
Lower Bounds against Weakly Uniform Circuits

Ruiwen Chen and Valentine Kabanets

School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
ruiwenc@sfu.ca kabanets@cs.sfu.ca

Abstract. A family of Boolean circuits {Cn}n>0 is called γ(n)-weakly
uniform if there is a polynomial-time algorithm for deciding the direct-
connection language of every Cn, given advice of size γ(n). This is a
relaxation of the usual notion of uniformity, which allows one to inter-
polate between complete uniformity (when γ(n) = 0) and complete non-
uniformity (when γ(n) > |Cn|). Weak uniformity is essentially equivalent
to succinctness introduced by Jansen and Santhanam [12].
Our main result is that Permanent is not computable by polynomial-
size no(1)-weakly uniform TC0 circuits. This strengthens the results by
Allender [2] (for uniform TC0) and by Jansen and Santhanam [12] (for
weakly uniform arithmetic circuits of constant depth). Our approach
is quite general, and can be used to extend to the “weakly uniform”
setting all currently known circuit lower bounds proved for the “uniform”
setting. For example, we show that Permanent is not computable by
polynomial-size (logn)O(1)-weakly uniform threshold circuits of depth
o(log log n), generalizing the result by Koiran and Perifel [16].

Keywords: advice complexity classes, alternating Turing machines, count-
ing hierarchy, permanent, succinct circuits, threshold circuits, uniform
circuit lower bounds, weakly uniform circuits

1 Introduction

Understanding the power and limitation of efficient algorithms is the major
goal of complexity theory, with the “P vs. NP” problem being the most famous
open question in the area. While proving that no NP-complete problem has a
uniform polynomial-time algorithm would suffice for separating P and NP, a
considerable amount of effort was put into the more ambitious goal of trying to
show that no NP-complete problem can be decided by even a nonuniform family
of polynomial-size Boolean circuits.

More generally, an important goal in complexity theory has been to prove
strong (exponential or super-polynomial) circuit lower bounds for “natural” com-
putational problems that may come from complexity classes larger than NP, e.g.,
the class NEXP of languages decidable in nondeterministic exponential time. By
the counting argument of Shannon [23], a randomly chosen n-variate Boolean
function requires circuits of exponential size. However, the best currently known
circuit lower bounds for explicit problems are only linear for NP problems [17,11],
and polynomial for problems in the polynomial-time hierarchy PH [14].

To make progress, researchers introduced various restrictions on the circuit
classes. In particular, for Boolean circuits of constant depth, with NOT and
unbounded fan-in AND and OR gates (AC0 circuits), exponential lower bounds
are known for the Parity function [8,29,9]. For constant-depth circuits that
additionally have (unbounded fan-in) MODp gates, one also needs exponential
size to compute the MODq function, for any distinct primes p and q [20,24]. With
little progress for decades, Williams [28] has recently shown that a problem in
NEXP is not computable by polynomial-size ACC0 circuits, which are constant-
depth circuits with NOT gates and unbounded fan-in AND, OR and MODm

gates, for any integer m > 1. However, no lower bounds are known for the class
TC0 of constant-depth threshold circuits with unbounded fan-in majority gates.1

To make more progress, another restriction has been added: uniformity of
circuits. Roughly speaking, a circuit family is called uniform if there is an effi-
cient algorithm that can construct any circuit from the family. There are two
natural variations of this idea. One can ask for an algorithm that outputs the
entire circuit in time polynomial in the circuit size; this notion of uniformity is
known as P-uniformity. In the more restricted notion, one asks for an algorithm
that describes the local structure of the circuit: given two gate names, such an
algorithm determines if one gate is the input to the other gate, as well as de-
termines the types of the gates, in time linear (or polynomial) in the input size
(which is logarithmic or polylogarithmic time in the size of the circuit described
by the algorithm); such an algorithm is said to decide the direct-connection
language of the given circuit. This restricted notion is called DLOGTIME- (or
POLYLOGTIME-) uniformity [22,5,3]. We will use the notion of POLYLOGTIME-
uniformity by default, and, for brevity, will omit the word POLYLOGTIME.

It is easy to show (by diagonalization) that, for any fixed exponential func-
tion s(n) = 2n

c

for a constant c > 1, there is a language in EXP (deterministic
exponential time) that is not computable by a uniform (even P-uniform) family
of Boolean s(n)-size circuits.2 Similarly, as observed in [2], a PSPACE-complete
language requires exponential-size uniform TC0 circuits. For the smaller com-
plexity class #P ⊆ PSPACE, Allender and Gore [3] showed Permanent (which
is complete for #P [26]) is not computable by uniform ACC0 circuits of sub-
exponential size. Later, Allender [2] proved that Permanent cannot be com-
puted by uniform TC0 circuits of size s(n) for any function s such that, for all k,
s(k)(n) = o(2n) (where s(k) means the function s composed with itself k times).
Finally, Koiran and Perifel [16] extended this result to show that Permanent is
not computed by polynomial-size uniform threshold circuits of depth o(log log n).

Recently, Jansen and Santhanam [12] have proposed a natural relaxation of
uniformity, termed succinctness, which allows one to interpolate between non-
uniformity and uniformity. According to [12], a family of s(n)-size circuits {Cn}

1 A plausible explanation of this “barrier” is given by the “natural proofs” framework
of [21], who argue it is hard to prove lower bounds against the circuit classes that
are powerful enough to implement cryptography.

2 Unlike the nonuniform setting, where every n-variate Boolean function is computable
by a circuit of size about 2n/n [18], uniform circuit lower bounds can be > 2n.

is succinct if the direct-connection language of Cn is decided by some circuit of
size s(n)o(1). In other words, while there may not be an efficient algorithm for
describing the local structure of a given s(n)-size circuit Cn, the local structure
of Cn can be described by a non-uniform circuit of size s(n)o(1). Note that if
we allow the non-uniform circuit to be of size s(n), then the family of circuits
{Cn} would be completely non-uniform. So, intuitively, the restriction to the
size s(n)o(1) makes the notion of succinctness close to that of non-uniformity.

The main result of [12] is that Permanent does not have succinct polynomial-
size arithmetic circuits of constant depth, where arithmetic circuits have un-
bounded fan-in addition and multiplication gates and operate over integers.
While relaxing the notion of uniformity, [12] were only able to prove a lower
bound for the weaker circuit class, as polynomial-size constant-depth arithmetic
circuits can be simulated by polynomial-size TC0 circuits. A natural next step
was to prove a super-polynomial lower bound for Permanent against succinct
TC0 circuits. This is achieved in the present paper.

1.1 Our main results

We improve upon [12] by showing that Permanent does not have succinct
polynomial-size TC0 circuits. In addition to strengthening the main result from
[12], we also give a simpler proof. Our argument is quite general and allows us
to extend to the “succinct” setting all previously known uniform circuit lower
bounds of [3,2,16].

Recall that the direct-connection language for a circuit describes the local
structure of the circuit; more precise definitions will be given in the next section.
For a function α : N → N, we say that a circuit family {Cn} of size s(n)
is α-weakly uniform if the direct-connection language Ldc of {Cn} is decided
by a polynomial-time algorithm that, in addition to the input of Ldc of size
m ∈ O(log s(n)), has an advice string of size α(m); the advice string just depends
on the input size m. The notion of α-weakly uniform is essentially equivalent to
the notion of α-succinct introduced in [12]; see the next section for details.

We will call a circuit family subexp-weakly uniform if it is α-weakly uniform
for α(m) ∈ 2o(m). Similarly, we call a circuit family poly-weakly uniform if it is
α-weakly uniform for α(m) ∈ mO(1). Observe that for m = O(log s), we have
2o(m) = so(1) and mO(1) = poly log s.

Our main results are as below. First, we strengthen the lower bound of [12].

Theorem 1. Permanent is not computable by subexp-weakly uniform poly-
size TC0 circuits.

Let us call a function s(n) sub-subexponential if, for any constant k > 0,

we have that the k-wise composition s(k)(n) 6 2n
o(1)

. We use subsubexp to
denote the class of all sub-subexponential functions s(n). We extend a result of
Allender [2] to the “weakly-uniform” setting.

Theorem 2. Permanent is not computable by poly-weakly uniform subsubexp-
size TC0 circuits.

Finally, we extend the result of [16].

Theorem 3. Permanent is not computable by poly-weakly uniform poly-size
threshold circuits of depth o(log log n).

1.2 Our techniques

At the high level, we use the method of indirect diagonalization:

– assuming Permanent is easy and using diagonalization, we first show the
existence of a “hard” language in a certain complexity class C (the counting
hierarchy, to be defined below);

– assuming Permanent is easy, we show that the above “hard” language
is actually “easy” (as the easiness of Permanent collapses the counting
hierarchy), which is a contradiction.

In more detail, we first extend the well-known correspondence between uni-
form TC0 and alternating polylog-time Turing machines (that use majority
states) to the weakly uniform setting, by considering alternating Turing ma-
chines with advice. To construct the desired “hard” language, we use diagonal-
ization against such machines with advice. The assumed easiness of Permanent
is used to argue two things about the constructed “hard” language Lhard:

1. Lhard is in fact “hard” for a much more powerful class A of algorithms;
2. Lhard is decided by a “simple” algorithm A.

The contradiction ensues since algorithm A turns out to be from the class A.

1.3 Relation to the previous work

A similar indirect-diagonalization strategy was used (explicitly or implicitly) in
all previous papers showing uniform or weakly uniform circuit lower bounds for
Permanent [3,2,16,12]. Our approach is most closely related to that of [2,16].
The main difference is that we work in the weakly uniform setting, which means
that we need to handle a certain amount of non-uniform advice. To that end,
we have adapted the method of indirect diagonalization, making it modular (as
outlined above) and sufficiently general to work also in the setting with advice.
Due to this generality of our proof argument, we are able to extend the afore-
mentioned lower bounds from the uniform setting to the weakly uniform setting.

The approach adopted by [12] goes via the well-known connection between
derandomization and circuit lower bounds (cf. [10,13,1]). Since the authors of [12]
work with the algebraic problem of Polynomial Identity Testing (given an arith-
metic circuit computing some polynomial over integers, decide if the polynomial
is identically zero), their final lower bounds are also in the algebraic setting:
for weakly uniform arithmetic constant-depth circuits. By making the diagonal-
ization arguments in [12] more explicit (along the lines of [2]), we are able to
get the lower bound for weakly uniform Boolean (TC0) circuits, thereby both
strengthening the results and simplifying the proofs from [12].

2 Preliminaries

We refer to [4] for the basic complexity notions.

2.1 Weakly uniform circuit families

Following [22,3], we define the direct connection language of a circuit family
{Cn} as Ldc = {(n, g, h) : g = h and g is a gate in Cn, or g 6= h and h is an
input to g}, where n is in binary representation, and g and h are binary strings
encoding the gate types and names. The type of a gate could be constant 0 or 1,
Boolean logic gate NOT, AND, or OR, majority gate MAJ, modulo gate MODm

for some integer m, or input x1, x2, . . . , xn. For a circuit family of size s(n), we
need c0 log s(n) bits to encode (n, g, h), where c0 is a small constant at most 4.

A circuit family {Cn} is uniform [5,3] if its direct connection language is
decidable in time polynomial in its input length |(n, g, h)|; this was referred to
as POLYLOGTIME-uniformity in [3].

We say a function f(n) is constructible if there is a deterministic TM that
computes f(n) in binary in time O(f(n)), when given n in binary as the input3.

Following [12], for a constructible function α : N → N, we say that a circuit
family {Cn} of size s(n) is α-succinct if its direct connection language Ldc is
in SIZE(α); i.e., Ldc has (non-uniform) Boolean circuits of size α(m), where
m = c0 log s(n) is the input size for Ldc. Trivially, for α(m) > 2m, every circuit
family is α-succinct. The notion becomes nontrivial when α(m) � 2m/m. We
will use α(m) = 2o(m) (slightly succinct) and α(m) = mO(1) (highly succinct).

We recall the definition of Turing machines with advice from [15]. Given func-
tions t : N×N→ N and α : N→ N, we say that a language L is in DTIME(t)/α, if
there is a deterministic Turing machine M and a sequence of advice strings {an}
of length α(n) such that, for any x ∈ {0, 1}n, machine M on inputs (x, an) de-
cides whether x ∈ L in time t(n, α(n)). If the function t(n,m) is upper-bounded
by a polynomial in n+m, we say that L ∈ P/α.

