many (at least ε/2
fraction) of (k−k′)-sets B, and, moreover, almost every pair
of overlapping sets of the form (A0, E,D1) and (A0, E,D2)
(where |E| = |A0|) has the property: if C(A0, E,D1)|A0 =
C(A0, E,D2)|A0 , then it is also the case that C(A0, E,D1)|E
and C(A0, E,D2)|E agree in almost all positions.

8Here the hidden constant only depends on ν.



The sets B satisfying C(A0, B0)|A0 = C(A0, B)|A0 are
called consistent with (A0, B0); we denote by ConsA0,B0

the collection of all such consistent B’s. We call (A0, B0)
good if the collection ConsA0,B0 has measure at least ε/2.
We call (A0, B0) (α, γ)-excellent if it is good and, moreover,

PrE,D1,D2 [(E,Di) ∈ ConsA0,B0 , i = 1, 2, &

C(A0, E,D1)|E
>α

6= C(A0, E,D2)|E ] 6 γ,

where |E| = |A0| = k′. (Think of α = poly(1/k) and γ =
poly(ε).)

In this terminology, we show that there are at least about
ε/2 excellent k-sets (A0, B0). Note that for every excellent
k-set (A0, B0), the (k−k′)-sets B ∈ ConsA0,B0 enjoy a very
strong consistency property: almost all pairs of overlapping
sets B1 = (E,D1) and B2 = (E,D2) from Cons are such
that C(A0, B1)|E and C(A0, B2)|E are almost identical.

Stage II: Unique decoding on a subset. Next, we
show that we can do unique decoding on any subset such
as ConsA0,B0 above, where there is very high conditional
probability of consistency. We can think of this as unique
decoding of the direct product code where there are two
types of noise: a very high number of erasures, and in addi-
tion a small number of values changed.

In Section 3.2, we use the strong consistency property
of overlapping sets from ConsA0,B0 (for an excellent set
(A0, B0)) to show that there is a function g such that C
computes the (approximate) direct product of g over almost
all k-tuples {(A0, B) | B ∈ ConsA0,B0}. That is, there is
a function g that is locally a direct-product function for C
restricted to k-sets (A0, B) for B ∈ ConsA0,B0 . This func-
tion g is defined very naturally as the plurality function: on
input x, the value g(x) is the most frequent value among the
outputs of C(A0, B), over all B ∈ ConsA0,B0 which contain
x. (This is similar to the results in [8, 5], but our proof
techniques are different and yield better parameters.)

Stage III: Local decoding to global decoding. So
far, the analysis used only the V -test, and showed that con-
ditioned on being likely to pass the test, the answers to the
first two oracle queries (A0, B0) and (A0, B1) are likely to
be (almost) of the form: gA0(B), a direct product for some
function that depends only on A0. Note that the counterex-
amples from [5] for the V-test have exactly this form, and
show that, for ε < 1/k, it is possible to have the above prop-
erty, yet have very different functions gA depending on the
set A. The third query is meant to eliminate this possibility.

In Section 3.3, we use the third query (A1, B1) to argue
that the same function g from the previous stage is actually
also a global direct-product function for C on at least close
to ε fraction of all possible k-sets.

Note that this third query is needed only if the acceptance
probability ε < 1/k. For the case of ε > poly(1/k) (more

precisely, for ε �
p
k′/k), we show in Section 3.4 that the

two queries of the V-test alone suffice, thereby re-proving
the result of [5].

3.1 Excellence
Using arguments similar to those in [15], we get

Lemma 3.1. If PrA0,B0,B1 [C(A0, B0)|A0=C(A0, B1)|A0 ] >
ε, then a random (A0, B0) is good with probability at least
ε/2.

Lemma 3.2. PrA0,B0 [(A0, B0) is good but not (α, γ)-

excellent] < γ′/γ, where γ′ = e−Ω(αk′).

As an immediate corollary of Lemmas 3.1 and 3.2, we get

Corollary 3.3. If PrA0,B0,B1 [C(A0, B0)|A0 =
C(A0, B1)|A0 ] > ε, then a random good set (A0, B0) is (α, γ)-
excellent with probability at least 1 − ε2, for α and γ such
that αk′ > Ω(log 1/(γε3)).

