
Average Case Complexity March 16, 2011

Impagliazzo’s Five Worlds

Professor: Valentine Kabanets Scribe: Shawn Andrews

The Five Worlds of Impagliazzo

(based on “A Personal View of Average Case Complexity” by R. Impagliazzo, 1995)

1 Algorithmica:

P = NP

(or NP ⊆ BPP)

• “Paradise”

• AI rules

• No secrets

• Cryptography is dead

P = NP ⇒ we can efficiently invert any poly-time function f : {0, 1}`(n) → {0, 1}n. Given

y ∈ {0, 1}n, non-deterministically guess an x ∈ {0, 1}`(n) and check if f(x) = y, if so, output x.
Since P = NP , this search can be done in polytime.

It is impossible to have cryptography without a one-way function (OWF).
Oracle: ∃ an oracle O s.t. NPO = PO [Baker, Bill, Solovay, ’75].

2 Heuristica:

NP 6= P but (NP,U) ⊆ AvgP

NP * BPP but (NP,U) ⊆ HeurBPP

“Paradox”: ∃ hard instances of NP-Hard problems, but they are hard to find.

VLSI minimization: Given a circuit specification C(x1, . . . , xn) to compute some f : {0, 1}n →
{0, 1}, we want the minimum sized circuit Cmin s.t.

∀x ∈ {0, 1}n, Cmin(x) = C(x) .

In Algorithmica, we can define the predicate:

Check(C̃) =


T if ∀x C̃(x) = C(x)︸ ︷︷ ︸

∈ coNP = P

F otherwise

Then we find the smallest C̃ s.t. Check(C̃), which is an NPSearch problem, and thus can be
done in polynomial time. This approach doesn’t work in Heuristica.

Open Question: Suppose (NP,U) ⊆ AvgP. Is then (PH,U) ⊆ AvgP? (cf. P = NP ⇒ P =
PH).

1

Claim 1. (NP,U) ∈ HeurBPP⇒ @OWF

Given a candidate polytime function f : {0, 1}`(n) → {0, 1}n, define

L = {y|∃x f(x) = y}

and define D = {Dn} ∈ PSamp, Dn is sampled: “Given a random x, output f(x)”.
By [Impagliazzo, Levin], (NP,U) ∈ HeurBPP⇒ Can solve any (NP,PSamp) search prob-

lem including (L,D)

3 Pessiland:

(NP,PSamp) * HeurBPP , but @OWF

Is it true that (NP,PSamp) * HeurBPP⇒ ∃OWF? We know:

(NP,PSamp) * HeurBPP⇒∃(BH,U) s.t. ∀ BPP type algorithm A,

∃ δ s.t. A fails on (BH,U) on ≥ δ fraction of inputs.

Thus we can easily generate/sample hard instances for any A.
The existence of a OWF is equivalent to being able to generate hard “solved instances”:

suppose f : {0, 1}`(n) → {0, 1}n is a OWF, then generating algorithm:

1: Pick a random x ∈ {0, 1}`(n)
2: Compute b = f(x) ∈ {0, 1}n
3: Create a SAT formula ψ(z1, . . . , z`(n)) ≡

[
f(z1, . . . , z`(n)) = b

]
(can be done by Cook-Levin)

4: Output (x, ψ)

Note ψ(x) = T . For a random x, ψ must be hard to find witnesses for, otherwise we get a
pre-image of f(x).

Suppose we have a generating algorithm S : {0, 1}r(n) → {(x, ψ) | ψ(x) = T} and it’s hard to

find a witness for ψ for random input to S. Define f : {0, 1}r(n) → {0, 1}poly(n), f(z) = S(z)|2,
the formula part of S’s output. f is a OWF. If S(z)|2 = S(z′)|2, S(z′)|1 is a satisfying assignment
for f(z).

If @OWF (∃ a generic inverter for any polytime computable function)

• We can learn efficiently the behaviour of an unknown algorithm by observing its input/output
behaviour on some sample distribution.

• We can use randomized compression to compress samplable distributions.

• More?

How to know we are in Pessiland: (NP,U) * HeurBPP, but we can invert any polytime
function, f : {0, 1}∗ → {0, 1}∗.

