Lecture 17

(X\aoﬂ%w‘ﬁ loc NP-nacd PN‘OQ—QMS

Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?

A. Sacrifice one of three desired features.
i. Solve arbitrary instances of the problem.
ii. Solve problem to optimality.
iii. Solve problem in polynomial time.

Coping strategies.

i. Design algorithms for special cases of the problem. using greedy,
.. dynamic programming,
ii. Design approximation algorithms or heuristics. divide-and-conguer, and

network flow algorithms!

iii. Design algorithms that may take exponential time.

New Section 1 Page 1

Independent set on trees

Independent set on trees. Given a tree, find a max-cardinality subset of
nodes such that no two are adjacent.

Fact. A tree has at least one node that is a leaf (degree = 1).

Key observation. If node v is a leaf, there exists
a max-cardinality independent set containing v.
Pf. [exchange argument]

* Consider a max-cardinality independent set S.
- If vE S, we're done. %—; 3\ \/

* Otherwise, let (u,v) denote the lone edge incident to v.
- ifuégSand v S, then SU {v} is independent = S not maximum
- ifueSand v S, then SU {v}-{u} is independent =

Independent set on trees: greedy algorithm

Theorem. The greedy algorithm finds a max-cardinality independent
set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. =

INDEPENDENT-SET-IN-A-FOREST(F)

S .

WHILE (F has at least 1 edge)
Let v be a leaf node and let («, v) be the lone edge incident to v.
S<=SU{v}.
F<F —{u,v}. «— delete both « and v (including all incident edges)

RETURN § U { nodes remaining in F }.
(

—

Remark. Can implement in O(n) time by maintaining nodes of degree 1.

New Section 1 Page 2

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, 20,
find an independent set S that maximizes = cgw,.

Greedy algorithm can fail spectacularly.

D

(u «—— weight = huge

®

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, 20,
find an independent set S that maximizes = cgw,.

Dynamic-programming solution. Root tree at some node, say r.
« OPT, (1) = max-weight IS in subtree rooted at «, containing u.
« OPT,,, (1) = max-weight IS in subtree rooted at «, not containing u.
« Goal: max { OPT, (r), OPT,,,(r) }.

overlapping
subproblems
Bellman equation.

OP?;P? (u) = wll‘ + E OP?;)“:'(V)
v & children(u)
OPT, (u) = Y max {OPT,,(v), OPT,, (v)}

v & children(u)

children(u) = { v, w, x }

New Section 1 Page 3

Weighted independent set on trees: dynamic-programming algorithm

Theorem. The DP algorithm computes max weight of an independent set
in a tree in O(n) time. \ can also find independent set itself

(not just value)

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)

Root the tree T at any node r.

S—d.
FOREACH (node u of T in postorder/topological order)
IF (u is a leaf node) N
ensures a node is processed
M’n[u] = Wy after all of its descendants
Mom[u] =0.
ELSE

Minlu] =wu + e children(u) Mowlv].
Mom[u] = EFE children(iy MAX { M;‘:;[V], Mom[V] }
RETURN max { Mj”[r]., Mom‘[r] }.

NP-hard problems on trees: context

Independent set on trees. Tractable because we can find a node that breaks
the communication among the subproblems in different subtrees.

New Section 1 Page 4

Approximation algorithms

p-approximation algorithm.
* Runs in polynomial time.
« Applies to arbitrary instances of the problem.
« Guaranteed to find a solution within ratio p of true optimum.

Ex. Given a graph G, can find a vertex cover that uses < 2 OPT(G) vertices
in O(m + n) time.

Challenge. Need to prove a solution’s value is close to optimum value,
without even knowing what optimum value is!

The DESIGN of

A}ul\ruxily);l(ion
A

gorithms

APPROXIMATION
ALGORITHMS

29

Vertex cover

VERTEX-COVER. Given a graph G = (V,E), find a min-size vertex cover.

I

for each edge (u,v) €E E:
eitheru € S, v € S, or both

‘ vertex cover of size 4

30

New Section 1 Page 5

Vertex cover: greedy algorithm

VERTEX-COVER. Given a graph G =(V,E), find a min-size vertex cover.

GREEDY-VERTEX-COVER(G) \

§ <.
E'<—E.
o e \
Let (u, v) € E' be an arbitrary edge. H \” —
M < MU {(u,v)}. «— Misamatching , n_ \%\
S < SU{ur U {v}. < /‘
Delete from E’ all edges incident to either u or v. \ M 7 Z
RETURN S. g

Running time. Can be implemented in O(m + n) time. \g\ g

Vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If P = NP, then no p-approximation for
VERTEX-COVER for any p < 1.3606.