3.2 Excellence implies local agreement
Let us focus on Cons = ConsA0,B0 for some fixed (α, γ)-

excellent (A0, B0). Define the function g as follows: for every
x ∈ U \A0, set g(x) = PluralityB∈Cons: x∈B C(A0, B)|x; if
there is no B ∈ Cons such that x ∈ B, then we set g(x) to
some default value, say 0.

Lemma 3.4. There are fewer than ν = O(γ/ε2) < ε frac-
tion of sets B ∈ Cons such that C(A0, B)|x 6= g(x) for more
than β = 40α fraction of x ∈ B, where α > Ω((ln 1/ε)/(k/k′)).

We first give an outline of the proof of Lemma 3.4. For the

sake of contradiction, suppose that PrB∈Cons[C(A0, B)|B
>β

6=
g(B)] > ν, where g(B) denotes the |B|-tuple of values of the
direct product of g on the input set B. This means that

PrB⊆U\A0 [B ∈ Cons & C(A0, B)|B
>β

6= g(B)] > ν′, (1)

for ν′ > νε/2 (since Cons has measure at least ε/2 by the
definition of goodness of (A0, B0)).

Imagine choosing a random subset E of B. By Chernoff,
we get that with probability close to 1, the set E has close
to β fraction of inputs x ∈ E where C(A0, B)|x 6= g(x). Let
E′ ⊂ E be the set of those x ∈ E where C and g disagree.

On the other hand, using the definition of g as the plu-
rality function as well as some basic sampling lemmas, we
will show that, for almost every such random subset E of B
and for the subset E′ ⊆ E defined as above, there are an
Ω(ε) fraction of (k − k′)-sets B′ such that B′ ∈ Cons and
C(A0, B

′)|E′ agrees with g(E′) in Ω(1)-fraction of positions.
Note that these two facts imply that C(A0, B)|E′ and

C(A0, B
′)E′ disagree in a constant fraction of positions in

E′. Since E′ has size close to β|E|, we get that C(A0, B)|E
and C(A0, B

′)E disagree in Ω(β) fraction of positions. This
implies that one can pick, with non-negligible probability, a
pair of sets B and B′ with overlap E such that B,B′ ∈ Cons
and C(A0, B)|E and C(A0, B

′)|E disagree in many positions,
contradicting the excellence property of (A0, B0).

We provide the detailed proof next. We abstract away
some of the parameters in the statement of Lemma 3.4, and
re-state it as Lemma 3.6 below. Here, we prove the result
for the Boolean case; in the full version of the paper, we
show how to reduce the general case to the Boolean case.

Definition 3.5. Let Cons be a subset of Uk of measure
at least ε. Let C′ be a function from Cons to Rk. We say
C′ is (α, γ)-excellent with respect to Cons if the following
holds: Pick E ⊂ U of size k′, D1, D2 ⊂ U of size k − k′

independently at random. Then the probability that E∪D1 ∈
Cons,E ∪ D2 ∈ Cons and C′(E ∪ D1)|E

>α

6= C′(E ∪ D2)|E
is at most γ.9

9We point out to the careful reader the following change in
notation: before we had Cons of measure ε/2; k was k− k′;
and U was U \A0.



Define the function g as before. That is, for every x ∈ U ,
set g(x) = PluralityB∈Cons: x∈B C′(B)|x; if there is no
B ∈ Cons such that x ∈ B, then we set g(x) to some default
value, say 0.

Lemma 3.6. Assume R = {0, 1}. If C′ is (α, γ)-excellent
with respect to Cons, then there are fewer than ν = O(γ/ε2) <
ε fraction of sets B ∈ Cons such that C′(B)|x 6= g(x)
for more than β = 40α fraction of x ∈ B, where α >
Ω((ln 1/ε)/(k/k′)).

Towards a contradiction, suppose that PrB∈Cons[C
′(B)

>β

6=
g(B)] > ν, where g(B) denotes the |B|-tuple of values of the
direct product of g on the input set B. This means that

PrB⊆U [B ∈ Cons & C′(B)
>β

6= g(B)] > ν′, (2)

for ν′ > νε (since Cons has measure at least ε).
We will need the following notation. For each x ∈ U , we

denote by Bx the collection of all sets B that contain x, and
let Consx = Cons ∩ Bx. Analogously, for each k′-subset
E ⊂ U , we denote by BE the collection of all sets B that
contain E, and let ConsE = Cons ∩ BE .

