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1 Interactive Protocols

The interactive protocols (IP) are also protocols between a probabilistic polytime Verifier and
an all-powerful Prover, where after a certain number of rounds of communication, the Verifier
accepts or rejects. The difference from Arthur-Merlin protocols is that the Verifier in an
Interactive Protocol does not reveal its randomness to the Prover. Sometimes, these protocols
are called private-coin protocols, as opposed to public-coin Arthur-Merlin protocols.

In interactive protocols, the Verifier moves first. An IP protocol with k rounds of commu-
nication is the protocol where at most k messages are exchanged in a conversation between
Verifier and Prover.

We say that a language L ∈ IP[k] if there is a probabilistic polytime verifier such that, for
every x ∈ L, there is a Prover that convinces the Verifier to accept with probability ≥ 3/4
after at most k-rounds; and for every x 6∈ L, each Prover can convince Arthur to accept with
probability at most 1/4 after k rounds.

Here’s an example of an IP protocol for the Graph Nonisomorphism Problem (NISO).
Define NISO = {(G1, G2) | G1 and G2 are not isomorphic}.

Theorem 1. NISO ∈ IP[2]

Proof. Here’s a protocol. Given an input (G1, G2) of two graphs on n vertices, the Verifier
will randomly pick i ∈ {1, 2}, and a random permutation π of the set {1, 2, . . . , n}. The
verifier will send π(Gi) to the Prover (i.e., the Verifier sends a randomly permuted copy of a
randomly chosen graph in (G1, G2)). The Prover sends back j ∈ {1, 2}. The Verifier accepts
iff j = i.

Analysis (1) If G1 and G2 are non-isomorphic, the computationally unbounded Prover
can always find a correct j = i by checking which of G1 and G2 is isomorphic to the graph
received from the Verifier. So, in this case, the Verifier can be made to accept with probability
1.

(2) If G1 and G2 are isomorphic, then a graph sent to the Prover by the Verifier in case
i = 1 is from the same distribution as the graph sent in the case i = 2. Hence, the Prover
has no way of determining i, and his j will be equal to i with probability 1/2. (This can be
shown formally after some simple probability calculations; it’s left as an exercise.)

So, if the graphs are non-isomorphic, the Verier accepts with probability 1. If the graph
are isomorphic, the Verifier accepts with probability at most 1/2. (It is possible to reduce
the error probability to 1/4.)
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2 AM and IP

Let’s define AM[k] to be the class of languages decided by an Arthur-Merlin protocol with
at most k rounds of communication. Note that AM = AM[2].

From the definition of IP[2], it seems that IP[2] is more powerful than AM. It is easy to
simulate Arthur-Merlin protocol in IP[2], but it’s not at all clear how to simulate IP[2] with
AM. The surprising result of Goldwasser and Sipser shows that in fact the two classes are
the same!

Theorem 2 (Goldwasser-Sipser). For any k, IP[k] = AM[k].

The proof of this theorem is too involved to be presented here. To get a glimpse of the
proof technique used in the proof, we’ll construct an AM protocol for NISO.

Theorem 3 (Goldwasser-Sipser). NISO ∈ AM

For the proof, we’ll need some terminology. An automorphism of a graph G is an iso-
morphism between G and G. A trivial automorphism of G is the identity function. Note
that a graph G on n vertices without any non-trivial automorphism has exactly n! distinct
isomorphic graphs. (In general, if G has k non-trivial automorphisms, then G has exactly
n!/k distinct isomorphic graphs.)

We’ll use universal hash function families. A family H = Hn of hash functions h : U → M
is called universal if it has two properties:

1. (uniformity) for any u ∈ U and any a ∈ M , Prh[h(u) = a] = 1/|M |,

2. (pairwise independence) for any u, u′, with u 6= u′, and for any a ∈ M , Prh[h(u) =
a ∧ h(u′) = a] = 1/|M |2.

We assume that our family of hash functions is efficient in the sense that each h can
be evaluated efficiently, and we can efficiently sample a random h from the family H .

Now we are ready for the proof.

