Lecture 21

Tuesday, February 26, 2019 11:26 AM

R oxv\o\o@ O\Q,%)m' s

Randomization

Algorithmic design patterns.
* Greedy.
* Divide-and-conquer.
* Dynamic programming.

Network flow.
+ Randomization.

in practice, access to a pseudo-random number generator

4

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for
a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing,
load balancing, closest pair, Monte Carlo integration, cryptography,

Lecture21 Page 1

13. RANDOMIZED ALGORITHMS

» contention resolution

44-,)',,

lqorithm Design

JON KLEINBERG - EVA TARDOS

Contention resolution in a distributed system

Contention resolution. Given n processes P,, ..., P,, each competing for

ceadpy

access to a shared database. If two or more processes access the database
simultaneously, all processes are locked out. Devise protocol to ensure all
processes get through on a regular basis.

Restriction. Processes can’t communicate.

Challenge. Need symmetry-breaking paradigm.

Lecture21 Page 2

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time ¢ with
probability p = 1/n.

Claim. Levent that process i succeeds in accessing the database at

time r. Then 1/(e-n) < Pr[S(i,0] < 1/(2n).

Pf. By independence,| Pr[S(i,1)]

. 7 —— -
process i requests access none of remaining n-1 processes request access

* Setting p=1/n, we have Pr[S(i,n)] = 1/n(1—1/n)n-1. =
—_—

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:
* (1-1/n)» converges monotonically from 1/4 up to 1/e.
* (1-1/n)n-1 converges monotonically from 1/2 down to 1/e.

Contention resolution: randomized protocol

Claim. The probability that process i fails to access the database in
en rounds is at most 1/ e. After e - n (c In n) rounds, the probability < n-.

Pf. Let F[i,t] = event that process i fails to access database in rounds 1
through t. By independence and previous claim, we have
Pr [F[i, f]] = (1 = 1/(en))".

- Choose t=[e-n]: Pr[F(i,1)] = (I‘L)M s (1-2)" =

1
en n e

* Choose r=[e-n][cInnl: prF(@i.1)] < (L)"'"” g

4

Lecture21 Page 3

Contention resolution: randomized protocol

Claim. The probability thcesses succeed within 2e -nInn rounds

is=1-1/n.

Pf. Let F[7] = event that at least one of the n processes fails to access
database in any of the rounds 1 through +.

Pr[F[I]] = Pr[GF[i,r]] = iPr[F[j,r]] < n(l—ﬁ)“
i=l i=1
1 1

union bound previous slide

* Choosing t=2[en][cInn] yields Pr[F[f]l<n-n2=1/n. =

i=l i=l

éUnion bound. Given events E,,....E,, Fr|U Er‘] = 3 PrlE]

13. RANDOMIZED ALGORITHMS

» global min cut

Alqorithm Design

JON KLEINBERG - EVA TARDOS

Lecture21 Page 4

Global minimum cut

Global min cut. Given a connected, undirected graph G =(V, E),
find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related
documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
* Replace every edge (u,v) with two antiparallel edges (u,v) and (v, u).

* Pick some vertex s and compute min s—v cut separating s from each
other node vE V.

False intuition. Global min-cut is harder than min s-r cut.

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (u,v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
+ Repeat until graph has just two nodes u, and v,.
+ Return the cut (all nodes that were contracted to form v,).

I, N, /

C : b C
d; contract u-v

Lecture21 Page 5

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (u, v) uniformly at random.
* Contract edge e.
- replace « and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
+ Repeat until graph has just two nodes u, and v,.
+ Return the cut (all nodes that were contracted to form v,).

LEEREEY
FarS S SI Y

Reference: Thore Husfeldt

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob > 2/ n2.
7z

Pf. Consider a global min-cut (A*, B¥) of G.
* Let F* be edges with one endpoint in A* and the other in B*.
* Let k = |F*| = size of min cut. K
* In first step, algorithm contracts an edge in F* probabili
* Every node has degree >k since otherwise (A*, B*) would not be

T
amin-cut = |Elz%kn <« k/|IEl <2/n. Zd\/:(Z\E\

* Thus, algorithm contracts an edge in F* with probability < 2/n. V
Ve

; v/
. - K.
2

=

F'Ir

Lecture21 Page 6

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob = 2/ n2.