First, by Lemma 2.4 and Corollary 2.5, we get the follow-
ing two claims.

Claim 3.7. For all but at most O((ln 1/ε)/k) fraction of
inputs x ∈ U , we have |Consx|/|Bx| > ε/6.

Claim 3.8. For all but at most O((ln 1/ε)/(k/k′)) frac-
tion of k′-subsets E ⊂ U \A0, we have |ConsE |/|BE | > ε/6.

Claim 3.9. Let x be any input such that |Consx|/|Bx| >
ε/6. Then, for all but at most O((ln 1/ε)/(k/k′)) fraction of
k′-sets E containing x, PrB∈ConsE [C′(B)|x = g(x)] > 1/10.

Proof. Let S be a collection of all (k′ − 1)-size subsets
Ex of U , and let T be a collection of all (k− 1)-size subsets
Bx of U . By assumption, we know that the measure µ of
those sets Bx such that Bx∪{x} ∈ Cons is at least ε/6. Let
Q denote the set of all such sets Bx.

Let Q′ be the subset of all those sets Bx ∈ Q where C(Bx∪
x)|x = g(x). Let µ′ be the measure of this Q′ in Bx. By the
definition of g, we know that µ′/µ > 1/2, and so µ′ > ε/12;
here we use the assumption that g is a Boolean function.

Let t = b|Bx|/|Ex|c ≈ k/k′ ≈
√
k. By Corollary 2.5, we

get that all but at most δ 6 O((ln 1/ε)/t) fraction of subsets
Ex are such that, among the sets Bx containing Ex, the
measure of those Bx that fall into Q is between µ/3 and
5µ/3. Simultaneously, the measure of those Bx ⊃ Ex that
fall into Q′ is between µ′/3 and 5µ′/3, for all but at most
δ fraction of subsets Ex. Hence, for at least 1− 2δ fraction
of sets Ex, PrBx:Ex⊂Bx [C′(Bx ∪ x)|x = g(x) | Bx ∪ {x} ∈
Cons] > (µ′/3)/(5µ/3) > 1/10, as required.

Claim 3.10. For δ = O((ln 1/ε)/(k/k′)),

PrE,x∈E [PrB∈ConsE [C′(B)|x = g(x)] > 1/10] > 1− 2δ.

Proof. The distribution (E, x ∈ E) is the same as (x,E 3
x). By Claim 3.7, we know that all but at mostO((ln 1/ε)/k)
of x are such that Consx is large. For each of these x, we
get by Claim 3.9 that all but O((ln 1/ε)/(k/k′)) of E’s will
satisfy the event in the statement of the present claim. So
over random choices of x and E 3 x, the required event
occurs with probability at least 1−O((ln 1/ε)/(k/k′)).

By a simple averaging argument, we get from Claim 3.10
the following corollary.

Claim 3.11. For δ = O((ln 1/ε)/(k/k′)) as in Claim 3.10,
let δ′ = 10δ, and let δ′′ = 0.1 (so that δ = δ′δ′′). For at least
1−δ′′ fraction of sets E, we have that, for at least 1−δ′ frac-
tion of inputs x ∈ E, PrB∈ConsE [C′(B)|x = g(x)] > 0.1].

Proof of Lemma 3.6. Let δ′ = 10δ and δ′′ = 1/10, for
the δ in Claim 3.11. We get by Claims 3.8 and 3.11 that, for
at least 0.3− o(1) fraction of uniformly random subsets E,

1. the fraction of sets B′ ⊃ E that fall into Cons is at
least ε/6, and

2. for all but δ′ fraction of x ∈ E, PrB′∈ConsE [C′(B′)|x =
g(x)] > 1/10.

Now consider the following distribution of subsets E: pick
a random k-subset B satisfying the event of Eq. (2), and
then pick a random k′-subset E of B. By Lemmas 2.1 and
2.2, we conclude that when E is sampled according to this
distribution, we get with probability at least 0.29 a set E
such that both conditions (1) and (2) above still hold.