Levin: there is a complete OWF fLevin s.t.

∃OWF⇔ fLevin is a OWF .

2

4 Minicrypt

∃ OWF, but no public key cryptography (cannot agree on a secret with a stranger using only
public channels) ⇒ private-key cryptography (PRG, digital signatures, zero-knowledge, etc.)

Oracle: [Impagliazzo, Rudich]

5 Cryptomania:

Public-key crypto is possible. All sorts of privacy is possible (via math), but maybe not by the
government.

• Secure e-voting

• Joint computation of secret inputs without revealing the secrets

• . . .

Oracle: [Brassard]

Levin’s Universal Search Algorithm

Theorem 1. Suppose ∃ t(n)-time algorithm A for SAT. Then the following algorithm will solve
SAT in time O(t(n)): More precisely, time 2|A|+1 · t(n), exponential in the size of A.

Algorithm 1 Levin-Search

1: On input ψ(x1, . . . , xn)
2: for i = 1 to ∞ do
3: Run each TM M of size |M | ≤ i for ≤ 2i−|M | steps
4: if any M halted with a satisfying assignment α then
5: return α
6: end if
7: end for

Proof. Consider prefix free encodings of TM’s. Calculate the time up to and including stage i:
A TM M of size |M | is run for:

i∑
j=1

2j−|M | = 2i+1−|M | steps

Over all TM’s, |M | ≤ i, the time taken is∑
M :|M |≤i

2i+1−|M | = 2i+1
∑

M :|M |≤i

2−|M |

≤ 2i+1 by Kraft

At stage i, M is run for 2i−|M | steps, so the algorithm terminates at stage i0 s.t.

2i0−|A| = t⇒ i0 = log(t) + |A|

Thus the overall time for stage i0 is ≤ 2i0+1 = t · 2|A|+1.

3

Levin’s OWF-Complete Function

Recall that a polytime function f : {0, 1}∗ → {0, 1}∗ is called weakly one-way function (OWF) if
there is some constant c > 0 such that for every polytime algorithm A, Px[A(f(x)) 6∈ f−1(x)] >
|x|−c, i.e., every efficient inverter fails to invert f(x) on at least n−c fraction of uniformly random
inputs x of length n. (A strongly OWF is a polytime function f such that, for every c > 0, every
polytime inverter fails at inverting f(x) on at least 1 − n−c fraction of inputs x of length n. In
the later lecture, we show that weakly OWFs can be used to construct strongly OWFs.)

Here we show that there is a particular polytime function such that it is a weakly OWF if any
weakly OWF exists. So in a sense, this is a function ”complete for one-wayness”. This function
was defined by Levin as follows.

fLevin(y): “Interpret y = 〈M,x〉 where |M | ≤ log |x|. Run M on x for ≤ |y|3 steps. If M
terminates, output 〈M,M(x)〉. Otherwise, output ⊥.”

Claim 2. If there exists a OWF, then fLevin is a weakly OWF.

Proof. Suppose g is a (weakly) OWF. Without loss of generality, g is computable in time O(n2)
on inputs of size n. (If g takes time nc, define a new function g′(a, x) = (a, g(x)), where |a| = |x|c.
Then g′ is computable in linear time. Also, g′ is OWF if g is. Suppose not. Let I be an inverter
for g′ that succeeds on at least p fraction of random inputs a, x to g′. We’ll use I to invert g:
”Given y = g(x) (for a random x), pick random a (of appropriate length), and run I(a, y).” Then
this algorithm inverts g(x) with probability at least p, where the probability is over uniform input
x, as well as the internal randomness of the algorithm.)

Let y = 〈Mg, x〉 for random x, then fLevin(y) = 〈Mg, g(x)〉. We know any polytime algorithm
inverting g fails with probability > 1

|x|c for some c, given |x| is large enough. Thus any inverter

for fLevin must fail on y with probability > 1
|x|c . But inputs to fLevin of the form 〈Mg, x〉 have

density ≥ 2−|Mg| ∼ 1
|x| , so any inverter for fLevin must fail on a random input with probability

> 1
|x|c+1 .

4

	Algorithmica:
	Heuristica:
	Pessiland:
	Minicrypt
	Cryptomania:

