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Abstract

The “direct product code” of a function f gives its values on all k-tuples (f(x1), . . . , f(xk)).
This basic construct underlies “hardness amplification” in cryptography, circuit complexity and
PCPs. Goldreich and Safra [GS00] pioneered its local testing and its PCP application. A recent
result by Dinur and Goldenberg [DG08] enabled for the first time testing proximity to this
important code in the “list-decoding” regime. In particular, they give a 2-query test which
works for polynomially small success probability 1/kα, and show that no such test works below
success probability 1/k.

Our main result is a 3-query test which works for exponentially small success probability
exp(−kα). Our techniques (based on recent simplified decoding algorithms for the same code
[IJKW08]) also allow us to considerably simplify the analysis of the 2-query test of [DG08]. We
then show how to derandomize their test, achieving a code of polynomial rate, independent of
k, and success probability 1/kα.

Finally we show the applicability of the new tests to PCPs. Starting with a 2-query PCP with
projection property over an alphabet Σ and with soundness error 1−δ, Rao [Rao08] (building on
Raz’s (k-fold) parallel repetition theorem [Raz98] and Holenstein’s proof [Hol07]) obtains a new
2-query PCP over the alphabet Σk with soundness error exp(−δ2k). Our techniques yield a 2-
query PCP with soundness error exp(−δ

√
k). Our PCP construction turns out to be essentially

the same as the miss-match proof system defined and analyzed by Feige and Kilian [FK00], but
with simpler analysis and exponentially better soundness error.
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1 Introduction

1.1 Motivation and background

Often in complexity theory, we want to make a somewhat hard problem into a much harder one.
One basic tool for doing this is the direct product construction, where the new problem requests
answers to a large number (say k) of instances of the original problem. While an intuitive and very
useful general method, its correctness (establishing a “direct-product theorem”) is frequently non-
trivial, often beset with subtleties, and sometimes just wrong. If the answers for the k instances
are decided independently, then the solver’s probability of success drops exponentially with k.
However, sometimes the solver can benefit from using a correlated strategy, basing the answer for
each instance on the entire set of instances.

A good example is Raz’s celebrated parallel repetition theorem [Raz98]. Here, the measure of
hardness being improved is the soundness of a probabilistically checkable proof (PCP). Note that
the soundness of a PCP often yields a hardness of approximation result for a related problem,
so it is very important to get PCPs with optimal soundness. Let us recall how this amplifica-
tion works. Assume that in the original PCP, on randomness r, the verifier picks two queries
at positions x, y of the proof A, and decides according to the “answers” A[x] and A[y]. Then
the k-fold parallel repetition of that proof system has longer proofs C, indexed by all k-tuples of
positions in A, each containing a k-tuple of answers. The new verifier then picks k independent
random tapes r1, . . . , rk, generating k pairs xi, yi, queries the new proof at two positions, obtaining
C[x1, . . . , xk] and C[y1, . . . , yk], and finally checks that the original verifier would have accepted
for all corresponding pairs of answers to xi, yi. Assuming that the acceptance probability of the
original verifier was p, how will it drop with this k-fold repetition?

If C was simply Ak, namely if it recorded the answers of A faithfully in all k-tuples, the
acceptance probability would drop to pk. But many counterexamples (see the survey [FV02] and
the recent [Raz08]) show that cleverly constructed “proofs” C can in some cases force slower decay
in terms of each of the parameters p, k, and moreover must depend on the size of the answer set.
These subtleties were so difficult that even showing any decay that approaches zero as k increases
required a nontrivial proof [Ver96]. A faster decay was proved by Feige and Kilian [FK00]. Finally,
Raz proved his parallel repetition theorem [Raz98], showing that indeed the decay is exponential.
Simpler proofs [Hol07, Rao08] and other results give us a pretty good understanding of the limits
on the decay in terms of the original parameters, but these remain far from the potentially optimal
pk.

What can be done to salvage the situation and push the soundness amplification towards op-
timality? (After all, we are the PCP designers, and pure parallel repetitions as above is only one
way to go.) Many ideas, both algebraic and combinatorial, were applied to reduce PCP error, and
these are beautifully explained in the recent survey of Dinur [Din08]. The best current result is
the tour-de-force of Moshkovitz and Raz [MR08]. Here we focus on using direct-product testing for
this purpose, an idea pioneered by Goldreich and Safra [GS00]. The idea is to somehow “force” the
new proof C to behave like the “direct product” Ak of (some) proof A (or at least reject with high
probability those which are not), since if C has this property we could hope for optimal decay.

To compare our and previous results, we view this property as a code. Imagine that (the truth
table of) a function f : U → R is encoded by f (k) : Uk → Rk, defined by f (k)(x1, · · ·xk) =
(f(x1), · · · f(xk)). Given oracle access to C : Uk → Rk, the goal is to test if C is a codeword, or is
far from it. In other words, we’d like a test (with few queries to C) that, if passed by a message
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C with a “significant” probability q, then C is “sufficiently close” to f (k) for some function f . The
smaller we can make the value of q that has such implication, the better amplification we can hope
for in PCPs.

One should observe immediately that unlike typical error-correcting codes (in particular polynomial-
based codes often used in PCPs) this direct-product code is a particularly bad one in standard
parameters. For one, its rate is lousy – superpolynomial as soon as k is not a constant (we will re-
turn to this point when discussing derandomized direct-product codes). For another, its distance is
even worse – some codewords (e.g., of the Boolean function AND) have exponentially few non-zero
entries. Some of the subtleties of direct-product testing arise precisely from these issues. Luckily
(and this observation makes the testing possible), for the intended hardness amplification it suffices
to certify that, for some f , many entries of C agree with f on many1 (rather than all) of the k
answers. In other words, C must be close to an approximate direct-product codeword. With that
notion of “proximity” or “decoding” in mind, one tries to devise a test to certify it for small success
probability q, hopefully approaching the optimal pk. We note that such “proximity testers” were
formalized in a general setting under the name “spot-checkers” in [EKK+00].

Initial work addressed the case in which the success probability q of the test is very close to 1.
This is sometimes called the “unique decoding” regime, since in this case it is possible to show that
“decoded” function f is unique. The original paper [GS00] described a test with a constant number
of queries, and this was improved to the optimal two-query test by Dinur and Reingold [DR06].
Even for these results, with q extremely high, the proofs are quite nontrivial.

But for PCPs with small soundness error we need to tackle small q, and one can easily see that
as soon as q 6 1/2 unique decoding is impossible. Indeed, let C agree with each of t direct product

codewords f
(k)
i in a q-fraction of its coordinates, for some (random) functions f1, . . . , ft and t about

1/q. Thus if C passes the test with a small probability q, the best “explanation” we can hope for
is such a short list of codewords, i.e., a “list-decoding algorithm” rather than unique decoding. In
general, list-decoding of codes has been very important in recent developments in coding theory
and complexity theory, but seems to require more subtlety in algorithm design and analysis than
unique decoding.

The first result to test the direct-product code in the list-decoding regime was obtained by
Dinur and Goldenberg [DG08] (building on the earlier work by Feige and Kilian [FK00]). They
give a 2-query test which, if C passes with probability q > 1/kα (for some fixed α > 0), certifies
that C is close to some codeword. The proof is quite involved. Moreover, they dash the hope of
achieving exponential decay of q in terms of k, showing it impossible for 2-query tests even for q
that is inverse polynomial in 1/k.

1.2 Our results

Our main result is that only one additional query is needed to go from polynomially to exponentially
small error. We give a 3-query test which, if passed by C with probability q > exp(−k1/3), certifies
that C approximately agrees with a direct product function on a poly(q)-fraction of its entries.
Our techniques (see below) also allow us to considerably improve the analysis of the 2-query test
of [DG08] (for poly(1/k)-agreement).

To explain our next result, derandomized direct product testing, we revisit the PCP motivation.
Another important parameter for applications to PCPs is the proof size. In coding terms, the proof

1In the PCP application, “many” means a p-fraction, where p is the success probability of the original verifier
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size is inversely proportional to the rate of the code. Note that the k-fold direct-product code blows
up the “message” (namely the truth table of f , which would be the original PCP size) to the kth
power. To achieve subconstant soundness q, even assuming optimal decay q = pk, we must take
k to be nonconstant, which immediately makes the proof size superpolynomial2. A natural way
around this is to have the encoding of f provide its values not on all k-tuples, but rather on a much
smaller subset of these tuples. The hope would be that such small (but carefully chosen) subset
will still allow testing, and hence PCPs with improved soundness.

Goldreich and Safra [GS00] gave the first derandomized direct product test in the unique de-
coding regime (for constant acceptance probability ε), using a constant number of queries. The
possibility of a derandomized 2-query test (even in the unique decoding regime) was raised in [DG08]
as an open question. We not only solve this question in the unique decoding regime, but also in the
list-decoding regime. We show that for any k, there is a family of k-tuples of size a fixed polyno-
mial in n which is independent of k, so that if C passes the 2-query test of [DG08] with probability
q > 1/kα then it must have poly(q)-agreement with an approximate direct-product codeword. In
coding language, we provide a locally approximately testable, approximately list-decodable k-fold
direct-product code of inverse polynomial rate.

Finally, we return to the motivation of using direct-product testing to improve the soundness
amplification of PCPs. In PCPs, there is a big gap between two and more than two queries, in
terms of the naturalness of the consequent constraint satisfaction problems one gets hardness of
approximation for. If we combined a 3-query direct-product test with a 2-query parallel repetition,
that would seem to suggest we would only get a 5-query PCP of dubious value. Moreover, thinking
through the requirements of PCP proofs more closely, they do not seem to match those of DP-
testing. In the list decoding regime, closeness to some codeword is not actually the property that
we want for PCPs. The existence of one codeword that agrees with our message a non-negligible
fraction of the time doesn’t guarantee that almost all of the rest of the time, the prover isn’t getting
the advantage of a correlated strategy. (This is not an issue in the unique decoding world, since
there the proof must be close to a single direct product function almost everywhere.) We need
that, conditional on the proof passing our test, almost surely the proof is close to a direct product.
In this sense, our original goal of testing was too modest.

On the other hand, it is actually not important that there be a single direct product function
which agrees with a given proof. It would suffice that a given proof is a distribution of such functions
(independent of the query), maybe even one where no element appears very often. Since soundness
improves exponentially for each direct product in the support of the distribution, it would similarly
improve for the entire distribution. In this sense, our testing condition is too strong for the original
application.

Fortunately, while the existence of a 3-query DP-test doesn’t seem helpful for PCPs, our analysis
of the 3-query test is applicable. In particular, we show that, even when the 2-query test is useless
as a direct product tester, it is useful to certify that a function C is close to a distribution of direct
products. Our 3-query test then follows as a consequence, as does the use of the 2-query test when
q is polynomially large. However, this kind of distributional direct product testing is actually what
we need for PCPs (and is easy to merge with the parallel repetition of the proof without additional
queries). We show, as a “proof of concept”, a general construction improving the soundness of
a PCP from 1 − δ to exp(−δ

√
k) that makes only two queries. Our PCP construction turns out

2So using this construction, we cannot get inapproximability results based only on the assumption P 6= NP, but
must make stronger assumptions, such as NP 6⊆ quasi-P.
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to be closely related to the 2-prover protocol defined and analyzed by Feige and Kilian [FK00].
Our analysis, however, yields a much better (exponential, as opposed to polynomial) decay in the
number k of repetitions, and is arguably simpler than that of [FK00]. With current technology, the
construction of [Rao08], using an improved analysis of parallel repetition theorem [Raz98, Hol07]
for a subclass of games, is superior to ours. However, we see no reason in principle why our test
should not be improvable to have better decay, or even a derandomized variant. Clarifying the
limits of our approach, compared with parallel repetition, is an extremely interesting direction.

1.3 Our techniques, and direct-product decoding

The direct-product construction has long been central in complexity theory and cryptography.
Yao’s XOR Lemma [Yao82, Lev87], and its sibling, the “concatenation lemma” (provably equivalent
using the results of Goldreich and Levin [GL89]), are the basic hardness amplification tools in these
areas. These two theorems have many many different proofs (e.g,. [GNW95, IW97]), with different
parameters, and which each have found different extensions and generalizations.

Impagliazzo [Imp02] and Trevisan [Tre03] reformulated the combinatorial heart of the concate-
nation lemma in the language of coding theory, as an “approximate list-decoding” problem: Given
a corrupted direct product C, with the promise that it has q-agreement with some direct-product
function fk, find a list of functions f1, ...fl so that any possible f is close to at least one of the
fi’s (in Hamming distance). Trevisan [Tre03] observed that the list-size of such an algorithm quan-
tifies the non-uniformity of the proof, and used this connection for hardness amplification versus
uniform adversaries. [IJK06, IJKW08] improved the list-size over previous proofs, to almost the
information-theoretic optimal value.

There is no clear reduction between direct product testing and direct product decoding.3 In
direct product decoding, you are guaranteed that a function is close to a direct product; in testing,
you wish to decide whether this is the case. In decoding, you need to find the function; in testing,
you simply need to accept or reject. Finally, in decoding, you typically are allowed a number of
queries that is polynomial in the agreement parameter. In testing, it is vital to absolutely minimize
the number of queries, ideally with a small number that does not depend on the agreement at
all. Despite these differences, there seem to be deep connections between the two concepts. In
particular, testing almost always seems harder, with an empirical reason being that essentially the
only known way to analyze a test is to show how it decodes a small list.

In the past couple of years we have been developing (with Jaiswal) [IJK06, IJKW08] a set
of tools which allowed us to get optimal list-decoding of the direct product code, as well as to
derandomize some of its versions (for the purpose of decoding). A central part of that work, as
is of all mentioned work on testing, is understanding the following, extremely natural 2-query test
applied to an oracle C: Pick two k-tuples at random, under the condition that they agree on
some subset of size k′ of the coordinates. The main question is what structural information can
be obtained about C if it passes the test (namely answers consistently on the common queries)
with probability q. Precisely such structural information is obtained in the decoding papers. This
current work draws much from these, and adapts them to the testing problem. As explained above,
in the testing world one wants to certify what is given as an assumption in the decoding world, and
so this adaptation is sometimes impossible (as the [DG08] counterexample shows) and sometimes
possible but intricate. But many of the technical notions and lemmas nevertheless apply here. We

3Our comments below also apply to testing/decoding of other codes (and properties).
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feel that clarifying the connections between the testing and decoding problems will be extremely
enlightening.

1.4 Formal statements of our main results

DP testing. Here we formally state our direct product testing results. Let C be a given oracle
(circuit) that presumably computes the direct product fk, for some function f : U → R.4 It will
be more convenient for us to view the k-wise direct product as defined over sets of size k, rather
than ordered k-tuples; however, our results can be adapted to the case of k-tuples as well.5

We will argue that the following 3-query test, which we call a Z-test, can certify this. Below,
for disjoint sets A and B, we denote by (A,B) the union A ∪ B. Also, for A ⊂ S, we denote by
C(S)|A the answers C(S) for the subset A.

Z-Test:
1. Pick a random k-set (A0, B0) ⊆ U , where |A0| = k′ = Θ(

√
k).

2. Pick a random set B1 ⊆ U \A0 of size k − k′. If C(A0, B0)|A0 6= C(A0, B1)|A0 , then
reject; otherwise continue.
3. Pick a random set A1 ⊆ U \ B1 of size k′. If C(A0, B1)|B1 6= C(A1, B1)|B1 , then
reject; otherwise, accept.

The test above makes 3 queries to the oracle C, and makes two checks for agreement: first on
a subset A0, then on a subset B1. If we restrict this test to just the first two steps, we get the
following 2-query test analyzed by [DR06, DG08].

V-Test:
1. Pick a random k-set (A0, B0) ⊆ U , where |A0| = k′ = Θ(

√
k).

2. Pick a random set B1 ⊆ U \A0 of size k − k′. If C(A0, B0)|A0 6= C(A0, B1)|A0 , then
reject; otherwise accept.

Intersecting sets chosen in the 3-query Z-test and the 2-query V-test can be pictured to form
the letters “Z” and “V”, respectively, see Fig. 1 below, – whence the names of these tests.

AB

B

A

00

1

1

A
0

B
0

B
1

Figure 1: Z-test and V -test pictorially.

As proved by [DG08], the V-test is useless for acceptance probability below 1/k. Here we show
that, with just one extra query, the resulting Z-test is useful even for inverse-exponentially small
acceptance probability. For the proof of the following theorem, see Section 3.

4Think of Boolean functions f for simplicity. However, Section 5 shows our tests work for arbitrary ranges R.
5For example, we can use a given k-tuple oracle C̄ to simulate a k-set oracle C as the following randomized oracle:

Given a k-set S, C picks a random ordering πS of S, and outputs C̄(πS). Since the distribution over random orderings
of random k-sets is almost the same as that over random k-tuples (for k not too big), the DP-testing result for C
yields a corresponding DP-testing result for C̄; see also Section 3.5 for DP-testing of randomized oracles.
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Theorem 1.1 (DP Testing). There are constants 0 < η1, η2 < 1 such that, if the Z-test accepts
with probability ε, for ε > e−k

η1 , then there is a function g : U → R such that, for each of at least
ε/4 fraction of k-sets S from U , the oracle value C(S) agrees with the direct product gk(S) for all
but at most k−η2 fraction of elements in S.

Next we describe our derandomized DP test. We define the derandomized direct product
similarly to [IJKW08]. Let k = qd for some prime power q, and some constant d > 25 (to be
determined). We identify the domain U with some m-dimensional linear space over the field Fq,
i.e., U = Fmq . The k-wise direct product of a function f : U → R is defined as follows: Given a

d-dimensional linear6 subspace A of U , we set fk(A) to be the values of f on all k = qd points in
the subspace A (ordered according to some fixed ordering of U). For subspaces A and B of U , we
denote by A+B the set {a+ b | a ∈ A, b ∈ B}, where a+ b means component-wise addition of the
vectors a and b.

The following is an analogue of the Z-test for the derandomized case.

Derandomized Z-Test:
1. For d0 = d/25, pick a random d0-dimensional subspace A0, and a random (d − d0)-
dimensional subspace B0 of U that is linearly independent from A0.
2. Pick a random (d−d0)-dimensional linear subspace B1 of U that is linearly indepen-
dent from A0. If C(A0 +B0)|A0 6= C(A0 +B1)|A0 , then reject; otherwise, continue.
3. Pick a random d0-dimensional subspace A1 linearly independent from B1. If C(A0 +
B1)|B1 6= C(A1 +B1)|B1 , then reject; otherwise, accept.

We prove the following (see Section 4 for the proof).

Theorem 1.2 (Derandomized DP Testing). There are constants 0 < η1, η2 < 1 such that, if the
derandomized Z-test accepts with probability ε, for ε > k−η1, then there is a function g : U → R
such that, for each of at least ε/4 fraction of d-dimensional subspaces S from U , the oracle value
C(S) agrees with the direct product gk(S) for all but at most k−η2 fraction of elements in S.

Our techniques also allow us to get a simpler analysis of the V-test for the case of acceptance
probability ε > poly(1/k), first shown by [DG08]; see Section 3.4 for the proof. Moreover, the same
analysis shows that the derandomized V-test (the first two steps of the derandomized Z-test) also
works; see Section 4 for the proof.