For sets B and E ⊂ B, we denote by E′ ⊆ E the subset
of those x ∈ E where C′(B)|x 6= g(x). For every B satisfy-
ing the event of Eq. (2), we get by Chernoff-Hoeffding that
almost all10 subsets E ⊂ B are such that |E′| > (0.9β)|E|.
Combining this with our earlier argument, we get that for
a random k-subset B satisfying the event of Eq. (2), if we
pick a random subset E ⊂ B, we get with probability at
least 0.29− o(1) > 1/4, a subset E such that conditions (1)
and (2) above hold, and additionally, |E′| > (0.9β)|E|.

Fix any set E that satisfies the three conditions stated
above. Let E′ ⊂ E be as above. Let E′′ ⊆ E′ be the subset
of those inputs x ∈ E′ where PrB′∈Cons[C

′(B′)|x = g(x)] >
1/10. By condition (2), we get that |E′′| > |E|(0.9β − δ′),
which can be made at least |E|β/2 by choosing β sufficiently
larger than δ′ (as assumed in the statement of the lemma).

Thus, for every x ∈ E′′, there are at least 1/10 fraction
of sets B′ ∈ ConsE such that C′(B′)|x = g(x) 6= C′(B)|x.
By averaging, for at least 1/20 fraction of B′ ∈ ConsE ,
we have C′(B′)|x 6= C′(B)|x for at least 1/20 fraction of
x ∈ E′′. Since we also know that |E′′| > |E|β/2, we get

that C′(B′)|E
>β/40

6= C′(B)|E , for at least 1/20 fraction of
B′ ∈ ConsE . By condition (1) on our fixed set E, we have
that ConsE has measure at least ε/6, and so

PrB′:E⊂B′ [B′ ∈ Cons & C′(B′)|E
>β/40

6= C′(B)|E ] > ε/120.
(3)

Since, for a random B conditioned on satisfying the event
of Eq. (2), at least 1/4 fraction of sets E satisfy Eq. (3),

we obtain PrB,E⊂B,B′⊃E [B′ ∈ Cons & C′(B′)|E
>β/40

6=

C′(B)|E | B ∈ Cons & C′(B)
>β

6= g(B)] > ε/480, where
the probability is over picking a random set B first, then
picking its random k′-subset E, and finally picking a ran-
dom set B′ that contains E. Lifting the conditioning on the

set B, we get PrE,B⊃E,B′⊃E [B′ ∈ Cons & C′(B′)|E
>β/40

6=
C′(B)|E & B ∈ Cons] > ν′ε/480 > νε2/960, which con-
tradicts the (α, γ)-excellence property for α = β/40 and
γ = νε2/960. For γ < ε3/960, we get that ν < ε, as re-
quired.

10more precisely, all but at most exp(−β|E|) fraction



3.3 Local agreement implies global agreement
Here we prove the following lemma, which implies Theo-

rem 1.1.

Lemma 3.12. If the Z-test accepts with probability at least

ε > e−Ω(αk′), then there is a function g : U → R such that
for at least ε′ = ε/4 fraction of all k-size sets S, the oracle
C(S) agrees with gk(S) in all but at most α′ = 81α fraction
of inputs x ∈ S, where k > Ω(k′2).

Proof sketch. We just sketch the argument, blurring
over many details. Let (A0, B0) be randomly chosen in the
first step of the Z-Test. If the test does not reject in step
2, we know that (A0, B0) is a good set, and moreover, by
Corollary 3.3, it is an excellent set. By Lemma 3.4, we get
that the oracle C on (almost all) k-sets (A0, B), for B ∈
ConsA0,B0 , (mostly) agrees with the direct product of the
majority function g (defined for ConsA0,B0). We will argue
that C will mostly agree with gk also globally, on at least ε′

fraction of all k-size sets S.
Consider picking sets B1 and A1 as follows: Pick a random

k-set S, then randomly choose a subset B1 ⊂ S, and set
A1 = S\B1; this choice of B1 and A1 is essentially equivalent
to the way they are chosen by the Test. For the sake of
contradiction, suppose that there are fewer than ε′ sets S
where C and gk have agreement in more than 1−α′ fraction
of positions. Consider picking a random k-set S. If S is one
of these ε′ sets, then Test may accept, but this happens only
with probability ε′ < ε. So assume that S is a random k-
set that contains more than α′ fraction of inputs x where
C(S)|x 6= g(x).