On the Hardness of Approximating Minimum Vertex Cover
1yt s

Irit Dinur” Samuel Safral

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technigue. To
that end. one needs to develop a new proof framework. and borrow and extend ideas from
several fields,

Open research problem. Close the gap.
Conjecture. no p-approximation for VERTEX-COVER for any p < 2.

34

Weighted Vertex Cover: 2-Approximation via LP

New Section 1 Page 6

Qiven . Grtagds G=(V, E)
W&Q\'\Jrs \I\/ 70 Vvev

‘:iﬂ‘A : \/U""!bx CO\IL-(" S g;(;‘

w(Q) = Z W,
ve S

1S VV\'l\ﬂ'\vV\'Seﬂ(t
LP- Jemulladion

"IN S W, X,

veN
Xa*t ¥y = \ v (M,V)GE_
O (Xwé\ Y é-\]

(x, €70, .JJ T-\an.r LP(ILP)
-H,\oc“ c»(rksfowods + V(C %(qo’f&)

X* : SoQM‘l'\OV\ ’Lo "1'\e, LP QLO\/-Q.
Note : W(X*B < wWin WQA&H’QO{ VE

Nud gk 0 VO Jrom X

Rwndling o aet xu €10,17

U ~ ’..!. *

<0 x <4

Knapsack problem

Knapsack problem.
* Given n objects and a knapsack.
* Item i has value v; >0 and weighs w; > 0. <— we assume w; = W for each i
* Knapsack has weight limit w.
« Goal: fill knapsack so as to maximize total value.

Ex: {3,4} has value 40.

2 6 2
3 18 5
4 22 6
5 28 7

original instance (W = 11)

36

New Section 1 Page 9

Knapsack is NP-complete

SUBSET-SUM. Given a set X, values u; =0, and an integer U, is there a subset
S C X whose elements sum to exactly U?

KNAPSACK. Given a set X, weights w; >0, values v; >0, a weight limit W, and a
target value V, is there a subset S C X such that:

Y owp < W

ieS

E (2

ieS

I’!

A

Theorem. SUBSET-SUM <p KNAPSACK.
Pf. Given instance (ui, ..., u,, U) of SUBSET-SUM, create KNAPSACK instance:

Zui < U

V= W = Uy iES
V=Ww=U > up > U
ies

Knapsack problem: dynamic programming |

Def. OPT(i,w) = max value subset of items 1....,i with weight limit w.

Case 1. OPT does not select item i.
* OPT selects best of 1,...,i—1 using up to weight limit w.

Case 2. OPT selects item i.
* New weight limit =w —w,.
* OPT selects best of 1,...,i—1 using up to weight limit w—w;,.

0 if i=0
OPT(i,w)=+ OPT(i-1,w) if w,>w
max{ OPT(i-1,w), v;+ OPT(i-1,w-w;)} otherwise

Theorem. Computes the optimal value in O(n W) time.
* Not polynomial in input size.
* Polynomial in input size if weights are small integers.

New Section 1 Page 10

Knapsack problem: dynamic programming I

Def. OPT(i,v) = min weight of a knapsack for which we can obtain a solution
of value = v using a subset of items 1...., .

Note. Optimal value is the largest value v such that OPT(n,v) < W.

Case 1. OPT does not select item i.
* OPT selects best of 1, ...,i—1 that achieves value = v.

Case 2. OPT selects item i.
* Consumes weight w;, need to achieve value = v-v,.
* OPT selects best of 1,...,i—1 that achieves value = v-v,

0 if v <0
OPT (i,v) = § o© ifi=0and v>0
min {OPT (i — 1,v), w; + OPT(i — 1,v —v;)} otherwise

Knapsack problem: dynamic programming I

Theorem. Dynamic programming algorithm Il computes the optimal value
iNn O(n2 viax) time, where v is the maximum of any value.
Pf.

* The optimal value V* < n vias.

* There is one subproblem for each item and for each value v < V*,

* It takes O(1) time per subproblem. =

Remark 1. Not polynomial in input size!
Remark 2. Polynomial time if values are small integers.

New Section 1 Page 11

39

40

Knapsack problem: poly-time approximation scheme

Intuition for approximation algorithm.
* Round all values up to lie in smaller range.
* Run dynamic programming algorithm Il on rounded/scaled instance.
+ Return optimal items in rounded instance.

e | _valve | weishe [e | value | weight
1 1 1 1

934221 1
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 7 5 28 7
original instance (W = 11) rounded instance (W = 11)

Knapsack problem: poly-time approximation scheme

Round up all values:
* 0 <e =<1 =precision parameter.

. S U4 .
* Vi = largest value in original instance. v; = {g’w 0,
« 0 = scaling factor = e v, / 2n. —

Observation. Optimal solutions to problem with v are equivalent to
optimal solutions to problem with V.

Intuition. v close to v so optimal solution using v is nearly optimal;
¥ small and integral so dynamic programming algorithm Il is fast.

New Section 1 Page 12

Knapsack problem: poly-time approximation scheme

Theorem. If S is solution found by rounding algorithm and $*

is any other feasible solution, then (1+¢)3 v, = Y
iES i€ES”

Pf. Let S* be any feasible solution satisfying weight constraint.

subset containing

E Ty < E ; always round up only the item
iES™ i€S* of largest value
< § :"E%' Isolve roundeld
: instance optimally
i€ choosing $* = { max }
never round up
e 1
< D (i+6) by more than 6 Umax < D0 + 5 € Vmax
ieS ies
» 1 o
< S v+ nf IS < n < D v+ 3 Vmax
ieS thus €S
= E 1 a f Vmax S 2 Ui
= Ui + 5 € Umax O=gev,./2n tEZS
ieS
S (l + f) E Ui Vimax =2 Z.f!—.\' Vi
ies

Knapsack problem: poly-time approximation scheme

Theorem. For any € >0, the rounding algorithm computes a feasible solution
whose value is within a (1 + ¢) factor of the optimum in O®#3/ €) time.

Pf.
* We have already proved the accuracy bound.
« Dynamic program Il running time is Oo(n* Vo), Where

) _ [Umax "‘ _|2n
‘max - -
0 €

CSet Cover /{uﬂ(\,‘ Hew\stic,

New Section 1 Page 13

Set (over C\f-u,d\,‘ HeuviSTic
= =
Griven: Sk U V=

)

SWL)$0+S g\) PN g .C_:- \) .

Cind © O callediom d Subsefs
S"\) g.‘zs cee) q‘k
o+, S;‘ \)S'LZU,..US'\K:U

L Hor numbe K IS M,

Cﬁu,d\\-gei'Oovu —
SRV, C =%
whily R #4¢
sdet sk S £ C

M—'} MQXiMBis 'St (\ el)

C =1¢u0if,

g = R-%;
Qv\o\w\\\hL
4'(.&\4\4‘\’\ C

C.Qou\vw | - C \'q:‘fv\rnw{ £7 ﬁp, q((c)o
s o Sat (owr.

fool. Ok he end, R =F 0O

Uowm 2: | €| < (G V). OFT + |

ECDO_!é: Le«* g = OPT (‘h'\e A SBQ,
c(,’h\o. SQ:(' QQVN')

LQ* g.,,..) g.: bQ_ *LQ._ W")n Sd CQN
e, V. US, =V (%)

QA(&L(e,ac"\ '.‘*k@""m" 5 R Qnses

ot Lot L of s 3ike .
X

Fe('M, L\rd '+0-m+'0'4) (%) =

, leige sH leélU(

‘ﬂe%«uﬂ‘«) q\%a wms&w{'%

C SO\W\Q S "1<"‘\¢- \Q&f -‘laﬁx’\ $'~4L%e}\/\-€bf"
\-\'&(orl'%m Pcove .‘l’ 1 J

%«uﬁb \&o s'\bf:s aﬂét.« ‘km‘(‘ion +
S| (I- ») »

|+X e

chl-

-——
l.||

Exact exponential algorithms

Complexity theory deals with worst-case behavior.
» Instances you want to solve may be “easy.”

“ For every polynomial-time algorithm you have, there is an exponential

algorithm that I would rather run.” — Alan Perlis

i+4 "Fools ignore
++4 complexity. Pragmatists
L+ suffer it. Some can
avoid it. Geniuses
. remove it."”

Alan Perlis

New Section 1 Page 16

46

Exact algorithms for 3-satisfiability

Brute force. Given a 3-SAT instance with »n variables and m clauses,
the brute-force algorithm takes O((m + n) 2") time.
Pf.

* There are 2" possible truth assignments to the » variables.
* We can evaluate a truth assignment in O(m + n) time. =

48

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula @ is either empty or the disjunction
of a clause (£, v £2 v £3) and a 3-SAT formula ®’ with one fewer clause.

o
[

(E1v €av B3 A D

= (Liad®) v (lan D) v (LzA D)

(@' 1 8i=true) v (D' 1€ =true) v (P'| Lz = true)

Notation. @ | x=true is the simplification of ® by setting x to true.
Ex.

+ d = (xvyvagy Alxvyvz A(wvyv-g) A(Cxvyvz).
+ @ = (xvyvz) AWvyv-z) A(CxvVyvz).
* (D' lx=true) = (wWvyv-z) A(yv2).

each clause has = 3 literals

49

New Section 1 Page 17

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula @ is either empty or the disjunction
of a clause (£, v £2 v £3) and a 3-SAT formula ®’ with one fewer clause.

3-SAT (D)

IF @ is empty RETURN true.
(Livilvi) A @ «— D,

IF 3-SAT (@' | £1= true) RETURN true.
IF 3-SAT (@' | £2=true) RETURN true.
IF 3-SAT (@' | £3= true) RETURN true.
RETURN false.

Theorem. The brute-force 3-SAT algorithm takes O(poly(n) 3") time.
Pf. T(n) = 3T(n—1) + poly(n). =

Exact algorithms for 3-satisfiability

Key observation. The cases are not mutually exclusive. Every satisfiable
assignment containing clause (£, v £2 v £3) must fall into one of 3 classes:
* Lis true.
* L1is false; 0215 true.
* L1is false; £21s false; 031S true.

3-SAT (D)

IF @ is empty RETURN frue.

(Liv €av l3) A D «— D,

IF 3-SAT(D' | £) = true) RETURN true.
IF 3-SAT(®' | £ = false, L2= true) RETURN true.
IF 3-SAT(®' | £ = false, L= false, £3= true) RETURN true.
RETURN false.

New Section 1 Page 18

Exact algorithms for 3-satisfiability

Theorem. The brute-force algorithm takes O(1.84") time.
Pf. Tn) < Tn-1D)+Tn-2)+T(n-3)+ O(m+n). = \

largest rootof P =r2+r+1

3-SAT (D)

IF @ is empty RETURN frue.

(€|V fav f?,) A D — D,

IF 3-SAT(D' | £) = true) RETURN true.
IF 3-SAT(®' | £ = false, L= true) RETURN true.
IF 3-SAT(®' | £ = false, L= false, £3= true) RETURN true.
RETURN false.

Exact algorithms for 3-satisfiability

Theorem. There exists a 0(1.33334") deterministic algorithm for 3-SAT.

A Full Derandomization of Schoning’s k-SAT Algorithm

Robin A. Moser and Dominik Scheder

Institute for Theoretical Compnter Science
Department of Computer Science
ETH Ziirich, 8092 Ziirich, Switzerland
{robin.moser, dominik.scheder}@inf.ethz.ch

August 25, 2010

Abstract

Schiining (7] presents a simple randomized algorithm for £-SAT with running time
Of(agpoly(n)) for ay = 2(k —1)/k. We give a deterministic version of this algorithm
running in time O((ay + ¢)"poly(n)), where € > 0 can be made arbitrarily small.

New Section 1 Page 19

53

Exact algorithms for satisfiability

DPPL algorithm. Highly-effective backtracking procedure.
« Splitting rule: assign truth value to literal; solve both possibilities.
+ Unit propagation: clause contains only a single unassigned literal.
+ Pure literal elimination: if literal appears only negated or unnegated.

A Computing Procedure for Quantification Theory*

A Machine Program for
Theorem-Proving®

Moarrn Davis
Rensseloer Pelytacknic Instituie, Hartford Divivion, Eust Windsor Hill, Cons.
A¥D
Hitany Prrsas

Princeton Unisersity, Princeton, New Jersg

Martin Davis, George Logemann, and

Donald Loveland

The hope that mathematical metheds employed in the investigation of faremal Institute of Mathemafical Sciences, New York Universily

logie would lead to purely computational methods for ohtaining mathemstiol
theomms goes back to Leibnis and has been sevived by Peano around the tumn
of the century and by Hilbert's schood in the 1920°, Hilbert, noting that all of
clazgical ios could be ized withis ifieation theary, declared
that the problem of fnding an slgarithm for determining whether or cot & given
formula of quantification theory is valid was the central prodlem of mathe-
matical logle. And indeed, at one time it semed as if investigations of this “de-
rision" problem were on the vengs of suocess. However, it was shown by Chureh

The progromming of o proof procedure is discussed in
connection with trial runs and possible improvements.