Theorem 1.3. There are constants 0 < η1, η2 < 1 such that, if the (derandomized) V-test accepts
with probability ε > k−η1, then there is a function g : U → R such that for at least ε′ = Ω(ε6)
fraction of subspaces S, the oracle C(S) agrees with g(S) in all but at most k−η2 fraction of inputs
x ∈ S.

We remark that, in both independent and derandomized cases, we also get approximate, local,
list-decoding algorithms for the corresponding DP codes.

PCP. As another application of our techniques, we get a generic reduction from 2-query PCPs,
over an alphabet Σ with completeness σ and soundness 1− δ, to 2-query PCPs, over the alphabet
Σk with completeness 1 − exp(−σk) and soundness exp(−δk′), for k′ = Θ(

√
k). Our reduction

6[IJKW08] uses affine subspaces, but one could also use just linear subspaces, with a tiny loss in parameters.
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preserves perfect completeness: if the initial PCP has σ = 1, then so does the resulting PCP. We
describe this construction next.

Consider a constraint satisfaction problem (CSP) for regular undirected graphs, over an alphabet
Σ. An instance of such a CSP consists of a regular undirected graph G = (U,E) on n nodes and
a family Φ = {φe}e∈E of constraints, where each edge e = (x, y) ∈ E has an associated constraint
φe : Σ2 → {0, 1} (which need not be symmetric). For 0 6 σ, δ 6 1, a CSP instance is σ-satisfiable if
there is an assignment f : U → Σ that satisfies at least σ fraction of edge constraints; a CSP instance
is δ-unsatisfiable if every assignment f : U → Σ violates at least δ fraction of edge constraints.

Given a CSP-instance (G,Φ) (where G is a regular undirected graph on n nodes), we will ask
for an assignment CE that, given a set of k edges in the constraint graph G, returns assignments
to all of the end-points of these edges. We give a 2-query verifier that almost certainly accepts
an honest proof CE for a σ-satisfiable CSP instance, and almost certainly rejects any proof for
a δ-unsatisfiable CSP instance, where the rejection probability is independent of the size of the
alphabet Σ.

Let k′ < k be the parameter from our DP test above (recall that k′ = Θ(
√
k)). Our 2-query

verifier is the following.

Verifier Y:
1. Pick a set of k′ random vertices A. For each vertex v ∈ A, pick a random incident
edge (v, v′) in G. Let AE,1 be the set of these k′ edges. Independently, pick another set
AE,2 of k′ random edges incident on the vertices in A. Finally, pick two random sets of
edges BE,1 and BE,2, of size k − k′ each.
2. Query CE(AE,1, BE,1) and CE(AE,2, BE,2). Accept iff the following checks pass:
(a) the query answers satisfy 0.9 · σ fraction of constraints on each of the BE,i’s

7, and
(b) they assign the same values to A.

The two queries of our verifier Y are given pictorially in Fig. 2.

Figure 2: The two ellipses contain the edge sets in two queries of verifier Y. These two queries are
independent, conditioned on a small set of common vertices.

Theorem 1.4. (i) If a CSP-instance (G,Φ) is σ-satisfiable, then there is a proof CE accepted by
verifier Y with probability σ′ > 1 − exp(−σk); moreover, if σ = 1, then σ′ = 1. (ii) There is a
constant c > 0 such that, if the CSP-instance is δ-unsatisfiable, then no proof CE is accepted by Y
with probability greater than ε = e−(1/c)δk′, provided that e−(1/c)δk′ < 1/4.

The proof of this theorem is given in Section 6. Together with the PCP Theorem [AS98,
ALM+98] (e.g., using [Din07]), but without the parallel repetition theorem of [Raz98], Theorem 1.4
implies that NP has 2-query PCPs with perfect completeness, soundness exp(−

√
k), and proof size

7Actually, we only need this for BE,2.
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nO(k). In fact, this theorem can be interpreted as a new parallel repetition theorem for certain
2-prover games, where the value of the repeated game decreases exponentially with the number of
repetitions, independent of the alphabet size; see Theorem 6.3 in Section 6.

Before Raz’s celebrated result [Raz98], Feige and Kilian [FK00] and Verbitsky [Ver96] gave the
first proofs that (some version of) parallel repetition indeed decreases the soundness of 2-prover
games. It turns out that our techniques yield a significantly improved analysis of the construction
from [FK00]. More precisely, we can analyze the following 2-prover protocol, which is essentially
the same as the miss-match proof system introduced by Feige and Kilian [FK00].

As before, let (G,Φ) be a regular graph CSP with the vertex set U and the alphabet Σ. The
first prover C1 gets as input a k′-subset of vertices of G and returns an assignment to all these
vertices. The second prover is a function CE that, given a set of k edges of G, returns assignments
to all the 2k end-points of these edges. Consider the following protocol.

Verifier Y ′:
1. Pick a set of k′ random vertices A. For each vertex v ∈ A, pick a random incident
edge (v, v′) in G. Let AE,2 be the set of these k′ edges. Pick a set of (k − k′) random
edges BE,2.
2. Query C1(A) and CE(AE,2, BE,2). Accept iff the following checks pass:
(a) the query answers satisfy 0.9 · σ fraction of constraints of BE,2, and
(b) they assign the same values to A.

Verifier Y ′ is given pictorially in Fig. 3.

Figure 3: The two ellipses correspond to two queries of verifier Y ′: a vertex-set query (at the top),
and an edge-set query( at the bottom).

The advantage of Y ′ over Y is that Y ′ satisfies the projection property : the answers of the
prover CE determine the answers of the prover C1. We prove in Section 6.3 that Y ′ has soundness
exp(−δk′); in contrast, the analysis of [FK00] yields only inverse polynomial soundness.

Theorem 1.5. (i) If a CSP-instance (G,Φ) is σ-satisfiable, then there are proofs (C1, CE) accepted
by verifier Y ′ with probability σ′ > 1 − exp(−σk); moreover, if σ = 1, then σ′ = 1. (ii) There is
a constant c > 0 such that, if the CSP-instance is δ-unsatisfiable, then no proofs (C1, CE) are
accepted by Y ′ with probability greater than ε = e−(1/c)δk′, provided that e−(1/c)δk′ < 1/4.

We see no reason why the exponential decay of the PCP constructions above cannot be improved
to exp(−δk).

Remainder of the paper. We give the definitions of inclusion graphs and prove their sampling
properties in Section 2. We prove Theorem 1.1 in Section 3, and Theorem 1.2 in Section 4. In
Section 5 we prove that all our direct product testing results hold for functions with arbitrary (not
necessarily Boolean) range. We prove Theorems 1.4 and 1.5 in Section 6.
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2 Preliminaries

2.1 Notation

For a natural number n ∈ N, we denote by [n] the set {1, 2, . . . , n}. For 0 6 α 6 1, and k-tuples a

and b, we write a
>α
6= b to denote that a and b differ in more than α fraction of positions.

For a graph G and a vertex v of G, we denote by NG(v) the set of all neighbors of v in G;
usually we will drop the subscript G if the graph is clear from the context.

2.2 Linear spaces

We will need the following simple lemma.

Lemma 2.1. For any integers c, d > 0 and D = cd, and a field Fq, the D-dimensional linear space
FDq has t = (qD − 1)/(qd − 1) linear d-dimensional subspaces that are pairwise disjoint except for
the common zero vector.

Proof. Let Q = qd. The D-dimensional vector space FDq = Fdcq can be viewed as Fc
qd

, the c-

dimensional space over the field FQ. The c-dimensional space FcQ has exactly (Qc − 1)/(Q− 1) = t
distinct lines through 0 (i.e., 1-dimensional linear subspaces). Consider any such line in FcQ. The
points on the line are given by some equation of the form ~a · x, where ~a ∈ FcQ is some non-zero
vector, and x is a variable assuming values in FQ. Each point on the line is an element of FcQ, and

so corresponds to a vector in FDq . Using the correspondence between FQ and Fdq , it is easy to show

that the collection of points on the given line ~a · x corresponds to a linear subspace of FDq . Since

the line has exactly Q = qd distinct points, we get that the dimension of this linear subspace over
Fq is d. Since any two distinct lines through 0 share only the zero vector, the lemma follows.

We will also need the following sampling property of random linear subspaces (based on pairwise
independence); this result is implicit in [IJKW10].

Lemma 2.2. Let V0 and V1 be a pair of arbitrary linear spaces over a field Fq that are disjoint
except for the common zero vector. Let X ⊆ V0 +V1 be any subset of points of measure µ. Finally,
let W ⊂ V1 be a random linear subspace of V1. Then

Pr

[∣∣∣∣ |(V0 +W ) ∩X|
|V0 +W |

− µ
∣∣∣∣ > µ/2

]
6

4q2

|W |µ
.

2.3 Sampler graphs

For our analysis of DP tests, we use basic sampling lemmas, which (as in [IJKW08]) can be stated
in the graph-theoretic language. Let G(L,R) = (L ∪ R,E) be a bipartite bi-regular graph, where
we think of L as left vertices, and R as right vertices. For 0 6 α, β 6 1, we call G a (α, β)-
sampler if, for every subset F ⊆ L of measure µ > α, there are at most β|R| vertices r ∈ R where∣∣Pr`∈N(r)[` ∈ F ]− µ

∣∣ > µ/2. Inclusion graphs are graphs whose vertices are subsets of some finite
universe, and two vertices (subsets) are connected by an edge iff one is contained in the other. We
usually think of these inclusion graphs as bi-partite, with smaller subsets as the left vertices.

Let U be a finite universe. We will need the following inclusion graphs G(L,R):
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• Independent: L are all sl-subsets of U , and R are all sr-subsets of U , where sr = t · sl for
an integer t > 1.

• Subspaces: For U = Fmq , L are all dl-dimensional linear subspaces of U , and R are all
dr-dimensional linear subspaces of U , where dr = c · dl for an integer c > 1.

We show that these inclusion graphs are samplers.

Lemma 2.3 (Subset/Subspace Samplers). Both Independent and Subspaces inclusion graphs G(L,R)
defined above are (α, β)-samplers, where

• Independent: β = e−Ω(αt), provided that (t · sl)2/|U| 6 e−c1αt and αt > c2 ln 1/α, where c1

and c2 are global constants.

• Subspaces: β = O(1/
√
αq(c−1)dl), provided that α3/2q(c−1)dl/2 > 10.

Proof. Independent: Let M = sr be the size of subsets on the right side of the bipartition of
G(L,R). Let S1, . . . , St be any fixed partition of the set [M ] into t subsets of size sl each; e.g.,
Si = {sl(i− 1) + 1, . . . , sli} for 1 6 i 6 t. Let G = SM be the permutation group on [M ].

Every M -subset B of U can be viewed as an ordered M -tuple, according to some fixed (say,
lexicographical) ordering of the universe U . Thus we can index the elements in B by elements of
[M ]. For every subset S ⊆ [M ], let S(B) denote the subset of the elements of B whose indices are
in the set S.

Observe that for every fixed Si, a random permutation π ∈ G maps Si to a uniformly random
sl-subset πSi of [M ]. Hence, for every fixed Si, if we pick a random M -subset B of U and a random
permutation π ∈ G, we get that (πSi)(B) is a uniformly random sl-subset of U .

Let L′ ⊆ L be any subset of measure λ > α. By the above, we get that

λ = Pri∈[t],B∈R,π∈G[(πSi)(B) ∈ L′] = ExpB∈R,π∈G
[
Pri∈[t][(πSi)(B) ∈ L′]

]
.

For a random permutation π ∈ G and a random B ∈ R, the subsets (πS1)(B), . . . , (πSt)(B)
are distributed as a uniform t-tuple of pairwise disjoint sl-subsets of U . This is essentially the same
as a uniformly chosen t-tuple of elements of L. Indeed, suppose we pick S′1, . . . , S

′
t uniformly from

L. The probability of some pair S′i and S′j having a nonempty intersection is at most t2 times
the probability that two random sl-size subsets of U have nonempty intersection. By Markov’s
inequality, the latter is at most s2

l /|U|; this is because the expected size µ of the intersection of two
random sl-size sets is s2

l /|U|, and, by Markov’s inequality, the probability that the intersection is of
size greater than 1 is less than µ. So the overall statistical distance between the two distributions
on S′1, . . . , S

′
t is at most (tsl)

2/|U|, which is at most e−Ω(αt) by our assumption.
Hence, we have

Prπ∈G,B∈R[|Pri∈[t][(πSi)(B) ∈ L′]−λ| > λ/3] 6 PrS′1,...,S′t⊂L[|Pri∈[t][S
′
i ∈ L′]−λ| > λ/3]+(tsl)

2/|U|.

By the Chernoff bound, PrS′1,...,S′t⊂L[|Pri∈[t][S
′
i ∈ L′] − λ| > λ/3] 6 e−Ω(λt) 6 e−Ω(αt). So, for

p = e−Ω(αt) + (tsl)
2/|U| 6 e−Ω(αt), we get that Prπ∈G,B∈R[|Pri∈[t][(πSi)(B) ∈ L′]− λ| > λ/3] 6 p.

By averaging, we get that for at least 1 − √p of the sets B ∈ R, it is the case that for at least
1−√p of π ∈ G, the fraction of subsets (πSi)(B) that fall into L′ is between (2/3)λ and (4/3)λ.

Finally, for a given B ∈ R, the probability that a random sl-subset of B falls into L′ is
Expπ∈G

[
Pri∈[t][(πSi)(B) ∈ L′]

]
. By the above, for all but at most

√
p fraction of sets B, this
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average over π ∈ G will be at least (1−√p)(2/3)λ > λ/2 and at most (4/3)λ+
√
p 6 (3/2)λ, since√

p 6 λ/10 (by our assumption that αt > Ω(ln 1/α)).
Subspaces: The proof is similar to that for the case of Independent, except we’ll be using

pairwise independence and the Chebyshev bound (rather than full independence and the Chernoff-
Hoeffding bound). Let D = dr. For t = (qD − 1)/(qdl − 1), let S1, . . . , St be any fixed collection
of dl-dimensional linear subspaces of FDq that are pairwise disjoint except for the common zero, as
guaranteed by Lemma 2.1. Let G = GL(D, q), i.e., the matrix group of all nonsingular D × D
matrices over Fq.

A random D-dimensional subspace B of U is specified by a random set of D linearly independent
(basis) vectors from U . For any dl-dimensional subspace S of FDq , let S(B) denote the corresponding
dl-dimensional subspace in B. Clearly, the subspaces Si(B) and Sj(B) have only the zero vector
in common, for any 1 6 i 6= j 6 t.

Observe that for each fixed d-dimensional linear subspace S of FDq , applying a random linear
transformation A ∈ G to S results in a uniformly distributed d-dimensional linear subspace AS of
FDq . Hence, for every fixed 1 6 i 6 t, the subspace (ASi)(B) is uniform over L, for randomly chosen
B ∈ R and A ∈ G. Moreover, for every pair of indices 1 6 i 6= j 6 t, if we pick random B ∈ R
and A ∈ G, we get that the linear subspaces (ASi)(B) and (ASj)(B) are nearly independent in the
following sense: the pair ((ASi)(B), (ASj)(B)) is uniform over all pairs of linearly independent dl-
dimensional subspaces in L. Since the probability of picking two linearly dependent dl-dimensional
subspaces in U is at most q2dl/qm, which is negligible, we will essentially be able to assume that
the sequence (AS1)(B), . . . , (ASt)(B) is a sequence of pairwise independent random elements in L.

Let L′ ⊆ L be any subset of measure λ > α. The probability that a random dl-dimensional
subspace of a random D-dimensional subspace B ∈ R falls into L′ is

λ = PrB∈R,A∈G,i∈[t][(ASi)(B) ∈ L′] = ExpA∈G,B∈R
[
Pri∈[t][(ASi)(B) ∈ L′]

]
.

We will use Chebyshev’s inequality:

PrB∈R,A∈G
[
|Pri∈[t][(ASi)(B) ∈ L′]− λ| > λ/3

]
6 VarB∈R,A∈G

[
t∑
i=1

χ[(ASi)(B) ∈ L′]

]
/(t2λ2/9),

(1)
where χ is the indicator function such that χ[E] is 1 if an event E occurs, and is 0 otherwise.

To simplify the notation, let us denote by Xi the random variable (of B and A) that is 1 if the
subspace (ASi)(B) ∈ L′, and 0 otherwise. Let X =

∑t
i=1Xi. We have that Exp[X] = tλ, and

Var[X] = Exp[X2]− (tλ)2. The expectation of X2 is Exp[X2] = tλ+ 2
∑

i<j Exp[Xi ·Xj ].
To bound the probability Pr[Xi = 1 ∧ Xj = 1] = Pr[Xi = 1] · Pr[Xj = 1|Xi = 1], for each

i < j, we use the “near” pairwise independence of the subspaces (ASi)(B) and (ASj)(B) mentioned
above. Namely, for each linear subspace S ∈ L′, we have that, conditioned on random B ∈ R and
A ∈ G such that (ASi)(B) = S, the subspace (ASj)(B) is uniform over all dl-dimensional subspaces
of U that are disjoint from S (except for the common zero vector). Since all but at most τ = q2dl/qm

fraction of dl-dimensional subspaces of U are disjoint from S, we get that the conditional probability
distribution of (ASj)(B) (for random B ∈ R and A ∈ G such that (ASi)(B) = S) is at most the
statistical distance τ away from the uniform distribution. It follows that the conditional probability
that Xj = 1 is at most λ+ τ , and so Exp[Xi ·Xj ] 6 λ(λ+ τ).

Thus, we have Var[X] 6 tλ+ t2λ(λ+ τ)− (tλ)2 6 tλ+ t2λτ = tλ(1 + tτ) 6 2tλ (since tτ 6 1
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for our choice of t and τ), and so we get by Eq. (1) that

PrB∈R,A∈G
[
|Pri∈[t][(ASi)(B) ∈ L′]− λ| > λ/3

]
6 18/(tλ).

Let p = 18/(tλ) 6 18/(tα). By averaging, for all but at most
√
p fraction of B’s, it is the case

that for all but at most
√
p fraction of A ∈ G, the fraction of subspaces (ASi)(B) ∈ L′ is between

2λ/3 and 4λ/3.
Finally, for a given B ∈ R, the probability that a random dl-dimensional linear subspace of B

falls into L′ is ExpA∈G
[
Pri∈[t][(ASi)(B) ∈ L′]

]
. By the above, for all but

√
p fraction of all B ∈ R,

this average is at least (1−√p)(2/3)λ > λ/2, and at most (4/3)λ+
√
p 6 (3/2)λ, since

√
p < λ/10

(by our assumption that λ3/2q(c−1)dl/2 > 10).

2.4 Some properties of samplers

We will need some properties of samplers. Imagine the following setup. We take a bipartite graph
G = (L ∪ R,E), choose a subset L′ ⊆ L of its left vertices of measure λ, and a subset R′ ⊆ R of
its right vertices of measure ρ. Then we define the following distribution on vertices in L: Pick a
uniformly random r ∈ R′, and output its uniformly random neighbor ` ∈ N(r). Clearly, if ρ = 1, we
get the uniform distribution on L (since G is bi-regular), and so we hit the set L′ with probability
λ. The next lemma shows that, for sampler graphs G, the described distribution will hit L′ with
probability close to λ even for ρ < 1, provided that λ and ρ are sufficiently large.

