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ABSTRACT
With increasing amount of data being stored in XML for-
mat, OLAP queries over these data become important. OLAP
queries have been well studied in the relational database sys-
tems. However, the evaluation of OLAP queries over XML
data is not a trivial extension of the relational solutions,
especially when a schema is not available. In this paper,
we introduce the IX-cube (Iceberg XML cube) over XML
data to tackle the problem. We extend OLAP operations to
XML data. We also develop efficient approaches to IX-Cube
computation and OLAP query evaluation using IX-cubes.

1. INTRODUCTION
Building data cubes [6] has been well recognized as one of

the most important and most essential operations in OLAP
(On Line Analytical processing). Many methods have been
proposed to compute and store data cubes efficiently from
relational data, such as [4, 12, 13, 8].

With more and more data stored in XML format, it is
natural to extend OLAP to semi-structured data. For ex-
ample, an OLAP query on the DBLP database [1] may ask
for the number of distinct authors grouped by conference,
year, publisher, organization (e.g., ACM and IEEE), and
their combinations. Online answering such OLAP queries
on XML data is far from trivial. At least two challenges
may arise in general.

First, how can we handle incomplete and irregular XML
data? Since XML data is semi-structured, and a user-defined
schema may not exist, so data entries of the same type may
be stored in very different ways. For example, as shown in
Figure 1, entries about two books may be represented differ-
ently. Moreover, missing data can be common. For instance,
some conferences may not have the information about orga-
nizations. Second, how can we compute aggregates ?In this
paper, we tackle the problem of supporting OLAP on XML
data and develop an IX-Cube approach: we construct an
iceberg data cube on an XML data set so that various ag-
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gregate queries can be answered efficiently. We make the
following contributions.

Firstly, we extend data cubes from relational data to XML

data. The extension is non-trivial. We propose the concept
of IX-Cube (for Iceberg XML Cubes) and develop methods
to handle incomplete and irregular XML data.

Secondly, we investigate how to use IX-Cubes to answer

OLAP queries. We study both aggregate cell queries and
sub-cube queries. To accelerate query answering, we present
a B+-tree index on IX-cubes.

To the best of our knowledge, this is the first system-
atic study on constructing, storing, indexing and using data
cubes on XML data.

2. RELATED WORKS
While the study of query processing on semi-structured or

XML data has received much attention, there has been little
work on OLAP queries on such data. [5] analyzes the op-
portunities and challenges of analytical processing of XML
data. [3, 2] study the problems of extending XQuery to
support analytical queries over XML data. [7] explores the
problem of integrating XML data and relational data into
a “virtual” OLAP DB, over which the OLAP operations are
executed. [10] federates the external XML data with OLAP
data, and proposes query optimization techniques for such
federations. [9] proposes how to compute data cube from
distributed data, and use XML to represent the cube and
the cube schema. None of these work touches the details
of defining, computing and querying a cube computed from
XML data. To our knowledge the only work that deals with
datacube for XML data is [11]. The semi-structured nature
of XML documents is handled by a systematic relaxation
process in [11]: the dimensions in a datacube are specified
by a target tree and the possibility of missing entries is mod-
eled by relaxing the target tree, forming all possible subtrees
by removing branches or replacing parent-child relationship
by ancestor relationship. However, this model does not cater
for other different possible path patterns for the same dimen-
sion. We provide a more general solution by allowing users
to specify the desired datacube in a more flexible and more
precise manner.

3. PRELIMINARIES: XML AND XPATH
An XML document can be modeled as a tree. We as-

sume that each node in the tree has an attribute tag. For
an element/attribute node, we take the tag name as the
tag. For a text node, the tag is simply “text”, and a text
node has an additional attribute textcontent. Figure 1 shows
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Figure 1: An example XML tree. The labels be-
sides nodes (e.g., p1 and b1) are to facilitate some
discussion in the paper.
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Figure 2: The tag path trie for the example XML
tree in Figure 1.

the tree representation of an XML document about litera-
ture in a library. Take node b1 in the figure as an example.
b1.tag =book. We call b1 a book node. a1 is a text node,
and a1.tag =“text”, a1.textcontent =John.

A tag path is a list of tags from the root to a leaf node.
Clearly, given an XML tree, all distinct tag paths in the tree
can be organized into a prefix-trie called the tag path trie.
For example, Figure 2 shows the tag path trie of the XML
tree in Figure 1. Since all text nodes have the same tag
“text”, there are typically only a small number of distinct
tag paths even in a large XML tree.

Generally, this tag path trie is not a schema. A general
schema should be a graph, which leads to tag paths of un-
known length. However, for a specific document, there are
only a limited number of paths. Therefore, the tag path trie
can serve as the hidden schema for the document.

Moreover, an XML document may not conform to any
schema, but it must have such a tag path trie describing all
the possible distinct tag paths that appear in the document.
Therefore, in the following discussion, we assume that such a
tag path trie is available by some preprocessing. Apparently,
building such a tag path trie needs at most one scan of the
XML tree.