Proof of Theorem 3. With loss of generality, assume that given input graphs (G1, G2) have
non-trivial automorphisms.

Define the set W = {G′ | G′ is isomorphic to G1 or to G2}. Observe that, if G1 and
G2 are isomorphic, then |W | = n!. If G1 and G2 are not isomorphic, then |W | = 2(n!).
Define Y = W ×W be the cross-product of W with itself. Then, for isomorphic G1 and G2,
|Y | = (n!)2, whereas for non-isomorphic G1 and G2, |Y | = 4(n!)2.

Let M = {0, 1, 2, . . . , 4(n!)2 − 1} be a set of size 4(n!)2. Let H be a family of universal
hash functions h : U → M , where Y ⊂ U (i.e., U is a set of binary strings that contains
binary encodings of all elements in Y .)

Arthur will use a randomly chosen hash function to test if Y is large or small. More
formally, Arthur picks a random hash function h and sends it to Merlin. Merlin sends back
a string y ∈ Y with a proof that y ∈ Y (note that such a proof is short: it’s just a pair of
isomorphisms). Arthur checks that Merlin’s proof of y ∈ Y is correct, and he checks that
h(y) = 0. If the checks pass, then Arthur accepts; otherwise, he rejects.
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Analysis In case G1 and G2 are isomorphic, we have |Y | = (n!)2, and so

Prh[∃y ∈ Y : h(y) = 0] ≤
∑

y∈Y

Prh[h(y) = 0]

|Y |/|M | = 1/4,

where the first inequality is by the “union bound”, and the second equality by uniformity
property of our hash function family.

In case G1 and G2 are non-isomorphic, we have |Y | = 4(n!)2 = |M |. So,

Prh[0 ∈ h(Y )] = Prh[h(y1) = 0 ∨ h(y2) = 0 ∨ · · · ∨ h(y|Y |) = 0]

≥
∑

y∈Y

Prh[h(y) = 0] −
∑

{y,z}∈Y

Prh[h(y) = 0 ∧ h(z) = 0]

= |Y |/|M | − |Y | ∗ (|Y | − 1)/(2|M |2)

≥ 1 − 1/2 = 1/2,

where the first inequality is by the Inclusion-Exclusion Principle, and the second equality
uses uniformity and pairwise independence of our family of hash functions.

So, if G1 and G2 are not isomorphic, Arthur can be made to accept with probability at
least 1/2. If, on the other hand, G1 and G2 are isomorphic, Arthur accepts with probability
at most 1/4. (Correctness probability can be amplified by repeating the protocol several
times in parallel.) So, we have an AM protocol for NISO.

It remains to show how to deal with our assumption that the input graphs have no non-
trivial automorphisms. Let us define
W = {(G′, π) | G′ is isomorphic to G1 or G2, and π is an automorphism of G′}. It is left
as exercise to check that, for isomorphic G1 and G2, |W | = n!; and for non-isomorphic G1

and G2, |W | = 2(n!). The rest of the proof is the same as before.

3 More about AM and IP

If we allow polynomial number of rounds, then we get the entire class PSPACE.

Theorem 4 (Shamir). IP[poly] = AM[poly] = PSPACE.

For any constant k, AM[k] = AM[2] = AM.

Theorem 5 (Babai). For any constant k, AM[k] = IP[k] = IP[2] = AM.

Finally, we have AM ⊆ Πp
2
. So AM is in the second level of the polytime hierarchy. If we

allow a polynomial number of rounds, we get the entire PSPACE.
It is believed that AM = MA = NP. The reason is similar to the case of “BPP vs P”:

if EXP contains a language of exponential SAT-oracle circuit complexity, then AM = NP.
Here, our circuits have additional gates, SAT-oracle gates, that compute the SAT function.
A simple counting argument shows that most Boolean functions require SAT-circuits of
exponential size. If we could construct a particular truth table of such hard function in time
polynomial it its size, then we could derandomize AM. However, proving SAT-oracle circuit
lower bounds is even harder than proving regular circuit lower bounds.
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