
The Complexity of Unique k-SAT:
An Isolation Lemma for k-CNFs

Chris Calabro∗

Russell Impagliazzo †

Valentine Kabanets ‡

Ramamohan Paturi§

June 20, 2006

Abstract

We provide some evidence that Unique k-SAT is as hard to solve as general k-SAT, where k-SAT
denotes the satisfiability problem for k-CNFs with at most k literals in each clause and Unique k-SAT
is the promise version where the given formula has 0 or 1 solutions. Namely, defining for each k > 1,
sk = inf{δ > 0 | ∃ a O(2δn)-time randomized algorithm for k-SAT} and, similarly, σk = inf{δ > 0 |
∃ a O(2δn)-time randomized algorithm for Unique k-SAT}, we show that limk→∞ sk = limk→∞ σk.
As a corollary, we prove that, if Unique 3-SAT can be solved in time 2εn for every ε > 0, then so can
k-SAT for all k > 3.

Our main technical result is an isolation lemma for k-CNFs, which shows that a given satisfiable k-
CNF can be efficiently probabilistically reduced to a uniquely satisfiable k-CNF, with non-trivial, albeit
exponentially small, success probability.

1 Introduction

While NP-complete search problems are presumably intractable to solve, this does not mean that all in-
stances of these problems are difficult. Many heuristics for NP-complete problems, e.g., using back-tracking
or local search techniques, take advantage of some structure in the instance. This leads to the general ques-
tion: what makes an instance of a search problem easier than the worst-case? Conversely, we can ask, what
types of structure cannot be exploited by heuristics? Here, we can consider both the structure of the instance
(e.g. density of constraints to variables, or expansion of a formula when viewed as a hypergraph) and the
structure of the solution space (e.g. how correlated are different solutions?).

One particularly natural measure of the solution space is the number of solutions. One can have different
intuitions concerning how the number of solutions should affect the difficulty of the instance. On the one
hand, one might suspect that the hardest instances would be those with few solutions, since they become
“needles in a large haystack”. On the other hand, algorithms that use local search or narrow in on the solution
∗University of California, San Diego
†University of California, San Diego. Research supported by NSF Award CCR-0098197 and USA-Israel BSF Grant 97-00188
‡Simon Fraser University, Canada. This research was done while the author was at the University of California, San Diego,

supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada
§University of California, San Diego. Research supported by NSF Award CCR-0098197

1

through deductions might do worse when there are many unrelated solutions. These algorithms might get
caught between two equally attractive solutions, like Buridan’s ass (who starves to death, unable to decide
between two sources of food).

The best known algorithm for general CNF satisfiability (without any constraints on the clause size)
is little better than exhaustive search, running in time O(2

n(1− 1
lgm

)
), where m is the number of clauses

[Schuler03]. The situation is slightly better for k-SAT, where each clause of a given CNF contains at most
k literals, for some constant k > 3. This syntactic restriction can be exploited to obtain a O(2εkn)-time
algorithm for k-SAT, for some constant 0 < εk < 1 dependent on k. The first such algorithms were obtained
in the 1980’s [Dan81, MS85]. Recently, a number of faster algorithms have been proposed [PPZ99, PPSZ98,
Sch02, HSSW02, DGH+]. The best known randomized algorithm for 3-SAT is given in [HSSW02]. For
k > 4, the best known randomized algorithm is due to [PPSZ98]; its time complexity on k-CNFs with n
variables is O(2(1−µk/(k−1))n), where µk > 1 is an increasing function of k that approaches π2/6 ≈ 1.644.

The techniques of [PPSZ98] and its predecessor [PPZ99] crucially rely upon the notion of isolation of
a satisfying assignment. The degree of isolation of a satisfying assignment x ∈ {0, 1}n is the number of
coordinates 1 6 i 6 n such that flipping the value of xi turns x into a falsifying assignment. Thus, a unique
satisfying assignment has degree n of isolation, whereas any satisfying assignment of a tautology has degree
0 of isolation. The argument in [PPZ99] proceeds as follows. If a given k-CNF has “many” satisfying
assignments, then we are likely to find one by random sampling. On the other hand, if there are “few”
satisfying assignments, then there must be a satisfying assignment of “high” degree of isolation. However,
sufficiently isolated satisfying assignments have “short” descriptions (via the Satisfiability Coding Lemma
in [PPZ99]), and so these assignments can be found by enumerating all possible “short” descriptions, and
checking if any such description corresponds to a satisfying assignment. Combining the two cases yields a
randomized algorithm of running time poly(n)2(1−1/k)n. (Later, [PPSZ98] improved this algorithm.)

