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Abstract. For a class F of formulas (general de Morgan or read-once
de Morgan), the shrinkage exponent ΓF is the parameter measuring the
reduction in size of a formula F ∈ F after F is hit with a random restric-
tion. A Boolean function f : {0, 1}n → {1,−1} is Fourier-concentrated
if, when viewed in the Fourier basis, f has most of its total mass on
“low-degree” coefficients. We show a direct connection between the two
notions by proving that shrinkage implies Fourier concentration: for a
shrinkage exponent ΓF , a formula F ∈ F of size s will have most of
its Fourier mass on the coefficients of degree up to about s1/ΓF . More
precisely, for a Boolean function f : {0, 1}n → {1,−1} computable by a
formula of (large enough) size s and for any parameter r > 0,

∑
A⊆[n] : |A|>s1/Γ·r

f̂(A)2 6 s · polylog(s) · exp

(
−r

Γ
Γ−1

so(1)

)
,

where Γ is the shrinkage exponent for the corresponding class of for-
mulas: Γ = 2 for de Morgan formulas, and Γ = 1/ log2(

√
5− 1) ≈ 3.27

for read-once de Morgan formulas. This Fourier concentration result is
optimal, to within the o(1) term in the exponent of s.
As a standard application of these Fourier concentration results, we get
that subquadratic-size de Morgan formulas have negligible correlation
with parity. We also show the tight Θ(s1/Γ) bound on the average
sensitivity of read-once formulas of size s, which mirrors the known
tight bound Θ(

√
s) on the average sensitivity of general de Morgan

s-size formulas.

Keywords. formula complexity, random restrictions, de Morgan for-
mulas, read-once de Morgan formulas, shrinkage exponent, Fourier anal-
ysis of Boolean functions, Fourier concentration, average sensitivity
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1. Introduction

Over the past thirty years, there have been a number of striking ex-
amples of interplay between complexity and algorithms. We know
that computationally hard problems are useful for

◦ building secure cryptosystems (Blum & Micali 1984; H̊astad
et al. 1999; Yao 1982), and

◦ derandomization (Babai et al. 1993; Impagliazzo & Wigder-
son 1997; Nisan & Wigderson 1994; Umans 2003).

On the other hand, circuit lower bounds are implied by non-trivial
algorithms for

◦ SAT (Kannan 1982; Karp & Lipton 1982; Williams 2013,
2014), or

◦ Polynomial Identity Testing (Kabanets & Impagliazzo 2004).

It has also been observed that techniques used to prove existing
circuit lower bounds are often useful for designing

◦ learning algorithms (Linial et al. 1993),

◦ SAT algorithms (Beame et al. 2012; Chen et al. 2015a,b; Im-
pagliazzo et al. 2012a; Santhanam 2010; Seto & Tamaki 2012;
Tal 2015; Zane 1998), and

◦ pseudorandom generators (Braverman 2010; Gopalan et al.
2012; Impagliazzo et al. 2012b; Trevisan & Xue 2013)

for the same class of circuits. In particular, the method of ran-
dom restrictions, useful for proving lower bounds against AC0 cir-
cuits (Furst et al. 1984; H̊astad 1986; Yao 1985) and de Morgan
formulas (Andreev 1987; H̊astad 1998; Komargodski & Raz 2013;
Komargodski et al. 2013; Santhanam 2010; Subbotovskaya 1961;
Tal 2014), turns out to be also useful for designing such algorithms
for the same circuit class.
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We give another example of the connection between random re-
strictions and algorithms for small de Morgan formulas, by relating
the shrinkage exponent to the Fourier spectrum for such formulas.

For a class F of formulas (general de Morgan or read-once de
Morgan), the shrinkage exponent ΓF is the parameter measuring
the reduction in size of a formula F ∈ F after F is hit with a
random restriction: if every variable of an s-size formula F ∈ F
is kept alive with probability p, and set uniformly randomly to
0 or 1 otherwise, then the minimum formula size of the restricted
function is expected to be at most about pΓF ·s. A Boolean function
f : {0, 1}n → {1,−1} is Fourier-concentrated if, when viewed in
the Fourier basis, f has most of its total mass on “low-degree”
coefficients.

We show a direct connection between the two notions by prov-
ing that shrinkage implies Fourier concentration: for a shrinkage
exponent ΓF , a formula F ∈ F of size s will have most of its
Fourier mass on the coefficients of degree up to about s1/ΓF . More
precisely, we prove the following.

Theorem 1.1 (Main Result). For F either the class of general
de Morgan formulas or the class of read-once de Morgan formulas,
let f : {0, 1}n → {1,−1} be a Boolean function computable by a
formula in F of size s. Then for any sufficiently large s and for
any parameter t > 0, we have

∑
A⊆[n] : |A|>t

f̂(A)2 6 s · polylog(s) · exp

(
−
(

tΓ

s1+o(1)

) 1
Γ−1

)
,

where Γ = ΓF is the shrinkage exponent for the corresponding
class F of formulas: ΓF = 2 for de Morgan formulas, and ΓF =
1/ log2(

√
5− 1) ≈ 3.27 for read-once de Morgan formulas.

This Fourier concentration result is optimal, to within the o(1) term
in the exponent of s. (We get the version stated in the abstract
earlier by using t = s1/Γ · r, for any r > 0.)

Rather than the standard shrinkage in expectation, we actually
need concentrated shrinkage of de Morgan formulas under random
restrictions, which means that a formula shrinks in size with high
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probability when hit by a random restriction. Such concentrated
shrinkage is implicitly proved by Impagliazzo et al. (2012b) (which
considered the case of certain pseudorandom restrictions), build-
ing upon the earlier “shrinkage in expectation” results by H̊astad
(1998); H̊astad et al. (1995).

We establish these “shrinkage into Fourier concentration” im-
plications for both general and read-once de Morgan formulas. A
weak version of such Fourier concentration for de Morgan formu-
las follows from Khrapchenko’s lower-bound technique for formu-
las (Khrapchenko 1971). A stronger version of Fourier concentra-
tion can be deduced from known results in the “quantum com-
putation” literature; see Section 1.2 below for more details. Our
proof is a classical argument to establish an even stronger (almost
tight) Fourier concentration result. The main novelty of our proof
is that it exploits the discovered connection between shrinkage and
Fourier concentration. Thanks to this connection, we also get the
(almost tight) Fourier concentration result for read-once de Mor-
gan formulas (which are not distinguished from general de Morgan
formulas by the “quantum arguments”).

These Fourier concentration results for small de Morgan formu-
las are similar to the Fourier concentration result for AC0 circuits
shown in the celebrated paper by Linial et al. (1993) (and our proof
is inspired by the proof in (Linial et al. 1993)). As an immediate
consequence, we obtain, similarly to (Linial et al. 1993), strong
correlation lower bounds against parity, learning algorithms under
the uniform distribution, and average sensitivity bounds for both
general de Morgan formulas and read-once de Morgan formulas.

1.1. Other results.

1.1.1. Correlation bounds. The Fourier transform of a func-
tion f : {0, 1}n → {1,−1} is a way to express f in the orthogonal
basis of functions

χS(x1, . . . , xn) = (−1)
∑

i∈S xi ,

over all subsets S ⊆ [n]. Intuitively, the coefficient of f at the
basis function χS, denoted f̂(S), measures the correlation between
f and the parity function on the inputs xi, for i ∈ S. Thus,
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one would expect that the classes of circuits for which the parity
function is hard to compute would not have much weight on high-
degree Fourier coefficients f̂(S) for large sets S, i.e., that such
circuits would exhibit concentration of the Fourier spectrum over
low-degree coefficients.

The first such connection between complexity of computing par-
ity and Fourier concentration was shown by Linial et al. (1993),
based on the strong average-case lower bounds for AC0 circuits
against the parity function (H̊astad 1986). As mentioned earlier,
using the results in quantum query complexity (Ambainis et al.
2007; Fahri et al. 2008; Reichardt 2009, 2011; Reichardt & Špalek
2008), one can also show a version of Fourier concentration for de
Morgan formulas of sub-quadratic size.

We extend the approach of Linial et al. (1993) to the case of
de Morgan formulas of sub-quadratic size. Such formulas can-
not compute the parity function in the worst case (Khrapchenko
1971), or even on average (as follows from the work in the quan-
tum setting (Beals et al. 2001; Reichardt 2011)). As an imme-
diate corollary of Theorem 1.1, we get that a size-s de Morgan
formula on n inputs may compute the parity function with bias
at most exp(−n2/s1+o(1)). This is tight up to the o(1) term (see
Lemma 5.8).