Pf. Consider a global min-cut (A*, B¥) of G.
* Let F* be edges with one endpoint in A* and the other in B*.)
_ * Letk = |F*| =size of min cut
* Let G' be graph after j iterations. There are n' =n—j supernodes.
* Suppose no edge in F* has been contracted. The min-cut in G’ is still .

+ Since value of min-cutis k, |IE'|=%kn" < k/IE'l <2/n'. ‘,)}
* Thus, algorithm contracts an edge in F* with probability < 2/n'. 6)‘([/A g(Al

* Let E;= event that an edge in F* is not contracted in iteration ;. *\‘3 ‘7{18\
&L

Pr(E, NE, —-NE,, | , |ENEy,--NE, ;]

Pr[E,] x Pr[E, |E]] x --- x Pr[E,_
(1=2)(1=2) - (1-3) (1-3)
(%2)(%3) -~ (2) (4)

2
n(n-1)

v

a3
wi—

7
2
n 13

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction

algorithm many times.
with independent random choices,

e

Claim. If we repeat the contraction algorithm »2In n times,
then the probability of failing to find the global min-cut s

Pf. By independence, the probability of failure is at most "\\

n’lnn Ln? 2Inn
T e
n- n- T n

(1-1/x)» = 1/e

Lecture21 Page 7

Contraction algorithm: example execution

MR K R o
trial 1 t’(. }% ;}ul ﬁ?] ’&%

g Lﬁ' SSAaAN

B D S D B A
tri lz I I| || I| ||
RS Rrpr e pe

E_k(:_?\ ~ e - - 5 a

Py
we HRNEBLAD

ot e L

trial 4 | & l§‘ @ 7P %’J) @ p‘

== AR AR R
ial 5 =l o=l o= =5 o=,
::il:ds min cut) | J | i %I’ | [.\?

5
K
N
VAR <N
A <,)
o <
by

trial 6

- »t N
P
%4

Reference: Thore Husfeldt

Global min cut: context

Remark. Overall running time is slow since we perform O(n2log n) iterations

and each takes Q(m) time.

Improvement. [Karger-Stein 1996] O(n2 log3n).
+ Early iterations are less risky than later ones: probability of contracting
an edge in min cut hits 50% when n/+v2 nodes remain.
* Run contraction algorithm until n/+2 nodes remain.
* Run contraction algorithm twice on resulting graph and
return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.
Best known. [Karger 2000] O(m log3n).

\

faster than best known max flow algorithm or
deterministic global min cut algorithm

Lecture21 Page 8

13. RANDOMIZED ALGORITHMS

» linearity of expectation

JON KLEINBERG - EVA TARDOS

\ /‘Algmﬂhm Jesi

Expectation

-
Expectation. Given a discrete random variable X, its expectation E[X]

is defined by: .
E[X]= 3PrlX = j]
j=0

Waiting for a first success. Coin is heads with probability p and tails with
probability 1- p. How many independent flips X until first heads?

E[X] = $j-PiX=j1=Sjd-py'p =L Sja-py= L 2P _1
=0 01 n I-pjo I-p p P

j -1 tails 1 head

£0X]= \.r + (H—E(X))‘("f)
) - EX)-p

\\

’o\—l——f+E

Expectation: two properties

Useful property. If Xis a 0/1 random variable, E[X] = Pr[X=1].

Pf. E[X] = i.i'Pr[X=j] = éj'Pr[X=j] = PrlX =]

J=0 J=0

not necessarily independent

v N\

Linearity of expectation. Given two random variables X and Y defined over
the same probability space, E[X + Y] = E[X] + E[Y].