Lemma 2.4. Let G = G(L,R) be any (α, β)-sampler. Let 0 6 λ, ρ 6 1 be any values such that
λ > α and λρ/10 > β. For any subset L′ ⊆ L of measure λ and any subset R′ ⊆ R of measure ρ,
we have ∣∣Prr∈R′,`∈N(r)[` ∈ L′]− λ

∣∣ 6 (2/3)λ.

Proof. The left-hand side of the required inequality is at most Expr∈R′
[
|Pr`∈N(r)[` ∈ L′]− λ|

]
.

By the definition of a sampler, we get for all but at most β/ρ fraction of vertices r ∈ R′ that
|Pr`∈N(r)[` ∈ L′] − λ| 6 λ/2. So the overall expectation over r ∈ R′ is at most λ/2 + β/ρ 6
λ/2 + λ/10.

Our definition of sampler graphs is asymmetric: every large set of left vertices is required to be
sampled with approximately correct frequency by the neighborhood of almost every right vertex.
The next lemma shows that a sampler graph actually enjoys a similar property for large sets of
right vertices with respect to the neighborhoods of left vertices.

Lemma 2.5. Let G = G(L,R) be any (α, β)-sampler. Let R′ ⊆ R be any subset of measure ρ, and
let λ = max{α, 10β/ρ}. Then for all but at most 2λ fraction of vertices ` ∈ L, we have∣∣Prr∈N(`)[r ∈ R′]− ρ

∣∣ 6 (2/3)ρ.

Proof. Let Bad1 ⊆ L be the subset of all those vertices ` ∈ L where Prr∈N(`)[r ∈ R′] > (5/3)ρ,
and let Bad2 ⊆ L be the subset of those vertices ` ∈ L where Prr∈N(`)[r ∈ R′] < (1/3)ρ. We will
argue that both Bad1 and Bad2 have measures less than λ.

If Bad1 has measure at least λ, let us take a subset Bad′1 of Bad1 of measure exactly λ. Consider
picking a random edge in G. By the definition of Bad′1, the probability of picking an edge between
Bad′1 and R′ is greater than λ(5/3)ρ. On the other hand, by the definition of a sampler, this
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probability is at most ρ(λ+ λ/2) + β 6 λρ+ 0.51λρ. This contradiction shows that the measure of
Bad1 is less than λ.

Similarly, if Bad2 has measure at least λ, we set Bad′2 to be its subset of measure exactly λ.
The probability that a random edge is between Bad′2 and R′ is less than (1/3)λρ. But, by the
definition of a sampler, it must be at least (ρ− β)λ/2 > λρ/2− λρ/20 > 0.45λρ. Hence, we must
have Bad2 of measure less than λ as well.

For sampler graphs in the Independent case, we can show a tighter version of Lemma 2.5, as
follows.

Lemma 2.6. Let G = (L ∪ R,E) be the bipartite inclusion graph where L = U , and R is a
collection of all k-subsets. Let f : R → [0, 1] be any function with Expr∈R[f(r)] = ρ. For any
constant 0 < ν < 1, we have that for all but at most O((log 1/ρ)/k) fraction of vertices ` ∈ L
(where the hidden constant only depends on ν), we have∣∣∣Expr∈N(`)[f(r)]− ρ

∣∣∣ 6 νρ.

Proof. LetBad1 = {` ∈ L | Expr∈N(`)[f(r)] ≥ (1+ν)ρ}, and letBad2 = {` ∈ L | Expr∈N(`)[f(r)] ≤
(1 − ν)ρ}. We will also use Bad1 and Bad2 as the characteristic functions of the respective sets.
That is, for any ` ∈ L, and each i = 1, 2, we have Badi(`) = 1 if ` ∈ Badi, and Badi(`) = 0
otherwise. We will use similar notation to denote characteristic function of other sets.

We will argue that the measures of Bad1 and Bad2 are O((log 1/ρ)/k). We start with Bad2.
Let λ2 = |Bad2|/|L| be the measure of Bad2. Suppose that λ2 > C2(log 1/ρ)/k for a large constant
C2 to be specified later. Then, by the Chernoff-Hoeffding bounds, the probability over r ∈ R
that r contains at most (1− ν/2)λ2k elements from Bad2 is exp(−Ω(λ2k)) < ρ−Ω(C2) < νρ/8, for
sufficiently large C2 (dependent on ν). Let E2 denote the event that a randomly chosen r ∈ R is
such that r contains at least (1− ν/2)λ2k elements from Bad2. We have Pr[E2] > 1− νρ/8.

By the definition of Bad2, we have

Exp`∈L,r∈N(`)[Bad2(`) ∗ f(r)] = Exp`∈L,r∈N(`)[f(r) | ` ∈ Bad2] ∗Pr`∈L[` ∈ Bad2]

6 λ2(1− ν)ρ,

where the expectation is over first picking a vertex ` ∈ L and then picking its random neighbor
r ∈ N(`).

Since our bipartite graph G is bi-regular, we can compute the same expectation by first picking
a vertex r ∈ R, and then picking its random neighbor ` ∈ N(r). We get

Expr∈R,`∈N(r)[Bad2(`) ∗ f(r)] > Expr∈R,`∈N(r)[Bad2(`) ∗ f(r) | E2] ∗Pr[E2]. (2)

Fix any r ∈ R such that E2 holds, i.e., r contains at least (1 − ν/2)λ2k elements from Bad2. For
each such fixed r, we have

Exp`∈N(r)[Bad2(`) ∗ f(r)] > (1− ν/2)λ2f(r).

Hence, we get that the right-hand side of Eq. (2) is at least

(1− ν/2)λ2 ∗Expr∈R[f(r) | E2] ∗Pr[E2] = (1− ν/2)λ2 ∗Expr∈R[f(r) ∗ E2(r)],
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where E2(r) is 1 if r satisfies E2, and 0 otherwise. Below we denote by Ē2(r) the characteristic
function of the complement of E2. We have

Expr∈R[f(r) ∗ E2(r)] = Expr∈R[f(r)]−Expr∈R[f(r) ∗ Ē2(r)]

> ρ−Expr∈R[Ē2(r)]

> ρ− νρ/8.

Thus we have

Expr∈R,`∈N(r)[f(r) ∗Bad2(`)] > (1− ν/2)λ2ρ(1− ν/8) > λ2ρ(1− (5/8)ν),

contradicting the upper bound λ2ρ(1− ν) on the same expectation obtained earlier.
Similarly, let λ1 = |Bad1|/|L| and assume λ1 > C1(log 1/ρ)/k for a large constant C1 to be

specified later. By the Chernoff-Hoeffding bounds, the probability over r ∈ R that r contains at
least (1 + ν/2)λ1k elements from Bad1 is exp(−Ω(λ1k)) < ρ−Ω(C1) < νρ/64, for a sufficiently large
C1 (dependent on ν). Moreover, for D > 2e, the probability that r contains more than Dλ1k
elements from Bad1 is at most

(e/D)Dλ1k < ρC1D < (νρ/64)D < (νρ)/(64)D,

for a sufficiently large C1.
Similarly to the case of Bad2, we consider the following expectation:

Exp`∈L,r∈N(`)[Bad1(`) ∗ f(r)], (3)

and bound it in two different ways. If we first pick ` ∈ L, and then pick a random r ∈ N(`), we
get by the definition of Bad1 that the expectation in (3) is at least λ1(1 + ν)ρ.

To bound this probability from above, we write it in the equivalent form as

Expr∈R,`∈N(r)[f(r) ∗Bad1(`)], (4)

where we choose r ∈ R first, and then pick its random neighbor. Consider the partitioning of the
set R into the following sets, based on the number of intersections with the set Bad1:

• R0 = {r ∈ R | |r ∩Bad1| 6 (1 + ν/2)λ1k},

• R1 = {r ∈ R | (1 + ν/2)λ1k < |r ∩Bad1| < 8λ1k}, and,

• for each integer d > 8, the set Rd = {r ∈ R | dλ1k 6 |r ∩Bad1| < (d+ 1)λ1k}.

We will compute the expectation in (4) as the sum of the conditional expectations for r ∈ R0,
r ∈ R1, and r ∈ Rd for all integer d > 8. That is,

Expr∈R,`∈N(r)[f(r) ∗Bad1(`)] =Expr∈R,`∈N(r)[f(r) ∗Bad1(`) | r ∈ R0] ∗Prr∈R[r ∈ R0]

+ Expr∈R,`∈N(r)[f(r) ∗Bad1(`) | r ∈ R1] ∗Prr∈R[r ∈ R1]

+
∑
d>8

Expr∈R,`∈N(r)[f(r) ∗Bad1(`) | r ∈ Rd] ∗Prr∈R[r ∈ Rd].
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For each fixed r ∈ R0, we get by the definition of R0 that Expr∈R,`∈N(r)[f(r) ∗ Bad1(`)] 6
(1− ν/2)λ1. Hence, Expr∈R,`∈N(r)[f(r) ∗Bad1(`) | r ∈ R0] ∗Prr∈R[r ∈ R0] is at most

(1− ν/2)λ1 ∗Expr∈R[f(r) | r ∈ R0] ∗Prr∈R[r ∈ R0] = (1− ν/2)λ1 ∗Expr∈R[f(r) ∗R0(r)]

6 (1− ν/2)λ1 ∗Expr∈R[f(r)]

= (1− ν/2)λ1ρ.

Similarly, we can show that

Expr∈R,`∈N(r)[f(r) ∗Bad1(`) | r ∈ R1] ∗Prr∈R[r ∈ R1] 6 8λ1 ∗Expr∈R,`∈N(r)[f(r) ∗R1(r)]

6 8λ1 ∗Expr∈R,`∈N(r)[R1(r)]

6 8λ1 ∗ νρ/64,

where the last inequality is by the Chernoff bound for R1 computed earlier. Analogously, using the
Chernoff bounds for the sets Rd (as computed earlier), we get for each d > 8 that

Expr∈R,`∈N(r)[f(r) ∗Bad1(`) | r ∈ Rd] ∗Prr∈R[r ∈ Rd] 6 (d+ 1)λ1 ∗ νρ/64d.

Putting all these upper bounds together, we get that Expr∈R,`∈N(r)[f(r) ∗Bad1(`)] is at most

ρ(1 + ν/2)λ1 + (νρ/64)8λ1 +
∑
d>8

(νρ)(d+ 1)λ1/64d = ρλ1(1 + ν/2 + ν/8 + ν
∑
d>8

(d+ 1)/64d),

which is less than ρλ1(1 + (3/4)ν). But this contradicts our earlier lower bound ρλ1(1 + ν) on the
same expectation.

Corollary 2.7. Let G = (L∪R,E) be the bipartite inclusion graph where L is the collection of all
k′-subsets of the universe U , and R is the collection of all k-subsets of U , for any k′ < k such that
k2/|U| 6 0.01. Let R′ ⊆ R be any subset of measure ρ. For any constant 1/9 < ν < 1, we have
that for all but at most O((log 1/ρ)/(k/k′)) fraction of vertices ` ∈ L, we have∣∣Prr∈N(`)[r ∈ R′]− ρ

∣∣ 6 νρ.

Proof. We will reduce to the case of Lemma 2.6. For simplicity, let us first assume that m = k/k′

is an integer; we will later show how to lift this assumption. Consider the inclusion graph G′ with(|U|
k′

)
left vertices (one vertex per k′-subset of U), and the right vertices being all m-size subsets of

left vertices. Labeling each left vertex by a k′-subset of U , we can also label each right vertex by
the set obtained as the union of the labels of its m neighbors.

Note that almost all right vertices get labeled by subsets of U of size exactly k. Indeed, the
probability that any two of m randomly chosen k′-subsets intersect is at most m2k′2/|U| = k2/|U| =:
η, which is assumed to be less than 0.01. Also note that every k-subset appears the same number
of times as the label of a right vertex of G′ (with its number of occurrences being the number of
ways to partition a k-set into m disjoint k′-subsets). It follows that, of the right vertices labeled
with k-size subsets, exactly ρ fraction are labeled with a subset from R′. Hence, the fraction ρ′ of
all right vertices in G′ that are labeled with a subset from R′ is such that ρ > ρ′ > (1 − η)ρ. Let
us denote this set of right vertices in G′ by R′′.

Consider a fixed k′-subset A. Let a be the corresponding left vertex in the graph G′. Every
k-subset B containing A occurs the same number of times as the label of a neighbor of a in the
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graph G′. Thus, conditioned on sampling a k-size subset as a neighbor of a in G′, we get the
uniform distributions over k-sets B containing A. Under the same conditioning, the probability
that a random neighbor of a in G′ is in R′′ is exactly the same as the probability that a random
k-subset B ⊇ A is in R′.

By Lemma 2.6 (applied with f being the characteristic function of the set R′′), we get that, for
any constant 0 < ν ′ < 1, all but at most O((log 1/ρ′)/m) fraction of left vertices a in G′ are such
that

|Prb∈N(a)[b ∈ R′′]− ρ′| 6 ν ′ρ′. (5)

For a right vertex b in G′, let us denote by B the subset of U that labels b. For every left vertex a,
we have

Prb∈N(a)[b ∈ R′′ | |B| = k] =
Prb∈N(a)[b ∈ R′′]
Prb∈N(a)[|B| = k]

,

which is at least Prb∈N(a)[b ∈ R′′], and is at most Prb∈N(a)[b ∈ R′′]/(1 − η). It follows that, for
every left vertex a satisfying Eq. (5),

Prb∈N(a)[b ∈ R′′ | |B| = k] > ρ′(1− ν ′) > (1− η)(1− ν ′)ρ > (1− η − ν ′)ρ,

and

Prb∈N(a)[b ∈ R′′ | |B| = k] 6 ρ′(1 + ν ′)/(1− η) 6 ρ

(
1 +

ν ′ + η

1− η

)
.

Given 1/9 < ν < 1, we set ν ′ = (1−η)ν−η so that (ν ′+η)/(1−η) 6 ν; note that, since η < 0.1,
we have that 0 < ν ′ < 1 whenever 1/9 < ν < 1. Thus, by the above, for all but O((log 1/ρ)/(k/k′))
fraction of k′-subsets A of U , the fraction of k-subsets B ⊇ A that fall into R′ is between ρ(1− ν)
and ρ(1 + ν), as required.

Finally, we show how to deal with the case where k/k′ is not an integer. Set m = dk/k′e.
Define the inclusion graph G′ with left vertices as before (corresponding to all k′-subsets of U),
and the right vertices being the m-subsets of the left vertices. All but at most η fraction of the
right vertices of G′ correspond to subsets of size exactly mk′, where in this case η 6 (mk′)2/|U| 6
((k/k′ + 1)k′)2/|U| 6 4k2/|U| 6 0.04.

For each right vertex b corresponding to a subset B ⊆ U of size exactly mk′, define

f(b) = PrS⊆B:|S|=k[S ∈ R′],

and define f(b) = 0 for vertices b corresponding to sets B of size less than mk′. For the right vertices
b corresponding to sets B of size exactly mk′, the average value of f(b) is exactly the probability
of getting a k-size subset in R′ in the following experiment: first pick a uniformly random mk′-size
subset B of U , and then pick a uniformly random k-subset S inside B. Clearly, the k-subset chosen
in this experiment is uniformly distributed over all k-subsets of U . Hence, the expectation of f(b)
conditioned on |B| = mk′ is ρ. Lifting the conditioning, we get that

ρ′ := Expb[f(b)] = Expb[f(b) | |B| = mk′] ∗Pr[|B| = mk′] = ρ ∗Pr[|B| = mk′],

where the expectation is over all right vertices b of G′. Thus we get that (1− η)ρ > ρ′ρ.
By Lemma 2.6, we get that, for any constant 0 < ν ′ < 1, all but at most O((log 1/ρ′)/m)

fraction of left vertices a of G′ are such that∣∣∣Expb∈N(a)[f(b)]− ρ′
∣∣∣ 6 ν ′ρ′. (6)
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For a fixed left vertex a of G′, where a corresponds to a k′-subset A ⊆ U , if we condition on
sampling neighbors of a that are mk′-size sets, then we get

Expb∈N(a)[f(b) | |B| = mk′] = PrS⊇A:|S|=k[S ∈ R′]. (7)

We finish the proof in the same way as in the case where k/k′ is an integer: using Eq. (6), we
bound the left-hand side of Eq. (7) from above and from below, concluding that PrS⊇A:|S|=k[S ∈
R′] ∈ [ρ(1− ν), ρ(1 + ν)] for all but at most O((log 1/ρ)/(k/k′)) fraction of k′-size subsets A ⊆ U ,
as required.

Lemma 2.6 can be also interpreted as the following “average-case” version of the Chernoff-
Hoeffding bound, which, to the best of our knowledge, has not been explicitly stated before.

Lemma 2.8 (“Average-case” Chernoff-Hoeffding bound). Let S ⊆ U be any subset of measure λ.
Let 0 < ν < 1 be any constant. Let R− be any subset of k-tuples of U such that Expr∈R− [|r∩S|] <
(1− ν)λk, and let R+ be any subset of k-tuples such that Expr∈R+ [|r ∩ S|] > (1 + ν)λk. Then the
measure of each R− and R+ is at most e−Ω(λk), where the hidden constant depends on ν only.8

3 Analysis of the direct-product tests

Our proof of Theorem 1.1 (and Theorem 1.2) is done in three stages, as described next.
Stage I: Low probability consistency implies high probability conditional consis-

tency. In this stage, we show that any function C that has non-negligible chance of passing the
V-test has very high probability of being similarly consistent on the subset of instances for which
it has good conditional probability of passing.

More precisely, we show (in Section 3.1) that if the test accepts with probability at least ε, then
the collection of all k-sets has the following structure. There are many (close to ε/2 fraction) of k-sets
(A0, B0) (with A0 of size k′) such that C(A0, B0)|A0 = C(A0, B)|A0 for many (at least ε/2 fraction)
of (k− k′)-sets B, and, moreover, almost every pair of overlapping sets of the form (A0, E,D1) and
(A0, E,D2) (where |E| = |A0|) has the property: if C(A0, E,D1)|A0 = C(A0, E,D2)|A0 , then it is
also the case that C(A0, E,D1)|E and C(A0, E,D2)|E agree in almost all positions.

Definition 3.1 (Consistency). The sets B satisfying C(A0, B0)|A0 = C(A0, B)|A0 are called con-
sistent with (A0, B0); we denote by ConsA0,B0 the collection of all such consistent B’s.

Definition 3.2 (Goodness). We call (A0, B0) good if the collection ConsA0,B0 has measure at least
ε/2.

Definition 3.3 (Excellence). We call (A0, B0) (α, γ)-excellent if it is good and, moreover,

PrE,D1,D2 [(E,Di) ∈ ConsA0,B0 , i = 1, 2, & C(A0, E,D1)|E
>α
6= C(A0, E,D2)|E ] 6 γ,

where |E| = |A0| = k′. (Think of α = poly(1/k) and γ = poly(ε).)