Definition 1. A circuit family {Cn} of size s(n) is α-weakly uniform if its
direct connection language is decided in P/α; recall that the input size for the
direct-connection language describing Cn is m = c0 log s(n), and so the size of
the advice string needed in this case is α(c0 log s(n)).

The two notions are closely related.

Lemma 1. In the notation above, α(m)-succinctness implies α(m) logα(m)-
weak uniformity, and conversely, α(m)-weak uniformity implies (α(m)+m)O(1)-
succinctness.

Proof (sketch). A Boolean circuit of size s can be represented by a binary string
of size O(s log s); and a Turing machine running in time t can be simulated by
a circuit family of size O(t log t). ut
3 We note that f(n) is constructible in our sense if and only if 2f(n) is constructible

according to Allender’s definition in [2].

The notion of weak uniformity (succinctness) interpolates between full unifor-
mity on one end and full non-uniformity on the other end. For example, 0-weak
uniformity is the same as uniformity. On the other hand, α-weak uniformity for
α(m) > 2m is the same as non-uniformity. For that reason, we will assume that
the function α in “α-weakly uniform” is such that 0 6 α(m) 6 2m.

Definition 2. We say a circuit family {Cn} is subexp-weakly uniform if it is α-
weakly uniform for α(m) ∈ 2o(m); similarly, we say {Cn} is poly-weakly uniform
if it is α-weakly uniform for α(m) ∈ mO(1).

2.2 Weak uniformity vs. alternating Turing machines with advice

Following [7,19,3], a threshold Turing machine is an alternating TM (ATM) with
majority (MAJ) states; a configuration in majority state may have an unbounded
number of successors, and it is accepting iff more than half of its successors are
accepting. We denote by Thd(n)TIME(t(n)) the class of languages accepted by
threshold TMs having at most d(n) alternations and running in time O(t(n)).

The counting hierarchy [27,25] is defined as CH = ∪d>0CHd, where CH0 = P

and CHd+1 = PPCHd . The counting hierarchy can be equivalently defined via
threshold Turing machines: CHd = ThdTIME(nO(1)).

It is well-known that uniform AC0(2poly(n)) corresponds to the polynomial-
time hierarchy PH [8]. Similarly, the correspondence exists between uniform
TC0(2poly(n)) and the counting hierarchy CH [19,5,2]. For constructible t(n) such
that t(n) = Ω(log n), we have ∪d>0ThdTIME(poly(t(n))) is precisely the class of
languages decided by uniform TC0(2poly(t(n))).

The following lemma gives the correspondence between weakly uniform thresh-
old circuits and threshold TMs with advice. The proof follows from [3], and is
left to the full version [6].

Lemma 2. Let L be any language decided by a family of α-weakly uniform d(n)-
depth threshold circuits of size s(n). Then L is decidable by a threshold Turing
machine with d′(n) = 3d(n) + 2 alternations, taking advice of length α(m) for
m = c0 log s(n), and running in time t(n) = d′(n) · poly(m+ α(m)).

3 Indirect diagonalization

Here we establish the components needed for our indirect diagonalization, as
outlined in Section 1.2. First, in Section 3.1, we give a diagonalization argu-
ment against alternating Turing machines with advice, getting a language in
the counting hierarchy CH that is “hard” against weakly uniform TC0 circuits
of certain size. Then, in Section 3.2, using the assumption that a canonical P-
complete problem has small weakly uniform TC0 circuits, we conclude that the
“hard” language given by our diagonalization step is actually hard for a stronger
class of algorithms: weakly uniform Boolean circuits of some size s′ without any
depth restriction. Finally, in Section 3.3, using the assumption that Permanent

has small weakly uniform TC0 circuits, we show that CH collapses, and our as-
sumed hard language is in fact decidable by weakly uniform s′-size Boolean
circuits, which is a contradiction. (Our actual argument is more general: we con-
sider threshold circuits of not necessarily constant depth d(n), and non-constant
levels of the counting hierarchy.)

3.1 Diagonalization against ATMs with advice

Lemma 3. For any constructible functions α, d, t, T : N → N such that α(n) ∈
o(n) and t(n) log t(n) = o(T (n)), there is a language D ∈ Thd(n)TIME(T (n))
which is not decided by threshold Turing machines with d(n) alternations running
in time t(n) and taking advice of length α(n).