A closer look at the analysis in [PPZ99] reveals that the more satisfying assignments a given k-CNF
has, the faster we can find one of them. More precisely, as we prove later in the paper (see Section 4), if a
k-CNF on n variables has s satisfying assignments, then one of them can be found with probability > 1

2 in
time poly(n)(2n/s)1−1/k. This result suggests that the hardest case of k-SAT may be Unique k-SAT, the
promise problem whose positive instances are uniquely satisfiable k-CNFs, and whose negative instances
are unsatisfiable k-CNFs.

In the rest of our paper, we provide further evidence towards the truth of this hypothesis.

1.1 Related work.

Before describing our results, we would like to discuss how the result of Valiant and Vazirani [VV86] on
Unique Formula SAT is related to our problem of Unique k-SAT; here, Unique Formula SAT is the promise
problem with uniquely satisfiable Boolean formulas (not necessarily in conjunctive normal form) as its
positive instances, and unsatisfiable formulas as its negative instances.

Valiant and Vazirani [VV86] show that in some formal sense, uniqueness of the solution cannot be used
to solve search problems quickly. They give a randomized polynomial-time reduction from Formula SAT to
instances of Formula SAT with unique solutions. In particular, they use a random polynomial time algorithm
to transform a formula F to F ′ such that F ′ is satisfiable if and only if F is and if F is satisfiable, then F ′

is uniquely satisfiable with probability at least Ω(1/n). This shows that a probabilistic polynomial-time
algorithm for Unique Formula SAT would also give a similar algorithm for general Formula SAT. The same
follows for most other NP-complete problems, such as k-SAT, by combining this reduction with a reduction
from Unique SAT to the problem (which usually preserves uniqueness).

2

However, there is a large gap between not being solvable in polynomial-time and being the “hardest
case” of a problem. For example, it is consistent with the Valiant-Vazirani result that Unique k-SAT be solv-
able in O(2

√
n) time, but general k-SAT requires 2Ω(n) time, where n is the number of variables in the for-

mula. This is because, when combined with the reduction from Formula SAT to k-SAT, the Valiant-Vazirani
reduction squares the number of variables in the formula. Due to the variable squaring, this reduction is not
very useful if the best algorithm for Unique k-SAT runs in time Ω(2εkn), for some 0 < εk < 1, which is
the common working hypothesis. We need to use a different argument to show that k-SAT is no harder than
Unique k-SAT.

We stress that our emphasis in this paper is on the promise problem Unique k-SAT, as opposed to the
problem of deciding whether a k-CNF formula has a unique solution, as in [GB97]; the latter paper shows
that this uniqueness decision problem for k-SAT is solvable in time O(2δn) iff k-SAT is solvable in time
O(2δn).

1.2 Our Results

In the present paper, we considerably narrow the gap left by the Valiant-Vazirani reduction. We give a family
of randomized reductions from general k-SAT to Unique k-SAT which succeed in reducing a satisfiable input
to an instance of Unique k-SAT with probability at least Ω(2−εkn) where εk → 0 as k → ∞. This implies
that if general k-SAT requires time 2δn for some k and some δ > 0, then, for any δ′ < δ, Unique k′-SAT
requires time 2δ

′n for sufficiently large k′. Combining with results from [IPZ98], we show that if Unique
3-SAT does not require exponential time, then no search problem in SNP requires exponential time.

Before stating our main result, we need to state some key definitions that we use throughout the paper.
Recall that k-SAT denotes the satisfiability decision problem for k-CNFs with at most k literals. Unique
k-SAT denotes the promise decision problem of k-SAT where the number of solutions is either 0 or 1. Our
results in this paper concern the asymptotic complexities of these problems as k increases. While we couch
our results in terms of decision problems, they can naturally be extended to search versions of the same
problems.