1.1.2. Average sensitivity. Informally, the average sensitiv-
ity of a Boolean function f : {0, 1}n → {1,−1}, denoted AS(f),
measures the number of influential coordinates in a typical input
x ∈ {0, 1}n, where a coordinate i ∈ [n] is influential if flipping the
ith bit in x flips the value f(x); we give a more formal definition be-
low. The Fourier concentration we show immediately yields the up-
per bound s1/Γ+o(1) on the average sensitivity of read-once de Mor-
gan formulas of size s, where Γ ≈ 3.27 is the shrinkage exponent
for read-once formulas. However, we show (thanks to a personal
communication by Nitin Saurabh) that the stronger upper bound
O(s1/Γ) can be obtained from (Boppana 1989). We then demon-
strate the matching lower bound Ω(s1/Γ). As the average sensi-
tivity of general de Morgan formulas is O(

√
s) by Khrapchenko’s

bound (Khrapchenko 1971) (as noted, e.g., in (Bernasconi et al.
2000; Ganor et al. 2012)), we get the following tight connection
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between the shrinkage exponent and the average sensitivity for the
class of (general and read-once) de Morgan formulas.

Theorem 1.2. Let f : {0, 1}n → {1,−1} be a Boolean function
computable by a de Morgan formula of size s. Then AS(f) 6
O(s1/Γ), where Γ is the shrinkage exponent for the correspond-
ing class of formulas: Γ = 2 for de Morgan formulas, and Γ =
1/ log2(

√
5− 1) ≈ 3.27 for read-once de Morgan formulas. The av-

erage sensitivity Ω(s1/Γ) can be achieved with size s de Morgan for-
mulas for Γ = 2, and read-once formulas for Γ = 1/ log2(

√
5−1) ≈

3.27.

1.1.3. Learning. As a consequence of our Fourier concentration
result, we can also get, similarly to Linial et al. (1993), that the
class of de Morgan formulas of size s is learnable to within error
ε > 0 in time about

ns
1/Γ+o(1)·(log 1/ε)1−1/Γ

,

over the uniform distribution, where Γ = 2 for general de Morgan
formulas, and Γ ≈ 3.27 for read-once de Morgan formulas. We
don’t explicitly prove these results here since much better learn-
ing algorithms are already known for both general and read-once
de Morgan formulas. For general de Morgan formulas, using the
quantum-setting results on the sign degree (Lee 2009), one gets a
PAC-learning algorithm for size s de Morgan formulas that runs in
time nO(

√
s). For read-once de Morgan formulas, Schapire (1994)

gives a polynomial-time learning algorithm in the PAC model for
any product distribution (hence also for the uniform distribution).

1.2. Related work. As noted by Ganor et al. (2012), the fol-
lowing Fourier concentration result is implied by Khrapchenko’s
bound (Khrapchenko 1971): For f computable by size s de Mor-
gan formula, and for any 0 < ε < 1,∑

|A|>s1/2/ε

f̂(A)2 6 O(ε).

The results in quantum query complexity (Ambainis et al. 2007;
Fahri et al. 2008; Reichardt 2009, 2011; Reichardt & Špalek 2008)
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imply that every de Morgan formula F of size s can be approxi-
mated by a polynomial of degree D 6 O(r · s1/2) with point-wise
error at most 2−r, and hence also in the `2-norm with the same
error 2−r. This implies that the Fourier spectrum of F above the
degree D is at most 2−r. Hence, for a Boolean function f computed
by a de Morgan formula of size s, and for any t > 0,

(1.3)
∑
|A|>t

f̂(A)2 6 exp(−t/s1/2).

Our Theorem 1.1 provides the stronger bound exp(−t2/s1+o(1)),
which is tight to within the o(1) term in the exponent of s (see
Lemma 5.8).

As observed by Komargodski et al. (2013), the Fourier concen-
tration in (1.3) implies that any de Morgan formula of size

s = o((n/ log(1/ε))2)

has correlation at most ε with the n-bit parity. The Fourier concen-
tration bound in our Theorem 1.1 implies the correlation at most
ε for formula size

s = (n2/ log(1/ε))1−o(1)

(tight to within the o(1) term).
Our proof of Theorem 1.1 exhibits a connection between the

Fourier concentration parameters for a class of formulas and the
shrinkage exponent for the same class of formulas. This connection
also allows us to get Fourier concentration for the case of read-once
formulas, whereas the aforementioned quantum results (based on
point-wise polynomial approximations) do not distinguish between
read-once and general de Morgan formulas1.

For read-once formulas of size s, the upper bound O(s1/Γ) on
the average sensitivity, where Γ is the corresponding shrinkage ex-
ponent for read-once formulas, is implicit in the work of Boppana

1The O(
√
s) upper bound on the degree of point-wise polynomial approxi-

mations is in fact tight for read-once formulas (e.g., an n-variable OR function),
and so quantum arguments (which automatically yield point-wise approxima-
tions) cannot possibly yield better `2 approximation bounds for read-once
formulas.
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(1989). This observation was made by Nitin Saurabh [personal
communication, 2013], and we include his argument, with his per-
mission, in Section 7.2.

1.3. Our techniques. Our starting point is the result by Linial
et al. (1993) which relates the Fourier spectrum of a given Boolean
function f for “large” Fourier coefficients to the expected Fourier
spectrum of the corresponding “large” Fourier coefficients for a
random restriction of the function f ; here a random restriction
is obtained by first deciding, with probability p for each variable,
whether to restrict it, and then assigning randomly each selected
variable either 0 or 1. If the function after a random restriction
is likely to depend on fewer than t variables (for some parameter
t), then all Fourier coefficients of degree at least t are zero (since a
function that depends on fewer than t variables has zero correlation
with the parity function of t variables). This is surely the case
when the restricted formula is of size less than t. Thus, if we have
a “high-probability” shrinkage result for a given class of formulas
under random restrictions (showing that a random restriction is
likely to shrink the size of a given formula), we immediately get a
corresponding Fourier concentration result, where the error bound
of the concentration result is the same as the error bound for the
shrinkage result.

However, for the case of general de Morgan formulas, such a
“high-probability” shrinkage result is simply not true. The prob-
lem is posed by the presence of “heavy” variables, the variables
that occur too often in a given formula. The notion of a ran-
dom restriction needs to be modified so that the heavy variables
are always restricted, while each of the remaining light variables
is chosen to be restricted with some probability p. We adapt the
result of Linial et al. (1993) mentioned above to the setting of such
modified restrictions.

Still, in order to get strong Fourier concentration, one needs the
parameter p of a random restriction to be quite small (e.g., nε/n),
while the known shrinkage result of Impagliazzo et al. (2012b) ap-
plies only to relatively large values of p (e.g., p > n−1/8). The
solution is to apply a number of restrictions recursively, each with
a relatively large value of pi, so that the product of the pi’s is as
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small as we want. Fortunately, the connection between the Fourier
spectrum of the original function and of its appropriate random
restriction fits in well with such a recursive argument.

A similar approach also works for the case of read-once de Mor-
gan formulas, which are known to shrink with high probability un-
der “pseudorandom” restrictions (Impagliazzo et al. 2012b). The
analysis of Impagliazzo et al. (2012b) can be used also for the case
of truly random restrictions, yielding an exponentially small error.
In fact, the case of read-once formulas is slightly simpler as there
are no heavy variables.

To prove the optimality of our Fourier concentration for gen-
eral de Morgan formulas, we exhibit a family of small de Morgan
formulas that have non-trivial correlation with the parity function.
Roughly, the constructed formula computes the AND of parities of
small disjoint subsets of the input variables (see Lemma 5.8). This
is a standard construction; see, e.g., (H̊astad 2014; Mansour 1995)
for some of the earlier uses.

For the case of read-once de Morgan formulas, we use an explicit
family of read-once formulas (NAND trees) constructed by Pater-
son & Zwick (1993) (building on the work by Valiant (1984b)),
which are known to be shrinkage-resistant. We show that the AND
of such formulas on disjoint subsets of the input variables certifies
the optimality of our Fourier concentration (Lemma 6.5). We also
use these formulas to prove the lower bound Ω(s1/Γ) on the average
sensitivity of read-once formulas of size s (see Theorem 7.6).

Remainder of the paper. We state the basic definitions in Sec-
tion 2. We show how to adapt the approach of Linial et al. (1993)
in Section 3. The required concentrated shrinkage results for gen-
eral and read-once de Morgan formulas are proved in Section 4. We
then derive the Fourier concentration result for general de Morgan
formulas in Section 5, and for read-once formulas in Section 6. In
Section 7 we give the application of the Fourier concentration re-
sult to correlation with parity, and show tight average sensitivity
bounds for read-once de Morgan formulas. We make concluding
remarks in Section 8. The appendix contains some proofs omitted
from the main body of the paper.
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2. Preliminaries

2.1. Notation. We denote by [n] the set {1, 2, . . . , n}. We use
exp(a) to denote the exponential function 2a, where a is some
numerical expression. All logarithms are base 2 unless explicitly
stated otherwise.

