
CMPT 407/710 - Complexity Theory: Lecture 13

Valentine Kabanets

June 27, 2017

1 Randomized complexity classes

We have the following inclusions: ZPP ⊆ RP ⊆ BPP ⊆ MA ⊆ AM ⊆ Πp
2. The first three

inclusions are fairly easy. Next we’ll show the inclusion MA ⊆ AM, and leave the last
inclusion AM ⊆ Πp

2 as an exercise.
The idea for the inclusion MA ⊆ AM: First, modify the MA protocol to drive the error

down, and then simply swap the order of moves of the two parties.
First, we argue the error reduction part.

1.1 Error Reduction in MA

As in the case of BPP, we can reduce the error probability of any MA protocol to be less
than an inverse exponential in the input size. Here’s how.

Let L ∈ MA be any language. Let R(x, y, z) be a polytime relation for L such that, for
every x ∈ L, there is a y with Prz[R(x, y, z) = 1] ≥ 3/4; and for every x 6∈ L, for every y, it
holds that Prz[R(x, y, z) = 1] ≤ 1/4.

Consider a new protocol where, upon receiving a string y, Arthur randomly and inde-
pendently chooses k strings z1, . . . , zk, and accepts iff R(x, y, zi) = 1 for more than half of
these k strings.

We use Chernoff bounds to analyze the correctness of the described protocol. Suppose
first that x ∈ L. Then Merlin can send Arthur a string y such that Prz[R(x, y, z) = 1] ≥ 3/4.
Every string z1, 1 ≤ i ≤ k, randomly chosen by Arthur has probability at least 3/4 of
satisfying R. The expected number of zi’s that satisfy R is µ ≥ 3

4
k. Let Xi, 1 ≤ i ≤ k,

be a random variable that is 1 if zi satisfies R, and 0 otherwise. Let X =
∑k

i=1Xi. As we
just argued, the expectation of X is µ. Using Chernoff bounds, we get that Pr[X ≤ k/2] ≤
Pr[|X − µ| > k/4] < 2e−k/48. Thus, Arthur will accept with probability exponentially close
to 1.

On the other hand, suppose that x 6∈ L. Then, whatever y is sent to Arthur, Prz[R(x, y, z) =
1] ≤ 1/4. Let Xi be random variables as defined above, and let X =

∑k
i=1Xi. Then the

expectation of X is ≤ 1
4
k. The probability that Arthur accepts in this case is Pr[X > k/2],

which, by Chernoff bounds, is at most 2e−k/48. Thus, in this case, Arthur will accept with
probability exponentially close to 0.

1

1.2 Proof of MA ⊆ AM

We show the following.

Theorem 1. MA ⊆ AM

Proof. Let L ∈ MA be arbitrary. Let R(x, y, z) be a polytime relation for L, as in the
definition of MA. By the previous section (on error reduction), we may assume that the
Merlin-Arthur protocol for L has exponentially small error probability. More precisely, by
analyzing the error reduction argument from the last section, we note that the modified
protocol does not change the size of Merlin’s proof string y, but only increases the size of
Arthur’s random string. Therefore, the error probability of an MA protocol for L can be
made exponentially small in the size of Merlin’s string y, e.g., 2−2|y|.

So, let R(x, y, z) be such that, for every x of length n, we have

x ∈ L⇒ ∃y : Prz[R(x, y, z) = 1] ≥ 1− 2−2|y|,

x 6∈ L⇒ ∀y : Prz[R(x, y, z) = 1] ≤ 2−2|y|.

The new, Arthur-Merlin protocol for L will be: For an input x, Arthur sends to Merlin
a random string z, and receives from Merlin a string y. Arthur accepts iff R(x, y, z) = 1. In
other words, we just switch the order of moves in the previous Merlin-Arthur protocol (but
only after making sure that the Merlin-Arthur protocol has tiny error probability!)

Let’s analyze the error probability of the described Arthur-Merlin protocol. If x ∈ L,
then, by the definition of MA, there is a string y such that R(x, y, z) = 1 for almost all
random z’s. So, by answering Arthur’s challenge z, with this string y, Merlin is guaranteed
to make Arthur accept with probability at least 1− 2−2|y| ≥ 3/4.

Now suppose that x 6∈ L. Then every possible string y has at most 2−2|y| fraction of z’s
such that R(x, y, z) = 1. So, overall, there are at most 2|y|2−2|y| = 2−|y| fraction of z’s such
that R(x, y, z) = 1 for some y. In other words, for at most 2−|y| ≤ 1/4 of Arthur’s random
challenges z, can Merlin answer with a string y that makes Arthur accept. This proves that
the described Arthur-Merlin protocol is indeed correct.