Benefit. Decouples a complex calculation into simpler pieces.

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;
try to guess each card.

Memoryless guessing. No psychic abilities; can’t even remember what'’s

been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. [surprisingly effortless using linearity of expectation]
+ Let X, =1 if i prediction is correct and 0 otherwise.
+ Let X = number of correct guesses =X, +... + X,.
- E[X]=PrX,=1] = 1/n.

EIX] = E[X,] + ... + EIX] = l/n+..+1/n=1. =

T

linearity of expectation

Lecture21 Page 10

20

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;
try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards
not yet seen.

Claim. The expected number of correct guesses is O(log n).
Pf.

Let X, =1 if i» prediction is correct and 0 otherwise.

Let X = number of correct guesses =X, + ... + X,.
E[X]=PrX,=1] = 1/(n—(i-1)).

EX] = E[X,] + ... + E[X,] = l/n+...+1/2+1/1 = H(n). =

! f

Inin+1)<H(n) <1 +Inn

-

linearity of expectation

21

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n
different types of coupons. Assuming all boxes are equally likely to contain
each coupon, how many boxes before you have > 1 coupon of each type?

Claim. The expected number of steps is O(n log n).

Pf.
* Phase j = time between j and j + 1 distinct coupons.
+ Let X;= number of steps you spend in phase j.
+ Let X = number of steps in total =X, + X, + ... +X,_,.

n-1 n-1

EIX] = SEX1=3 " = n3S ! nH@m

j=0 j=0 n-j j=1 1

1

prob of success=(n-j)/n
= expected waiting time=n / (n -)

22

Lecture21 Page 11

13. RANDOMIZED ALGORITHMS

» max 3-satisfiability

lqorithm Design

L L

JON KLEINBERG - EVA TARDOS

Maximum 3-satisfiability

exactly 3 literals per clause and
- each literal corresponds to a different variable

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment
that satisfies as many clauses as possible.

C = X Vx3Vvx
G = % Vv ax
C; = x5, VxVx
C, = X, VXVX
Cs = XV VX

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability '%,
independently for each variable.

Lecture21 Page 12

24

Maximum 3-satisfiability: analysis

Claim. Given a 3-Sat formula with k clauses, the expected number of
clauses satisfied by a random assignment is 7k /8.

Pf. Consider random variable zj, =

=

1 if clause C i is satisfied
0 otherwise.

* Let Z= number of clauses satisfied by random assignment.

linearity of expectation

25

The probabilistic method

Corollary. For any instance of 3-SaT, there exists a truth assignment that
satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. =

Probabilistic method. [Paul Erdés] Prove the existence of a non-obvious
property by showing that a random construction produces it with
positive probability!

26

Lecture21 Page 13

Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies > 74/ 8 clauses
is at least 1/ (8k).

Pf. Let&be probability that exactly j clauses are satisfied;
let p be probability that > 7k / 8 clauses are satisfied.

Ik = E[Z) = 3 jp,

i=0

> jp; + > Jp;
j<Tk/8 j=Tki8

F-9 2 p+ k2p

J<Tki8 j=Tki8

Qk-H -1 + kp

1A

IA

Rearranging terms yields p = 1/(8k). =

Maximum 3-satisfiability: analysis

Johnson’s algorithm. Repeatedly generate random truth assignments until
one of them satisfies = 7k / 8 clauses.

Theorem. Johnson’s algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability > 1/ (8k).

By the waiting-time bound, the expected number of trials to find the
satisfying assignment is at most 8k. =

Lecture21 Page 14

27

28

Maximum satisfiability

Extensions.
« Allow one, two, or more literals per clause.
« Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation
algorithm for Max-SaT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-
approximation algorithm for version of Max-3-SAT in which each clause has
at most 3 literals.

Theorem. [Hastad 1997] Unless P = NP, no p-approximation algorithm for
Max-3-SAT (and hence Max-SAT) for any p > 7/8.