2.2. Formulas. A de Morgan formula F on variables x1, . . . , xn
is a binary tree whose leaves are labeled by variables or their nega-
tions, and whose internal nodes are labeled by the logical opera-
tions AND or OR. The size of a formula F , denoted by L(F ), is
the number of leaves in the tree.

A de Morgan formula is called read-once if every variable ap-
pears at most once in the tree. Note that the size of a read-once
formula on n variables is at most n.

2.3. Fourier transform. We review the basics of Fourier anal-
ysis of Boolean functions (see, e.g., (Wolf 2008) for a survey, or
(O’Donnell 2014) for a more comprehensive treatment). We think
of an n-variate Boolean function as {−1, 1}-valued, i.e., as

f : {0, 1}n → {−1, 1}.

For a subset A ⊆ [n], define χA : {0, 1}n → {−1, 1} to be

χA(x1, . . . , xn) := (−1)
∑

i∈A xi .

Let f : {0, 1}n → R be any function. The Fourier coefficient of f
at A is defined as

f̂(A) := Expx∈{0,1}n [f(x) · χA(x)].

Note that f̂(A) is exactly the advantage2 of f at computing χA,
the parity of the inputs from A.

The Parseval identity is∑
A⊆[n]

f̂(A)2 = Expx∈{0,1}n
[
f(x)2

]
.

2Recall that, for functions g and h defined over the same domain D, the
advantage of g at computing h is Prx∈D[g(x) = h(x)]−Prx∈D[g(x) 6= h(x)].
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Note that for a Boolean function f : {0, 1}n → {−1, 1}, we get∑
A⊆[n]

f̂(A)2 = 1.

2.4. Random restrictions. For 0 < p < 1, we define a p-
restriction ρ of the set of n variables x1, . . . , xn as follows: for
each i ∈ [n], with probability p assign xi the value ∗ (i.e., leave
xi unrestricted), and otherwise assign xi uniformly at random a
value 0 or 1. We denote by Rp the distribution of p-restrictions.
For a Boolean function f(x1, . . . , xn) and a random restriction ρ,
fρ denotes the restricted function obtained from f using ρ; fρ is a
function of the variables left unrestricted by ρ.

2.5. Chernoff-Hoeffding bound. We will use the following
version of the Chernoff-Hoeffding bound (Chernoff 1952; Hoeffd-
ing 1963).

Lemma 2.1 (Chernoff-Hoeffding). Let X =
∑t

i=1Xi be the sum
of independent random variables such that each Xi is in the range
[0, s], and Exp[X] < E, for s, E > 1. Then

Pr[X > 8 · E] < 2−E/s.

3. Fourier concentration via random
restrictions

We use the following result of Linial et al. (1993); for completeness,
we include its proof in the appendix.

Theorem 3.1 (Linial et al. 1993). For an n-variate Boolean
function f , integer t > 0 and a real number 0 < p < 1 such that
pt > 8,

∑
|A|>t

f̂(A)2 6 2 · Expρ∈Rp

 ∑
B : |B|>pt/2

f̂ρ(B)2

 .
Imagine we had a “dream version” of the concentrated shrink-

age result for de Morgan formulas: For any 0 < p < 1, a given
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de Morgan formula F on n variables of size s will shrink to size
s′ 6 p2s with probability 1− γ, for some “small” γ. Let us pick p
so that p2s < n.

Note that a formula of size s′ depends on at most s′ variables,
and hence, all its Fourier coefficients for the sets of size greater than
s′ are 0. In the notation of Theorem 3.1, every p-restriction ρ, such
that the formula size of Fρ is less than pt/2, contributes 0 to the
overall expectation; every other restriction ρ (where the formula
doesn’t shrink) contributes at most 1 (by the Parseval equality).
Equating p2s and pt/2, we get for every t > 2ps,

(3.2)
∑
|A|>t

F̂ (A)2 6 2γ.

For s 6 n2−2ε, we can achieve the bound of Eq. (3.2) by setting
p = nε/n and t = 8n/nε.

In reality, we don’t have such concentrated shrinkage for very
small values of γ because of “heavy” variables (those that ap-
pear too frequently in the formula)3. In order to achieve γ that
is inverse-exponentially small in s, we will make sure that heavy
variables are always restricted.

Also, the best known concentrated shrinkage results of (Im-
pagliazzo et al. 2012b; Komargodski et al. 2013) do not work for
very small p. The way around it is to apply several random restric-
tions one after the other, for appropriately chosen p1, p2, . . . , pk,
thereby simulating a single restriction with the parameter p =∏k

i=1 pi; such a workaround was already used in (Impagliazzo et al.
2012b; Komargodski et al. 2013).

The following lemma will handle heavy variables. Intuitively,
it says that each variable restricted increases the effective degree
of where the Fourier coefficients could be large by at most 1.

3For example, consider g(x1, . . . , xn) = f(x1, . . . , xk), where k = O(log n)
and f requires formula size s ≈ n2; such a function f exists by a counting
argument. For any 1/n < p < 1, a p-restriction of g will leave all x1, . . . , xk
unrestricted, and hence fail to shrink g at all, with probability γ > pk >
1/nO(logn).
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Lemma 3.3. Let f be a Boolean function, and x a variable for f .
Let f0 be f with x set to 0, f1 with x set to 1. For any δ > 0, if∑

A : |A|≥t

f̂0(A)2 ≤ δ and
∑

A : |A|≥t

f̂1(A)2 ≤ δ,

then ∑
A : |A|≥t+1

f̂(A)2 ≤ δ.

Proof. For y := 1− 2x, we can write

f =
(1 + y)f0

2
+

(1− y)f1

2

=
f0 + f1

2
+ y · f0 − f1

2
.

Then, for any set A not containing x,

f̂(A)2 + f̂(x ∪ A)2 =

(
f̂0(A) + f̂1(A)

2

)2

+

(
f̂0(A)− f̂1(A)

2

)2

=
f̂0(A)2

2
+
f̂1(A)2

2
.

Summing this over all sets A with |A| ≥ t yields at most δ by
the assumptions for the restricted functions. Every set B with
|B| ≥ t+ 1 (containing x or not) is included in this sum. �

So to upper-bound the Fourier mass of the coefficients for sets
A with |A| > t, the idea is to set all “heavy” variables (say, z
of them), and upper-bound the Fourier mass for each restricted
function over the coefficients for sets B with |B| > t − z. If we
can bound the Fourier mass of each restricted function by some δ,
then, by Lemma 3.3, we get the same upper bound for the Fourier
mass of the original function over the sets of size greater than
(t− z) + z = t, as required.

4. Concentrated shrinkage of de Morgan
formulas

Here we prove the following shrinkage results for general and read-
once de Morgan formulas, implicit in (Impagliazzo et al. 2012b).
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Theorem 4.1 (Shrinkage of general de Morgan formulas). There
exists a constant c > 0 such that, for every L and every de Morgan
formula F with L(F ) ≤ L on n variables that does not have any
variable appearing more than h times, and for every 0 < p < 1,

Prρ∈Rp

[
L(Fρ) > c · p2 · log3/2(1/p) · L

]
6 L(F ) · exp

(
−p6 · L/h

)
.

Theorem 4.2 (Shrinkage of read-once de Morgan formulas).
There exist constants d, d′ > 0 such that the following holds for
any read-once de Morgan formula F (x1, . . . , xn) and 0 < p < 1:

Prρ∈Rp

[
L(Fρ) > d · pΓ · n

]
6 exp

(
−d′ · p2Γ · n

)
,

where Γ = 1/ log(
√

5− 1) ≈ 3.27.

Both of these results are proved using the well-known “shrink-
age in expectation” results for the corresponding classes of formu-
las (Dubiner & Zwick 1994; H̊astad 1998; H̊astad et al. 1995). The
proof idea is to decompose a given formula into a few batches of
independent subformulas (with some extra conditions) and apply
“shrinkage in expectation” to each subformula. Since the subfor-
mulas in each batch are independent, we can use the Chernoff-
Hoeffding inequality to argue that the shrinkage occurs with high
probability in each batch, and hence, by the union bound, also for
the entire original formula.

We provide more details below. First, in Section 4.1, we give
arguments common for the proofs of both these results. Then we
prove Theorem 4.1 in Section 4.2, and Theorem 4.2 in Section 4.3.