8We assume here that, on average, the k-tuples in set R− (resp., R+) have too few (resp., too many) elements
from a given set S. In contrast, the standard Chernoff-Hoeffding bound assumes that this happens for each k-tuple.
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In this terminology, we show that there are at least about ε/2 excellent k-sets (A0, B0). Note that
for every excellent k-set (A0, B0), the (k − k′)-sets B ∈ ConsA0,B0 enjoy a very strong consistency
property: almost all pairs of overlapping sets B1 = (E,D1) and B2 = (E,D2) from Cons are such
that C(A0, B1)|E and C(A0, B2)|E are almost identical.

Stage II: Unique decoding on a subset. Next, we show that we can do unique decoding on
any subset such as ConsA0,B0 above, where there is very high conditional probability of consistency.
We can think of this as unique decoding of the direct product code where there are two types of
noise: a very high number of erasures, and in addition a small number of values changed.

In Section 3.2, we use the strong consistency property of overlapping sets from ConsA0,B0 (for
an excellent set (A0, B0)) to show that there is a function g such that C computes the (approximate)
direct product of g over almost all k-tuples {(A0, B) | B ∈ ConsA0,B0}. That is, there is a function
g that is locally a direct-product function for C restricted to k-sets (A0, B) for B ∈ ConsA0,B0 .
This function g is defined very naturally as the plurality function: on input x, the value g(x) is
the most frequent value among the outputs of C(A0, B), over all B ∈ ConsA0,B0 which contain x.
(This is similar to the results in [FK00, DG08], but our proof techniques are different and yield
better parameters.)

Stage III: Local decoding to global decoding. So far, the analysis used only the V -test,
and showed that conditioned on being likely to pass the test, the answers to the first two oracle
queries (A0, B0) and (A0, B1) are likely to be (almost) of the form: gA0(B), a direct product for
some function that depends only on A0. Note that the counterexamples from [DG08] for the V-test
have exactly this form, and show that, for ε < 1/k, it is possible to have the above property, yet
have very different functions gA depending on the set A. The third query is meant to eliminate
this possibility.

In Section 3.3, we use the third query (A1, B1) to argue that the same function g from the
previous stage is actually also a global direct-product function for C on at least close to ε fraction
of all possible k-sets.

Note that this third query is needed only if the acceptance probability ε < 1/k. For the case of
ε > poly(1/k) (more precisely, for ε�

√
k′/k), we show in Section 3.4 that the two queries of the

V-test alone suffice, thereby re-proving the result of [DG08].

Remark 3.4. It is easy to check that all results in the present section continue to hold also for the
case of randomized oracle C (which supposedly computes some direct product function); the only
change needed is to add internal randomness of C to all relevant probability expressions. However,
for simplicity of notation, we will assume below that C is a deterministic oracle. We then give more
details for the case of randomized oracle C in Section 3.5.9

3.1 Excellence

Using arguments similar to those in [IJKW08], we get the following.

Lemma 3.5. Assume that PrA0,B0,B1 [C(A0, B0)|A0 = C(A0, B1)|A0 ] > ε. Then a random (A0, B0)
is good with probability at least ε/2.

Proof. Let E(A0, B0) be the event that (A0, B0) is not good, i.e., that PrB1 [C(A0, B0)|A0 =
C(A0, B1)|A0 ] < ε/2. Observe that PrA0,B0,B1 [C(A0, B0)|A0 = C(A0, B1)|A0 & E(A0, B0)] 6

9The direct product analysis for a randomized oracle C will be used in Section 6 for the 2-query PCP construction.
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PrA0,B0,B1 [C(A0, B0)|A0 = C(A0, B1)|A0 | E(A0, B0)] < ε/2. Hence, PrA0,B0,B1 [C(A0, B0)|A0 =
C(A0, B1)|A0 & ¬E(A0, B0)] is equal to

PrA0,B0,B1 [C(A0, B0)|A0 = C(A0, B1)|A0 ]−PrA0,B0,B1 [C(A0, B0)|A0 = C(A0, B1)|A0 & E(A0, B0)],

which is at least ε − ε/2 = ε/2. Hence the event E(A0, B0) does not happen with probability at
least ε/2, as required.

Lemma 3.6. PrA0,B0 [(A0, B0) is good but not (α, γ)-excellent] < γ′/γ, where γ′ = e−Ω(αk′).

Proof. Set α′ = α/2. The event in the statement of the lemma is the following event E1(A0, B0):
(A0, B0) is good but

PrE,D1,D2 [(E,Di) ∈ ConsA0,B0 , i = 1, 2 & C(A0, E,D1)|A0∪E
>α′

6= C(A0, E,D2)|A0∪E ] > γ;

note that we allow α′ errors in the set A0∪E of size 2|E|, which for (E,Di) ∈ Cons, i = 1, 2, means
at most 2α′ = α fraction of errors in the set E, as needed in the definition of (α, γ)-excellence.

Let E2(A0, B0, E,D1, D2) be the event that (A0, B0) is good, (E,Di) ∈ ConsA0,B0 for i = 1, 2,

and C(A0, E,D1)|A0∪E
>α′

6= C(A0, E,D2)|A0∪E . Denote the set A0 ∪ E by A′. The random choices
of event E2 can be equivalently made in the following order: pick A′, D1, and D2; pick A0 as a
random subset of A′, setting E = A′ \A0; pick random B0. Condition on any (A′, D1) and (A′, D2)

such that C(A′, D1)A′
>α′

6= C(A′, D2)|A′ . By the Chernoff-Hoeffding bound, a random k′-subset A0

of A′ will completely miss the inconsistent elements with probability at most γ′ = e−Ω(α′k′). If A0

contains such inconsistent positions, then it cannot be the case that both (E,D1) ∈ ConsA0,B0 and
(E,D2) ∈ ConsA0,B0 . Hence, Pr[E2] 6 γ′.

We have Pr[E2 | E1] > γ. On the other hand, Pr[E2 | E1] = Pr[E1 & E2]/Pr[E1] < γ′/Pr[E1].
So, we obtain that Pr[E1] < γ′/γ, as required.

As an immediate corollary of Lemmas 3.5 and 3.6, we get the following.

Corollary 3.7. If PrA0,B0,B1 [C(A0, B0)|A0 = C(A0, B1)|A0 ] > ε, then a random good set (A0, B0)
is (α, γ)-excellent with probability at least 1 − ε2, for α and γ such that αk′ > c log 1/(γε3), for
some global constant c > 0.

3.2 Excellence implies local agreement

Let us focus on Cons = ConsA0,B0 for some fixed (α, γ)-excellent (A0, B0), where γ 6 O(ε3); more
precisely, we assume in our arguments below that γ 6 ε3/960.

Define the function g as follows: for every x ∈ U\A0, set g(x) = PluralityB∈Cons: x∈B C(A0, B)|x;
if there is no B ∈ Cons such that x ∈ B, then we set g(x) to some default value, say 0.

Lemma 3.8. Let Cons = ConsA0,B0 for some fixed (α, γ)-excellent (A0, B0), where α > c(ln 1/ε)/(k/k′)
for some global constant c > 0 and γ < ε3/960. Let β = 40α and let ν = 960γ/ε2 < ε. Then there
are fewer than ν fraction of sets B ∈ Cons such that C(A0, B)|x 6= g(x) for more than β fraction
of x ∈ B, i.e.,

PrB∈Cons[C(A0, B)|B
>β

6= g(B)] 6 ν.
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We first give an outline of the proof of Lemma 3.8. For the sake of contradiction, suppose

that PrB∈Cons[C(A0, B)|B
>β

6= g(B)] > ν, where g(B) denotes the |B|-tuple of values of the direct
product of g on the input set B. This means that

PrB⊆U\A0
[B ∈ Cons & C(A0, B)|B

>β

6= g(B)] > ν ′, (8)

for ν ′ > νε/2 (since Cons has measure at least ε/2 by the definition of goodness of (A0, B0)).
Imagine choosing a random subset E of B. By Chernoff, we get that with probability close to

1, the set E has close to β fraction of inputs x ∈ E where C(A0, B)|x 6= g(x). Let E′ ⊂ E be the
set of those x ∈ E where C and g disagree.

On the other hand, using the definition of g as the plurality function as well as some basic
sampling lemmas, we will show that, for almost every such random subset E of B and for the
subset E′ ⊆ E defined as above, there are an Ω(ε) fraction of (k − k′)-sets B′ containing E such
that B′ ∈ Cons and C(A0, B

′)|E′ agrees with g(E′) in Ω(1)-fraction of positions.
Note that these two facts imply that C(A0, B)|E′ and C(A0, B

′)|E′ disagree in a constant fraction
of positions in E′. Since E′ has size close to β|E|, we get that C(A0, B)|E and C(A0, B

′)|E disagree
in Ω(β) fraction of positions. This implies that one can pick, with non-negligible probability, a pair
of sets B and B′ with overlap E such that B,B′ ∈ Cons and C(A0, B)|E and C(A0, B

′)|E disagree
in many positions, contradicting the excellence property of (A0, B0).

We provide the detailed proof next. We abstract away some of the parameters in the statement
of Lemma 3.8, and re-state it as Lemma 3.10 below. Here, we prove the result for the Boolean case;
in Section 5, we reduce the general case to the Boolean case.

Definition 3.9. Let Cons be a subset of Uk of measure at least ε. Let C ′ be a function from Cons
to Rk. We say C ′ is (α, γ)-excellent with respect to Cons if the following holds: Pick E ⊂ U of
size k′, D1, D2 ⊂ U of size k − k′ independently at random. Then the probability that E ∪D1 ∈
Cons,E ∪D2 ∈ Cons and C ′(E ∪D1)|E

>α
6= C ′(E ∪D2)|E is at most γ.10

Define the function g as before. That is, for every x ∈ U , set g(x) = PluralityB∈Cons: x∈B C ′(B)|x;
if there is no B ∈ Cons such that x ∈ B, then we set g(x) to some default value, say 0.

Lemma 3.10. Let Cons be a subset of Uk of measure at least ε. Let C ′ be a function from
Cons to Rk, where R = {0, 1}. Suppose that C ′ is (α, γ)-excellent with respect to Cons, where
α > c(ln 1/ε)/(k/k′) for some global constant c > 0 and γ < ε3/960. Let β = 40α, and let
ν = 960γ/ε2 < ε.

Then there are fewer than ν fraction of sets B ∈ Cons such that C ′(B)|x 6= g(x) for more than
β fraction of x ∈ B, i.e.,

PrB∈Cons[C
′(B)

>β

6= g(B)] 6 ν.

We will later prove the same lemma without the assumption that R is Boolean, but with a
slightly worse value of β; see Section 5 below.

Towards a contradiction, suppose that PrB∈Cons[C
′(B)

>β

6= g(B)] > ν, where g(B) denotes the
|B|-tuple of values of the direct product of g on the input set B. This means that

PrB⊆U [B ∈ Cons & C ′(B)
>β

6= g(B)] > ν ′, (9)

10We point out to the careful reader the following change in notation: before we had Cons of measure ε/2; k was
k − k′; and U was U \A0.
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for ν ′ > νε (since Cons has measure at least ε).
We will need the following notation. For each x ∈ U , we denote by Bx the collection of all sets

B that contain x, and let Consx = Cons ∩ Bx. Analogously, for each k′-subset E ⊂ U , we denote
by BE the collection of all sets B that contain E, and let ConsE = Cons ∩ BE .

First we show that for almost all x, the measure of Consx in Bx is large.

Claim 3.11. For all but at most O((ln 1/ε)/k) fraction of inputs x ∈ U , we have |Consx|/|Bx| >
ε/6.

Proof. Apply Lemma 2.6.

Claim 3.12. Let x be any input such that Consx has measure at least ε/6 in Bx. Then for all but
at most O((ln 1/ε)/(k/k′)) fraction of k′-sets E containing x, we get that

PrB∈ConsE [C ′(B)|x = g(x)] > 1/10.

Proof. Let S be a collection of all (k′ − 1)-size subsets Ex of U , and let T be a collection of all
(k − 1)-size subsets Bx of U . By assumption, we know that the measure µ of those sets Bx such
that Bx ∪ {x} ∈ Cons is at least ε/6. Let Q denote the set of all such sets Bx.

Let Q′ be the subset of all those sets Bx ∈ Q where C(Bx ∪ x)|x = g(x). Let µ′ be the measure
of this Q′ in Bx. By the definition of g, we know that µ′/µ > 1/2, and so µ′ > ε/12; here we use
the assumption that g is a Boolean function.

Let t = b|Bx|/|Ex|c ≈ k/k′ ≈
√
k. By Corollary 2.7, we get that all but at most δ 6

O((ln 1/ε)/t) fraction of subsets Ex are such that, among the sets Bx containing Ex, the mea-
sure of those Bx that fall into Q is between µ/3 and 5µ/3. Simultaneously, the measure of those
Bx ⊃ Ex that fall into Q′ is between µ′/3 and 5µ′/3, for all but at most δ fraction of subsets Ex.
Hence, for at least 1−2δ fraction of sets Ex, PrBx:Ex⊂Bx [C ′(Bx∪x)|x = g(x) | Bx∪{x} ∈ Cons] >
(µ′/3)/(5µ/3) > 1/10, as required.

Claim 3.13. For δ = O((ln 1/ε)/(k/k′)),

PrE,x∈E [PrB∈ConsE [C ′(B)|x = g(x)] > 1/10] > 1− 2δ.

Proof. The distribution (E, x ∈ E) is the same as (x,E 3 x). By Claim 3.11, we know that
all but at most O((ln 1/ε)/k) of x are such that Consx is large. For each of these x, we get by
Claim 3.12 that all but O((ln 1/ε)/(k/k′)) of E’s will satisfy the event in the statement of the
present claim. So over random choices of x and E 3 x, the required event occurs with probability
at least 1−O((ln 1/ε)/(k/k′)).

By a simple averaging argument, we get from Claim 3.13 the following corollary.

Claim 3.14. Let δ = O((ln 1/ε)/(k/k′)) be as in Claim 3.13, let δ′ = 10δ, and let δ′′ = 1/10 (so
that δ = δ′δ′′). For at least 1 − δ′′ fraction of sets E, we have that, for at least 1 − δ′ fraction of
inputs x ∈ E, PrB∈ConsE [C ′(B)|x = g(x)] > 1/10].

Finally, we will need the following analogue of Claim 3.11.

Claim 3.15. For all but at most O((ln 1/ε)/(k/k′)) fraction of k′-subsets E ⊂ U \ A0, we have
|ConsE |/|BE | > ε/6.
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Proof. Apply Corollary 2.7.

We now give the proof of Lemma 3.10.

Proof of Lemma 3.10. Let δ′ = 10δ and δ′′ = 1/10, for the δ in Claim 3.14. We get by Claims 3.15
and 3.14 that, for at least 0.3− o(1) fraction of uniformly random subsets E,

1. the fraction of sets B′ ⊃ E that fall into Cons is at least ε/6, and

2. for all but δ′ fraction of inputs x ∈ E, PrB′∈ConsE [C ′(B′)|x = g(x)] > 1/10.

Now consider the following distribution of subsets E: pick a random k-subset B satisfying the
event of Eq. (9), and then pick a random k′-subset E of B. By Lemmas 2.3 and 2.4, we conclude
that when E is sampled according to this distribution, we get with probability at least 0.29 a set
E such that both conditions (1) and (2) above still hold.

For sets B and E ⊂ B, we denote by E′ ⊆ E the subset of those x ∈ E where C ′(B)|x 6= g(x).
For every B satisfying the event of Eq. (9), we get by Chernoff-Hoeffding that almost all11 subsets
E ⊂ B are such that |E′| > (0.9β)|E|. Combining this with our earlier argument, we get that for a
random k-subset B satisfying the event of Eq. (9), if we pick a random subset E ⊂ B, we get with
probability at least 0.29− o(1) > 1/4, a subset E such that conditions (1) and (2) above hold, and
additionally, |E′| > (0.9β)|E|.

Fix any set E that satisfies the three conditions stated above. Let E′ ⊂ E be as above. Let
E′′ ⊆ E′ be the subset of those inputs x ∈ E′ where PrB′∈Cons[C

′(B′)|x = g(x)] > 1/10. By
condition (2), we get that |E′′| > |E|(0.9β − δ′), which can be made at least |E|β/2 by choosing β
sufficiently larger than δ′ (as assumed in the statement of the lemma).

Thus, for every x ∈ E′′, there are at least 1/10 fraction of sets B′ ∈ ConsE such that C ′(B′)|x =
g(x) 6= C ′(B)|x. By averaging, for at least 1/20 fraction of B′ ∈ ConsE , we have C ′(B′)|x 6= C ′(B)|x
for at least 1/20 fraction of x ∈ E′′. Since we also know that |E′′| > |E|β/2, we get that

C ′(B′)|E
>β/40

6= C ′(B)|E ,

for at least 1/20 fraction of B′ ∈ ConsE . By condition (1) on our fixed set E, we have that ConsE
has measure at least ε/6, and so

PrB′:E⊂B′ [B
′ ∈ Cons & C ′(B′)|E

>β/40

6= C ′(B)|E ] > ε/120. (10)

Since, for a random B conditioned on satisfying the event of Eq. (9), there are at least 1/4
fraction of sets E such that Eq. (10) holds, we obtain

PrB,E⊂B,B′⊃E [B′ ∈ Cons & C ′(B′)|E
>β/40

6= C ′(B)|E | B ∈ Cons & C ′(B)
>β

6= g(B)] > ε/480,

where the probability is over picking a random set B first, then picking its random k′-subset E,
and finally picking a random set B′ that contains E. Lifting the conditioning on the set B, we get

PrE,B⊃E,B′⊃E [B′ ∈ Cons & C ′(B′)|E
>β/40

6= C ′(B)|E & B ∈ Cons] > ν ′ε/480 > νε2/960,

which contradicts the (α, γ)-excellence property for α = β/40 and γ = νε2/960. For γ < ε3/960,
we get that ν < ε, as required.

11more precisely, all but at most exp(−β|E|) fraction
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3.3 Local agreement implies global agreement

Here we prove the following lemma, which implies Theorem 1.1.

Lemma 3.16. If the Z-test accepts with probability at least ε > e−Ω(αk′), then there is a function
g : U → R such that for at least ε′ = ε/4 fraction of all k-size sets S, the oracle C(S) agrees with
gk(S) in all but at most α′ = 81α fraction of inputs x ∈ S, where k > Ω(k′2).

First we just sketch the argument, blurring over many details. Let (A0, B0) be randomly chosen
in the first step of the Z-Test. If the test does not reject in step 2, we know that (A0, B0) is a good
set, and moreover, by Corollary 3.7, it is an excellent set. By Lemma 3.8, we get that the oracle C
on (almost all) k-sets (A0, B), for B ∈ ConsA0,B0 , (mostly) agrees with the direct product of the
majority function g (defined for ConsA0,B0). We will argue that C will mostly agree with gk also
globally, on at least ε′ fraction of all k-size sets S.