1

very unlikely to improve over simple randomized
algorithm for Max-3-SAT

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson’s Max-3-SAT algorithm.

stop algorithm
after a certain point

/

Remark. Can always convert a Las Vegas algorithm into Monte Carlo,
but no known method (in general) to convert the other way.

Lecture21 Page 15

29

30

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

: can decrease probability of false negative
One-sided error. to 2-100 by 100 independent repetitions

+ If the correct answer is no, always return no. / RP

* If the correct answer is yes, return yes with probability > 5.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

I
O%Q.e’) Q ? running time can be unbounded,
ﬁ °

but fast on average

\M s (s

Fundamental open questions. To what extent does randomlzatlon h! Ip? j
? ? ?
Does P=2ZPP? Does ZPP=RP? Does RP=NP? ?{ Y e,((6‘

Theorem. P C|ZPP C RP|C NP. BPP

31

Goyvey
ﬂ\%g N (x, ©)
rL IS Q/(('Q_Q__(AQO« °lQ /"52—(""\/\\%7%{ S_F
A _& /aeﬂ7 (le) efos

o decdmebin | The Cwswar i N

>

\I\'/Q’\‘&k" R O\QA/\/ AN JL(\NL/\(/\WS Vv ﬁ""l
g\,\/\dﬂu&&i@ LS (;7: M

/I/(X> = \’QV\O‘QW\ Jo — &MTW\Q,

ELT\=1

—_—

a lA‘n'\. e. . K.Lr

A Ham ‘Kot
ELX) = A T -
¥ K>o0, P\r[)(>\<~/4:(<—'lz

(\ Algorithm Design

\ JON KLEINBERG - EVA TARDOS

13. RANDOMIZED ALGORITHMS

» universal hashing

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset
S C U so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
* create(): initialize a dictionary with S=@.
* insert(u); add element u € U to S.
* delete(u): delete u from S (if u is currently in).
* lookup(u): iSuinS?

Challenge. Universe U can be extremely large so defining an array of
size |UI is infeasible.

Applications. File systems, databases, Google, compilers, checksums P2P
networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. A :U—={0,1,...,n-1}.

Hashing. Create an array « of length n. When processing element u,
access array element a[h(u)].
birthday paradox
Collision. When A(u) = h(v) but u # v.
* A collision is expected after ©(vn) random insertions.
+ Separate chaining: a[i] stores linked list of elements « with A(u) = .

a[0]| jocularly H seriously |

a[1] null

a[2]| suburban Hnntrave]]edH considerating

Lecture21 Page 18

33

34

Ad-hoc hash function

Ad-hoc hash function.

int hash(String s, int n) {
int hash = 0;
for (int i = 0; i < s.lengthQ; i++)
hash = (31 * hash) + s[i];
return hash % n;

} hash function a la Java string library

Deterministic hashing. If IUI = n2, then for any fixed hash function 4,
there is a subset S C U of n elements that all hash to same slot.
Thus, ©(n) time per lookup in worst-case.

Q. Butisn’t ad-hoc hash function good enough in practice?

Algorithmic complexity attacks

When can’t we live with ad-hoc hash function?
+ Obvious situations: aircraft control, nuclear reactor, pace maker,
« Surprising situations: denial-of-service attacks.

AN

malicious adversary learns your ad-hoc hash function
(e.g., by reading Java API) and causes a big pile-up
in a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]
+ Linux 2.4.20 kernel: save files with carefully chosen names.
* Perl 5.8.0: insert carefully chosen strings into associative array.
» Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

Lecture21 Page 19

35

36

Hashing performance

Ideal hash function. Maps m elements uniformly at random toihash slots.
T Running time depends on length of chains.
* Average length of chain= a =(m/n.