We will often speak of a randomized algorithm A ’solving’ a problem L in time t. The exact meaning of
this will be context dependent. If L is a promise problem (e.g., L = Unique-k-SAT), then we say that L is
solved in randomized time t if there exists a randomized time t Turing machine returning ’yes’ on positive
input instances of L with probability at least 1/2, and returning ’no’ on negative input instances of L with
probability 1.

When we talk about reductions, we mean Turing reductions. Thus we say that a (promise) problem L1

(e.g., L1 = k-SAT) is reducible to a (promise) problem L2 (e.g., L2 = Unique-k-SAT) in randomized time
t if there is a randomized time t oracle Turing machine that solves L1 when give oracle for L2 (where, in
case L2 is a promise problem, the oracle for L2 says ’yes’ on positive instances of L2, and ’no’ on negative
instances of L2, but may say anything on a query outside the promise).

In this paper we will usually only care about the value of t up to a subexponential factor, i.e., up to a
factor of 2εn where ε > 0 is a parameter, and so it is obviously sufficient to provide an algorithm running
in time t with subexponentially small success probability, i.e., > 2−εn, and then use repetition to boost the
probability of success to be at least 1/2.

We are solely concerned with the exponential complexity of k-SAT or Unique k-SAT. As our input
complexity measure, we use n, the number of variables. We believe that the number of variables is a natural
parameter as it measures the size of the space of solutions. All recent algorithms for k-SAT have running
times expressed in the form 2δn, where δ > 0 as a function of k approaches 1 as k →∞. Furthermore, the
Sparsification Lemma proved in [IPZ98] (and stated explicitly in Lemma 6) shows that an arbitrary k-CNF

3

can be reduced in subexponential time to a union of at most subexponentially many k-CNFs each with a
linear number of clauses. For a more thorough discussion of input complexity parameters, we refer the
reader to [IPZ98].

With these considerations, our focus in this paper is on the quantities

sk = inf{δ > 0 | ∃ a O(2δn)-time randomized algorithm for k-SAT}, and

σk = inf{δ > 0 | ∃ a O(2δn)-time randomized algorithm for Unique k-SAT}

as functions of k. Our results show that the sequences sk and σk have the same limit as k → ∞. While
our theorems hold unconditionally, they are more interesting in the case ∀k > 3, sk > 0, which we call the
Exponential Time Hypothesis (ETH).

Denoting s∞ = limk→∞ sk and σ∞ = limk→∞ σk, we can state our main result as follows.

Theorem 1. s∞ = σ∞.

This gives strong evidence that Unique k-SAT is as hard to solve as general k-SAT. Combining Theo-
rem 1 with the results in [IPZ98] yields the following.

Corollary 2. If σ3 = 0, then s∞ = 0.

The main technical ingredient in the proof of Theorem 1 is a more refined analysis of the random hashing
technique of [VV86]. We modify the construction of [VV86] so that it uses sparse hyperplanes that depend
on at most k′ variables, where k′ depends only on k and an approximation parameter ε. We then show that,
given a satisfiable k-CNF φ, the modified construction is likely to produce a new k′-CNF ψ such that all
satisfying assignments of ψ are clustered in a single Hamming ball of “small” radius. Finally, we argue that
a random assignment of “few” randomly chosen variables of ψ will result in a uniquely satisfiable k′-CNF
ψ′. This result is formally stated as Lemma 3 (Isolation Lemma) below.

It is worth pointing out that, unlike the reduction of [VV86], our randomized reduction has only expo-
nentially small success probability. However, since we are interested in O(2εn)-time algorithms, such small
success probabilities suffice for our purposes.

Remainder of this paper In Section 2, we state and prove our main technical result, an Isolation Lemma
for k-CNFs. Section 3 contains the proofs of Theorem 1 and Corollary 2 stated in the Introduction. In
Section 4, we show that Unique k-SAT is the worst case for the k-SAT algorithm of [PPZ99].

2 Isolation Lemma for k-CNFs

Let h(ε) = −ε lg ε− (1− ε) lg(1− ε) denote the binary entropy function.

Lemma 3 (Isolation Lemma). For every k ∈ N, ε ∈ (0, 1
4), there is a randomized polynomial-time algorithm

Ik,ε that, given an n-variable k-CNF φ, outputs an n-variable k′-CNF φ′, for k′ = max{d1
ε ln 2

ε e, k}, such
that

1. if φ is unsatisfiable, then so is φ′, and

2. if φ is satisfiable, then, with probability at least (32n23h(2ε)n)−1, φ′ has a unique satisfying assign-
ment.