In [1] is set forth an algorithm for proving theorems of

and by Turing that such an algerithm can not exist, This reult led to consider-
shle pessimism regarding the possibility of using modern digital eomputers in
deetding significant mathematical questions. However, recently there has besn
& revival of interest in the whole question, Specifically, it has been realized that
while no decision procedure exists for quantification theary there sre many proof

ilable—that is, uniform which will ultimately Jocate

& prof for any formuls; of quuntificaticn theory which is valid but which will
usaally involve secking “forever” in the case of a formuls which is not valid—
and that some of these proof procedures could well turn out to be feasible for

quantification theory which is sn improvement in certain
respects over previously available algorithms such as that
of [2]. The present paper deals with the programming of
the algorithm of [1} for the New York University, In-
stitute of Mathematical Sciences” IBM 704 computer,
with some moedifications in the algorithm suggested by

this work, with the

Its obtained using the completed

use with medern compating machinerv. algorithm, Familiarity with [1] is assumed throughout,

Exact algorithms for satisfiability

Chaff. State-of-the-art SAT solver.
» Solves real-world SAT instances with ~ 10K variable.
Developed at Princeton by undergrads.

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan Ying Zhao, Lintao Zhang, Sharad Malik
Department of EECS Department of EECS Department of Electrical Engineering
UC Berkeley MIT Princeton University

moskewcz @ alumni.princeton.edu cmadigan@mit.edu {yingzhao, lintaoz, sharad}@ee.princeton.edu

ABSTRACT

Boolean Satisfiability is probably the most studied of
combinatorial optimization/search problems. Significant effort
has been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA). as well as
in Artificial Intelligence (Al). This study has culminated in the

New Section 1 Page 20

Many publicly available SAT solvers (e.z. GRASP [8],
POSIT [5], SATO [13], rel_sat |2]., WalkSAT [9]) have been

developed, most ploying some ion o two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search. Hewristic local search technigues are not

guaranteed to be complete {i.e. they are not guaranteed to find a
satisfying assignment if one exists or prove unsatisfiability): as a

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

can view as a complete graph

13,509 cities in the United States
http:/ /www.math.uwaterloo.ca/tsp

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

S

11,849 holes to drill in a programmed logic array
http:/ /www.math.uwaterloo.ca/tsp

New Section 1 Page 21

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a
cycle that visits every node exactly once?

Theorem. HAMILTON-CYCLE <, TSP.
Pf.

Given an instance G = (V, E) of HAMILTON-CYCLE, create n = | V| cities

with distance function
1 if (u,v) € E

d(u,v) = 2 if (u,v) ¢ E

A

TSP instance has tour of length < » iff G has a Hamilton cycle. =

Exponential algorithm for TSP: dynamic programming

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(n*2") time.

HamILTON-CYCLE is a special case

a. Frf |s:-u st 'uvl Marm.
ik, 1088
J tinted i < SA.

A DYNAMIC PROGRAMMING AFFROACH TO P + T
SEQUENCING PROBLEMS® Dynamic Programming Treatment of the

Travelli Sales s, *
MICHAEL HELDT asxo RICHARD M. KARPt ravelling Sulesman Problem

INTRODUCTION HicHARDy BELLMAN

Many interesting and important optimization problems require the RAND Corporation, Santa Memica, Colifornin
determination of a best order of performing a given set of operations
This paper is concerned with the solution of three such sequencing profbiema:
a scheduling problem involving arbitrary cost functions, the traveling-
malesman problem, and an assembly-line b cing problem. Each of these b
problems has a strueture per: solution by means of recursion sehemes
of the + assoriated with rl\lu\mu programming. In essence, these re-
Cursi chemes permit the problems to be treated in terms of combinations,
rather than permadations, of the operations to be performed. The dyns
programming formulations are given in §1, together with a di
various extensions such as the inelusion of precedence constraints, In each
eage the proposed method of solution s eomputationally effective for
problems in o certain limited mange. Approximate solutions to larger
problems may be obtained by solving sequences of nm.lii derived problems
ring the same strueture as the original one. Thi -
approximations is developed in detail in §2 specific reference appr
to the traveling-salesman problerm, and §3 summarizes computational ex-
pericnee with an TBM 7080 program using the procedure,

les
t onee and only on

nown tenvelling s

n prol-lr m s the following: “A sulesman is
] tiek starting from & bise
rel, ummg o this eity. Whal JIIll]l minimizes the total distance travelled

as been treated by a number of different people using a varicty
ef. Dantzig, Fulkerson, Johnson sre o combination of
1 linear programming is weed, and Miller, Tueker and Zemlin [2],
periments wsing an allinteger program of Gomory did not produee
ses with ten cities although some success was achieved in cases of
The purpose of this note is to show that this problem can
tlated in dynamic p terms [3], and resolved computa-
¢ for up to 17 citics, For larger numbers, the method presented below,
b various simple manipulations, may be used to obtain quick
slutions. Results of this nature were independently obtained by
R, M. Karp, who are in the process of publishing some extensions