Consider picking sets B1 and A1 as follows: Pick a random k-set S, then randomly choose a
subset B1 ⊂ S, and set A1 = S \ B1; this choice of B1 and A1 is essentially equivalent to the way
they are chosen by the Test. For the sake of contradiction, suppose that there are fewer than ε′

sets S where C and gk have agreement in more than 1− α′ fraction of positions. Consider picking
a random k-set S. If S is one of these ε′ sets, then Test may accept, but this happens only with
probability ε′ < ε. So assume that S is a random k-set that contains more than α′ fraction of inputs
x where C(S)|x 6= g(x).

Pick a random subset B1 of S of size k − k′; set A1 = S \ B1. If B1 6∈ ConsA0,B0 , Test will
reject. Otherwise, by Lemma 3.8, we get that g(B1) = C(A0, B1)|B1 on almost all inputs x ∈ B1.

At the same time, since C(S)
>α′

6= g(S), we get that with high probability C(A1, B1)|B1

>α′/2

6= g(B1).
But then C(A0, B1)|B1 6= C(A1, B1)|B1 , and the Z-test rejects (in step 3). Thus, if there are few
sets S where C and gk have large agreement, the Z-test will accept with probability less than ε.

We now provide the detailed proof.

Proof of Lemma 3.16. Let (A0, B0) be randomly chosen in the first step of Test. Let κ be the
measure of the set ConsA0,B0 . If this (A0, B0) is not good (i.e., if κ < ε/2), then the set B1 chosen
in the second step of Test will be in ConsA0,B0 with probability less than ε/2. If this happens, then
Test may accept, but only with the probability less than ε/2.

Thus we need to analyze the case where (A0, B0) is a random good pair, and so κ > ε/2. By
Corollary 3.7, all but at most ε2 of good pairs (A0, B0) are excellent. If our chosen good pair(A0, B0)
is not excellent, then Test may accept, but this happens with probability at most ε2 < ε.

We are left with the case where our chosen pair (A0, B0) is (α, γ)-excellent. For this pair, we
define the function g as the majority function over sets in ConsA0,B0 . By Lemma 3.8, we know that
C mostly agrees with the direct product of g on almost all k-sets (A0, B), where B ∈ ConsA0,B0 .
We will argue that C will mostly agree with gk also globally, on at least ε′ fraction of all k-size sets
S.

Consider picking sets B1 and A1 as follows: Pick a random k-set S, then randomly choose a
subset B1 ⊂ S, and set A1 = S \ B1. This choice of B1 and A1 is essentially equivalent to the
way they are chosen by the Test. The only difference is that the set B1 chosen by the Test is
disjoint from the set A0, whereas in our new way of picking B1 it may happen that B1 intersects
A0. However, since B1 is uniformly distributed, the probability that it intersects A0 is negligible
(less than k2/|U|). We will ignore this negligible amount, and think of this new choice of B1 and
A1 as actually equivalent to the choices in the Test.
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For the sake of contradiction, suppose that there are fewer than ε′ sets S where C and gk have
agreement in more than 1 − α′ fraction of positions. Consider picking a random k-set S. If S
is one of these ε′ sets, then Test may accept, but this happens only with probability ε′ < ε. So
we may assume that S is a random k-set that contains more than α′ fraction of inputs x where
C(S)|x 6= g(x). Note that the distribution of such sets S is at most ε′ far in statistical distance
from the completely uniform distribution over k-sets S.

Pick a random subset B1 of S of size k − k′; set A1 = S \ B1. If B1 6∈ ConsA0,B0 , Test will
reject. So the probability that Test accepts is at most the probability that Test accepts conditioned
on B1 ∈ ConsA0,B0 , times the probability that B1 ∈ ConsA0,B0 .

By Lemma 3.8, all but at most ν = O(γ/ε2) fraction of sets B ∈ ConsA0,B0 are such that
g(B) agrees with C(A0, B)|B in all but at most β = 40α fraction of inputs x ∈ B. Conditioned
on choosing a B1 ∈ ConsA0,B0 , the Test chooses one of these ν fraction of sets with probability
at most (νκ + ε′)/(κ − ε′). Indeed, for a uniformly random set S, a random subset B1 ⊂ S is
uniformly distributed, and so hits the ν-fraction of ConsA0,B0 with probability at most νκ. For the
distribution of sets S that is ε′-far from uniform, this hitting probability may increase by at most
ε′. On the other hand, the probability that B1 ∈ ConsA0,B0 is at least κ− ε′. The claimed bound
follows.

At the same time, since C(S)
>α′

6= g(S), we get by Chernoff-Hoeffding that, for all but at most
e−Ω(α′k) of (k − k′)-subsets B1 of S,

C(S)|B1

>α′/2

6= g(B1). (11)

Conditioning on B1 ∈ ConsA0,B0 for a random S means that this probability gets multiplied by at
most 1/(κ− ε′).

So conditioned on B1 ∈ ConsA0,B0 , the probability that B1 ⊂ S for a random S was chosen so

that either (11) is violated or that g(B1)
>β

6= C(A0, B1)|B1 is at most ρ = (νκ+ε′+e−Ω(αk))/(κ−ε′).
In this case, Test may accept, but only with probability at most ρ ·Pr[B1 ∈ ConsA0,B0 ] 6 ρ(κ+ ε′).
This probability is less than ε, since (κ+ ε′)/(κ− ε′) 6 3 for ε′ = ε/4 and κ > ε/2.

Finally, for B1 that satisfies (11) and is such that g(B1)
>1−β

= C(A0, B1)|B1 , we get that

C(A1, B1)|B1

>α′/2−β
6= C(A0, B1)|B1 .

Since α′/2 > β, Test will reject in this case.
Thus we have argued that, in all cases, the probability that Test accepts is strictly less than ε.

Hence, the function g must be an approximate direct-product function for C on ε′ fraction of all
k-sets.

3.4 Two queries suffice when ε > poly(1/k)

Here we give a simpler proof of the following result of [DG08]. The same argument also yields
Theorem 1.3.

Theorem 3.17 ([DG08]). There are constants 0 < η1, η2 < 1 such that, if the V-test accepts with
probability ε > 1/kη1, then there is a function g : U → R such that for at least ε′ = Ω(ε6) fraction
of all k-size sets S, the oracle C(S) agrees with gk(S) in all but at most 1/kη2 fraction of inputs
x ∈ S.
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We provide two proofs of this theorem. The first one (in Section 3.4.1 below) is a direct argument
using our earlier analysis of the V-test. The second proof (in Section 3.4.2) is by a reduction: we
show that if V-test accepts with inverse-polynomial probability ε, then (a certain version of) the
Z-test also accepts with probability poly(ε), and hence the conclusion follows by the analysis of
(the version of) the Z-test. Both proofs are short and simple, and rely on similar techniques.

3.4.1 Proof of Theorem 3.17

Here we prove Theorem 3.17 for the case where V-test accepts with probability ε > 12(k′/k).
Key to the proof of this theorem is the ability to show that, if the V-test accepts, the following
“double-excellence” holds. For many k-subsets S, two random disjoint k′-subsets A1, A2 of S
are simultaneously excellent12. With such pairs it is possible to move from “local consistency”
to “global consistency” without an additional query (which was needed for exponentially small
success probability). Indeed, we derive the existence of such pairs from the relatively high success
probability assumed here. Moreover, the counterexample of [DG08] for sublinear success precisely
precludes such disjoint excellent pairs.

Throughout this subsection, we assume the V-test accepts with probability ε > 12(k′/k). Con-
sider the following sampling procedure Sample:

• pick disjoint random k′-subsets A1, A2 ⊂ U ;

• pick random (k − k′)-subsets B1 ⊂ U \A1 and B2 ⊂ U \A2;

• pick random (k − 2k′)-subset B ⊂ U \ (A1 ∪A2);

• set B′ = B ∪A1, and B′′ = B ∪A2.

We will prove the following claims about random samples produced by Sample.

Claim 3.18. Let α and γ be such that αk′ > c log 1/(γε3), for some global constant c > 0. Then

PrSample[(Ai, Bi) is (α, γ)-excellent, i = 1, 2, & B′ ∈ ConsA2,B2 & B′′ ∈ ConsA1,B1 ] > Ω(ε5).

Proof. The random sample produced by the procedure Sample above can be equivalently produced
as follows: Pick random k-subset S ⊂ U , randomly partition S into ` = k/k′ subsets of size k′ each;
pick two distinct random k′-subsets A1 and A2 in this partition of S; pick random B1 and B2; set
B = S \ (A1 ∪A2) (and, as before, set B′ = B ∪A1 and B′′ = B ∪A2).

By Lemma 3.5 and Corollary 3.7, we know that, for random S, partition of S, and subset A ⊂ S
in this partition, the probability that (A, (S \ A)) is (α, γ)-excellent is at least ε/2(1 − ε2) > ε/3.
By averaging, for at least ε/6 fraction of random sets S and random partitions of S, there will be
at least ε/6 fraction of random subsets A ⊂ S (chosen according to the partition of S) such that
(A, (S \A)) is excellent.

Condition on picking such an S and a partition of S. Then the conditional probability of picking
two disjoint subsets A1, A2 ⊂ S so that both (A1, B

′′) and (A2, B
′) are excellent (when sampling

independently twice from this fixed partition of S) is at least ε/6(ε/6 − 1/`), where 1/` is the
probability over the choice of A2 that A2 = A1 for a fixed A1. By assumption, 1/` < ε/12, and

12more precisely, both (A1, S \A1), (A2, S \A2) are excellent.
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so the conditional probability of picking two distinct excellent subsets A1 and A2 is at least Ω(ε2).
Hence, the overall probability that both (A1, B

′′) and (A2, B
′) are excellent is at least Ω(ε3).

Finally, conditioned on both (A1, B
′′) and (A2, B

′) being excellent, we get that B1 ∈ ConsA1,B′′

with probability at least ε/2 and, similarly, B2 ∈ ConsA2,B′ with probability at least ε/2. That
is, with probability at least ε2/4 over random B1 and B2, we get that B′′ ∈ ConsA1,B1 and
B′ ∈ ConsA2,B2 . Lifting the conditioning, we get that, with probability Ω(ε5), both (A1, B

′′) and
(A2, B

′) are excellent, and B′′ ∈ ConsA1,B1 and B′ ∈ ConsA2,B2 . This implies the claim since, for
B′′ ∈ ConsA1,B1 , the pair (A1, B

′′) is excellent iff so is the pair (A1, B1) (and similarly for B′).

Claim 3.19. For γ < ε3/960 and for α such that α > max{(c1/k
′) log 1/(γε3), c2(k′/k) ln 1/ε} for

some global constants c1, c2 > 0, we have

PrSample[(Ai, Bi) is (α, γ)-excellent, i = 1, 2, & gA1(B)
6O(α)

6= gA2(B)] > Ω(ε5),

where gAi is the plurality function over sets in ConsAi,Bi, for i = 1, 2.

Proof. Let β = 40α. Conditioned on (A1, B1) being (α, γ)-excellent and on B′′ being a random

set in ConsA1,B1 , we get by Lemma 3.8 that gA1(B′′)
>β

6= C(A1, B
′′)|B′′ for fewer than 960γ/ε2 < ε

fraction of random (k − k′)-subsets B′′; similarly, for (A2, B2) and B′. Together with Claim 3.18,
this implies that the following event happens with probability at least Ω(ε5):

(Ai, Bi) is (α, γ)-excellent, i = 1, 2, gA1(B′′)
6β
6= C(A1, B

′′)|B′′ , gA2(B′)
6β
6= C(A2, B

′)|B′ .

The latter two equalities imply that gA1(B)
6β′

6= C(A1, B
′′)|B and gA2(B)

6β′

6= C(A2, B
′)|B, for

β′ 6 β(1 + o(1)). Since C(A1, B
′′) = C(A2, B

′), we conclude that gA1(B)
62β′

6= gA2(B).

Claim 3.20. For at least Ω(ε5) fraction of random (A1, B1) and (A2, B2), we have that (A1, B1)
and (A2, B2) are (α, γ)-excellent, and that gA1(x) = gA2(x) on all but O(α) fraction of inputs x ∈ U ,
where α and γ are as in Claim 3.19.

Proof. By Claim 3.19 and averaging, we get that for at least Ω(ε5) fraction of random (A1, B1) and

(A2, B2), it is the case that (Ai, Bi) is excellent, for i = 1, 2, and that PrB[gA1(B)
6α′

6= gA2(B)] >
Ω(ε5), for some α′ = O(α). Fix any such (A1, B1) and (A2, B2). Suppose that Prx∈U [gA1(x) 6=
gA2(x)] > 2α′. Pick a random B ⊂ U \ (A1 ∪A2) of size k− 2k′. By Chernoff, the probability that

gA1(B)
6α′

6= gA2(B) is less than ν = e−Ω(α′|B|). By assumption, |B| > Ω(k) and αk > Ω(k′ ln 1/ε).
Hence, ν 6 εO(k′), which is less than ε5. A contradiction.

Using the above claims, we can now complete the proof of Theorem 3.17.

Proof of Theorem 3.17. Let γ < ε3/960, and let α be such that

α > max{(c1/k
′) log 1/(γε3), c2(k′/k) ln 1/ε, c3k

′/k}

for some global constants c1, c2, c3 > 0. By Claim 3.20 and an averaging argument, we get that there

are Ω(ε5) pairs (A1, B1) such that PrA2,B2,B[(A2, B2) is (α, γ)-excellent & gA1(U)
6α′

6= gA2(U)] >
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Ω(ε5), where A2, B2, B are chosen as in the random experiment of Claim 3.19, and α′ = O(α). Fix
any such (A1, B1). We show that C is close to the direct product of gA1 on poly(ε) fraction of
k-sets S ⊂ U .

Picking a random k-set S is equivalent to picking disjoint random subsets A2 and E, of size k′

each, B2 of size k−k′, and B of size k−2k′, and setting S = B∪A2∪E. Condition on the event that
random (A2, B2) is excellent and gA1 and gA2 disagree on at most α′ fraction of inputs in U ; this
event happens with probability Ω(ε5). Further condition on the event that (B ∪ E) ∈ ConsA2,B2 ;
this event happens with probability Ω(ε) (given the previous conditioning on (A2, B2)).

Given these conditionings, we get by Lemma 3.8 that, with probability 1 − ε, gA2(B ∪ E) =
C(S)|B∪E in all but at most O(α) fraction of positions. By the Chernoff bound and the assumption
that ConsA2,B2 has measure at least ε/2, we get

PrB∪E∈ConsA2,B2
[gA1(B ∪ E)

>2α′

6= gA2(B ∪ E)] 6 e−Ω(α′(k−k′))/(ε/2),

which is o(1) for our choice of α. Thus we have, with probability 1−o(1), gA1(B∪E) = gA2(B∪E) in
all but at mostO(α) fraction of positions. Hence, with the conditional probability 1−ε−o(1) > Ω(1),
we have gA1(B ∪ E) = C(S)|B∪E except for O(α) fraction of positions, and thus gA1(S) = C(S)
except for O(αk) positions (since k′/k 6 O(α)). Lifting the conditionings, we get, for Ω(ε6) of
random k-sets S ⊂ U , that gA1(S) = C(S) except for O(αk) positions.

3.4.2 Alternative proof of Theorem 3.17

In this section, we give an alternative analysis of the V -test and derandomized V -test when the
V -test accepts with probability ε > 2k′/

√
k.

We’ll start with an alternative construction of a 3-query direct product test, the Z ′-test; this
Z ′-test is sound for essentially the same reason as the Z-test defined earlier (for completeness, we
give the proof in the Appendix). We then give a third test, the correlated twice-V test, cV 2. We
show that the acceptance probability of the correlated twice-V test is at least ε2. Then we show that
the acceptance probability of the Z ′-test is at least that of the cV 2-test, less some polynomial in k.
It then follows that the Z ′-test accepts with probability at least ε2 − poly(1/k). Thus, if ε� k−η,
then the Z ′-test accepts with probability poly(ε). Since the Z ′-test is sound (even with inverse-
exponential soundness), this implies that C is close to a direct product function. The analogous
argument will also work fairly directly for the derandomized case.

The Z ′-test is as follows:

Z′-Test:
1. Pick a random k-set (A0, B0) ⊆ U , where |A0| = k′.
2. Pick a random k-set (A1, B1) ⊆ U , where |A1| = k′.
3. Pick a random set M ⊆ U \ (A0 ∪A1) of size k − 2k′. If C(A0, B0)|A0 6= C(A0,M ∪
A1)|A0 or if C(A1, B1)|A1 6= C(A1,M ∪A0)|A1 then reject; else, accept.

Pictorially, the Z ′-test is given in Fig. 4 below. Note that Z ′-test is more symmetric than the
Z-test: the Z ′-test consists of two identical V -tests “glued together”.

The cV 2-test is:

cV 2-Test:
1. Pick a random k-set N0 ⊆ U .
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2. Pick A0 ⊆ N0, |A0| = k′, and B0 ⊆ U \ A0. If C(A0, B0)|A0 6= C(A0, N0 − A0)|A0 ,
then reject, else continue.
3. Pick A1 ⊆ N0, |A1| = k′, and B1 ⊆ U \ A1. If C(A1, B1)|A1 6= C(A1, N0 − A1)|A1

then reject, else accept.

Assume C passes the V -test with probability ε > 2k′/
√
k. Let εN be the conditional probability

of passing the V -test given that A0 ∪ B0 = N . Then ExpN⊆U ,|N |=k[εN ] = ε, and the probability

of passing the cV 2 test given that N0 = N is (εN )2. Thus, the probability of passing the cV 2 test
overall is ExpN [(εN )2] ≥ (ExpN [εN ])2 = ε2, by Cauchy-Schwarz.

Note that, given that A0 and A1 are disjoint in both tests, the Z ′ test and cV 2 tests are
identically distributed (setting N = A0 ∪A1 ∪M). Thus, the probability that C passes the Z ′ test
is at least ε2 −Pr[(A0 ∩ A1) 6= ∅] > ε2 − (k′)2/k > ε2 − ε2/4 = (3/4)ε2. So Theorem 3.17 follows
from the analysis of the Z ′-test, given in the next theorem.

Theorem 3.21 (Analysis of the Z ′-test). Assume C passes the Z ′-test with probability p. Then
there exists a function G : U → R so that with probability at least Ω(p2) over k-sets S,

Gk(S)
≥1−α

= C(S),

where α 6 O((log 1/p)k′/k).

The proof of Theorem 3.21 is very similar to (in fact, even simpler than) the analysis of the
Z-test given in Lemma 3.16. For completeness, we prove Theorem 3.21 in the Appendix.

3.5 The case of randomized oracle C

As mentioned at the beginning of this section, all results we prove here also carry over to the case
where C is a randomized oracle. Given as input a k-set S ⊆ U , such an oracle C flips its internal
random coins r, and then outputs some k values corresponding to the k elements of S. In other
words, there is a deterministic oracle C̃ taking inputs S and r, and producing k values, so that
C(S) outputs C̃(S; r) for a random r.

Our V-test for such a randomized oracle C becomes: Take two random k-subsets (A,B) and
(A,B′), where |A| = k′; query C(A,B) and C(A,B′) (by choosing independent random strings r
and r′, and querying C̃((A,B); r) and C̃((A,B′); r′)); accept iff both queries return the same values
for the set A (i.e., iff C̃((A,B); r)|A = C̃((A,B′); r′)|A).