* Choose n = m = expect O(1) per insert, lookup, or delete.
Fuck G

Challenge. Explicit hash function i that achieves O(1) per operation.
Approach. Use randomization for the choice of A.

b

adversary knows the randomized algorithm you’re using,
but doesn't know random choice that the algorithm makes

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0,1,...,n—1 } such that

* For any pair of elements u#v: PrkEH[h(u) - h(v)] < 1/n

* Can select random # efficiently. \

* Can compute h(u) efficiently. chosen uniformly at random

Ex. U={a,b,c,d,e,.f}, n=2. H={hy, hy}

Prjcylhta) =hib)] = 1/2

Hn e not universal
0o 1 0 1 0 1 Pr,c i Lh(a) = hic)]

0 0 0 1 1 1 PrhEth(a)=h(d)| =0

H={h|sh2vh3‘h4}

DOEERE - o-ie- e
o ' o 1 o Pr, ., [h@ = h@)] = 112 universal

0
h Prycylhla) =hid)] = 172
(
4 Pr;cy[h(a) =hie)] = 172
0

Priculh(@=h{] = 0

Lecture21 Page 20

37

38

Universal hashing: analysis

Proposition. Let H be a universal family of hash functions mapping a
universe U to the set {0,1,...,n—11}; let h € H be chosen uniformly at
random from H; let SC U be a subset of size at most n; and let u & S.
Then, the expected number of items in S that collide with « is at most 1.

Pf. For any s €S, define random variable X, =1 if i(s) = h(«), and 0 otherwise.
Let X be a random variable counting the total number of collisions with u.

EhEH[X] = E[Exesxx] = E_sESE[XS] = E.\E.S‘Pr[x.s'=” = E.sesﬁ = |S|i =

f

linearity of expectation Xs is a 0-1 random variable universal

Q. OK, but how do we design a universal class of hash functions?

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element u € U with a base-p integer of r

digits: x=(x,,x,, ..., x,). A
Prox W

Hash function. Let A = set of all r-digit, base-p integers. For each
a=(a,,a,,...,a,) Where 0 =q, < p, define

r
k(‘,(x) = (E a;-x,-) ITIOCI,U <«— maps universe Utoset{0,1,....p—1}
i=1

Hash function family. H={h,:a€A}.

Lecture21 Page 21

39

40

Designing a universal family of hash functions

Theorem. H={h,:a€ A} is a universal family of hash functions.

Pf. Letx=(x;,x,...,x,) and y = (y,,y,. ..., y,) be two distinct elements of U.
We need to show that Pr[h X =h®] = 1/p.

- Since x #y, there exists an integer j such thaE.,\ (’(foo{
—h (v =)
We have h,(x) = h,(y) iff ‘A g . WQJ P
alj' (y_;—X_;-) = E a;’(xi_y;‘) mOdp » 3 J
.—\—\T i f m f

Ll

=z —_— .
m AN
+ Can assume a was chosen uniformly at random by first selecting all Q
coordinates g, where i # j, then selecting q; at random. Thus, we can

assume q; is fixed for all coordinates i # ;.

=0
Since p is prime(ajz =m modpil}as at most one solution among p 0\‘(\(\ 3\ ~ V;\P
POSSibilities. <«— see lemma on next slide - wm M
Thus Pr(h,(x) =h(y)] < 1/p. = O‘S— 5 M—J P
Wiod S 4. X = 2

L]

41

Number theory fact

Fact. Let p be prime, and let z = 0 mod p. Then az=m mod p has
at most one solution 0 =a < p.

Pf.
* Suppose 0 =a; <p and 0 =, < p are two different solutions.
* Then (a1 — a2) z=0 mod p; hence (a; — a2) z is divisible by p.
+ Since z = 0 mod p, we know that z is not divisible by p.

It follows that (a; — a) is divisible by p.

. - - \ Py n
. ThIS |mpI|e5 ol =02 = here’s whgre we
use that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.
Pfidea. Euclid’s algorithm.

42

Lecture21 Page 22

Universal hashing: summary

Goal. Given a universe U, maintain a subset § C U so that insert, delete,
and lookup are efficient.