Proof. Define the language D consisting of those inputs x of length n that have
the form x = (M,y) (using some pairing function) such that the threshold TM M
with advice y, where |y| = α(n), rejects input (M,y) in time t(n) using at most
d(n) alternations. Language D is decided in Thd(n)TIME(T (n)) by simulating M
and flipping the result4.

For contradiction, suppose that D is decided by some threshold Turing ma-
chine M0 with d(n) alternations taking advice {an} of size α(n). Consider the
input (M0, an) with |M0| = n − α(n); we assume that each TM has infinitely
many equivalent descriptions (by padding), and so for large enough n, there must
exist such a description of size n−α(n). By the definition of D, we have (M0, an)
is in D iff M0 with advice an rejects it; but this contradicts the assumption that
M0 with advice {an} decides D. ut

3.2 If P is easy

Let L0 be a P-complete language under uniform projections (functions com-
putable by uniform Boolean circuits with NOT gates only). For example, the
standard P-complete set {(M,x, 1t) : M accepts x in time t} works.

Lemma 4. Suppose L0 is decided by a family of α-weakly uniform d(n)-depth
threshold circuits of size s(n). Then, for any constructible function t(n) > n and
0 6 β(m) 6 2m, every language L in β-weakly uniform SIZE(t(n)) is decided
by µ(n)-weakly uniform d(poly(t(n)))-depth threshold circuits of size s′(n) =
s(poly(t(n))) on n inputs, where µ(n) = α(c0 log s′(n)) + β(c0 log t(n)).

Proof. Let U be an advice-taking algorithm deciding the direct-connection lan-
guage for the t(n)-size circuits for L. For any string y of length β(m) for

4 Thd(n)TIME(T (n)) is closed under complement since the negation of MAJ is MAJ
of negated inputs when MAJ has an odd number of inputs; the latter is easy to
achieve by replacing MAJ(x1, . . . , xk) with MAJ(x1, x1, . . . , xk, xk, 0). Allender [2]
uses a lazy diagonalization argument [30] for nondeterministic TMs. However, that
argument seems incapable of handling the amount of advice we need. Fortunately,
the basic diagonalization argument we use here is sufficient for our purposes.

m = c0 log t(n), we can run U with the advice y to construct some circuit Cy of
size t(n) on n inputs. We can construct the circuit Cy in time at most poly(t(n)),
and then evaluate it in time poly(t(n)) on any given input of size n.

Consider the language L′ = {(x, y, 1t(n)) | |x| = n, |y| = β(m), Cy(x) = 1}.
By the above, we have L′ ∈ P. Hence, by assumption, L′ is decided by an α-
weakly uniform d(l)-depth threshold circuits of size s(l), where l = |(x, y, 1t(n))| 6
poly(t(n)). To get a circuit for L, we simply use as y the advice of size β(m)
needed for the direct-connection language of the t(n)-size circuits for L. Overall,
we need α(c0 log s(l)) + β(m) amount of advice to decide L by weakly uniform
d(poly(t(n)))-depth threshold circuits of size s(poly(t(n))). ut

3.3 If Permanent is easy

Since Permanent is hard for the first level of the counting hierarchy CH, as-
suming that Permanent is “easy” implies the collapse of CH (see, e.g., [2]). It
was observed in [16] that it is also possible to collapse super-constant levels of
CH, under the same assumption. Below we argue the collapse of super-constant
levels of CH by assuming that Permanent has “small” weakly uniform circuits.

We use the notation f ◦ g to denote the composition of the functions f and
g, and the notation f (i) is used to denote the composition of f with itself for i
times; we use the convention that f (0) is the identity function.

Lemma 5. Suppose that Permanent is in γ-weakly uniform SIZE(s(n)), for
some γ(m) 6 2o(m). For every d(n) 6 no(1), every language A in Thd(n)TIME(poly)

is also in (2d(n) ·γ)-weakly uniform SIZE((s◦q)(d(n)+1)(n)), for some polynomial
q dependent on A.

Proof. The language A is computable by a uniform threshold circuit family {Cn}
of depth d(n) and size poly(n). Let M be a polynomial-time TM deciding the
direct-connection language of {Cn}. More precisely, we identify the gates of the
circuit with the configurations of the given threshold TM for A; the output gate
is the initial configuration; leaf (input) gates are halting configurations; deciding
if one gate is an input to the other gate is deciding if one configuration follows
from the other according to our threshold TM, and so can be done in polynomial
time (dependent on A); finally, given a halting configuration, we can decide if it
is accepting or rejecting also in polynomial time (dependent on A).