Suppose the V-test accepts with probability at least ε. The definitions of “consistent”, “good”,
and “excellent” are as before with the only difference that the probabilities are over the internal

A 0

A 1

B 0

B 1

M

Figure 4: Z ′-test.
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randomness of C as well. More precisely, let ((A0, B0); r0) be a pair of a k-set (A0, B0) (partitioned
into subsets A0 and B0) and a random string r0. A pair (B; r), where |B| = |B0| and r is a
random string, is in ConsA0,B0;r0 if C̃((A0, B0); r0)|A0 = C̃((A0, B); r)|A0 . We call ((A0, B0); r0)
good if ConsA0,B0;r0 has measure at least ε/2. We call ((A0, B0); r0) (α, γ)-excellent if it is good
and, moreover,

PrE,D1,D2,r1,r2 [((E,Di); ri) ∈ ConsA0,B0;r0 , i = 1, 2, &C̃((A0, E,D1); r1)|E
>α
6= C̃((A0, E,D2); r2)|E ] 6 γ,

where |E| = |A0| = k′.
The plurality function g for some excellent ((A0, B0); r0) is defined in the natural way: for every

x ∈ U \ A0, set g(x) = Plurality(B;r)∈ConsA0,B0;r0
:x∈BC̃((A0, B); r)|x; if no such (B; r) exists, set

g(x) = 0.
All results proved above continue to hold (with the same proofs). In particular, Lemma 3.8

still applies, saying that the plurality function g defined above is an approximate DP function for
almost all (B; r) ∈ ConsA0,B0;r0 : for the same ν and β as in Lemma 3.8, we have

Pr(B;r)∈ConsA0,B0;r0
[C̃((A0, B); r)|B

>β

6= g(B)] 6 ν.

The Z-test is defined for the case of a randomized oracle C in a similar way. The analysis of
Z-test (Lemma 3.16) still applies, showing that if the Z-test accepts with probability at least ε,
then there is some global function g : U → R such that

Pr(S;r)[C̃(S; r)
>1−α′

= g(S)] > ε/4;

that is, the only change is that the probability is over pairs (S; r), where S is a k-subset of U and
r is internal randomness of the randomized oracle C.

4 Derandomized DP testing: Proofs of Theorems 1.2 and 1.3

Here we prove Theorem 1.2. Our proof follows the structure of the proof for the Independent case
from the previous section, but now relying on the subspace samplers from Lemma 2.3. We will fully
prove Theorem 1.2. The proof of Theorem 1.3 is in fact simpler, using the first two parts of the
proof of Theorem 1.2 and a simple additional property of the derandomized partitions.

4.1 Excellence

For a pair (A0, B0) (where A0 and B0 are linearly independent subspaces), we say that a subspace
B (linearly independent from A0) is consistent with (A0, B0) if C(A0 + B0)|A0 = C(A0 + B)|A0 .
Let ConsA0,B0 denote the set of all such consistent subspaces B.

As before, we say that (A0, B0) is good if ConsA0,B0 has measure at least ε/2. We call (A0, B0)
(α, γ)-excellent if it is good and, moreover,

PrE,D1,D2 [(E+Di) ∈ ConsA0,B0 , i = 1, 2, & C(A0 +E+D1)|A0+E

>α
6= C(A0 +E+D2)|A0+E ] 6 γ,

where E, D1 and D2 are linear subspaces such that E, D1 and D2 are linearly independent from
A0, and each Di is linearly independent from E. The dimension of E is the same as that of A0.

We get the following analogues of Lemmas 3.5 and 3.6.
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Lemma 4.1. Assume that PrA0,B0,B1 [C(A0 + B0)|A0 = C(A0 + B1)|A0 ] > ε. Then a random
(A0, B0) is good with probability at least ε/2.

Proof. The proof is exactly the same as that of Lemma 3.5.

Lemma 4.2. PrA0,B0 [(A0, B0) is good but not (α, γ)-excellent] < γ′/γ, where γ′ 6 O(q2/(αk′)).

Proof. Set α′ = α/2. We need to upperbound the probability of the event E1(A0, B0) that (A0, B0)
is good but

PrE,D1,D2 [(E+Di) ∈ ConsA0,B0 , i = 1, 2 & C(A0 +E+D1)|A0+E

>α′

6= C(A0 +E+D2)|A0+E ] > γ.

Let E2(A0, B0, E,D1, D2) be the event that (A0, B0) is good, (E+Di) ∈ ConsA0,B0 for i = 1, 2,

and C(A0 + E + D1)|A0+E

>α′

6= C(A0 + E + D2)|A0+E . Denote the subspace A0 + E by A. The
random choices of event E2 can be equivalently made in the following order: pick a subspace A,
and subspaces D1 and D2 linearly independent from A; pick A0 as a random subspace of A, setting
E to be a random subspace of A that is linearly independent from A0; pick random B0 linearly

independent from A. Condition on any (A,D1) and (A,D2) such that C(A+D1)|A
>α′

6= C(A+D2)|A.
A random subspace A0 of A will completely miss the inconsistent elements in A with probability
at most γ′ 6 O(q2/(α′|A0|)), by Lemma 2.2 (with V0 = {0}, V1 = A, and W = A0). If A0

contains such inconsistent positions, then it cannot be the case that both (E + D1) ∈ ConsA0,B0

and (E +D2) ∈ ConsA0,B0 . Hence, Pr[E2] 6 γ′.
We have Pr[E2 | E1] > γ. On the other hand, Pr[E2 | E1] = Pr[E1 & E2]/Pr[E1] < γ′/Pr[E1].

So, we obtain that Pr[E1] < γ′/γ, as required.

As a consequence of these two lemmas, we get

Corollary 4.3. Assume that PrA0,B0,B1 [C(A0 +B0)|A0 = C(A0 +B1)|A0 ] > ε. Then we have

PrA0,B0 [(A0, B0) is (α, γ)-excellent | (A0, B0) is good] > 1− ε2,

where α and γ are such that αk′ > cq2/(γε3), for some global constant c > 0.

4.2 Excellence implies local agreement

Let us focus on ConsA0,B0 for some fixed (α, γ)-excellent (A0, B0), where γ < ε3/960. For notational
convenience, we will drop the subscript and simply write Cons. By the excellence property, we
have the following:

PrE,D1,D2 [(E+Di) ∈ Cons, i = 1, 2 & C(A0 +E+D1)|A0+E

>α
6= C(A0 +E+D2)|A0+E ] 6 γ, (12)

where E is a d0-dimensional subspace independent from A0, and each Di is a (d−2d0)-dimensional
subspace independent from the subspace A0 + E.

Define the function g as follows. For every x ∈ A0, set g(x) = C(A0+B0)|x; for every x ∈ U\A0,
set

g(x) = PluralityB∈Cons: x∈A0+B C(A0 +B)|x; (13)

if there is no B ∈ Cons such that x ∈ A0 +B, then we set g(x) to some default value, say 0.
We will prove the following.

30



Lemma 4.4. Let γ < ε3/960 and let α be such that αk′ > cq2/(γε3) for some global constant c > 0.
Let ν = 960γ/ε2 < ε, and let β = 40α. Then there are fewer than ν fraction of B ∈ Cons such that
C(A0 +B)|x 6= g(x) for more than β fraction of x ∈ A0 +B, i.e.,

PrB∈Cons[C(A0 +B)
>β

6= g(A0 +B)] 6 ν.

For the sake of contradiction, suppose that

PrB∈Cons[C(A0 +B)
>β

6= g(A0 +B)] > ν.

This implies that

PrB[B ∈ Cons & C(A0 +B)
>β

6= g(A0 +B)] > ν ′, (14)

for ν ′ > νε/2 (since Cons has measure at least ε/2 by the definition of goodness of (A0, B0)).
We will follow the structure of the proof argument used to prove the analogous result for the

Independent case of Lemma 3.8. For technical reasons, we will use different methods for sampling
subspaces containing A0 than those used in Eqs. (12)–(14), and the statement of Lemma 4.4 above.
However, these alternative sampling methods will preserve the values of the probabilities of the
corresponding events. We give the details in the following subsection.

4.2.1 Equivalent sampling procedures

Subsets of a universe U containing a fixed set A0, are in 1-1 correspondence with subsets of the
complement, U \ A0. A similar statement holds for subspaces, i.e., when U is a vector space, A0

is a fixed subspace, and we consider subspaces containing A0. Here we formally describe this
correspondence.

For every linear subspace L of the universe U = Fmq , we have a complementary subspace L′ that
is disjoint from L except for the common zero vector and such that L+ L′ = U . In general, there
are many subspaces complementary to the given subspace L. Among all such spaces, we can choose
some canonical one, and denote by L† this uniquely defined subspace complementary to L. (In the
case of, say, real fields, we could simply take L† to be the uniquely defined orthogonal complement
of L.)

Let A0 be a fixed linear subspace of U = Fmq . For every subspace B linearly independent from

A0, there is a subspace B⊥ ⊆ (A0)† such that A0 +B = A0 +B⊥. Indeed, one can take basis vectors
of B, represent each of them as a sum a+ b for a ∈ A0 and b ∈ (A0)†, and take the corresponding
vectors b as the basis for B⊥. It is easy to see that B⊥ is uniquely determined by the space A0 +B;
i.e., for any subspaces B′, B′′ of (A0)†, if A0 +B′ = A0 +B′′ then B′ = B′′.

Let us call two subspaces B and B′ equivalent if A0 +B = A0 +B′. All such equivalence classes
are of the same size, and, by the above, they are in one-to-one correspondence with the subspaces
in (A0)†.

Let E(B) be any random event (of a random subspace B) which depends on the properties of
the space A0 +B (rather than a particular representative of the equivalence class of B). Then the
probability of the event E(B) for a uniformly chosen subspace B linearly independent from A0 is
equal to that for a uniformly chosen subspace B from the space (A0)†.

For example, let B denote the set of all (d − d0)-dimensional subspaces independent from A0,
and let B⊥ denote the set of all (d − d0)-dimensional subspaces in (A0)†. Recall that Cons is the
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subset of all those B ∈ B such that C(A0 +B0)|A0 = C(A0 +B)|A0 . Define Cons⊥ = Cons ∩ B⊥.
We get that the measure of consistent subspaces remains the same when we sample subspaces from
(A0)† (rather than from all linearly independent subspaces). That is, we have the following.

Claim 4.5. |Cons|/|B| = |Cons⊥|/|B⊥|.

For each x ∈ U \ A0, let Bx denote the collection of all subspaces B linearly independent from
A0 such that x ∈ A0 + B. We denote by Consx the subset of Cons that consists of exactly those
B ∈ Cons such that x ∈ A0 +B.

Each x ∈ U \ A0 can be uniquely represented as x‖ + x⊥, where x‖ ∈ A0 and 0 6= x⊥ ∈ (A0)†.
Let Lx denote the 1-dimensional linear subspace spanned by x⊥. Let (Bx)⊥ denote the set of all
(d − d0)-dimensional subspaces from (A0)† that contain Lx. Let (Consx)⊥ denote the subset of
those B ∈ (Bx)⊥ that are in Cons. We get the following.

Claim 4.6. |Consx|/|Bx| = |(Consx)⊥|/|(Bx)⊥|.

For each subspace E linearly independent from A0, we denote by ConsE the subset of Cons
that consists of exactly those B ∈ Cons that contain E, and we denote by BE the collection of all
B linearly independent from A0 such that E ⊆ B. Let (BE)⊥ be the set of all subspaces from (A0)†

that contain E⊥, and let (ConsE)⊥ be the set of all those subspaces B′ ∈ (BE)⊥ that are in Cons.
We have the following analogue of Claim 4.6.

Claim 4.7. |ConsE |/|BE | = |(ConsE)⊥|/|(BE)⊥|.

One can easily show that the probability in Eq. (12) remains the same when one samples the
subspaces E,D1, D2 as follows: choose a uniform d0-dimensional subspace E from (A0)†, choose
two independently random (d−2d0)-dimensional subspaces D1 and D2 from the subspace (A0+E)†.
Similarly, one can change the sampling method in Eq. (14) (to subspaces B ∈ B⊥), without changing
the probability value. Finally, the function g defined in Eq. (13) remains the same when one samples
Bs from (Consx)⊥ rather than from Consx.

4.2.2 Proof of Lemma 4.4

We now show the analogues of Claims 3.11–3.15. By Claims 4.6 and 4.7, it is sufficient for us
to argue about the corresponding ⊥-versions of the involved sets of subspaces. To simplify the
notation, in the rest of this subsection we shall drop the subscript ⊥ when denoting these versions.

Claim 4.8. For all but at most 1/(εk1/5) fraction of inputs x ∈ U \A0, we have |Consx|/|Bx| > ε/6.

Proof. Consider the bipartite graph where the left vertices are labeled by all 1-dimensional linear
subspaces from (A0)†, and the right vertices are labeled by all linear D-dimensional subspaces from
(A0)†, for D = d− d0. By Lemma 2.3, this graph is a (β, λ)-sampler, for λ = O(1/

√
βqD−2).

We know that Cons has measure µ > ε/2 among all the vertices on the right. Let H be the
subset of all those vertices on the left with fewer than µ/3 fraction of their neighbors falling into
Cons. By Lemma 2.5, we can conclude that the measure of H is at most 1/(εqD/4), which is at
most 1/(εk1/5) (by our choice of D and d0).

Finally, since choosing a random x ∈ U \ A0 is equivalent to choosing a random vector in A0,
a random 1-dimensional subspace L from (A0)†, and a random non-zero vector in L, we conclude
that choosing a random x with |Consx|/|Bx| < ε/6 is at most the measure of H.
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Next we prove the following analogue of Claim 3.12.

Claim 4.9. Let x be any input such that Consx has measure at least ε/6 in Bx. Then for all but
at most O(1/(εk1/4)) fraction of linear subspaces E from (A0)† such that x ∈ A0 + E, we get that

PrB∈ConsE [C(A0 +B)|x = g(x)] > 1/10.

Proof. Let x = x‖ + x⊥ be the unique representation of x such that x‖ ∈ A0 and x⊥ ∈ (A0)†. Let
Lx be the linear subspace spanned by the vector x⊥.

A (d − d0)-dimensional linear subspace B ∈ Bx is uniquely determined by a (d − d0 − 1)-
dimensional linear subspace B′ from (A0 + Lx)† (with B = B′ + Lx). Similarly, a linear d0-
dimensional subspace E (from (A0)†) such that x ∈ A0 + E is uniquely determined by a (d0 − 1)-
dimensional linear subspace E′ from (A0 + Lx)† (with E = E′ + Lx).

Consider the bipartite inclusion graph with the left vertices labeled by all (d0 − 1)-dimensional
linear subspaces E′, and the right vertices labeled by all (d− d0 − 1)-dimensional linear subspaces
B′ (all from (A0 +Lx)†). Let Q be the subset of those right vertices B′ such that B′+Lx ∈ Cons.
By the assumption, Q has measure µ > ε/6.

Let Q′ be the subset of all those B′ ∈ Q where C(A0 +B′+Lx)|x = g(x). Let µ′ be the measure
of this Q′ in the set of right vertices. By the definition of g, we know that µ′/µ > 1/2, and so
µ′ > ε/12.

Let c = b(d − d0 − 1)/(d0 − 1)c ≈ 24. By Lemmas 2.3 and 2.5, all but at most δ 6 1/(εk1/4)
fraction of subspaces E′ are such that, among the subspaces B′ containing E′, the measure of those
B′ that fall into Q is between µ/3 and 5µ/3. Simultaneously, the measure of those B′ ⊃ E′ that
fall into Q′ is between µ′/3 and 5µ′/3, for all but at most δ fraction of subsets E′. Hence, for
at least 1 − 2δ fraction of sets E′, PrB′:E′⊂B′ [C(A0 + B′ + Lx)|x = g(x) | B′ + Lx ∈ Cons] >
(µ′/3)/(5µ/3) > 1/10, as required.

Claim 4.10. For δ = O(1/(εk1/5)),

PrE,x∈(A0+E)\A0
[PrB∈ConsE [C(A0 +B)|x = g(x)] > 1/10] > 1− δ,

where E is a random d0-dimensional linear subspace from (A0)†.

Proof. The distribution (E, x ∈ (A0 + E) \ A0) is the same as (x ∈ U \ A0, E : x ∈ A0 + E). By
Claim 4.8, we know that all but at most 1/(εk1/5) of x are such that Consx is large. For each of
these x, we get by Claim 4.9 that all but O(1/(εk1/4)) of Es will satisfy the event in the statement
of the present claim. So over random choices of x and E such that x ∈ A0 +E, the required event
occurs with probability at least 1−O(1/(εk1/5)).

Claim 4.11. PrE [∀x ∈ A0 + E PrB∈ConsE [C(A0 + B)|x = g(x)] > 1/10] > 1 − δ′, for δ′ =
O(1/(εk3/25)).

Proof. The proof is by the union bound. Consider the set of all those E with at least one x ∈ A0+E
such that PrB∈ConsE [C(A0 +B)|x = g(x)] 6 1/10. Let µ be the measure of this set of Es. It follows
that PrE,x∈A0+E [PrB∈ConsE [C(A0 +B)|x = g(x)] 6 1/10] > µ/|A0 + E| = µ/q2d0 = µ/k2/25.

On the other hand, by Claim 4.10, we have that PrE,x∈A0+E [PrB∈ConsE [C(A0 +B)|x = g(x)] 6
1/10] 6 δ, for δ = O(1/(εk1/5)). We conclude that µ 6 δk2/25 6 O(1/(εk3/25)), as required.

Finally, we will need the following analogue of Claim 4.8.
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Claim 4.12. For all but at most 1/(εk1/4) fraction of d0-dimensional linear subspaces E from
(A0)†, we have |ConsE |/|BE | > ε/6.

Proof. The proof is analogous to that of Claim 4.8, except we use the inclusion graph on vertices
that are d0-dimensional linear subspaces E and (d−d0)-dimensional linear subspaces B, with both
E and B from (A0)†.

We now give the proof of Lemma 4.4.

Proof of Lemma 4.4. We have by Claims 4.12 and 4.11 that, for at least 1 − o(1) of uniformly
random d0-dimensional linear subspaces E from (A0)†,

1. the fraction of (d− d0)-dimensional linear subspaces B′ ⊃ E (from (A0)†) that fall into Cons
is at least ε/6, and

2. for every x ∈ A0 + E, PrB′∈ConsE [C(A0 +B′)|x = g(x)] > 1/10.

Now consider the following distribution of subspaces E: pick a random (d − d0)-dimensional
linear subspace B satisfying the event of Eq. (14), and then pick a random d0-dimensional linear
subspace E inside B. By Lemmas 2.3 and 2.4, we conclude that when E is sampled according to
this distribution, we get with probability at least 1/3−o(1) a subspace E such that both conditions
(1) and (2) above still hold (assuming that ε > 1/kΩ(1) is large enough).