Universal hash function family. H={h,:a€A}.

h,(x) = (iaixi) mod p
i=I

* Choose p prime so that m < p < 2m, where m=1S1.
can find such a prime using

* Fact: there exists a prime between m and 2m. <— ,other randomized algorithm ()

Consequence.
+ Space used = O(m).
* Expected number of collisions per operation is < 1
= O(1) time per insert, delete, or lookup.

13. RANDOMIZED ALGORITHMS

Alqorithm Design

JON KLEINBERG - EVA TARDOS » Chernoff bounds

Lecture21 Page 23

43

Chernoff Bounds (above mean)

Theorem. Suppose X, ..., X, are independent 0-1 random variables. Let X =
X+ ... + X,,. Then for any u z E[X] and for any 8 > 0, we have

8 u
M = EKEXJ Pr[X > (1+8)u] ; [(I:?W]
= Z EW‘} S chiy cantered on the mean
= ¢ e\ — ———
| @C\/ﬂfk LX, “O =[F \:)

Pf. We apply a number of simple transformations.
\

* Foranyt> 0,
Pr[X >(1+d)u] = Pr[e’x >e;(1+5)p]

= e—f(|+6)!.l . E[BFX]
f(x) = etXis monotone in x Markov's inequality: Pr[X > a] = E[X] /a

. Now Ele*] = E[e'>*] = [],Ele'™]
t t

definition of X independence

45

Chernoff Bounds (above mean)

Pf. [continued]
* Let p;=Pr[X,=1]. Then,
E¢™] = pe+(1-p)e’ = 1+p(e'=1) = &

forany a =0, l+ase«

* Combining everything:

—t(1+d)un eu(e’—])

PriX>(1+0u] = MM Ele'] = "M, el <

previous slide inequality above Fipi=EX = n

* Finally, choose r=1In(1 +9). =

46

Lecture21 Page 24

Chernoff Bounds (below mean)

Theorem. Suppose X,, ..., X, are independent 0-1 random variables.
Let X=X,+...+X,. Then forany u <E[X] and for any 0 <6 < 1, we have

PX<(1-0)u] < e/
Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider 6 < 1.

13. RANDOMIZED ALGORITHMS

Alqorithm Design

JON KLEINBERG - EVA TARDOS

» load balancing

Lecture21 Page 25

47

Load balancing

Load balancing. System in which m jobs arrive in a stream and need to be
processed immediately on X identical processors. Find an assignment that
balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor

receives at most [m/n] jobs.

Decentralized controller. Assign jobs to processors uniformly at random.
How likely is it that some processor is assigned “too many” jobs?

Load balancing

Analysis.

.

-

Let X, = number of jobs assigned to processor i.

Let ¥;=1if job j assigned to processor i, and 0 otherwise.
We have E[Y,] = 1/n.

Thus, X; = 3%, and p=E[X]=1.

Applying Chernoff bounds with 6 =c—1 yields Pr[X;>c] < ¢
C

c-1

¢

Let y(n) be number x such that x*=n, and choose ¢ = e y(n).

PUX >c] < S < (s_‘ _ (;\:’”’” . (;\f”’” 1
’ < e v Y(n)) n’

c
Union bound = with probability =1 - 1/n no processor receives more

than e y(n) = ©(log n / log log n) jobs.

\

Bonus fact: with high probability,
some processor receives O(logn / log log n) jobs

Lecture21 Page 26

49

50

Load balancing: many jobs

Theorem. Suppose the number of jobs m =16 nIn n. Then on average,
each of the n processors handles pu= 16 In n jobs. With high probability,
every processor will have between half and twice the average load.

Pf.
* LetX,,Y, be as before.
* Applying Chernoff bounds with 6 =1 yields

. 16@Inn 1 nin 1
Pr(X; > 2 = — = —
r[X; > 2u] < (4) < (e 2

1142 _
Pr [X‘ < %!4’} < e 2 (5)° 16lnn —
T

« Union bound = every processor has load between half and
twice the average with probability > 1 -2/n. =

Lecture21 Page 27