Pick a random subset B1 of S of size k − k′; set A1 =
S \ B1. If B1 6∈ ConsA0,B0 , Test will reject. Otherwise, by
Lemma 3.4, we get that g(B1) = C(A0, B1)|B1 on almost

all inputs x ∈ B1. At the same time, since C(S)
>α′

6= g(S),

we get that with high probability C(A1, B1)|B1

>α′/2

6= g(B1).
But then C(A0, B1)|B1 6= C(A1, B1)|B1 , and the Z-test re-
jects (in step 3). Thus, if there are few sets S where C and gk

have large agreement, the Z-test will accept with probability
less than ε.

3.4 Two queries suffice when ε > poly(1/k)

Here we give a simpler proof of the following result of [5].
The same argument also yields Theorem 1.3.

Theorem 3.13 ([5]). There is a constant 0 < η < 1
such that, if the V-test accepts with probability at least ε �p
k′/k, then there is a function g : U → R such that for at

least ε′ = Ω(ε6) fraction of all k-size sets S, the oracle C(S)
agrees with gk(S) in all but at most k−η fraction of x ∈ S.

Key to the proof of this theorem is the ability to show
that, if the V-test accepts, the following “double-excellence”
holds. For many k-subsets S, two random disjoint k′-subsets
A1, A2 of S are simultaneously excellent11. With such pairs
it is possible to move from “local consistency” to “global con-
sistency” without an additional query (which was needed for
exponentially small success probability). Indeed, we derive
the existence of such pairs from the relatively high success
probability assumed here. Moreover, the counterexample
of [5] for sublinear success precisely precludes such disjoint
excellent pairs.

11more precisely, both (A1, S \A1), (A2, S \A2) are excellent.

Claim 3.14. Assume the V-test accepts with probability
ε �

p
k′/k. Consider the following random experiment:

Pick disjoint random k′-subsets A1, A2 ⊂ U ; pick random
(k− k′)-subsets B1 ⊂ U \A1 and B2 ⊂ U \A2; pick random
(k − 2k′)-subset B ⊂ U \ (A1 ∪ A2). Let B′ = B ∪ A1,
and let B′′ = B ∪ A2. Then Pr[(Ai, Bi) is excellent, i =
1, 2, & B′ ∈ ConsA2,B2 & B′′ ∈ ConsA1,B1 ] > Ω(ε5).

Proof sketch. The proof follows by analyzing the fol-
lowing equivalent experiment: Pick random k-subset S ⊂ U ,
randomly partition S into ` = k/k′ subsets of size k′ each;
pick two distinct random k′-subsets A1 and A2 in this par-
tition of S; pick random B1 and B2; set B = S \ (A1 ∪ A2)
(and, as before, set B′ = B ∪A1 and B′′ = B ∪A2).

Claim 3.15. Assume the V-test accepts with probability
ε �

p
k′/k. Let A1, A2, B1, B2, B,B

′, B′′ be as in the ran-
dom experiment of Claim 3.14. Let gAi be the plurality func-
tion over sets in ConsAi,Bi , for i = 1, 2. For γ � ε7,

Pr[(Ai, Bi) is (α, γ)-excellent, i = 1, 2, & gA1(B)
6O(α)

6=
gA2(B)] > Ω(ε5).

Proof. Let β = 40α. Conditioned on (A1, B1) being
(α, γ)-excellent and B′′ being a random set in ConsA1,B1 , we

get by Lemma 3.4 that gA1(B′′)
>β

6= C(A1, B
′′)|B′′ for fewer

than γ/ε2 � ε5 fraction of random (k−k′)-subsets B′′; sim-
ilarly, for (A2, B2) and B′. Together with Claim 3.14, this
implies that the following event happens with probability at

least Ω(ε5): (Ai, Bi) is (α, γ)-excellent, i = 1, 2, gA1(B′′)
6β

6=

C(A1, B
′′)|B′′ , gA2(B′)

6β

6= C(A2, B
′)|B′ . The latter two

conditions imply gA1(B)
6β′

6= C(A1, B
′′)|B and gA2(B)

6β′

6=
C(A2, B

′)|B , for β′ 6 β(1 + o(1)). Since C(A1, B
′′) =

C(A2, B
′), we conclude that gA1(B)

62β′

6= gA2(B).