4.1. Preliminary arguments. We will be using the following
“shrinkage in expectation” results. H̊astad (1998) showed that the
shrinkage exponent for de Morgan formulas is 2 (see also (Tal 2014)
for a tighter proof4).

4In fact, starting from the tight Fourier concentration result for de Morgan
formulas (obtained via quantum arguments, cf. Section 1.2), Tal (2014) proves
a tight version of Theorem 4.3 with µ(p, L(F )) = 1. For our purposes, the
original version of Theorem 4.3 (which is proved using classical arguments
only) is sufficient.
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Theorem 4.3 (H̊astad 1998). There exists a constant c > 0
such that, for every de Morgan formula F on n variables and for
every 0 < p < 1,

Expρ∈Rp
[L(Fρ)] 6 c ·

(
p2 · µ(p, L(F )) · L(F ) + p ·

√
L(F )

)
,

where µ(p, L(F )) = 1 + log3/2 min{1/p, L(F )}.

H̊astad et al. (1995) settled the shrinkage exponent for read-
once formulas; their result was tightened by Dubiner & Zwick
(1994).

Theorem 4.4 (Dubiner & Zwick 1994; H̊astad et al. 1995). For
every read-once formula F (x1, . . . , xn) and a parameter 0 < p < 1,

Expρ∈Rp
[L(Fρ)] 6 O

(
pΓ · n+ p · n1/Γ

)
,

where Γ = 1/ log(
√

5− 1) ≈ 3.27.

Next, we decompose a given (general or read-once) de Morgan
formula as follows.

Lemma 4.5 (Impagliazzo et al. 2012b). There is a constant
d0 > 0 such that, for every s > 0 and for every de Morgan formula
F on the set X of variables with L(F ) > s, there exist de Morgan
formulas G1, . . . , Gm, for m 6 d0 ·(L(F )/s), satisfying the following
conditions:

(i) L(Gi) 6 s, for all 1 6 i 6 m,

(ii) for each 1 6 i 6 m, Gi has at most 2 occurrences of “special”
variables outside of X (different variables for different Gi’s),
and

(iii) for any restriction ρ of the variables X,

L(Fρ) 6
m∑
i=1

L((Gi)ρ′),

where ρ′(x) = ρ(x) for x ∈ X and ρ′(x) = ∗ otherwise.
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Moreover, if F is a read-once formula, then so is every formula Gi

in the collection.

Proof. Find a subformula of size between s/2 and s; a maximal
subformula of size at most s has size at least s/2. Replace the sub-
formula with a new variable, called a subtree variable. Repeatedly
find either a subformula with exactly 2 subtree variables and of size
less than s, or a subformula with at most 1 subtree variable and of
size between s/2 and s; replace the found subformula with a new
subtree variable. (To find a required subformula, take a minimal
subformula of size between s/2 and s. If it has more than 2 subtree
variables, take a minimal subformula with at least 2 such variables;
since each of its child formulas has at most 1 subtree variable, it
must have exactly 2.) Since each time, we either remove at least
s/2 nodes and create 1 new subtree variable, or reduce the number
of subtree variables by one, we get at most d0 · (L(F )/s) subfor-
mulas, for some constant d0 > 0, where each subformula is of size
at most s and with at most 2 subtree variables. �

The special variables correspond to the inputs which are out-
puts of some other subformulas. We want to analyze the effect of
a random restriction on F by using the upper bound of item (iii)
of Lemma 4.5. To this end, we need to handle random restrictions
that leave some specified variables (the “special” variables in our
case) unrestricted.

The idea is to take each subformula Gi and construct a new
subformula G′i by replacing each special variable in Gi with a
restriction-resistant formula (on new variables, different for differ-
ent special variables); here we call a formula “restriction-resistant”
if, with probability at least 3/4 over the random restrictions, the
resulting restricted formula remains a non-constant function. Then
we upper-bound the expected size Expρ′ [L((Gi)ρ′)], for ρ′ that
leaves special variables unrestricted, by twice the expected size
Expρ[L((G′i)ρ)], for a standard random restriction ρ. The lat-
ter expectation can be upper-bounded using the above-mentioned
“shrinkage in expectation” results.

For general de Morgan formulas, the parity function on k inputs
is likely to stay a non-constant function, with high probability over
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the p-restrictions, where pk � 1; the size of such a de Morgan
formula is O(k2). For read-once de Morgan formulas, the existence
of restriction-resistant formulas follows from the work by Valiant
(1984a). We state this result with its proof next.

Lemma 4.6 (Impagliazzo et al. 2012b). For every 0 < p < 1,
there exists a read-once de Morgan formula H of size O(1/pΓ), for
Γ = 1/ log2(

√
5 − 1) ≈ 3.27, such that, with probability at least

3/4 over the p-restrictions ρ, we have

(4.7) Hρ(~0) = 0 and Hρ(~1) = 1,

where ~0 and ~1 denote the inputs of all 0’s and all 1’s, respectively.

The proof of Lemma 4.6 uses the following notion. For a
Boolean function f(x1, . . . , xn) and a parameter p ∈ [0, 1], Bop-
pana (1989) defined the amplification function

Af (p) := Prx1,...,xn [f(x1, . . . , xn) = 1],

where each xi is chosen independently at random to be 1 with
probability p and 0 otherwise. Boppana (1989) also observed that
Valiant (1984a) implicitly proved the following5.

Theorem 4.8 (Valiant 1984a). Let Tk be a complete binary
tree of depth 2k whose root is labeled with OR, the next layer
of nodes with AND, the next layer with OR, and so on in the
alternating fashion for all layers but the leaves. Let Fk be the
read-once formula computed by Tk on 22k variables. Then for ψ =
(
√

5− 1)/2 and any p ∈ [0, 1],

AFk
(ψ − (1− ψ)p) < 1/8 and AFk

(ψ + (1− ψ)p) > 7/8,

for 2k = log2ψ
ψ−1/

√
3

(1−ψ)p
+ O(1) = log2ψ(1/p) + O(1). The size of Fk

is 22k = O(1/p1/ log2 2ψ) = O(1/pΓ), for Γ = 1/ log2(
√

5− 1) ≈ 3.27.

Proof (of Lemma 4.6). We use Theorem 4.8 to argue the exis-
tence of the required read-once formula H. Consider the following
distribution Dk on read-once formulas:

5See also www.cs.tau.ac.il/∼zwick/circ-comp-new/six.ps (the lec-
ture notes by Uri Zwick), for an explicit proof.
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Take Tk. Independently, assign each leaf of Tk the value
1 with probability 2ψ−1, and ∗ otherwise. Label the ∗
leaves with distinct variables xi’s. Output the resulting
read-once formula in the variables xi’s.

Let F be a random read-once formula sampled according to Dk.
Let ρ be a random p-restriction on the variables of F . Consider
Fρ(~1). This restricted formula on the all-one input string induces
the probability distribution on the leaves of Tk where each leaf,
independently, gets value 1 with probability

2ψ − 1 + 2(1− ψ)p+ 2(1− ψ)(1− p)/2 = ψ + (1− ψ)p.

Using Theorem 4.8, we get

PrF∈Dk,ρ∈Rp [Fρ(~1) = 1] = AFk
(ψ + (1− ψ)p)

> 7/8.

Now consider Fρ(~0). It induces the probability distribution on
the leaves of Tk where each leaf, independently, is 1 with probability

2ψ − 1 + 2(1− ψ)(1− p)/2 = ψ − (1− ψ)p,

and 0 otherwise. Using Theorem 4.8, we get

PrF∈Dk,ρ∈Rp [Fρ(~0) = 1] = AFk
(ψ − (1− ψ)p)

< 1/8.

We get by the union bound that

PrF∈Dk,ρ∈Rp [Fρ(~1) = 0 or Fρ(~0) = 1] < 1/8 + 1/8

= 1/4.

Finally, by averaging, there exists a particular read-once formula
H ∈ Dk such that, with probability at least 3/4 over the random
p-restrictions ρ, we have Hρ(~0) = 0 and Hρ(~1) = 1. The size of
this formula H is at most that of Fk, which is O(1/pΓ). �

Now we can analyze the expected shrinkage of de Morgan for-
mulas under p-restrictions that leave some specified variables unre-
stricted. LetGi be any formula in the decomposition of Lemma 4.5,
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with at most two occurrences of special variables. Let H be a
shrinkage-resistant formula in the sense that, with probability at
most 1/4 over p-restrictions σ, the restricted formula Hσ is not a
constant function. Let G′i be obtained from Gi by replacing the
special variables in Gi by independent copies of the formula H on
new, disjoint sets of variables. Let ρ′ be a p-restriction on the vari-
ables of Gi such that the special variables are assigned *. Let ρ
be a p-restriction on all variables of G′i which agrees with ρ′ on all
variables of Gi.