2 Logical view of MA and AM

It is possible to define quantifiers ∃, ∀, and BP, where ∃ corresponds to nondeterministic
guessing, ∀ to co-nondeterministic guessing, and BP to the “large majority”. Then, using
this notation, we can express

• MA = ∃ ◦ BP ◦ P, and

• AM = BP ◦ ∃ ◦ P.

Our proof of MA ⊆ AM can be used to show that the part “∃ ◦ BP” can be also written
as “BP ◦ ∃”. That is, the quantifier BP may jump over the preceding ∃ quantifier.

2

Our earlier proof that BPP ⊆ Σp
2 ∩Πp

2 can be used to show that the BP quantifier can be
also written as either ∃ ◦ ∀ or ∀ ◦ ∃.

As a consequence of these properties of the quantifiers introduced above, we immediately
get:

Theorem 2. AM ⊆ Πp
2.

Proof. We have

AM = BP ◦ ∃ ◦ P (by definition of AM)

⊆ ∀ ◦ ∃ ◦ ∃ ◦ P (replacing BP with ∀ ◦ ∃)
= Πp

2. (merging ∃ ◦ ∃ into ∃)

Theorem 3. MA ⊆ Σp
2 ∩ Πp

2.

Proof. We have

MA = ∃ ◦ BP ◦ P (by definition of MA)

⊆ ∃ ◦ ∃ ◦ ∀ ◦ P (replacing BP with ∃ ◦ ∀)
= Σp

2. (merging ∃ ◦ ∃ into ∃)

We also have

MA = ∃ ◦ BP ◦ P (by definition of MA)

⊆ BP ◦ ∃ ◦ P (BP jumps over the preceding ∃)
⊆ ∀ ◦ ∃ ◦ ∃ ◦ P (replacing BP with ∀ ◦ ∃)
= Πp

2. (merging ∃ ◦ ∃ into ∃)

(Thus, to solve the last problem on HW 3, it suffices to justify the properties of the quan-
tifiers stated above. But you can also solve that HW problem without using the quantifiers.)

3 AM protocol for Graph Non-Isomorphism

Last time we saw a private-randomness protocol for Graph Non-Isomorphism (NISO). We’ll
show how to make into a public-randomness protocol, using approximate counting (or hash-
ing).

Here’s the idea. For two given graphs G1 and G2 on n nodes each, define the set W =
{G′ | G′ is isomorphic to G1 or G2}. For simplicity, assume that neither G1 nor G2 has any
non-trivial automorphisms. This means that if you take G1 apply all n! permutations to its
nodes, you get n! distinct graphs (all isomorphic to G1, of course).

3

Thus, if G1 and G2 are isomorphic, the size of W is (n!). On the other hand, if G1 and
G2 are not isomorphic, the size of W is 2(n!). In other words, W is either large or small,
depending on whether G1 and G2 are non-isomorphic.

The AM protocol will try to convince Arthur that the set W is “large”. The idea is to
use hashing to distinguish between large and small sets. We’ll provide the details next.

Let’s define AM[k] to be the class of languages decided by an Arthur-Merlin protocol
with at most k rounds of communication. Note that AM = AM[2].

From the definition of IP[2], it seems that IP[2] is more powerful than AM. It is easy to
simulate Arthur-Merlin protocol in IP[2], but it’s not at all clear how to simulate IP[2] with
AM. The surprising result of Goldwasser and Sipser shows that in fact the two classes are
the same! More generally, we have:

Theorem 4 (Goldwasser-Sipser). For any efficiently computable k : N→ N,

IP[k] ⊆ AM[k + 2].

The proof of this theorem is too involved to be presented here. To get a glimpse of
the proof technique used in the proof, we’ll construct an AM protocol for the Graph Non-
Isomorphism problem,

NISO = {(G1, G2) | G1 and G2 are not isomorphic}.

Theorem 5 (Goldwasser-Sipser). NISO ∈ AM

For the proof, we’ll need some terminology. An automorphism of a graph G is an iso-
morphism between G and G. A trivial automorphism of G is the identity function. Note
that a graph G on n vertices without any non-trivial automorphism has exactly n! distinct
isomorphic graphs. (In general, if G has k automorphisms, then G has exactly n!/k distinct
isomorphic graphs.)

We’ll use universal hash function families. A family H = Hn of hash functions h : U →M
is called universal if it has two properties:

1. (uniformity) for any u ∈ U and any a ∈M , Prh[h(u) = a] = 1/|M |,

2. (pairwise independence) for any u, u′, with u 6= u′, and for any a ∈ M , Prh[h(u) =
a ∧ h(u′) = a] = 1/|M |2.