Claim 3.16. For Ω(ε5) fraction of random (A1, B1) and
(A2, B2), we have that (A1, B1) and (A2, B2) are excellent,
and that gA1(x) = gA2(x) on all but O(α) fraction of inputs
x ∈ U .

Proof. By Claim 3.15 and averaging, we get that for at
least Ω(ε5) fraction of random (A1, B1) and (A2, B2), it is
the case that (Ai, Bi) is excellent, for i = 1, 2, and that

PrB [gA1(B)
6α′

6= gA2(B)] > Ω(ε5), for some α′ = O(α). Fix
any such (A1, B1) and (A2, B2). Suppose Prx∈U [gA1(x) 6=
gA2(x)] > 2α′. Pick a random B ⊂ U \ (A1 ∪A2) of size k−

2k′. By Chernoff, the probability that gA1(B)
6α′

6= gA2(B)

is less than ν = e−Ω(α′|B|). This is a contradiction since
ν � e5.

Proof of Theorem 3.13. By Claim 3.15 and averag-
ing, there are Ω(ε5) pairs (A1, B1) where PrA2,B2,B [(A2, B2)

is (α, γ)-excellent & gA1(U)
6α′

6= gA2(U)] > Ω(ε5), with
A2, B2, B chosen as in the random experiment of Claim 3.15,
and α′ = O(α). Fix any such (A1, B1). We show that C is
close to the direct product of gA1 on poly(ε) fraction of k-
sets S ⊂ U .

Picking a random k-set S is equivalent to picking disjoint
random subsets A2 and E, of size k′ each, B2 of size k− k′,
and B of size k−2k′, and setting S = B∪A2∪E. Condition
on the event that random (A2, B2) is excellent and gA1 and



gA2 disagree on at most α′ fraction of inputs in U ; this
event happens with probability Ω(ε5). Further condition on
the event that (B ∪ E) ∈ ConsA2,B2 ; this event happens
with probability Ω(ε) (given the previous conditioning on
(A2, B2)).

Given these conditionings, we get by Lemma 3.4 that,
with probability 1−o(1), gA2(B∪E) = C(S)|B∪E in all but
at most O(α) fraction of positions. By Chernoff, with prob-
ability 1− exp(α|B|) > 1− o(1), gA1(B ∪E) = gA2(B ∪E)
in all but at most O(α) fraction of positions. Hence, with
probability 1 − o(1), gA1(B ∪ E) = C(S)|B∪E except for
O(α) fraction of positions, and thus gA1(S) = C(S) except
for O(αk) positions (since k′/k 6 O(α)). Lifting the con-
ditionings, we get, for Ω(ε6) of random k-sets S ⊂ U , that
gA1(S) = C(S) except for O(αk) positions.

4. 2-QUERY PCPS
4.1 Proof of Theorem 1.4

Throughout this section, we identify U (the vertex set of
the CSP graph G) with the universe U , and the alphabet Σ
with the range R (to be consistent with the notation used
earlier in the paper for direct product testing).

For part (i), an honest proof CE (based on some satisfying
assignment for (G,Φ)) will be accepted with probability 1.

For part (ii), intuitively, we will argue that the consistency
of the proof CE on a vertex set A implies the existence of
an assignment g : U → Σ consistent with CE . But no as-
signment can satisfy significantly more than δ fraction of the
random edge constraints of BE,2 (by the soundness assump-
tion). Therefore CE will be rejected by Y. We provide the
details next.

Let us define (for the sake of the analysis only) a proba-
bilistic function C from k sets of vertices to Rk as follows:
Given a k-size vertex-set S, pick k edges SE at random, one
incident to each node in S. Output CE(SE)|S .