We have the following.

Claim 4.9. Expρ′ [L((Gi)ρ′)] 6 2 · Expρ [L((G′i)ρ)].

Proof (of Claim 4.9). Let A be the event that a random p-
restriction on the variables of two copies of H leaves both these
formulas non-constant. By the union bound, the probability of A
is at least 1/2. Conditioned on A, we have

L ((Gi)ρ′) 6 L ((G′i)ρ) ,

since (G′i)ρ contains (Gi)ρ′ as a subfunction. Thus, for a fixed ρ′,
and for a random ρ extending ρ′, we get

Expρ[L((G′i)ρ)] > (1/2) · L((Gi)ρ′).

Taking the expectation over ρ′ on both sides of this inequality
yields the desired claim. �

Now we are ready to prove our concentrated shrinkage results.

4.2. Proof of Theorem 4.1. Let s = c0p
−2 for some con-

stant c0. Using Lemma 4.5, decompose a given formula F into
O(L(F )/s) subformulas Gi’s.

Let H be a de Morgan formula on 2/p fresh variables that
computes the parity function. Each such de Morgan formula for
parity on 2/p variables has size O(1/p2). The probability that each
of 2/p variables is assigned (0 or 1) by a random p-restriction is

(1− p)2/p 6 e−2

6 1/4.
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Thus H is shrinkage-resistant.
Form G′i by replacing special variables in Gi by independent

copies of the formula H. Since each Gi is of size at most s = c0/p
2

and the size of H is O(1/p2), we get that each G′i has size c′0/p
2,

for some constant c′0. By Claim 4.9 and H̊astad’s Theorem 4.3, we
get, for each Gi,

(4.10) Exp[L((Gi)ρ′)] 6 2 · Expρ[L((G′i)ρ)] 6 c1 · log3/2 s,

for some constant c1, where ρ′ is a p-restriction on the variables of
Gi excluding the special variables, and ρ is a p-restriction extending
ρ′ to all variables of G′i.

Thus, we have a collection of O(L(F )/s) formulas Gi, each of
size at most s, such that no variable appears in more than h of the
Gj’s, and such that

L(Fρ) 6
∑

L((Gi)ρ′).

So our lemma reduces to showing concentration for the latter sum
of random variables whose expectations are upper-bounded by
Eq. (4.10).

Since each Gi shares any variables with at most sh other Gj’s,
we can partition Gi’s into O(sh) batches, each of at most

O(L(F )/(s2h))

formulas, so that the formulas in each batch are totally indepen-
dent, having no variables in common. By Eq. (4.10), the expected
total formula size within each batch is

O(L(F ) · (log3/2 s)/(s2h)).

As a random variable, this is the sum of independent random
variables in the range [0, s]. By the Chernoff-Hoeffding bound of
Lemma 2.1, the probability that the sum of the formula sizes in
any batch is larger than

c3 · L(F ) · (log3/2 s)/(s2h)

is less than
2−Ω(L(F )·(log3/2 s)/s3h).
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There are strictly less than L(F ) 6 L batches, so the union bound
yields that all batches are of size

O(L(F ) · (log3/2 s)/(s2h)),

except with probability at most

L · exp(−Ω(L(F )/(s3h))) = L · exp(−Ω(p6 · L(F )/h)).

If they are, then summing up over the at most O(sh) batches, we
get

L(Fρ) 6 O(L(F ) · (log3/2 s)/s)

= O(p2 · L(F ) · log3/2(1/p)).

4.3. Proof of Theorem 4.2. Set s = c/pΓ, for a constant c to
be determined. Using Lemma 4.5, partition a given formula F (of
size n) into O(n/s) subformulas G1, . . . , Gm of size at most s each.

Let H be a shrinkage-resistant read-once formula in Lemma 4.6
of size O(1/pΓ). Define G′i to be Gi with special variables in Gi

replaced by independent copies of H. Note that

L(G′i) 6 L(Gi) +O(1/pΓ),

which can be made at most 2 · L(Gi), by choosing the constant c
to be sufficiently large. By Claim 4.9 and Theorem 4.4, we get for
each Gi that

(4.11) Expρ′ [L((Gi)ρ′)] 6 c′ · pΓ · s,

for some constant c′, where ρ′ is a p-restriction over the variables
of Gi excluding the special variables.

By Lemma 4.5, we have

L(Fρ) 6
∑
i

L((Gi)ρ′).

Note that the latter is the sum of independent random variables, as
different Gi’s have no variables in common (due to F being read-
once). Each of these random variables is in the range [0, s], with
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expectation upper-bounded by Eq. (4.11). Hence, the expectation
of the sum of these random variables is at most c′′npΓ, for some
constant c′′. By the Chernoff-Hoeffding bound of Lemma 2.1, the
probability that L(Fρ) is greater than 8c′′npΓ is less than

exp
(
−c′′ · n · pΓ/s

)
6 exp

(
−d′ · p2Γ · n

)
,

for some constant d′ > 0.

5. Fourier concentration of de Morgan formulas

5.1. Concentration. For parameters s and t, denote by F(s, t)
the sum

∑
|A|>t f̂(A)2, where the formula size of f is at most s.

The main result of this section is the following.

Theorem 5.1.

F(s, t) ≤ s · polylog(s) · exp
(
− t2

s1+δ(s)

)
,

where δ(s) = O((log log s)2/ log s) = o(1).

Proof. Starting with an initial formula f of size s and the pa-
rameter t, we will apply a sequence of restrictions from Rpi to f , for
a sequence of probabilities pi (to be determined). After stage i, we
get a restricted formula fi+1 from the previous formula fi, and the
new parameter ti+1 from ti. We then use Theorem 3.1 to reduce
the task of upper-bounding F(si, ti) to that of F(si+1, ti+1). For
our choice of pi’s, the sequence of si’s will decrease rapidly until
at some stage ` = O(log log s) we get s` < t`, at which point the
recursion stops as we get F(s`, t`) = 0. The bound on F(s, t) will
be essentially the sum of the probabilities, for 0 6 i 6 `, that a
random restriction ρ ∈ Rpi fails to shrink the function fi to the
size guaranteed by Theorem 4.1. We provide the details next.

For a parameter h ∈ N, a variable of f is called h-heavy if this
variable has more than h occurrences in a minimal formula for f .
Let nh denote the total number of h-heavy variables of f .

Let fi be a function with formula size at most si, and let ti be
the parameter t at stage i. Set hi = (2si)/ti. Let nhi denote the
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number of hi-heavy variables in the formula for fi. We get that
nhi 6 si/hi = ti/2. Let f ′ be any restriction of fi assigning values
to all hi-heavy variables. Let t′i = ti/2. Since t′i + nhi 6 ti, we get
by Lemma 3.3 that it suffices to show, for each f ′, an upper bound
on
∑
|A|≥t′i

f̂ ′(A)2. By Theorem 3.1, the latter is at most

2 · Expρ∈Rpi

 ∑
B : |B|≥ti+1

f̂ ′ρ(B)2

 ,
where ti+1 = pit

′
i/2 = piti/4.

By Theorem 4.1, except with probability

(5.2) si · exp
(
−p6

i ·
si
hi

)
= si · exp

(
−p6

i ·
ti
2

)
over the random restrictions ρ ∈ Rpi , the function f ′ρ has formula
size at most

si+1 = p2
i · si ·∆,

where ∆ = c log3/2 s, for the constant c as in Theorem 4.1. We will
choose pi’s so that the ratio si/ti becomes less than 1 within few
iterations. To that end, we chose pi so that

(5.3)
si+1

ti+1

6

(
si
ti

) 5
6

· 1

2
.

By the definitions of si+1 and ti+1, we have

si+1

ti+1

6
si
ti
· pi · 4∆,

and so we can satisfy Eq. (5.3) by setting

pi =

(
ti
si

) 1
6

· 1

8∆
.

For this choice of pi, the error probability in Eq. (5.2) becomes at
most si · εi for

(5.4) εi = exp

(
−t

2
i

si
· 1

2(8∆)6

)
.
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Using the Parseval identity (to bound by 1 the contribution of
those restrictions that do not shrink the formula), we get from the
above that

Expρ∈Rpi

 ∑
B : |B|≥ti+1

f̂ ′ρ(B)2

 6 si · εi + F(si+1, ti+1).

Hence, overall, we have

(5.5) F(si, ti) 6 2 · (si · εi + F(si+1, ti+1)).