Consider an arbitrary n. Let d = d(n). For a gate g of C, we denote by Cg

the subcircuit of C that determines the value of the gate g. We say that g is at
depth i, for 1 6 i 6 d, if the circuit Cg is of depth i. Note that each gate at
depth i > 1 is a majority gate.

For every 0 6 i 6 d, let Bi be a circuit that, given x ∈ {0, 1}n and a gate g
at depth i, outputs the value Cg(x).

Claim. There are polynomials q and q′ dependent on A such that, for each
0 6 i 6 d, there are 2iγ-weakly uniform circuits Bi of size (s ◦ q)(i) ◦ q′.

Proof. We argue by induction on i. For i = 0, to compute B0(x, g), we need to
decide if the halting configuration g of our threshold TM for A on input x is
accepting or not; by definition, this can be done by the TM M in deterministic
polynomial time. Hence, B0 can be decided by a completely uniform circuit of
size at most q′(n) for some polynomial q′ dependent on the running time of M .

Assume we have the claim for i. Let s′ be the size of the γ′-weakly uniform
circuit Bi, where s′ 6 (s ◦ q)(i) ◦ q′ and γ′ 6 2iγ. Consider the following TM N :

“On input z = (x, g, U, y, 1s
′/2), where |x| = n, g is a gate of C, |U | =

γ(c0 log s′), |y| = γ′(c0 log s′), interpret U as a Turing machine that takes
advice y to decide the direct-connection language of some circuit D of
size s′ on inputs of length |(x, g)|. Construct the circuit D using U and y,
where to evaluate U on a given input we simulate U for at most s′ steps.
Enter the MAJ state. Nondeterministically guess a gate h of C and a bit
b ∈ {0, 1}. If h is not an input gate for g, then accept if b = 1 and reject
if b = 0; otherwise, accept if D(x, h) = 1 and reject if D(x, h) = 0.”

We will be interested in the case where U is a polynomial-time TM. For any
such U , the running time on any input is bounded by poly(c0 log s′+γ′(c0 log s′)),
which is less than s′ by our assumptions that γ(m) 6 2o(m) and d 6 (s′)o(1).
Thus, to evaluate U on a particular input, it suffices to simulate U for at most s′

steps, which is independent of what the actual polynomial time bound of U is. It
follows that we can construct the circuit D (given U and y) in time p(s′), where
p is a polynomial that does not depend on U . Also, to decide if h is an input gate
to g, we use the polynomial-time TM M . We conclude that N is a PP machine
which runs in some polynomial time (dependent on A). Since Permanent is
PP-hard [26,31], we have a uniform reduction mapping z (an input to N) to an
instance of Permanent of size q(|z|), for some polynomial q (dependent on A).

By our assumption on the easiness of Permanent, we get that the language
of N is decided by γ-weakly uniform circuits CN of size at most s′′ = s(q(s′)). If
we plug in for U and y the actual TM description and the advice needed to decide
the direct-connection language of Bi, we get from CN the circuit Bi+1. Note that
the direct-connection language of this circuit Bi+1 is decided in polynomial time
(using the algorithm for direct-connection language of CN) given the advice
needed for CN plus the advice needed to describe U and y. The total advice size
is at most γ(c0 log s′′) + γ(c0 log s′′) + γ′(c0 log s′) 6 2(i+ 1)γ(c0 log s′′). ut

Finally, we take the circuit Bd and use it to evaluate A(x) by computing
the value Bd(x, g) where g is the output gate of C, which can be efficiently
constructed (since this is just the initial configuration of our threshold TM for A
on input x). By fixing g to be the output gate of C, we get the circuit for A which
is 2dγ-weakly uniform of size at most (s ◦ q)(d)(r(n)), where the polynomial r
depends on the language A. Upper-bounding r by (s ◦ q) yields the result. ut

4 Proofs of the main results

Here we use the technical tools from the previous section in order to prove our
main results. Recall that L0 is the P-complete language defined earlier.

4.1 Proof of Theorem 1

First, assuming L0 is easy, we construct a hard language in CH.