4

Proof. Our proof will consist of two steps. First, we intersect the set S of satisfying assignments of φ with
randomly chosen hyperplanes on k′ variables, and show that, with reasonable probability, all the surviv-
ing satisfying assignments of φ are contained (concentrated) in a Hamming ball of “small” radius. Then
we isolate a single satisfying assignment in this Hamming ball by randomly assigning a small number of
coordinates.

STEP I: CONCENTRATION. Guess an integer s ∈ [1..n], then with probability at least 1/n, lg |S| 6
s 6 1 + lg |S|. For the remainder of our argument, let us assume that our guess is correct. For m to be
determined later, we intersect the solution space S of φ with m sparse hyperplanes of the Boolean cube
{0, 1}n, where each hyperplane hi is chosen independently by the following randomized algorithm: Pick a
subset Ri ⊆ {1, . . . , n} of size k′ uniformly at random. For each j ∈ Ri, pick ci,j ∈ {0, 1} uniformly at

random. Pick bi ∈ {0, 1} uniformly at random. Output the hyperplane hi
def
=
∑

j∈Ri ci,jxj = bi, where the
summation is over the field F2.

Let us write the system of linear equations h1, . . . , hm in the matrix form Ax = b, where A is an m×n
0-1 matrix, x = (x1, . . . , xn)t, and b = (b1, . . . , bm)t.

While a random sparse hyperplane is unlikely to separate two vectors x, y ∈ {0, 1}n that are close to

each other, it has a reasonable chance of separating x and y that are Hamming distance dist(x, y) > r
def
=

dεne apart.

Claim 4. For any x, y ∈ {0, 1}n with dist(x, y) > r, we have

PrA[Ax = Ay] 6
1

2m
eεm

Proof of Claim 4. For any x, y ∈ {0, 1}n with dist(x, y) > r and any i ∈ {1, . . . ,m}, we have

Pr[(Ax)i 6= (Ay)i] = Pr[(A(x− y))i 6= 0]

= Pr[(A(x− y))i 6= 0 | (x− y)Ri 6= 0] ·Pr[(x− y)Ri 6= 0]

where (x−y)Ri is the vector restricted to the coordinates fromRi. If (x−y)Ri 6= 0, then Pr[(A(x−y))i 6=
0] = 1

2 . We get

Pr[(Ax)i 6= (Ay)i] =
1

2
Pr[(x− y)Ri 6= 0]

=
1

2
Pr[∃j ∈ Ri (x− y)j 6= 0]

>
1

2

(
1−

(
n−r
k′

)(
n
k′

))
>

1− (1− ε)k′

2

>
1− (1− ε)(1/ε) ln(2/ε)

2

>
1− e−ε(1/ε) ln(2/ε)

2

>
1

2
− ε

2
.

Thus, PrA[Ax = Ay] 6 (1
2 + ε

2)m 6 1
2m e

εm, as required.

5

Now, let us define the set of semi-isolated solutions as

S′ = {x ∈ S | ∀y ∈ S
(

dist(x, y) > r → Ax 6= Ay
)
}.

For each x ∈ S, we have

PrA[x ∈ S′] = 1−PrA[∃y ∈ S(
dist(x, y) > r ∧Ax = Ay

)
]

> 1−
∑

y∈S,dist(x,y)>r

PrA[Ax = Ay]

> 1− |S|eεm/2m

where the last inequality is by Claim 4. By setting m = s+ d4εse+ 2, we obtain

PrA[x ∈ S′] > 1/2. (1)

It follows that ∑
x∈S

PrA,b[x ∈ S′ ∧Ax = b]

=
∑
x∈S

PrA[x ∈ S′]Prb[Ax = b | x ∈ S′]

>
1

2
|S|2−m,

(2)

where the last inequality is by (1) and the fact that the vector b is chosen independently of the matrix A.
On the other hand, for any given A and b, the number of semi-isolated solutions x ∈ S such that Ax = b

is at most 2h(ε)n, since every pair of such solutions must be Hamming distance less than r apart. This implies∑
x∈S

PrA,b[x ∈ S′ ∧Ax = b] 6 2h(ε)nPrA,b[∃x ∈ S (x ∈ S′ ∧Ax = b)]. (3)