Let ` be the smallest integer such that s` < t`. We will argue
below that ` = O(log log s).

Claim 5.6. For some ` = O(log log s), we get s` < t`.

Proof. By Eq. (5.3), we have

si+1

ti+1

<

(
si
ti

) 5
6

· 1

2
.

Unwinding the recurrence for i+ 1 iterations, we get

si+1

ti+1

<
(s
t

)( 5
6)

i+1

· 1

2
,

which is less than 1 if i+ 1 > log6/5 log2(s/t). �

For the ` as in Claim 5.6, we get F(s`, t`) = 0 (since a formula
g depending on fewer than t` variables has ĝ(B) = 0 for every
set B of size at least t`). Thus the recurrence in Eq. (5.5), when
started at i = 0, will terminate after at most ` steps. It follows
that F(s0, t0) is at most

(5.7) 2s0ε0 + 22s1ε1 + · · ·+ 2`+1s`ε` 6 2`+2 · s · ε?,

where ε? = max06i6`{εi}. Let 0 6 m 6 ` be such that ε? = εm. By
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unwinding the recurrence in Eq. (5.4) for εm, we get

εm = exp

(
− t

2
m

sm
· 1

2(8∆)6

)
6 exp

(
−
t2m−1

sm−1

· 1

2(8∆)6
· 1

16∆

)
6 exp

(
−t

2

s
· 1

2(8∆)6 · (16∆)m

)
6 exp

(
−t

2

s
· 1

2(8∆)6 · (16∆)`

)
.

Plugging in this upper bound on ε? = εm into Eq. (5.7), we conclude
that

F(s, t) 6 s · polylog(s) · exp
(
− t2

s · (log s)O(log log s)

)
,

which completes the proof. �

5.2. Optimality. Let f : {0, 1}n → {1,−1} be a Boolean func-
tion computed by a de Morgan formula of size s. Since the parity
of m bits can be computed by a size O(m2) de Morgan formula, we
have that f̂(A) = 1 for a set A ⊆ [n] of size |A| = O(

√
s). Thus,

in order to get a non-trivial upper-bound on the Fourier spectrum∑
|A|>t f̂(A)2, we need to set t >

√
s. We will show something a

bit stronger.

Lemma 5.8. For any t 6 n, there is a de Morgan formula of size
s on n inputs that computes the parity on t bits with advantage

2−O(t2/s).

Proof. Consider the following formula F (x1, . . . , xn). Set m =
bct2/sc, for some constant c > 0 to be determined. Without loss
of generality assume that m is odd; otherwise take m− 1. Divide
x1, . . . , xt into m disjoint blocks of size t/m each. Compute the
parity of each block, using a de Morgan formula of size O(t2/m2),
and output the AND of the results over all blocks. The overall
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formula size of F is

O((t2/m2) ·m) = O(t2/m)

= O(s/c),

which can be made at most s, for a sufficiently large constant c.
Next we argue that F has advantage 2−m in computing the

parity of x1, . . . , xt. Note that F is correct when all m blocks have
odd parity, which happens with probability 2−m. If not all blocks
have odd parity, our formula always outputs 0, which is correct for
exactly 1/2 of the inputs. �

By Lemma 5.8, a function f computed by a de Morgan formula
of size s may have

f̂(A) > 2−O(t2/s)

for a set A of size t. Hence, we get that

F(s, t) > exp(−O(t2/s)),

implying that our Fourier concentration result for de Morgan for-
mulas, Theorem 5.1, is tight, up to the o(1) term in the exponent
of s.

6. Fourier concentration of read-once de
Morgan formulas

6.1. Concentration. Here we let F(n, t) denote the sum∑
|A|>t

f̂(A)2,

where f has the read-once formula size at most n. The main result
of this section is the following.

Theorem 6.1.

F(n, t) 6 O(log n) · exp

(
−
(

tΓ

n1+δ(n)

) 1
Γ−1

)
,

where δ(n) = O((log log n)/ log n) = o(1) and Γ = 1/ log(
√

5−1) ≈
3.27.
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Proof. Our proof strategy is similar to that in Theorem 5.1.
We define a sequence of pi’s, and apply restrictions from Rpi to
an initial read-once formula f for ` steps, each time getting a new
read-once formula fi+1 of size at most ni+1 and a new parameter
ti+1. We argue that within ` = O(log log n), we get n` < t`, and
hence our recursion will stop. The original sum F(n, t) will be
upper-bounded by the sum of error probabilities from Theorem 4.2
that a function from iteration i failed to shrink. We provide the
details next.

Let fi be a function computable by a read-once formula of size
at most ni, and let ti be the parameter t at stage i. Set ti+1 =
piti/2. By Theorem 3.1, we have

(6.2) F(ni, ti) 6 2 · Expρ∈Rp1

 ∑
B : |B|>ti+1

(̂fi)ρ(B)2

 .
By Theorem 4.2, except with probability at most

(6.3) εi = exp(−d′ · p2Γ
i · ni)

over ρ ∈ Rpi , the function fi+1 = (fi)ρ has read-once formula size
at most

ni+1 = pΓ
i · ni · d,

for some constants d, d′ > 0. With foresight, set

pi =

((
ti
ni

) 1
2

· 1

4d

) 1
Γ−1

.

We have

ni+1

ti+1

6
ni
ti
· (2d) · pΓ−1

i

=

(
ni
ti

) 1
2

· 1

2
.

It is easy to see (cf. the proof of Claim 5.6) that, for some ` 6
log log n+ 1, we get n` < t`, at which point we have F(n`, t`) = 0.
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By Eq. (6.2), we have

F(ni, ti) 6 2(εi + F(ni+1, ti+1)).

Starting at i = 0 and unwinding this recurrence for ` steps, we get

F(n, t) 6 2 ·
∑̀
i=0

2i · εi

6 2`+2 · εm

where 0 6 m 6 ` is such that εm = max06i6`{εi}. As ` 6 log log n+
1, we get

(6.4) F(n, t) 6 O(log n) · εm.

Using our choice of pi in Eq. (6.3), we have

εi = exp

−d′ ·(( ti
ni

) 1
2

· 1

4d

) 2Γ
Γ−1

· ni


= exp

(
−ni ·

(
ti
ni

) Γ
Γ−1

· d′

(4d)
2Γ

Γ−1

)

= exp

(
−
(

tΓi
ni · (4d)2Γ

) 1
Γ−1

· d′
)
.

Unwinding this recurrence for m steps, we get

εm = exp

(
−
(

tΓm
nm · (4d)2Γ

) 1
Γ−1

· d′
)

6 exp

(
−
(

tΓm−1

nm−1 · (4d)2Γ · d2Γ

) 1
Γ−1

· d′
)

6 exp

(
−
(

tΓ

n · (4d)2Γ · (d2Γ)m

) 1
Γ−1

· d′
)
,

which is at most

exp

(
−
(

tΓ

n · (log n)O(1)

) 1
Γ−1

)
,
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since m 6 ` 6 log log n + 1. Using this upper bound on εm in
Eq. (6.4) completes the proof. �

6.2. Optimality. For every n and t > n1/Γ, we give an example
of a function f : {0, 1}n → {−1, 1} that matches the upper bound
of Theorem 6.1, to within the o(1) term in the exponent of n.

Lemma 6.5. For every n and t > n1/Γ, there exist a Boolean func-
tion f : {0, 1}n → {−1, 1} computable by a read-once de Morgan
formula, and a constant d > 0 such that

∑
|A|>t

f̂(A)2 > exp

(
−d ·

(
tΓ

n

) 1
Γ−1

)
.

Proof. For a parameter ` > 1 to be determined, partition the
variables x1, . . . , xn into ` disjoint sets X1, . . . , X` of size n/` each,
and define f to be the Boolean function computed by the formula

F (x1, . . . , xn) = ∧`i=1H(Xi),

where H is the shrinkage-resistant formula of size n/` as given by
Lemma 4.6. To show the required lower bound on the Fourier mass
of f above level t, we proceed in two steps: (1) show a lower bound
on the expected Fourier mass for the restriction fρ of f to a family
of subsets of total size above Ω(tp), for an appropriately chosen
parameter 0 < p < 1, and (2) use the known connections between
the Fourier spectra of a function and its random restriction to argue
that essentially the same lower bound as in step (1) applies also to
the Fourier mass of f above level t.

For step (1), we prove the following.

Claim 6.6. For p = Θ((`/n)1/Γ) and some constant C > 0,

Expρ∈Rp

[ ∑
∅6=A1⊆X1,...,∅6=A`⊆X`

f̂ρ(A1 ∪ · · · ∪ A`)2

]
> 2−C·`.