For subspaces B and E ⊂ B, we denote by E′ ⊆ A0 +E the subset of those x ∈ A0 +E where
C(A0 +B)|x 6= g(x). For every B satisfying the event of Eq. (14), we get by Lemma 2.2 that almost
all subspaces E ⊂ B are such that |E′| > (β/2)|A0 +E|. Combining this with our earlier argument,
we get that for a random subspace B satisfying the event of Eq. (14), if we pick a random subspace
E ⊂ B, we get with probability at least 1/3 − o(1) > 1/4, a subspace E such that conditions (1)
and (2) above hold, and additionally, |E′| > (β/2)|A0 + E|.

Fix any subspace E that satisfies the three conditions stated above. Let E′ ⊂ A0 + E be as
above. By condition (2), we have that, for every x ∈ E′, there are at least 1/10 fraction of subspaces
B′ ∈ ConsE such that C(A0 +B′)|x = g(x) 6= C(A0 +B)|x. By averaging, for at least 1/20 fraction
of B′ ∈ ConsE , we have C(A0 +B′)|x 6= C(A0 +B)|x for at least 1/20 fraction of x ∈ E′. Since we
also know that |E′| > |A0 + E|β/2, we get that

C(A0 +B′)|A0+E

>β/40

6= C(A0 +B)|A0+E ,

for at least 1/20 fraction of B′ ∈ ConsE . By condition (1) on our fixed subspace E, we have that
ConsE has measure at least ε/6, and so

PrB′:E⊂B′ [B
′ ∈ Cons & C(A0 +B′)|A0+E

>β/40

6= C(A0 +B)|A0+E ] > ε/120. (15)

Since, for a random B conditioned on satisfying the event of Eq. (14), there are at least 1/4
fraction of subspaces E such that Eq. (15) holds, we obtain

PrB,E⊂B,B′⊃E [B′ ∈ Cons & C(A0 +B′)|A0+E

>β/40

6= C(A0 +B)|A0+E |

B ∈ Cons & C(A0 +B)
>β

6= g(A0 +B)] > ε/480,
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where the probability is over picking a random (d−d0)-dimensional linear subspace B (from (A′0)†)
first, then picking its random d0-dimensional linear subspace E, and finally picking a random
(d− d0)-dimensional linear subspace B′ (from (A′0)†) that contains E. Lifting the conditioning on
B, we get

PrE,B⊃E,B′⊃E [B′ ∈ Cons & C(A0+B′)|A0+E

>β/40

6= C(A0+B)|A0+E & B ∈ Cons] > ν ′ε/480 > νε2/960,

which contradicts the (α, γ)-excellence property for α = β/40 and γ = νε2/960. For γ < ε3/960,
we get that ν < ε, as required.

4.3 Local agreement implies global agreement

Here we conclude the analysis of the derandomized Z-Test by proving the following.

Lemma 4.13. If the derandomized Z-test accepts with probability at least ε, then there is a function
g : U → R such that for at least ε′ = ε/4 fraction of all subspaces S, the oracle C(S) agrees with
g(S) in all but at most α′ = 81α fraction of points x ∈ S.

Proof. Let (A0, B0) be randomly chosen in the first step of the test. Let κ be the measure of the
set ConsA0,B0 . If this (A0, B0) is not good (i.e., if κ < ε/2), then the set B1 chosen in the second
step of the test will be in ConsA0,B0 with probability at most ε/2. If this happens, then the test
may accept, but only with the probability less than ε/2.

Thus we need to analyze the case where (A0, B0) is a random good pair, and so κ > ε/2. By
Corollary 4.3, all but at most ε2 of good pairs (A0, B0) are excellent. If our chosen good pair(A0, B0)
is not excellent, then the test may accept, but this happens with probability at most ε2 < ε.

We are left with the case where our chosen pair (A0, B0) is (α, γ)-excellent. For this pair, we
define the function g as the majority function over subspaces in ConsA0,B0 . By Lemma 4.4, we
know that C mostly agrees with the direct product of g on almost all subspaces (A0 + B), where
B ∈ ConsA0,B0 . We will argue that C will mostly agree with gk also globally, on at least ε′ fraction
of all k-size subspaces S.

Consider picking subspaces B1 and A1 as follows: Pick a random d-dimensional subspace S,
then randomly choose a (d−d0)-dimensional subspace B1 ⊂ S, and set A1 to be any d0-dimensional
subspace of S that is linearly independent of B1. This choice of B1 and A1 is essentially equivalent
to the way they are chosen by the test. The only difference is that the subspace B1 chosen by the
test is linearly independent from the subspace A0, whereas in our new way of picking B1 it may
happen that B1 intersects A0 in some non-zero point. However, since B1 is uniformly distributed,
the probability that it intersects A0 in a non-zero point is negligible (less than qd/|U|). We will
ignore this negligible amount, and think of this new choice of B1 and A1 as actually equivalent to
the choices in the test.

For the sake of contradiction, suppose that there are fewer than ε′ subspaces S where C and gk

have agreement in more than 1−α′ fraction of positions. Consider picking a random d-dimensional
subspace S. If S is one of these ε′ sets, then Test may accept, but this happens only with probability
ε′ < ε. So we may assume that S is a random subspace that contains more than α′ fraction of
inputs x where C(S)|x 6= g(x). Note that the distribution of such subspaces S is at most ε′ far in
statistical distance from the uniform distribution over all d-dimensional subspaces S.

For a random S, pick its random subspaces B1 and A1 as above. If B1 6∈ ConsA0,B0 , Test will
reject. So the probability that Test accepts is at most the probability that Test accepts conditioned
on B1 ∈ ConsA0,B0 , times the probability that B1 ∈ ConsA0,B0 .
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By Lemma 4.4, all but at most ν = O(γ/ε2) fraction of subspaces B ∈ ConsA0,B0 are such that
g(B) agrees with C(A0, B)|B in all but at most β = 40α fraction of inputs x ∈ B. Conditioned
on choosing a B1 ∈ ConsA0,B0 , the test chooses one of these ν fraction of sets with probability at
most (νκ + ε′)/(κ − ε′). Indeed, for a uniformly random subspace S, a random subspace B1 ⊂ S
is uniformly distributed, and so hits the ν-fraction of ConsA0,B0 with probability at most νκ. For
the distribution of subspaces S that is ε′-far from uniform, this hitting probability may increase by
at most ε′. On the other hand, the probability that B1 ∈ ConsA0,B0 is at least κ− ε′. The claimed
bound follows.

At the same time, since C(S)
>α′

6= g(S), we get by Lemma 2.2 that, for all but at most
O(q2/(|B1|α′)) of subspaces B1 of S,

C(S)|B1

>α′/2

6= g(B1). (16)

Conditioning on B1 ∈ ConsA0,B0 for a random S means that this probability gets multiplied by at
most 1/(κ− ε′).

So conditioned on B1 ∈ ConsA0,B0 , the probability that B1 ⊂ S for a random S was chosen so

that either (16) is violated or that g(B1)
>β

6= C(A0, B1)|B1 is at most

ρ = (νκ+ ε′ +O(q2/(kα)))/(κ− ε′).

In this case, the test may accept, but only with probability at most ρ · Pr[B1 ∈ ConsA0,B0 ] 6
ρ(κ+ ε′). This probability is less than ε, since (κ+ ε′)/(κ− ε′) 6 3 for ε′ = ε/4 and κ > ε/2.

Finally, for B1 that satisfies (16) and is such that g(B1)
>1−β

= C(A0, B1)|B1 , we get that

C(A1, B1)|B1

>α′/2−β
6= C(A0, B1)|B1 .

Since α′/2 > β, the test will reject in this case.
Thus we have argued that, in all cases, the probability that the test accepts is strictly less than

ε. Hence, the function g must be an approximate direct-product function for C on ε′ fraction of all
d-dimensional subspaces.

Proof of Theorem 1.2. The proof easily follows from Lemma 4.13 above.

4.4 Two queries suffice for the derandomized case

Using the same arguments as in Section 3.4, we also prove Theorem 1.3, re-stated below.

Theorem 4.14. There is a constant 0 < η < 1 such that, if the derandomized V-test accepts with
probability ε > 12k′2/k, then there is a function g : U → R such that for at least ε′ = Ω(ε6) fraction
of subspaces S, the oracle C(S) agrees with g(S) in all but at most k−η fraction of inputs x ∈ S.

The proof is along the lines of the proof of Theorem 3.17. The only change is the use of
Chebyshev’s instead of Chernoff-Hoeffding’s inequalities (using pairwise independence of random
linear subspaces). We provide the details next.

We assume that the derandomized V-test accepts with probability ε > 12k′2/k. Consider the
following sampling procedure Sample:
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• pick disjoint (except for the common zero vector) random d0-dimensional subspaces A1, A2 ⊂
U ;

• pick a random (d − d0)-dimensional subspace B1 ⊂ U linearly independent from A1, and a
random (d− d0)-dimensional subspace B2 ⊂ U linearly independent from A2;

• pick a random (d− 2d0)-dimensional subspace B ⊂ U linearly independent from A1 +A2;

• set B′ = B +A1, and B′′ = B +A2.

We have the following analogues of Claims 3.18, 3.19, and 3.20 about samples produced by
Sample.

Claim 4.15. Let α and γ be such that αk′ > cq2/(γε3) for some global constant c > 0. Then

PrSample[(Ai, Bi) is (α, γ)-excellent, i = 1, 2, & B′ ∈ ConsA2,B2 & B′′ ∈ ConsA1,B1 ] > Ω(ε5).

Proof. We can equivalently sample as follows: Pick a random d-dimensional subspace S ⊂ U ; pick
two disjoint (except for the common zero vector) random d0-dimensional subspaces A1 and A2 in
S; pick random B1 and B2; set B to the canonical (d− 2d0)-dimensional subspace complimentary
to A1 +A2 within S (so that B+A1 +A2 = S); and, as before, set B′ = B+A1 and B′′ = B+A2.

Let S be a random d-dimensional subspace of U , let A ⊆ S be a random d0-dimensional
subspace in S, and let A† ⊆ S be the canonical subspace complementary to A within S (i.e.,
A + A† = S). By Lemma 4.1 and Corollary 4.3, the probability that (A,A†) is (α, γ)-excellent is
at least ε/2(1− ε2) > ε/3. By averaging, for at least ε/6 fraction of random subspaces S, there will
be at least ε/6 fraction of random d0-dimensional subspaces A ⊂ S such that (A,A†) is excellent.

Condition on picking such a subspace S. Then the probability of picking two excellent subspaces
A1 and A2 of S, conditioned on A1 and A2 being linearly independent, is at least the probability
of picking two linearly independent and excellent subspaces A1, A2 ⊆ S when sampling from S
twice independently. The latter probability is at least ε/6(ε/6− p), where p is the probability that
a random d0-dimensional subspaces A2 of a d-dimensional subspace S is not linearly independent
from a fixed d0-dimensional subspace A1 of S. It is easy to see that p 6 q2d0/qd = k′2/k, which is
less than ε/12 by assumption. Hence, the conditional probability that A1 and A2 are excellent and
disjoint is at least Ω(ε2). Lifting the conditioning on S, we get that the overall probability that
both (A1, B

′′) and (A2, B
′) are excellent and linearly independent is at least Ω(ε3).

Finally, conditioned on both (A1, B
′′) and (A2, B

′) being excellent, we get that B1 ∈ ConsA1,B′′

with probability at least ε/2 and, similarly, B2 ∈ ConsA2,B′ with probability at least ε/2. That
is, with probability at least ε2/4 over random B1 and B2, we get that B′′ ∈ ConsA1,B1 and
B′ ∈ ConsA2,B2 . Lifting the conditioning, we get that, with probability Ω(ε5), both (A1, B

′′) and
(A2, B

′) are excellent, and B′′ ∈ ConsA1,B1 and B′ ∈ ConsA2,B2 . This implies the claim since, for
B′′ ∈ ConsA1,B1 , the pair (A1, B

′′) is excellent iff so is the pair (A1, B1) (and similarly for B′).

Claim 4.16. For γ < ε3/960 and α such that αk′ > cq2/(γε3) for some global constant c > 0, we
have

PrSample[(Ai, Bi) is (α, γ)-excellent, i = 1, 2, & gA1(B)
6O(α)

6= gA2(B)] > Ω(ε5),

where gAi is the plurality function over sets in ConsAi,Bi, for i = 1, 2.
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Proof. Let β = 40α. Conditioned on (A1, B1) being (α, γ)-excellent and on B′′ being a random set

in ConsA1,B1 , we get by Lemma 4.4 that gA1(B′′)
>β

6= C(A1 + B′′)|B′′ for fewer than 960γ/ε2 < ε
fraction of random (d − d0)-dimensional subspaces B′′; similarly, for (A2, B2) and B′. Together
with Claim 4.15, this implies that the following event happens with probability at least Ω(ε5):

(Ai, Bi) is (α, γ)-excellent, i = 1, 2, gA1(B′′)
6β
6= C(A1 + B′′)|B′′ , gA2(B′)

6β
6= C(A2 +

B′)|B′ .

The latter two equalities imply that gA1(B)
6β′

6= C(A1 + B′′)|B and gA2(B)
6β′

6= C(A2 + B′)|B, for

β′ 6 β(1 + o(1)). Since C(A1 +B′′) = C(A2 +B′), we conclude that gA1(B)
62β′

6= gA2(B).

Claim 4.17. Let γ < ε3/960 and let α be such that α > max{(c1/k
′)q2/(γε3), c2(k′2/k)(q2/ε5)},

for some global constants c1, c2 > 0. For at least Ω(ε5) fraction of random (A1, B1) and (A2, B2),
we have that (A1, B1) and (A2, B2) are (α, γ)-excellent, and that gA1(x) = gA2(x) on all but O(α)
fraction of inputs x ∈ U .

Proof. By Claim 4.16 and averaging, we get that for at least Ω(ε5) fraction of random (A1, B1) and
(A2, B2), it is the case that (Ai, Bi) is excellent, for i = 1, 2, and that

PrB[gA1(B)
6α′

6= gA2(B)] > Ω(ε5), (17)

for some α′ = O(α). Fix any such (A1, B1) and (A2, B2). Suppose that Prx∈U [gA1(x) 6= gA2(x)] >
2α′. Pick a random (d− 2d0)-dimensional subspace B ⊂ U linearly independent from A1 +A2. By
Lemma 2.2,

PrB[gA1(B)
6α′

6= gA2(B)] 6 O(q2/(qd−2d0α′)) = O((k′2/k)(q2/α′)). (18)

For α′ > Ω((k′2/k)(q2/ε5)), the upper bound in (18) contradicts the lower bound in (17).

We can now prove Theorem 4.14.

Proof of Theorem 4.14. Let γ < ε3/960 and let α be such that

α > max{(c1/k
′)q2/(γε3), c2(k′2/k)(q2/ε5), c3k

′/k},

for some global constants c1, c2, c3 > 0.
By Claim 4.17 and an averaging argument, we get that there are Ω(ε5) pairs (A1, B1) such that

PrA2,B2,B[(A2, B2) is (α, γ)-excellent & gA1(U)
6α′

6= gA2(U)] > Ω(ε5),

where A2, B2, B are chosen as in Sample, and α′ = O(α). Fix any such (A1, B1). We show that C
is close to the direct product of gA1 on poly(ε) fraction of d-dimensional subspaces S ⊂ U .

Picking a random d-dimensional subspace S ⊂ U is equivalent to picking linearly independent
random subspaces A2 and E, of dimension d0 each, B2 of dimension d − d0, and B of dimension
d−2d0, and setting S = B+A2 +E. Condition on the event that random (A2, B2) is excellent and
gA1 and gA2 disagree on at most α′ fraction of inputs in U ; this event happens with probability Ω(ε5).
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Further condition on the event that (B+E) ∈ ConsA2,B2 ; this event happens with probability Ω(ε)
(given the previous conditioning on (A2, B2)).

Given these conditionings, we get by Lemma 4.4 that, with probability 1− o(1), gA2(B +E) =
C(S)|B+E in all but at most O(α) fraction of positions. By Lemma 2.2 and the assumption that
ConsA2,B2 has measure at least ε/2, we have that

PrB,E [gA1(B + E)
>2α′

6= gA2(B + E) | B + E ∈ ConsA2,B2 ] 6 O(q2/qd−d0α′)/ε 6 O(k′q2/(kα′ε)),

which is less than o(1) for our choice of α. Hence, with probability 1 − o(1), gA1(B + E) =
gA2(B+E) in all but at most O(α) fraction of positions. It follows that, with probability 1− o(1),
gA1(B + E) = C(S)|B+E except for O(α) fraction of positions, and thus gA1(S) = C(S) except
for O(αk) positions (since k′/k 6 O(α)). Lifting the conditionings, we get, for Ω(ε6) of random
d-dimensional subspaces S ⊂ U , that gA1(S) = C(S) except for O(αk) positions.

5 DP testing for non-Boolean functions

In this section, we generalize Lemma 3.10 to the non-Boolean case. The proof is a reduction to the
Boolean case that gets a slightly weaker value of β.

Lemma 5.1. Let R be an arbitrary finite set. If C ′ : Cons → Rk is (α, γ)-excellent with respect
to Cons, and G is its plurality function, then there are fewer than ν = O(γ/ε2) < ε fraction of sets
B ∈ Cons such that C ′(B)|x 6= G(x) for more than β = 320α fraction of x ∈ B.

Proof. Let Bad be the collection of those sets B ∈ Cons such that G(B) and C(A0, B)|B disagree
in at least 320α fraction of positions.

Let F = {Fx}x∈U be a family of independent random functions Fx : R → {0, 1}. Define
CF (x1, . . . , xk) = Fx1(y1), . . . , Fxk(yk), where y1, . . . , yk = C ′(x1, . . . , xk). In other words, CF takes
the values y1, . . . , yk returned by C ′ on x1, . . . , xk, and maps them into the Boolean values by
applying Fxi to yi, for 1 6 i 6 k.

Observe that if C ′ is consistent on two overlapping sets, so will be the new function CF on the
same sets. So, for each fixed family F , we get that CF is excellent with respect to Cons. Hence,
by Lemma 3.10, we have that for almost all B ∈ Cons, C ′(B) is close to the Boolean majority
function gF on B. In particular, the set BadF (of sets in Cons that disagree in 40α fraction of
positions with gF ) has measure less than ν as above.

On the other hand, we will show that the expected size of BadF is at least almost the same as
that of Bad. (Note that, since G is not a majority, but just a plurality, we needn’t have Fx(G(x)) =
gF (x), so BadF may not be contained in Bad.) Indeed, fix an x, and consider an arbitrary u
such that u 6= G(x). Define a random function Fx on all elements in R, except for u and G(x).
Let b ∈ {0, 1} be the majority value gF (x) so far (i.e., the majority of the values of Fx(r), for
r = C ′(A0, B)|x for B ∈ Cons containing x, where r ∈ R is not u or G(x)). Since Fx independently
maps u and G(x) to {0, 1}, we get with probability 1/4 that G(x) is mapped to b and u is mapped
to 1−b. But G(x) is at least as popular as u, and so b will be equal to gF (x). Hence, the probability
(over the choice of F ) that gF (x) 6= Fx(u) is at least 1/4.