Combining inequalities (2) and (3) yields

PrA,b[∃x ∈ S′ Ax = b] > 2s−m−h(ε)n−2

> 2−(4ε+h(ε))n−5,
(4)

concluding Step I of the lemma.
STEP II: ISOLATION. Now suppose that φ ∧ Ax = b is satisfiable and its solutions are in a Hamming

ball of radius less than r, and hence, the diameter d 6 2bεnc.
For assignments u and v to disjoint sets of variables, let uv denote the union of these assignments. Let

uv and uv̄ be two distinct solutions to φ ∧ Ax = b that are furthest apart. Let C be the set of variables on
which uv and uv̄ differ. Note that |C| 6 d. Fix D ⊇ C such that |D| = d. Consider the assignment βD to
the variables in D consistent with the assignment uv: xi = vi for i ∈ C and xi = ui for i ∈ D − C. The
reduction chooses a random setD′ of d variables and a random assignment αD′ to these variables. Define φ′

to be the formula φ∧Ax = b∧ xD′ = αD′ . If D′ = D and αD′ = βD, then uv is the unique solution to φ′,
since any other solution wv to φ′ would also be a solution to φ ∧Ax = b, but dist(wv, uv̄) > dist(uv, uv̄).

6

The probability of correctly guessing a set of variables D containing C and correctly assigning them is
at least

2−d(
n
d

) > 2−(2ε+h(2ε))n. (5)

Combining equations (4) and (5), we conclude that the probability of correctly guessing s, A, b, D′,

and αD′ so that the resulting formula φ′
def
= φ ∧ Ax = b ∧ xD′ = αD′ is uniquely satisfiable is at least

1
32n2−3h(2ε)n, as claimed.

3 Applications of the Isolation Lemma

3.1 Proof of Theorem 1

Lemma 5. sk 6 σk +O(ln2 k
k).

Proof. Let ε = 2 ln k
k . Then k > 1

ε ln 2
ε . For every γ > 0 and every k, we have a randomized algorithm Uk,γ

for Unique k-SAT that runs in time O(2(σk+γ)n). Applying the Isolation Lemma 3, there is a polynomial
time algorithm Ik,ε for reducing a given satisfiable k-CNF φ to a uniquely satisfiable k-CNF φ′ with success

probability p > 2−O(h(ε)n) > 2−O(ln2 k
k

)n. By running the algorithm Ik,ε O(p−1) times and applying
algorithm Uk,γ to every output k-CNF φ′, we obtain a randomized algorithm for k-SAT that has running

time O(2(σk+γ+O(ln2 k
k

))n). As γ → 0, we have the lemma.

Theorem 1 then follows by taking the limit of the inequality in the previous lemma as k tends to infinity.

3.2 Proof of Corollary 2

We shall need the following result.

Lemma 6 (Sparsification Lemma [IPZ98]). For all k and ε > 0, there is a poly(n)2εn-time algorithm Sk,ε
that, given an n-variable k-CNF φ, returns an n-variable k-CNF ψ that has at most c(k, ε)n clauses, for
some function c of k, ε, and such that

1. every solution to ψ is also a solution to φ, and

2. if φ is satisfiable, then so is ψ, with probability at least > 2−εn.

We also need a simple clause-width-reducing algorithm R3 which takes as input a k-CNF φ in n vari-
ables and m clauses and returns a 3-CNF ψ in n + (k − 3)m variables whose solution set has a trivial
bijective correspondence to that of φ. We describe R3. For each clause l1 ∨ · · · ∨ lk, where the li are literals,
introduce k − 3 new variables y3, . . . , yk−1. The idea is to express l1 ∨ · · · ∨ lk as

(l1 ∨ l2 ∨ y3) ∧ (y3 ∨ l̄3) ∧ · · · ∧ (y3 ∨ l̄k) ∧ (ȳ3 ∨ l3 ∨ · · · ∨ lk),

and then recurse on the last clause. The above is equivalent to

(l1 ∨ l2 ∨ y3) ∧ (y3 ↔ (l3 ∨ · · · ∨ lk)),

and so we can see that for each solution x of φ, there is exactly one solution y to ψ and that we can compute
x from y simply by throwing away the new variables.