New Section 1 Page 22

61

63

Exponential algorithm for TSP: dynamic programming

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(n*2") time.
Pf. [dynamic programming] pick node s arbitrarily
* Subproblems: c(s,v,X) = cost of cheapest path between s and v#s

that visits every node in X exactly once (and uses only nodes in X).
+ Goal: néi{} c(s,v, V) +c(v,s)

* There are =n 2" subproblems and they satisfy the recurrence:

: X) c(s,v) if | X| =2

c(s,v — : -

D min e(s,u, X \ {v}) + c(u,v) if | X| > 2.
Lomin es,u X\ {v}) +e(wv) if]X

* The values c(s, v, X) can be computed in increasing
order of the cardinality of X. =

64

Concorde TSP solver

Concorde TSP solver. [Applegate-Bixby-Chvatal-Cook]
+ Linear programming + branch-and-bound + polyhedral combinatorics.
« Greedy heuristics, including Lin-Kernighan.
* MST, Delaunay triangulations, fractional »-matchings, ...

Remarkable fact. Concorde has solved all 110 TSPLIB instances.

largest instance has 85,900 cities!

The Traveling
Salesman Problem

David L. Appiegate
Robert £, Bixdy, Vadek Crvatal,
and William). Cook

66

New Section 1 Page 23

Euclidean traveling salesperson problem

Euclidean TSP. Given n points in the plane and a real number L, is there a
tour that visit every city exactly once that has distance < L?

Fact. 3-SAT5PEUCLIDEAN-TS.P. | i e VT & Y IB D
Remark. Not known to be in NP. | 8.928198407 < 8.928203230

THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

IS NP-COMPLETE* \
using rounded weights

Christos H. PAPADIMITRIOU

Center for Research in Computing Technology, Harvard University, Cambridge, MA 02133,
USA.

Communicated by Richard Karp
Received August 1975
Revised July 1976

Alstract. The Traveling Salesman Problem is shown to be NP-Complete even if iis instances are
restricted tu be realizable by sets of poinis on the Euclidean plane.

13509 cities in the USA and an optimal tour

Euclidean traveling salesperson problem

Theorem. [Arora 1998, Mitchell 1999] Given n points in the plane, for any
constant € > 0: there exists a poly-time algorithm to find a tour whose length
is at most (1 +) times that of the optimal tour.

Pf recipe. Structure theorem + divide-and-conquer + dynamic programming.

Polynomial Time Approximation Schemes for SL(LYST/NE SUOL TSISLC LYASLOIYIATS LOLYUSUSL
Euclidean Traveling Salesman and other Geometric SOBO(OCCOLY L }LIYOL YOLYEFOIFAL-F(EIR

g FOERFOIFOEIOE FFOEFIO FOS TSPCITTSIC TSP, E-RISE, BRB
Problems REBLTBL BLLBLEL
Sanjeev Arara Yhh¥hhi ¥. h. hIYWCHEhh®

Princetan Univers
rinceton Unlwersity Whromet. We rhaw thed rap prisgoant snbhinlrion b thy gives see v swvevedl ivey v "m-

yviiivdive® swhhividua chu Toagth e ue muc §bE 2] e et i kil agio wiliieidies, tee e
Association for Computing Machinery, Inc., 1515 Broadway, Mew York, NY 10036, USA eraeii enecteet e, "ru-Geilletlee” eehhlelelese heee s rlmpls sssasslas stesstars hed slleus ses b
Tel: (212) 555-1212; Fax: (212) 555-2000 sumah e dhndnl weet o iviviooe o pnd bl Lime, uelag leg ! lag. [a gactl y
& esaeeqaexcs xf xxx mxbx Mlaxxm b x almgls Il rrfbrmr imr grouaclsic

inrnnres nis eeneeni netones spFnicofun prodene, fHop Flt Decloce mivkmom tpanslep Feen,

¥l Funael(ng eniavpanenn pan/im (5555, anS (50 55154 penres.

New Section 1 Page 24

67

68