Proof (of Claim 6.6). For the proof, we shall need the following
simple facts.
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Fact 6.7. For each non-constant Boolean function g on at most c
variables, there exists a subset ∅ 6= S ⊆ [c] such that |ĝ(S)| > 2−c.

Proof (of Fact 6.7). Since g is non-constant, ĝ(S) 6= 0 for some
∅ 6= S ⊆ [c]. As each Fourier coefficient of a c-variate Boolean
function is of the form k/2c for an integer k, the claim follows. �

Fact 6.8. For G(x1, . . . , x2c) = G1(x1, . . . , xc)∧G2(xc+1, . . . , x2c),
let g1, g2 : {0, 1}c → {−1, 1} and g : {0, 1}2c → {−1, 1} be the
Boolean functions computed by the formulas G1, G2, and G, re-
spectively. Then for any non-empty subsets S1 ⊆ {1, . . . , c} and
S2 ⊆ {c+ 1, . . . , 2c}, we have

ĝ(S1 ∪ S2) = −1

2
· ĝ1(S1) · ĝ2(S2).

Proof (of Fact 6.8). Observe that g = 1
2
· (1 + g1 + g2 − g1 · g2) ,

with the first three terms on the right-hand side having no Fourier
mass on S1 ∪ S2. �

Now we continue with the proof of the claim. Each copy of
the formula H is of size n′ = n/`. By Lemma 4.6, we have for
p = Θ((n′)−1/Γ) that, with probability at least 3/4 over random
restrictions ρ ∈ Rp, the function computed by Hρ is non-constant.
On the other hand, by Theorem 4.4 and Markov’s inequality, the
restriction of H under ρ ∈ Rp has size at most c, for some constant
c > 0, with probability at least 3/4. It follows that, with probabil-
ity at least 1/2 over random restrictions ρ ∈ Rp, both conditions
hold for H, i.e., the function computed by Hρ is a non-constant
function on at most c variables, for some constant c > 0.

Since the ` copies of H depend on disjoint sets of variables
X1, . . . , X`, we conclude that, with probability at least 2−` over
ρ ∈ Rp, each restricted formula Hρ(Xi), for 1 6 i 6 `, computes
a non-constant Boolean function on at most c variables. For such
a restriction ρ, we get by Fact 6.7 that there exist non-empty sets
S1, . . . , S`, where each Si ⊆ Xi, such that, for each 1 6 i 6 `,
|ĝi(Si)| > 2−c, where gi is the Boolean function computed by the
restricted formula Hρ(Xi). Applying Fact 6.8 inductively to the
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formula Fρ = ∧`i=1Hρ(Xi), we get that
∣∣∣f̂ρ(S1 ∪ . . . S`)

∣∣∣ > 21−` ·
2−c` > 2−(c+1)`. It follows that

Expρ∈Rp

[ ∑
∅6=A1⊆X1,...,∅6=A`⊆X`

f̂ρ(A1 ∪ · · · ∪ A`)2

]
> 2−` · 2−2(c+1)`,

which is at least 2−C·`, for C = 2c+ 3. �

Then, for step (2), we use the fact (see, e.g., (O’Donnell 2014,
Proposition 4.17)) that, for any Boolean function g(x1, . . . , xn) and
any subset S ⊆ [n],

Expρ∈Rp
[ĝρ(S)2] =

∑
A⊆[n]

ĝ(A)2 ·Prρ∈Rp [Aρ = S],

where Aρ denotes the subset of elements of A that were left un-
restricted by the random p-restriction ρ (where each element of A
is left unrestricted, independently, with probability p). Applying
this to our function f , we get that

Expρ

[ ∑
∅6=A1⊆X1,...,∅6=A`⊆X`

f̂ρ(A1 ∪ · · · ∪ A`)2

]
=
∑
A⊆[n]

f̂(A)2 ·Prρ [∀i ∈ [`], Aρ ∩Xi 6= ∅] ,

and hence, by Claim 6.6,

(6.9) 2−C·` 6
∑
A⊆[n]

f̂(A)2 ·Prρ [∀i ∈ [`], Aρ ∩Xi 6= ∅] .

We shall need the following.

Claim 6.10. For any constant D > 0, let A ⊆ [n] be any set such
that |A| 6 `

D·p . Then

Prρ∈Rp [∀i ∈ [`], Aρ ∩Xi 6= ∅] 6

(
2

D

)`/2
.
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Proof (of Claim 6.10). By averaging, for at least `/2 blocks Xi’s,
we have |A ∩ Xi| 6 2

Dp
. For each such block Xi, we have by the

union bound that Prρ∈Rp [Aρ ∩Xi 6= ∅] 6 2
D
. The claim follows.�

Claim 6.10 and Parseval’s identity imply that, for any constant
D > 0, we have∑

A⊆[n]

f̂(A)2 ·Prρ∈Rp [∀i ∈ [`], Aρ ∩Xi 6= ∅]

6

 ∑
|A|> `

Dp

f̂(A)2

+

(
2

D

)`/2
.

By Eq. (6.9), we conclude that∑
|A|> `

Dp

f̂(A)2 > 2−C·` − (2/D)`/2.

For D = 22C+3, we get

(6.11)
∑
|A|> `

Dp

f̂(A)2 >
1

2
· 2−C·`.

Finally, set ` so that t = `/(Dp). As p = Θ((`/n)1/Γ), we get

` = Θ(t(`/n)1/Γ), which yields ` = Θ
((
tΓ/n

) 1
Γ−1

)
. By Eq. (6.11),

the lemma follows. �

7. Other results

7.1. Correlation with Parity. Subquadratic-size de Morgan
formula have exponentially small correlation with the parity func-
tion.

Corollary 7.1. Every de Morgan formula of size at most s =
n2−ε, for some 0 < ε 6 1, agrees with the parity function on n bits
on at most

1/2 + exp(−nε−o(1))

fraction of inputs.
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Proof. As the Fourier coefficient f̂(S) for a subset S ⊆ [n] mea-
sures the correlation of f with the parity function on the positions
in S, the result follows immediately from Theorem 5.1. �

By Lemma 5.8, this correlation bound is tight, up to the o(1)
term.

7.2. Average sensitivity. Recall that for a Boolean function
f : {0, 1}n → {1,−1} and a string w ∈ {0, 1}n, the sensitivity of
f at w is the number of Hamming neighbors w′ of w such that
f(w) 6= f(w′). The average sensitivity of f , denoted by AS(f), is
the average over all w ∈ {0, 1}n of the sensitivity of f at w. It is
shown by Kahn et al. (1988) that

(7.2) AS(f) =
∑
A⊆[n]

|A| · f̂(A)2.

The parity function on m bits has average sensitivity m. Since
a de Morgan formula of size s can compute the parity on Ω(

√
s)

bits, we get a lower bound Ω(
√
s) on the average sensitivity of de

Morgan formulas of size s. The matching O(
√
s) upper bound on

the average sensitivity of size s de Morgan formulas follows from
Khrapchenko’s result (Khrapchenko 1971) (as noted in (Bernasconi
et al. 2000; Ganor et al. 2012)).

For read-once formulas of size s, Eq. (7.2) and Theorem 6.1
readily imply the upper bound s1/Γ+o(1) on average sensitivity,
where Γ = 1/ log2(

√
5 − 1) ≈ 3.27 is the shrinkage exponent

for read-once formulas. However, a stronger upper bound can be
shown. As was pointed out to us by Nitin Saurabh (personal com-
munication), the following bound is implicitly proved by Boppana
(1989).

Theorem 7.3 (implicit in Boppana 1989). Let f : {0, 1}n →
{1,−1} be a Boolean function computed by a read-once de Morgan
formula. Then AS(f) 6 n1/Γ.

We will prove the theorem for {0, 1}-valued Boolean functions;
clearly this does not affect the average sensitivity. We again use
Boppana’s amplification function, Af , mentioned earlier. Here we
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use a slightly more general definition of Af : for a Boolean function
f : {0, 1}n → {0, 1} and parameters p1, . . . , pn ∈ [0, 1], define the
amplification function

Af (p1, . . . , pn) := Prx1,...,xn [f(x1, . . . , xn) = 1],

where each xi is chosen independently at random to be 1 with
probability pi, and 0 with probability 1− pi. For p ∈ [0, 1], define

Af (p) := Af (p, . . . , p).

Boppana (1989, Theorem 2.1) gives the following upper bound
on the derivative of Af .

Theorem 7.4 (Boppana 1989). For any read-once formula f of
size n and any 0 < p < 1,

A′f (p) 6 n1/Γ · H(Af (p))

H(p)
,

where H(p) := −p log2 p− (1− p) log2(1− p) is the binary entropy
function, and Γ = 1/ log2(

√
5− 1).