7

Proof of Corollary 2. We combine sparsification, isolation, and clause-width reduction. Suppose that for
each ε > 0, there is a randomized algorithm U3,ε that solves Unique 3-SAT in time O(2εn).

Let k > 3 be arbitrary. We want to show that sk = 0. For any ε ∈ (0, 1
4), the algorithm T

def
=

R3 ◦ Ik,ε ◦ Sk,ε, composed of the three algorithms R3, Ik,ε, and Sk,ε, returns a 3-CNF with at most c(k, ε)n
variables for some function c of k, ε since the construction in the Isolation Lemma adds at most c′(k, ε)n
clauses to the sparsified formula, where c′(k, ε) is a function of k and ε. Composing U3,ε with T , we obtain
a O(22εn)-time algorithm for k-SAT that has success probability p > 2−O(h(ε)n). Running this algorithm
O(p−1) times independently, we get a randomized algorithm for k-SAT of running time 2O(h(ε)n). Letting
ε→ 0 gives the result.

4 The More Satisfying Assignments, the Better

Here we present a randomized algorithm for k-SAT whose expected running time on an n-variable poly(n)-
size k-CNF with s satisfying assignments is poly(n)(2n/s)1−1/k. The algorithm is the same as that
in [PPZ99]; our analysis of this algorithm is somewhat more refined.

Below, we say that a variable x is forced in a CNF φ if φ contains a unit clause which consists of x or x̄
only. Clearly, the forced variable will have the same value in every satisfying assignment to φ.

Consider the algorithm A given in Figure 4. Clearly, algorithm A is polynomial-time. We shall lower-

Algorithm A
INPUT: k-CNF φ on variables x1, . . . , xn

1. Pick a permutation σ of the set {1, . . . , n} uniformly at random.

2. For i = 1 to n, if the variable xσ(i) is forced, then set xσ(i) so that the corresponding unit clause is
satisfied; otherwise, set xσ(i) to 1 (TRUE) or 0 (FALSE) uniformly at random. Delete satisfied clauses
and false literals.

3. If the constructed assignment a satisfies φ, then output a.

bound the probability that this algorithm succeeds at finding a satisfying assignment.

Lemma 7. Let φ be a k-CNF on n variables that has s satisfying assignments. Then

Pr[A(φ) outputs some satisfying assignment] > (s2−n)1−1/k.

Proof. Let S be the set of satisfying assignments of φ, a ∈ S, and let σ be any permutation. For this fixed
σ, consider the run of A that results in outputting the assignment a. We denote by dσ(a) the number of
variables that were not forced during this run of A. Since the truth value of each non-forced variable is
chosen uniformly at random, we have Pr[A(φ) = a | σ] = 2−dσ(a), where the probability is over the
random choices of the algorithm A for non-forced variables, given the fixed permutation σ.

It is easy to see that

Pr[A(φ) outputs some satisfying assignment]

=
∑
a∈S

Eσ[2−dσ(a)] >
∑
a∈S

2−Eσ [dσ(a)],

8

where the last step uses Jensen’s inequality.
We can bound Eσ[dσ(a)] using the argument from [PPZ99]. Let l(a) denote the number of satisfying

assignments a′ of φ such that the Hamming distance dist(a, a′) = 1. Then there are n− l(a) variables such
that each of them occurs as a unique true literal in some clause; such a clause is called critical in [PPZ99].
It follows that each such variable xσ(i) will be forced for a random permutation σ if xσ(i) occurs last in the
corresponding critical clause. The latter happens with probability at least 1/k since each clause of φ is of
size at most k. By the linearity of expectation, we obtain that the expected number of forced variables is at
least (n− l(a))/k. Hence, Eσ[dσ(a)] 6 n− (n− l(a))/k.

Thus,

Pr[A(φ) outputs some satisfying assignment]

>
∑
a∈S

2−n(1−1/k)2−l(a)/k.

After factoring out 2−n(1−1/k), we need to lower-bound the sum
∑

a∈S 2−l(a)/k. Let L = Ea∈S [l(a)]. By
Jensen’s inequality, we obtain ∑

a∈S
2−l(a)/k > s2−L/k, (6)

where s = |S|.
Finally, to boundL, we use the well-known edge isoperimetric inequality due to [Har67]. This inequality

implies that, for any subset S′ of the n-dimensional Boolean cube {0, 1}n,

|{(a, a′) | a, a′ ∈ S′ and dist(a, a′) = 1}| 6 |S′| lg |S′|.