Imagine applying our DP testing analysis (from Section 3)
to this function C. The V-test with respect to C is as follows:
Pick a random k′-size vertex-set A, pick random (k−k′)-size
vertex sets B1 and B2 at random, and then check whether
C(A,B1)|A = C(A,B2)|A. Note that this is exactly the
same as the consistency check done in Step 2(b) of our veri-
fier Y above. (Indeed, C would pick random edges AE,1 and
AE,2 incident to A, and then random edges incident to each
of Bi, i = 1, 2. The latter are just sets of random edges,
since the graph is regular, and so have the same distribution
as BE,i.)

Let a be the values assigned to A by CE(AE,1, BE,1) in
Step 2 of verifier Y. For δ and ε in the statement of the
present theorem, we set α = δ/320 and γ = ε4. We clas-
sify pairs (A, a) as being good, (α, γ)-excellent, or neither,
with respect to C, using the corresponding definitions from
Section 312.

We consider three ways that verifier Y may accept the
given proof CE :

1. (A, a) is not good. Then the conditional probability of
passing the consistency check in Step 2(b) is the probability
that CE(AE,2, BE,2)|A = a. This is the same as the prob-
ability that C(A,B2)|A = a, which is at most ε/2 by the
definition of goodness.

12with a natural modification to allow randomized oracles
C; so all the probabilities are now also over the internal
randomness of the oracle C being tested.

2. (A, a) is good but not excellent. By Lemma 3.2, the
probability that (A, a) is good but not (α, γ)-excellent is

less than e−Ω(αk′)/γ, which can be made less than ε/4 by
choosing a sufficiently large constant c (in the statement
of the present theorem); here and below we also use our
assumption that k′ > c/δ.

3. (A, a) is excellent. By Lemma 3.4, there is g = gA,a :

U → Σ,13 so that PrB [C(A,B)|A = a & C(A,B)|B
>40α

6=
g(B)] < γ/ε2 = ε2, where the probability is over random
(k−k′)-size vertex sets B ⊆ U \A, and internal randomness
of C. Making the internal randomness of C explicit, we can
re-write the probability above as follows:

Pr[CE(AE,2, BE,2)|A = a&CE(AE,2, BE,2)|B
>40α

6= g(B)] < ε2,
(4)

with the probability being over AE,2, BE,2, B, where AE,2 is
the set of random edges incident on A, the set BE,2 is the
set of (k − k′) random edges (as chosen by our verifier Y),
and B is the set of vertices obtained by randomly selecting
an end-point from every edge in BE,2. (Note, thanks to the
regularity of the graph G, this way of choosing BE,2, B is
the same as choosing a k′-size vertex set B first and then
choosing its random incident edges BE,2.)

We claim that PrAE,2,BE,2 [CE(AE,2, BE,2)|A = a &

CE(AE,2, BE,2)|BE,2
>100α

6= g(BE,2)] < ε2 + exp(−αk). In-
deed, suppose otherwise. Condition on any AE,2, BE,2 sat-
isfying the random event in the above probability expression.
Pick B by randomly selecting an end-point from every edge
in BE,2. Every edge in BE,2 where CE and g disagree will
contribute, with probability at least 1/2, a vertex to B where
CE and g disagree. (This is because at least one of the end-
points of this edge is in disagreement with g.) By Chernoff,
the probability that B contains fewer than 40α fraction of
vertices where CE and g disagree is less than exp(−αk). But
then we get a contradiction to Eq. 4 above.

Finally, by the soundness assumption for (G,Φ), every
assignment violates at least δ fraction of edge constraints in
G. In particular, this holds for our g. The (k − k′) edges in
BE,2 are random and independent edges in G. By Chernoff,
the probability that fewer than δ/2 fraction of them have

their constraints violated by g is e−Ω(δ·(k−k′)) < ε/8.
Assuming that none of the low-probability events above

happened, we get that the answers CE(AE,2, BE,2) violate at
least δ/2−100α = (3/16)δ fraction of the edges in BE,2. But
then verifier Y would reject. It follows that the verifier may
accept with probability at most ε/2+ ε/4+ ε2 +exp(−αk)+
ε/8 < ε, as required.