We assume that our family of hash functions is efficient in the sense that each h can be
evaluated efficiently, and we can efficiently sample a random h from the family H. (Such
hash function families are known to exist. We’ll see an example later.)

Proof of Theorem 5. With loss of generality, assume that given input graphs (G1, G2) have
no non-trivial automorphisms.

Define the set W = {G′ | G′ is isomorphic to G1 or to G2}. Observe that, if G1 and
G2 are isomorphic, then |W | = n!. If G1 and G2 are not isomorphic, then |W | = 2(n!).

4

Define Y = W ×W be the cross-product of W with itself. Then, for isomorphic G1 and G2,
|Y | = (n!)2, whereas for non-isomorphic G1 and G2, |Y | = 4(n!)2.

Let M = {0, 1, 2, . . . , 4(n!)2 − 1} be a set of size 4(n!)2. Let H be a family of universal
hash functions h : U → M , where Y ⊂ U (i.e., U is a set of binary strings that contains
binary encodings of all elements in Y .)

Arthur will use a randomly chosen hash function to test if Y is large or small. More
formally, Arthur picks a random hash function h and sends it to Merlin. Merlin sends back
a string y ∈ Y with a proof that y ∈ Y (note that such a proof is short: it’s just a pair of
isomorphisms). Arthur checks that Merlin’s proof of y ∈ Y is correct, and he checks that
h(y) = 0. If the checks pass, then Arthur accepts; otherwise, he rejects.

Analysis In case G1 and G2 are isomorphic, we have |Y | = (n!)2 = |M |/4, and so

Prh[∃y ∈ Y : h(y) = 0] ≤
∑
y∈Y

Prh[h(y) = 0]

= |Y |/|M | = 1/4,

where the first inequality is by the “union bound”, and the second equality by uniformity
property of our hash function family.

In case G1 and G2 are non-isomorphic, we have |Y | = 4(n!)2 = |M |. So,

Prh[0 ∈ h(Y)] = Prh[h(y1) = 0 ∨ h(y2) = 0 ∨ · · · ∨ h(y|Y |) = 0]

≥
∑
y∈Y

Prh[h(y) = 0]−
∑
{y,z}∈Y

Prh[h(y) = 0 ∧ h(z) = 0]

= |Y |/|M | − |Y | ∗ (|Y | − 1)/(2|M |2)
≥ 1− 1/2 = 1/2,

where the first inequality is by the Inclusion-Exclusion Principle, and the second equality
uses uniformity and pairwise independence of our family of hash functions.

So, if G1 and G2 are not isomorphic, Arthur can be made to accept with probability at
least 1/2. If, on the other hand, G1 and G2 are isomorphic, Arthur accepts with probability
at most 1/4. (Correctness probability can be amplified by repeating the protocol several
times in parallel.) So, we have an AM protocol for NISO.

It remains to show what to do in the case the input graphs have non-trivial automor-
phisms. Let us re-define

W = {(G′, π) | G′ is isomorphic to G1 or G2, and π is an automorphism of G′}.

It is left as exercise to check that, for isomorphicG1 andG2, |W | = n!; and for non-isomorphic
G1 and G2, |W | = 2(n!). The rest of the proof is the same as before.

5

3.1 Hash functions

There are many constructions of universal hash function families. We’ll mention only one
here. Let U = {0, 1}n and M = {0, 1}k. We’ll define a random hash function hr from U
to M as follows: Pick a random 0/1 matrix A of dimensions k by n (i.e., k rows and n
columns), and a random 0/1 column-vector b of dimension k. (Set r = A; b.) For any vector
x ∈ {0, 1}n, define hA,b(x) = Ax+ b where all arithmetic is done modulo 2.

It is left as an exercise to show the family {hA,b} over random A, b is indeed a universal
hash family.

Note that each hash function in the family is described with “few” random bits of O(kn),
and each hash function can be efficiently evaluated at any given input x. Such hash functions
can be used in the NISO protocol above.

Remark 6. Actually, there is some technicality: the size of the set M in the protocol above
is set 4(n!)2, where n is the number of vertices of the graph. For the hash family defined
above, the size of the image set M must be a power of 2, i.e., of the size 2k for some
k. It may happen that 4(n!)2 is not a power of two. So, in this case, we choose k so
that 2k−2 < 4(n!)2 ≤ 2k−1 (which is always possible), and use hash functions from U to
{0, 1}k. The same argument as before will apply, and we’ll get that Arthur accepts on non-
isomorphic graphs with probability at least 3/16, and that Arthur accept on isomorphic graphs
with probability at most 1/8 < 3/16. (We leave it as an exercise to verify these probability
bounds.)

6