Hence, for S′ = S, we obtain
∑

a∈S l(a) 6 s lg s, and so, L = Ea∈S [l(a)] 6 lg s.
Continuing inequality (6), we get∑

a∈S
2−l(a)/k > s2−(lg s)/k = s1−1/k.

So, Pr[A(φ) outputs some satisfying assignment] > (s2−n)1−1/k, as required.

Lemma 7 immediately implies the following.

Theorem 8. There is a randomized algorithm for k-SAT that, given a satisfiable k-CNF φ on n vari-
ables with s satisfying assignments, will output one of the satisfying assignments of φ in expected time
poly(n)(2n/s)1−1/k.

5 Open Problems

We would like to argue that the true challenge in designing an improved k-SAT algorithm is to solve Unique
k-SAT faster than the corresponding algorithm of [PPSZ98].

While we are able to show that s∞ = σ∞, we conjecture that ∀k, sk = σk, which would be strong
evidence that Unique k-SAT should be our focus. However, our techniques do not lend themselves to
proving this conjecture. To prove the conjecture, it would be sufficient to prove an Isolation Lemma for
k-CNF with an inverse polynomial probability of success. While it takes a family of size Ω(2s) to isolate an
element of an arbitrary set of size 2s by intersecting with a randomly chosen set from the family, it would be

9

interesting if one can construct polynomial size families to isolate elements from sets of satisfying solutions
of k-CNF.

In fact, we could hope to prove an even stronger version of the conjecture to the effect that satisfiability
for formulas with many satisfying assignments is strictly easier than for the formulas with fewer solutions.
To prove such a result, one might show that adding additional random constraints to a formula with many sat-
isfying assignments preserves satisfiability while implicitly reducing the number of variables. For example,
in our proof of the Isolation Lemma, we added a number of random sparse linear equations, which implicitly
define some variables in terms of the others. Can we show that these constraints can be used to simplify
search? A less ambitious formulation would be to prove the above just for Davis-Putnam algorithms and
their variants.

References

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual
ACM Symposium on Theory of Computing, pages 151–158, 1971.

[Dan81] E. Dantsin. Two propositional proof systems based on the splitting method. Zapiski Nauch-
nykh Seminarov LOMI, 105:24–44, 1981. (in Russian). English translation in Journal of Soviet
Mathematics, 22(3):1293–1305, 1983.

[DGH+] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan,
and U. Schöning. A deterministic (2− 2/(k+ 1))n algorithm for k-SAT based on local search.
Theoretical Computer Science. to appear.

[GB97] E. Grandjean, H. Buning. SAT-problems and reductions with respect to the number of variables.
Journal of Logic and Computation, 7(4):457–471, 1997.

[Har67] L.H. Harper. A necessary condition on minimal cube numberings. Journal of Applied Proba-
bility, 4:397–401, 1967.

[HSSW02] T. Hofmeister, U. Schöning, R. Schuler, and O. Watanabe. A probabilistic 3-SAT algorithm
further improved. In Proceedings of the Nineteenth Annual Symposium on Theoretical Aspects
of Computer Science, pages 192–202, 2002.

[IP01] R. Impagliazzo, R. Paturi. On the complexity of k-SAT. Journal of Computer and Systems
Sciences, 62(2):367–375, 2001.

[IPZ98] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complex-
ity? In Proceedings of the Thirty-Ninth Annual IEEE Symposium on Foundations of Computer
Science, pages 653–662, 1998.

[MS85] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discrete Applied
Mathematics, 10:287–295, 1985.

[PPSZ98] R. Paturi, P. Pudlák, M.E. Saks, and F. Zane. An improved exponential-time algorithm for k-
SAT. In Proceedings of the Thirty-Ninth Annual IEEE Symposium on Foundations of Computer
Science, pages 628–637, 1998.

10

[PPZ99] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. Chicago Journal of Theoretical
Computer Science, 1999. (preliminary version in FOCS’97).

[Sch02] U. Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32:615–623, 2002.

[Schuler03] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal form.
Technical Report, Universit at Ulm, 2003.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer
Science, 47:85–93, 1986.

11