Lemma 6. Suppose L0 is in subexp-weakly uniform TC0 of depth d. Then, for
a constant d′ dependent on d, there is a language Ldiag ∈ CHd′ which is not in
subexp-weakly uniform SIZE(poly).

Proof. Let α(m) ∈ 2o(m) be such that L0 is in α-weakly uniform TC0 of depth d.
Consider an arbitrary language L in β-weakly uniform SIZE(poly), for an arbi-
trary β(m) ∈ 2o(m). By Lemma 4, L has µ(n)-weakly uniform threshold circuits
of depth d and polynomial size, where µ(n) = α(O(log n))+β(O(log n)) 6 no(1).
By Lemma 2, we have that L is decided by a threshold Turing machine with
d′ = O(d) alternations, taking advice of length µ(n) 6 no(1) 6 n/ log2 n, and
running in time d′ · poly(O(log n) + no(1)) 6 no(1) 6 n/ log2 n. We conclude that
every language in subexp-weakly uniform SIZE(poly) is also decided by some
threshold TM in time n/ log2 n, using d′ alternations and advice of size n/ log2 n.

Using Lemma 3, define Ldiag to be the language in Thd′TIME(n) which is
not decidable by any threshold Turing machine in time n/ log2 n, using d′ alter-
nations and advice of size n/ log2 n. It follows that Ldiag is different from every
language in subexp-weakly uniform SIZE(poly). ut

Next, assuming Permanent is easy, we have that every language in CH is
easy. The proof is immediate by Lemma 5.

Lemma 7. If Permanent is in subexp-weakly uniform SIZE(poly), then every
language in CH is in subexp-weakly uniform SIZE(poly).

We now show that L0 and Permanent cannot both be easy. The proof is
immediate by Lemmas 6 and 7.

Theorem 4. At least one of the following must be false:

1. L0 is in subexp-weakly uniform TC0;
2. Permanent is in subexp-weakly uniform SIZE(poly).

To unify the two items in Theorem 4, we use the next lemma and its corollary.

Lemma 8 ([26,3]). For every language L ∈ P, there are uniform AC0-computable
function M (mapping a binary string to a poly-size Boolean matrix) and Boolean
function f such that, for every x, we have x ∈ L iff f(Permanent(M(x)) = 1.

This lemma immediately yields the following.

Corollary 1. If Permanent has α-weakly uniform d(n)-depth threshold cir-
cuits of size s(n), then L0 has α-weakly uniform (d(nO(1))+O(1))-depth threshold
circuits of size s(nO(1)).

Now we prove Theorem 1, which we re-state below.

Theorem 5. Permanent is not in subexp-weakly uniform TC0.

Proof. Otherwise by Corollary 1, both claims in Theorem 4 would hold, which
is impossible. ut

4.2 Proofs of Theorem 2 and Theorem 3

The following two lemmas are similar to Lemma 6, and are used to prove The-
orems 2 and 3; the proofs can be found in the full version [6].

Lemma 9. Suppose L0 is in poly-weakly uniform TC0(subsubexp) of depth d.
Then, for a constant d′ = O(d), there is a language Ldiag ∈ CHd′ which is not
in poly-weakly uniform SIZE(subsubexp).

Lemma 10. Suppose L0 is computable by poly-weakly uniform polynomial-size
threshold circuits of depth o(log log n). Then there exists a language Ldiag ∈
Thlog lognTIME(n) which is not in poly-weakly uniform SIZE(npoly(logn)).

5 Other lower bounds

Using similar indirect diagonalization, we are also able to show the following;
the proofs are left to the full version [6] of this paper.

Theorem 6. Permanent is not in poly-weakly uniform ACC0(2n
o(1)

).

Theorem 7. EXP is not in poly-weakly uniform SIZE(2n
o(1)

).

Theorem 8. PSPACE is not computable by poly-weakly uniform Boolean for-

mulas of size O(2n
o(1)

).

6 Conclusion

We have shown how to use indirect diagonalization to prove lower bounds against
weakly uniform circuit classes. In particular, we have proved that Permanent
cannot be computed by polynomial-size TC0 circuits that are only slightly uni-
form (whose direct-connection language can be efficiently computed using sub-
linear amount of advice). We have also extended to the weakly uniform setting
other circuit lower bounds that were previously known for the uniform case.