Recall that every set B ∈ Bad has 320α fraction of elements x where C ′(B)|x 6= G(x). By the
above, each such element has a 1/4 chance of having CF (B)x 6= gF (x). Thus, almost surely (with
probability at least 1−e−Ω(αk)), B ∈ BadF . Therefore, the expected size of BadF is at least almost

39



the same as that of Bad. But for each F , BadF has measure less than ν (by the Boolean case
analysis of Lemma 3.10). Therefore, Bad has measure less than O(ν), as desired.

Using this new lemma in place of Lemma 3.8 for the case of non-Boolean functions with an
arbitrary range R, we get that our DP testing results (Theorems 1.1 and 1.2) continue to hold in
this case.

6 A 2-query PCP, and a new parallel repetition theorem

Here we analyze the 2-query PCP construction given in the Introduction (Theorem 1.4). We then
show (in Section 6.2) how our analysis can be viewed as a parallel repetition theorem for certain
2-prover games.

6.1 Proof of Theorem 1.4

Here we give a generic reduction from a graph CSP (G,Φ) over an alphabet Σ, with completeness
σ and soundness 1−δ, to a 2-query PCP over the alphabet Σk with completeness 1−exp(−σk) and
soundness 1 − exp(−δk′), for k′ = Θ(

√
k). Throughout this section, we identify U (the vertex set

of the CSP graph G) with the universe U , and the alphabet Σ with the range R (to be consistent
with the notation used earlier in the paper for direct product testing).

We first re-state the description of our verifier Y and Theorem 1.4 from the Introduction. Recall
that we define the PCP proof to be a function CE that, given a set of k edges in the constraint
graph G, returns assignments to all of the end-points of these edges. Let k′ < k be the parameter
from our DP test above. Our 2-query verifier is the following.

Verifier Y:
1. Pick a set of k′ random vertices A. For each vertex v ∈ A, pick a random incident
edge (v, v′) in G. Let AE,1 be the set of these k′ edges. Independently, pick another set
AE,2 of k′ random edges incident on the vertices in A. Finally, pick two random sets of
edges BE,1 and BE,2, of size k − k′ each.
2. Query CE(AE,1, BE,1) and CE(AE,2, BE,2). Accept iff the following checks pass:
(a) the query answers satisfy 0.9 · σ fraction of constraints on each of the BE,i’s, and
(b) they assign the same values to A.

Theorem 6.1. (i) If a CSP-instance (G,Φ) is σ-satisfiable, then there is a proof CE accepted
by verifier Y with probability σ′ > 1 − exp(−σk); moreover, if σ = 1, then σ′ = 1. (ii) If the
CSP-instance is δ-unsatisfiable, then no proof CE is accepted by Y with probability greater than
ε = e−(1/c)δk′, for some fixed constant c.

Proof. For part (i), an honest proof CE (based on some σ-satisfying assignment for (G,Φ)) will
be accepted with the stated probability σ′, by the Chernoff bounds. Moreover, if σ = 1, then the
honest proof will be accepted with probability σ′ = 1.

For part (ii), intuitively, we will argue that the consistency of the proof CE on a vertex set
A implies the existence of an assignment g : U → Σ consistent with CE . But no assignment can
satisfy significantly more than δ fraction of the random edge constraints of BE,2 (by the soundness
assumption). Therefore CE will be rejected by Y. We provide the details next.
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Let us define (for the sake of the analysis only) a probabilistic function C from k sets of vertices
to Rk as follows: Given a k-size vertex-set S, pick k edges SE at random, one incident to each node
in S. Output CE(SE)|S .

Imagine applying our DP testing analysis from Section 3 to this randomized oracle C (cf. Sec-
tion 3.5 for the discussion of randomized oracles). The V-test with respect to C is as follows: Pick
a random k′-size vertex-set A, pick random (k−k′)-size vertex sets B1 and B2 at random, and then
check whether C(A,B1)|A = C(A,B2)|A. Note that this is exactly the same as the consistency
check done in Step 2(b) of our verifier Y above. (Indeed, C would pick random edges AE,1 and
AE,2 incident to A, and then random edges incident to each of Bi, i = 1, 2. The latter are just sets
of random edges, since the graph is regular, and so have the same distribution as BE,i.)

Let a be the values assigned to A by CE(AE,1, BE,1) in Step 2 of verifier Y. For δ and ε in the
statement of the present theorem, we set α = δ/320 and γ = ε4/960. We classify pairs (A, a) as
being good, (α, γ)-excellent, or neither, with respect to C, using the corresponding definitions from
Section 3 (with a natural modification to allow randomized oracles C, so that all the probabilities
are also over the internal randomness of the oracle C being tested).

We consider three ways that verifier Y may accept the given proof CE :
1. (A, a) is not good. Then the conditional probability of passing the consistency check in

Step 2(b) is the probability that CE(AE,2, BE,2)|A = a. This is the same as the probability that
C(A,B2)|A = a, which is at most ε/2 by the definition of goodness.

2. (A, a) is good but not excellent. By Lemma 3.6, the probability that (A, a) is good but
not (α, γ)-excellent is less than e−Ω(αk′)/γ, which can be made less than ε/4 by choosing a suffi-
ciently large constant c (in the statement of the present theorem); here and below we also use our
assumption that ε < 1/4.

3. (A, a) is excellent. By Lemma 3.8, there is a function g = gA,a : U → Σ,13 so that

PrB[C(A,B)|A = a & C(A,B)|B
>40α
6= g(B)] < 960γ/ε2 = ε2,

where the probability is over random (k−k′)-size vertex sets B ⊆ U \A, and internal randomness of
C. Making the internal randomness of C explicit, we can re-write the probability above as follows:

PrAE,2,BE,2,B[CE(AE,2, BE,2)|A = a & CE(AE,2, BE,2)|B
>40α
6= g(B)] < ε2, (19)

where AE,2 is the set of random edges incident on A, the set BE,2 is the set of (k − k′) random
edges (as chosen by our verifier Y), and B is the set of vertices obtained by randomly selecting an
end-point from every edge in BE,2. (Note, thanks to the regularity of the graph G, this way of
choosing BE,2, B is the same as choosing a k′-size vertex set B first and then choosing its random
incident edges BE,2.)

We claim that

PrAE,2,BE,2 [CE(AE,2, BE,2)|A = a & CE(AE,2, BE,2)|BE,2
>100α
6= g(BE,2)] < ε2 + exp(−αk).

Indeed, suppose otherwise. Condition on any AE,2, BE,2 satisfying the random event in the above
probability expression. Pick B by randomly selecting an end-point from every edge in BE,2. Every

13Here, for x ∈ U \ A, g(x) is defined to be the most likely value C(A,B)|x, over random (k − k′)-size vertex-sets
B containing x (and internal randomness of C), conditioned on C(A,B)|A = a; if no such value exists for x, we set
g(x) to equal some default symbol in Σ.
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edge in BE,2 where CE and g disagree will contribute, with probability at least 1/2, a vertex
to B where CE and g disagree. (This is because at least one of the end-points of this edge is
in disagreement with g.) By Chernoff, the probability that B contains fewer than 40α fraction
of vertices where CE and g disagree is less than exp(−αk). But then we get a contradiction to
Eq. (19) above.

Finally, by the soundness assumption for (G,Φ), every assignment violates at least δ fraction of
edge constraints in G. In particular, this is true for our function g. The (k − k′) edges in BE,2 are
random and independent edges in G. By Chernoff, the probability that fewer than δ/2 fraction of
them have their constraints violated by g is e−Ω(δ·(k−k′)) < ε/8.

Assuming that none of the low-probability events above happened, we get that the answers
CE(AE,2, BE,2) violate at least δ/2 − 100α = (3/16)δ fraction of the edges in BE,2. But then
verifier Y would reject. It follows that the verifier may accept with probability at most ε/2 + ε/4 +
ε2 + exp(−αk) + ε/8 < ε, as required.

Remark 6.2. The value k′ must satisfy the condition that k′2 6 O(k). So we can choose k′ =

Θ(
√
k). Then the ε in the statement of Theorem 6.1 becomes e−Ω(δ

√
k).

6.2 A new parallel repetition theorem

Our 2-query PCP from the previous subsection may be viewed as a new parallel repetition theorem
for a certain family of 2-prover games.

Let G(V,E) be a d-regular graph, and let C : E → 2Σ2
be a set of edge constraints. The

usual constraint satisfaction problem S = S(G,C) asks for a labeling of the vertices by symbols
from Σ which maximizes the number of edges whose constraints are satisfied. The game S may be
viewed as a 2-prover game, in which a verifier picks an edge from E at random, gives an endpoint
to each player and verifies that the answer (the labels proposed by the provers) satisfies that edge
constraint. The value of the game S, i.e., the maximum probability of the provers to satisfy the
verifier, is essentially the maximum fraction of edges satisfied by the optimal assignment.

But one can define another game, T = T (G,C) with similar connection to the given CSP. Here
the verifier picks a pair of edges at random (from some distribution P ), sends one edge each of
the provers, and checks two things about the answers (that label the endpoints of each edge): (a)
the edge constraints are satisfied, and (b) if the two edges share a vertex, the labels given to that
vertex are the same.

The most natural (and used) distribution P is to pick a pair of incident edges uniformly at
random (so condition (b) always applies). In this case the value of the game T [P ] is essentially the
same as that of the game S.

Here is another natural distribution Q: pick the two edges uniformly at random. In this case,
condition (b) almost never applies, and the value of the game T [Q] is almost 1.

The family of games we will consider use a mixture of these two distributions, pP + qQ with
p+ q = 1. In particular, we use p = 1/m. Note that if the value of the game with P is 1− v, then
the value of the new game T [(P + (m− 1)Q)/m] is almost 1− (v/m).

While ”diluting” the quality of the game, the advantage of the mixture is in making it hard for
the players to coordinate. In particular, the famous counterexamples of Feige and Verbitsky[FV02]
and of Raz [Raz08] don’t seem to hold for such games. Indeed, we get the following.

Theorem 6.3. For k = m2, the value of the game T [(P + (m− 1)Q)/m]k (the game T repeated k
times, in the standard sense of parallel repetition) is at most (1− v)Ω(k/m).
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Proof. It follows immediately from the proof of Theorem 6.1, as the k-tuple of pairs of questions in
the game T [(P + (m− 1)Q)/m] will almost certainly yield about

√
k pairs of incident edges, with

the rest being pairs of independent edges. Hence, the analysis of the verifier Y applies.

Note that the value of the k-wise parallel repetition of the game T [(P + (m − 1)Q)/m] is at
most (1− v)Ω(k/m), and this bound does not depend on Σ! We hope that we can take m to be an
absolute constant, independent of k, and have perfect decay (1− v)Ω(k).

6.3 The Feige-Kilian parallel repetition: Proof of Theorem 1.5

First, we recall the definition of our verifier Y ′ and re-state Theorem 1.5. Let (G,Φ) be a graph
CSP with the vertex set U and the alphabet Σ. The first prover C1 gets as input a k′-subset of
vertices of G and returns an assignment to all these vertices. The second prover is a function CE
that, given a set of k edges of G, returns assignments to all the 2k end-points of these edges.

Verifier Y ′:
1. Pick a set of k′ random vertices A. For each vertex v ∈ A, pick a random incident
edge (v, v′) in G. Let AE,2 be the set of these k′ edges. Pick a set of (k − k′) random
edges BE,2.
2. Query C1(A) and CE(AE,2, BE,2). Accept iff the following checks pass:
(a) the query answers satisfy 0.9 · σ fraction of constraints of BE,2, and
(b) they assign the same values to A.

Theorem 6.4. (i) If a CSP-instance (G,Φ) is σ-satisfiable, then there are proofs (C1, CE) accepted
by verifier Y ′ with probability σ′ > 1− exp(−σk); moreover, if σ = 1, then σ′ = 1. (ii) If the CSP-
instance is δ-unsatisfiable, then no proofs (C1, CE) are accepted by Y ′ with probability greater than
ε = e−(1/c)δk′, for some fixed constant c.

Proof sketch. First we observe that our analysis of the V-test can be easily adapted to the scenario
where the two queries are made to two different provers. The first prover C1 gives an assignment
for k′-subsets of the universe U , and the second prover C2 gives an assignment for k-subsets of U .
The test picks a random k′-subset A0 ⊆ U and a random k-subset (A0, B1) ⊆ U , and accepts if
C1(A0) = C2(A0, B1)|A0 .

In this new setting, we define the set ConsA0 as the set of all those k − k′-subsets B where
C1(A0) = C2(A0, B)|A0 . We call a set A0 good if the measure of ConsA0 is at least ε/2. We call A0

(α, γ)-excellent if it is good and

PrE,D1,D2 [(E,Di) ∈ ConsA0 , i = 1, 2, & C2(A0, E,D1)|E
>α
6= C2(A0, E,D2)|E ] 6 γ.

One can easily check that all lemmas in Sections 3.1 and 3.2 continue to hold for this new test
(with the same proofs). That is, we get the following: (1) if the new test accepts with probability at
least ε, then a random subset A0 is good with probability at least ε/2; (2) the probability that A0

is good but not (α, γ)-excellent is less than γ′/γ, where γ′ = exp(−αk′); and (3) for any excellent
A0 and the corresponding plurality function g = gA0 (defined with respect to ConsA0), there are
fewer than ν = O(γ/ε2) fraction of sets B ∈ ConsA0 such that C2(A0, B)|x 6= g(x) for more than
40α fraction of x ∈ B, where α > Ω((ln 1/ε)/(k/k′)).
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Now the analysis of the verifier Y ′ is very similar to that of the verifier Y given in Section 6.1.
We just define the randomized “vertex-proof” C2 from k-sets of vertices to Σk as follows: Given a
k-size vertex set S, pick at random k edges SE , one incident edge per node in S; output CE(SE)|S .
Then we observe that the test Y ′ is applying (the 2-prover version of) the V-test to the provers C1

and C2. The rest of the argument is exactly the same as in Section 6.1.

7 Open questions

While our current techniques stop at the exponent
√
k in the soundness error decay, we see no

obvious obstacle to improving it to k, and proving possibility/impossibility of this is one interesting
open question we leave. Another interesting question is whether our PCP construction works for
k < 1/δ2; our current analysis seems to require that k > 1/δ2. Perhaps the most interesting open
question is whether our techniques can be used to construct a 2-query PCP with sub-constant
soundness, thereby providing an alternative construction to [MR08]; see [DM10] for some progress
on this question.
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A Analysis of the Z ′-test: Proof of Theorem 3.21

We’ll show first that the assumption of Theorem 3.21 implies that with almost the same probability,
both (A0, B0) and (A1, B1) are excellent, and furthermore, the respective plurality functions G0 and
G1 are close to each other. Then we argue that for some fixed (A0, B0), for the plurality function
G0, Gk0 is close to C on a poly(ε′) fraction of assignments. A more formal proof is given next.

For the rest of the proof, assume that p = 2ε′. Let α = C(log 1/ε′)k/k′ for a suitably large
constant C. Let β = 320α. Let γ = 4 · e−cαk′/ε′ for c the hidden constant in the expression for γ′

from Lemma 3.6, so that γ′/γ < ε/4. By picking C suitably large, we can assume γ = o(ε′3).

Claim A.1. The probability that C passes the Z ′-test and both (A0, B0) and (A1, B1) are good is
at least ε′.

Proof. Since N ∪A1 is independent of A0, and passing the Z ′-test implies that N ∪A1 ∈ ConsA0,B0 ,
the probability of passing given that (A0, B0) is not good is at most ε′/2, as is the probability of
(A0, B0) not being good and C passing the Z ′-test. Similarly for (A1, B1) not being good and C
passing the Z ′-test. Subtracting the probability of both of these events from the 2ε′ probability of
passing the Z ′ test gives the claim.

Claim A.2. The probability that C passes the Z ′-test and both (A0, B0) and (A1, B1) are (α, γ)-
excellent is at least ε′/2.

Proof. By Lemma 3.6, the probability that (A0, B0) is good but not (α, γ)-excellent is at most
γ′/γ = ε′/4 by our choice of parameters, and similarly for (A1, B1). Subtracting these two bad
events from the probability of Claim A.1 yields the bound.

Claim A.3. The probability over sets A0, B0, A1, B1, N that both (A0, B0) and (A1, B1) are excel-
lent, and, for the respective plurality functions G0, G1,

Gk−2k′

0 (N)
≥1−2β−2k′/k

= Gk−2k′

1 (N)
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is at least ε′/4.

Proof. Consider the event that (A0, B0) is excellent, N∪A1 ∈ ConsA0,B0 and G0(N∪A1)
≥β
6= C(A0∪

N ∪ A1)N∪A1 . By Lemma 5.1, this event occurs with probability at most ν = O(γ/ε′2) = o(ε′).
Similarly for the corresponding event concerning (A1, B1) and N∪A0 for the function G1. If neither

of these two events occurs, then Gk−2k′

0 (N)
≥1−β−k′/k

= C(A0 ∪ A1 ∪ N)N
≥1−β−k′/k

= Gk−2k′

1 (N), so

Gk−2k′

0 (N)
≥1−2β−2k′/k

= Gk−2k′

1 (N). Thus, we get the bound in the claim by subtracting two o(ε′)
events from the ε′/2 probability event in Claim A.2.

Claim A.4. The probability over sets A0, B0, A1, B1 that (A0, B0), (A1, B1) are both excellent, and
G0(x) = G1(x) for all but a 4β fraction of x’s is at least ε′/8.

Proof. Consider the event that G0(x) 6= G1(x) for a 4β fraction of x, but Gk−2k′

0 (N)
≥1−2β−2k′/k

=

Gk−2k′

1 (N). For any fixed (A0, B0) and (A1, B1) with G0, G1 that distant, since N is uniformly
distributed subset of U , we get by Chernoff bounds that the likelihood of almost equality on N is
e−O(βk) = o(ε′) by the choice of parameters. Subtracting this probability from that in Claim A.3
gives the bound.

Claim A.5. There exists an excellent (A0, B0) so that with probability at least Ω(ε′2) over k-sets

S , Gk0(S)
≥1−O(β+k′/k)

= C(S).

Proof. Pick any (A0, B0) so that the conditional probability of the event in the previous claim is
at least ε′/8. Pick S as follows: Pick random sets A1, B1 and B2 of sizes k′, k − k′ and k − k′,
respectively. Let S = A1 ∪ B2. Note that since |A1| is small, we only need to look at the circuit
and G0 on B2. Then the probability that (A1, B1) is (α, γ)-excellent and G1 is O(β) close to G0 is
Ω(ε′). If (A1, B1) is excellent, and hence good, the conditional probability that B2 ∈ ConsA1,B1 is

Ω(ε′). If this occurs, by Lemma 5.1, almost certainly C(A1, B2)B2

≥1−O(β+k′/k)
= Gk−k

′

1 (B2). Thus,

with probability Ω(ε′2), C(S)B2

≥1−O(β+k′/k)
= Gk−k

′

1 (B2). Also, since G1 and G0 are close, with

probability 1− o(ε′2), Gk−k
′

1 (B2)
≥1−O(β−k′/k)

= Gk−k
′

0 (B2). The claim then follows.

The proof of the theorem is immediate from the last claim.
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