4.2 A new parallel repetition theorem
Let G(V,E) be a d-regular graph, and let C : E → 2Σ2

be
a set of edge constraints. Consider the game T = T (G,C),
where the verifier picks a pair of edges at random (from some
distribution P ), sends one edge to each prover, and checks
two things about the answers (that label the endpoints of
each edge): (a) the edge constraints are satisfied, and (b) if
the two edges share a vertex, they agree on its label.

13Here, for x ∈ U \ A, g(x) is defined to be the most likely
value C(A,B)|x, over random (k − k′)-size vertex-sets B
containing x (and internal randomness of C), conditioned
on C(A,B)|A = a; if no such value exists for x, we set g(x)
to equal some default symbol in Σ.



The most natural (and used) distribution P is to pick a
pair of incident edges uniformly at random (so condition (b)
always applies); in this case the value of the game T [P ]
is essentially the same as that of the game S. But one can
also the following natural distribution Q: pick the two edges
uniformly at random. In this case, condition (b) almost
never applies, and the value of the game T [Q] is almost 1.

The family of games we will consider use a mixture of these
two distributions, pP + qQ with p+ q = 1. In particular, we
use p = 1/m. Note that if the value of the game with P is
1− v, then the value of the new game T [(P + (m− 1)Q)/m]
is 1 − (v/m). While ”diluting” the quality of the game, the
advantage of the mixture is in making it hard for the play-
ers to coordinate; this is very similar to miss-match proof
systems of [8]. In particular, the famous counterexamples of
Feige and Verbitsky[9] and of Raz [21] don’t seem to hold
for such games. Indeed, we get the following.

Theorem 4.1. For k = m2, the value of the game T [(P+
(m−1)Q)/m]k (the game T repeated k times, in the standard

sense of parallel repetition) is (1− (v/m))Ω(k).

4.3 The Feige-Kilian parallel repetition: Proof
of Theorem 1.5

First we observe that our analysis of the V-test can be
easily adapted to the scenario where the two queries are
made to two different provers. The first prover C1 gives an
assignment for k′-subsets of the universe U , and the second
prover C2 gives an assignment for k-subsets of U . The test
picks a random k′-subset A0 ⊆ U and a random k-subset
(A0, B1) ⊆ U , and accepts if C1(A0) = C2(A0, B1)|A0 .

Here we define ConsA0 as the set of all those k−k′-subsets
B where C1(A0) = C2(A0, B)|A0 . We call a set A0 good if
the measure of ConsA0 is at least ε/2. We call A0 (α, γ)-
excellent if it is good and PrE,D1,D2 [(E,Di) ∈ ConsA0 , i =

1, 2, & C2(A0, E,D1)|E
>α

6= C2(A0, E,D2)|E ] 6 γ.
One can easily check that all lemmas in Sections 3.1 and

3.2 continue to hold for this new test (with the same proofs).
That is, we get the following: (1) if the new test accepts
with probability at least ε, then a random subset A0 is good
with probability at least ε/2; (2) the probability that A0

is good but not (α, γ)-excellent is less than γ′/γ, where
γ′ = exp(αk′); and (3) for any excellent A0 and the cor-
responding plurality function g = gA0 (defined with respect
to ConsA0), there are fewer than ν = O(γ/ε2) fraction of
sets B ∈ ConsA0 such that C2(A0, B)|x 6= g(x) for more
than 40α fraction of x ∈ B, where α > Ω((ln 1/ε)/(k/k′)).

Now the analysis of the verifier Y ′ is very similar to that
of the verifier Y given in Section 4.1. We just define the
randomized “vertex-proof” C2 from k-sets of vertices to Σk

as follows: Given a k-size vertex set S, pick at random k
edges SE , one incident edge per node in S; output CE(SE)|S .
Then we observe that the test Y ′ is applying (the 2-prover
version of) the V-test to the provers C1 and C2. The rest of
the argument is exactly the same as in Section 4.1.

We conclude by remarking that while our current tech-
niques stop at the exponent

√
k, we see no obvious obstacle

to improving it to k, and proving possibility/impossibility of
this is an open question we leave. Another interesting ques-
tion is whether our PCP construction works for k < 1/δ2;
our current analysis seems to require that k > 1/δ2. Perhaps
the most interesting open question is whether our techniques

can be used to construct a 2-query PCP with sub-constant
soundness, thereby providing an alternative to [18].
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