One obvious open problem is to improve the TC0 circuit lower bound for
Permanent to be exponential, which is not known even for the uniform case.
Another problem is to get super-polynomial uniform TC0 lower bounds for a lan-
guage from a complexity class below #P (e.g., PH). Strongly exponential lower
bounds even against uniform AC0 would be very interesting. One natural prob-
lem is to prove a better lower bound against uniform AC0 (say for Permanent)
than the known non-uniform AC0 lower bound for Parity.

References

1. M. Agrawal. Proving lower bounds via pseudo-random generators. In Proc. of the
25th Conf. on Foun. of Software Tech. and Theoretical Comp. Sci., p 92–105, 2005.

2. E. Allender. The permanent requires large uniform threshold circuits. Chicago
Journal of Theoretical Computer Science, 1999.

3. E. Allender and V. Gore. A uniform circuit lower bound for the permanent. SIAM
Journal on Computing, 23(5):1026–1049, 1994.

4. S. Arora and B. Barak. Complexity theory: a modern approach. CUP, NY, 2009.
5. D.A.M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.

JCSS, 41:274–306, 1990.
6. R. Chen, and V. Kabanets. Lower bounds against weakly uniform circuits. In

ECCC, 19:7, 2012.
7. A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. JACM, 28(1):114, 1981.
8. M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time

hierarchy. Mathematical Systems Theory, 17(1):13–27, April 1984.
9. J. H̊astad. Almost optimal lower bounds for small depth circuits. In STOC, 1986.

10. J. Heintz and C.-P. Schnorr. Testing polynomials which are easy to compute.
L’Enseignement Mathématique, 30:237–254, 1982.

11. K. Iwama and H. Morizumi. An explicit lower bound of 5n − o(n) for boolean
circuits. In Proc. of the 27th Inte. Symp. on MFCS, p 353–364. 2002.

12. M. Jansen and R. Santhanam. Permanent does not have succinct polynomial size
arithmetic circuits of constant depth. In Proc. 38th ICALP, I, p 724–735, 2011.

13. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1–2):1–46, 2004.

14. R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Infor-
mation and Control, 55:40–56, 1982.

15. R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28(3-4):191–209, 1982.

16. P. Koiran and S. Perifel. A superpolynomial lower bound on the size of uniform
non-constant-depth threshold circuits for the permanent. In CCC, 2009.

17. O. Lachish and R. Raz. Explicit lower bound of 4.5n−o(n) for boolean circuits. In
Proc. of the Thirty-Third ACM Symp. on Theory of Computing, p 399–408, 2001.

18. O.B. Lupanov. On the synthesis of switching circuits. Doklady Akademii Nauk
SSSR, 119(1):23–26, 1958. English translation in Soviet Mathematics Doklady.

19. I. Parberry and G. Schnitger. Parallel computation with threshold functions. In
Proc. of the First IEEE Conf. on Structure in Complexity Theory, p 272–290, 1986.

20. A.A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes, 41:333–338, 1987.

21. A.A. Razborov and S. Rudich. Natural proofs. JCSS, 55:24–35, 1997.
22. W.L. Ruzzo. On uniform circuit complexity. JCSS, 22(3):365–383, 1981.
23. C.E. Shannon. The synthesis of two-terminal switching circuits. Bell System

Technical Journal, 28(1):59–98, 1949.
24. R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit

complexity. In Proc. of the Nineteenth ACM STOC, p 77–82, 1987.
25. J. Torán. Complexity classes defined by counting quantifiers. JACM, 38:752, 1991.
26. L. Valiant. The complexity of computing the permanent. TCS, 8:189–201, 1979.
27. K.W. Wagner. The complexity of combinatorial problems with succinct input

representation. Acta Informatica, 23:325–356, 1986.
28. R. Williams. Non-uniform ACC circuit lower bounds. In CCC, 2011.
29. A.C. Yao. Separating the polynomial-time hierarchy by oracles. In FOCS, 1985.
30. S. Zak. A Turing machine hierarchy. TCS, 26:327-333, 1983.
31. V. Zanko. #P-Completeness via Many-One Reductions. IJFCS, 1:77, 1991.

	Lower Bounds against Weakly Uniform Circuits