Lemma 7.5 (N. Saurabh, personal communication). For every
monotone n-variate Boolean function f , we have AS(f) = A′f (1/2).

Proof. Observe that

A′f (1/2) =
n∑
i=1

∂Af (p1, . . . , pn)

∂pi

∣∣∣∣∣
(1/2,...,1/2)

.

On the other hand, using monotonicity of f , we will show that
each ith summand on the right-hand side of the above formula is
exactly equal to Inf i[f ], the influence of coordinate i on f . Since

AS(f) =
n∑
i=1

Inf i[f ],

the lemma will follow.
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We have

Inf i[f ] =
∑

x∈{0,1}n : (f(x)=1)∧(f(xi)=0)

1

2n−1
,

where xi denotes x with the ith coordinate flipped. Write

Af (p1, . . . , pn) =
∑

x∈{0,1}n : f(x)=1

Px,

where for x = (x1, . . . , xn),

Px :=
n∏
i=1

pxii (1− pi)1−xi

is the probability mass contributed by the point x. Observe that,
for points x and xi, the partial derivatives of Px and Pxi with
respect to pi cancel each other. Thus, the points x and xi such
that f(x) = f(xi) = 1 contribute 0 to the partial derivative of Af
with respect to pi. Each x such that f(x) = 1 but f(xi) = 0 must
have its ith coordinate xi = 1 by the monotonicity of f . Hence,
each such x will contribute

(1/pi) ·
n∏
j=1

p
xj
j (1− pj)1−xj

to the partial derivative of Af with respect to pi. When all pj =
1/2, this contribution is exactly 1/2n−1. �

We can now finish the proof of Theorem 7.3.

Proof (of Theorem 7.3). Without loss of generality, a given
read-once Boolean function f can be assumed monotone: we can
always remove negations from any negative literals in the read-
once formula f , without changing AS(f). By Theorem 7.4 and
Lemma 7.5, we get

AS(f) 6 n1/Γ ·H(Af (1/2))

6 n1/Γ,

as required. �

Next we show that the average sensitivity bound for read-once
formulas in Theorem 7.3 is tight.
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Theorem 7.6. For all sufficiently large n, there is an n-variate
Boolean function f computable by a read-once formula of size n
such that

AS(f) > Ω(n1/Γ).

Proof. For every n-variate Boolean function f and for every
0 6 t 6 n, we get by Eq. (7.2) that

AS(f) =
∑
A⊆[n]

|A| · f̂(A)2

>
∑
|A|>t

|A| · f̂(A)2

> t ·
∑
|A|>t

f̂(A)2.

On the other hand, for the read-once n-variate Boolean function f
from Lemma 6.5, we have∑

|A|>t

f̂(A)2 > Ω(1),

for t = n1/Γ. For this f , we conclude by the above that AS(f) >
Ω(n1/Γ), as required. �

8. Concluding remarks

We argued that shrinkage implies Fourier concentration for de Mor-
gan formulas. Tal (2014) has recently proved that, in some sense,
the reverse is also true: starting with the known tight Fourier
concentration result for de Morgan formulas (proved via quantum
arguments), he shows a tight shrinkage result for de Morgan for-
mulas, improving upon the parameters of H̊astad (1998). So there
appears to be a certain equivalence between shrinkage and Fourier
concentration for de Morgan formulas, which raises the issue of
proving such connection more generally. For example, one could
consider classes of formulas over different bases (say, monotone
formulas).
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Can one further improve the parameters of Theorem 1.1 (get-
ting rid of the o(1) term there)? Does k-wise independence ε-fool
read-once formulas of size n for

k = O((log 1/ε) · n1/Γ)

where Γ is the shrinkage exponent for read-once formulas? For
general de Morgan formulas of size n, the corresponding state-
ment follows from the quantum results on the approximate degree
O(
√
s) (Reichardt 2011). On the other hand, the approximate de-

gree for read-once formulas of size n must be at least n1/2 (the
same as that for general de Morgan formulas of size n), and so one
needs a different argument for showing such a k-wise independence
result for read-once formulas.
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A. Proof of Theorem 3.1

For a Boolean function f , a subset S of variables, and a string
r ∈ {0, 1}|S|, denote by fS←r the restriction of f where the variables
in S are assigned the values given in r. We can combine different
restrictions. For example, fS←r,ρ means the restriction of f where
we assign the values r to the variables in S, and then apply a
restriction ρ to the resulting function in variables [n] \ S.

Now we give the proof of Theorem 3.1, which we re-state first.
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Theorem A.1 (Linial et al. 1993). For arbitrary n-variate
Boolean function f , integer t > 0 and a real number 0 < p < 1
such that pt > 8,

∑
|A|>t

f̂(A)2 6 2 · Expρ∈Rp

 ∑
B : |B|>pt/2

f̂ρ(B)2

 .
Proof. We have

∑
|A|>t

f̂(A)2 6 2 · ExpS

 ∑
A : |A∩S|>pt/2

f̂(A)2

(A.2)

= 2 · ExpS,r∈{0,1}|Sc|

 ∑
B : |B|>pt/2

f̂Sc←r(B)2

(A.3)

= 2 · Expρ∈Rp

 ∑
B : |B|>pt/2

f̂ρ(B)2

 ,(A.4)

where the first expectation is over random sets S obtained by
choosing each item i ∈ [n], independently, with probability p; the
second expectation is over S as before, and over uniformly random
assignment r (for the variables outside of S).

Eq. (A.4) is by definition. Eq. (A.3) is proved in Lemma A.5
below. We show Eq. (A.2) next.

Consider any set A of size at least t. It will contribute f̂(A)2

to the expectation over S for every random set S that intersects A
in at least pt/2 locations. The expected intersection size between
S and A (where each element i ∈ [n] is put into S with probability
p) is p|A| > pt. By Chernoff, almost all sets S will intersect the
set A in at least half the expected number of places; by requiring
that pt > 8, we get that this holds for at least half of all random
sets S. Multiplying this expectation by 2 ensures that each f̂(A)2

is counted at least once. �

Lemma A.5 (Linial et al. 1993). For a Boolean function f on n
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variables, an arbitrary subset S ⊆ [n], and an integer k, we have

(A.6)
∑

A : |A∩S|>k

f̂(A)2 = Expr∈{0,1}|Sc|

∑
|B|>k

f̂Sc←r(B)2

 .
Proof. We start by re-writing the left-hand side of Eq. (A.6):

(A.7)
∑

A : |A∩S|>k

f̂(A)2 =
∑

B⊆S : |B|>k

∑
D⊆Sc

f̂(B ∪D)2.

For all sets B ⊆ S and D ⊆ Sc, we have

f̂(B ∪D) = Expx∈{0,1}n [f(x) · χB∪D(x)] ,

which is equal to

Expr∈{0,1}|Sc|,r′∈{0,1}|S|
[
fSc←r(r

′) · χ(B∪D)∩S(r′) · χ(B∪D)∩Sc(r)
]

= Expr∈{0,1}|Sc|
[
χD(r) · Expr′∈{0,1}|S| [fSc←r(r

′) · χB(r′)]
]

= Expr∈{0,1}|Sc|

[
χD(r) · f̂Sc←r(B)

]
.

Therefore, for every fixed B ⊆ S, we get∑
D⊆Sc

f̂(B ∪D)2

=
∑
D

2−|S
c| ·

∑
r∈{0,1}|Sc|

χD(r) · f̂Sc←r(B)

2

= 2−2|Sc| ·
∑

r1,r2∈{0,1}|Sc|

f̂Sc←r1(B) · f̂Sc←r2(B) ·
∑
D

χD(r1 ⊕ r2),

where r1 ⊕ r2 denotes the bit-wise XOR of the two strings. Ob-
serving that

∑
D⊆Sc

χD(r) =

{
2|S

c| if r is an all-zero string

0 otherwise
,
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we can continue the above sequence of equalities, getting the fol-
lowing: ∑

D⊆Sc

f̂(B ∪D)2 = 2−|S
c| ·

∑
r∈{0,1}|Sc|

f̂Sc←r(B)2

= Expr∈{0,1}|Sc|

[
f̂Sc←r(B)2

]
.

Finally, plugging in the last expression into the right-hand side
of Eq. (A.7), we conclude∑

A : |A∩S|>k

f̂(A)2 =
∑

B⊆S : |B|>k

Expr∈{0,1}|Sc|

[
f̂Sc←r(B)2

]

= Expr∈{0,1}|Sc|

∑
|B|>k

f̂Sc←r(B)2

 ,
as required. �
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