XPath is a language for selecting nodes in an XML tree.
For example, the XPath expression “/library/region[asia]//
book” selects all books nodes which are descendants of a
region node with an asia child. An XPath expression can
be very complicated. To keep our discussion simple, we
consider only XPath expressions using branchings (“[]”), self
axis(“.”), child axis(“/”), attribute axis(“@”), descendant axis
(“//”), wild card (“*”), and axis for selecting all text children

target entity //book
measure 〈COUNT,{.},25000 〉
dimensions

name Paths

publisher {Pp1
=./publisher/text(),

Pp2
=./../../../publisher/@name/text()}

category {Pc1 =./category/text(),
Pc2 =./../category/text() }

author {Pa1
=./author/text(),

Pa2
=./author/name/text()}

Table 1: An example of IX-Cube specification

of the context node(“text()”) and parent(“..”). For simplic-
ity, later on we call an XPath expression a path.

4. IX-CUBES
Conceptually, a (relational) data cube [6] is the set of all

possible group-by aggregates on a multidimensional data set.
For example, given a table (year, author, category, pub-
lisher, title), we can specify a data cube using attributes
year, category, and publisher as the dimensions, using at-
tribute title as the measure, and using COUNT() as the ag-
gregate function. Then, an aggregate cell in the cube is an
aggregate on a group-by using a subset of the dimensions,
such as the total number of books by category and publisher.
A data cube is the complete set of all possible aggregate cells.

A data cube can be huge if there are many dimensions
and the cardinalities of dimensions are high. Often, users
are only interested in significant aggregates. Given a user
specified aggregate threshold, an iceberg cube is the set of
aggregate cells whose aggregates pass the threshold.

4.1 Specifying IX-Cubes
Now, let us consider how to extend data cubes to XML

data. Specifying a data cube on XML data is more com-
plicated because of the incompleteness and irregularity of
XML, as illustrated in Section 1. Particularly, we need to
handle two challenges.

The irregularity. The entries (i.e., the correspondents of
tuples in the relational case), the dimension values and the
measure attribute values are semi-structured in an XML
document. Therefore, we need to specify how the entries,
the dimension values, and the measure attribute values can
be found and associated with each other.

The incompleteness. Some dimensions may be missing in
some entries. Then, we need to provide an effective way to
determine whether there are some missing dimension values
for an entry, and, if so, how such an entry is aggregated.

We refer to a datacube to be derived from a XML doc-
ument as an IX-Cube. Table 1 shows an example of an
IX-Cube specification on the XML tree in Figure 1. Before
we give the formal definition, this example can help us un-
derstand some essential issues in the IX-Cube specification.

Specifying an entry is straightforward. We can use an
XPath expression to specify the set of target entity set that
is of interest for aggregation. For example, the target entity
set defined by “//book” indicates that we want to build a
data cube about book nodes.

A dimension can also be defined by an XPath expression.
However, the path is relative. That is, after an entry is
identified, we should evaluate the XPath expression starting



from the entry. The path leads us to the dimension value.
For example, in Figure 1, path “./category/text()” may lead
to the category of a book, and thus can be used to define di-
mension category. Due to the irregularity of XML data, we
may need more than one path to specify a dimension. For
example, in Figure 1, some book entries need path “./cat-
egory/text()” to find the categories, and some others need
path ”./../category/text()”. In the dimension specification,
both paths should be included.

Similarly, we can use a relative path to specify the mea-
sure. An aggregate function should be provided. Putting
things together, we define IX-Cube, an iceberg cube on XML
data, as follows.

Definition 1 (IX-Cube). Given an XML tree, an IX-
Cube is specified by a 3-tuple 〈Excube, Mxcube, Dxcube〉, where
Excube is an entity, Mxcube is a measure, and Dxcube is a set
of dimensions. Excube is given by a path ending in a la-
bel of interest. Once we find a node in the XML document
that matches Excube, we call it a context node. A dimen-
sion is defined by 2-tuple 〈DName, Paths〉, where DName is
the dimension name, and Paths denote a set of paths whose
starting point is the context node. A measure is defined
by a 3-tuple 〈AggFunction, Paths, min supp〉, where Agg-

Function is an aggregate function, Paths is a set of paths
to be considered for the aggregation whose starting point is
the context node, and min supp is the aggregate threshold.
Only aggregates passing the threshold are stored in the IX-
Cube.

Let us consider the example of IX-Cube specification in
Table 1 again. Dimension “publisher” says that given a book
node (current context node), its publisher information may
either be found as a text child of a publisher child node, or as
the name attribute of a publisher child of its grand-grand-
parent. 〈COUNT, {.}, 25000〉 is a measure, which counts
the number of books in the document. If each book has an
attribute of inventory, which records the number of copies,
a possible measure would be 〈SUM, {./inventory/text()},
300000〉, which calculates the total number of copies for all
books.

4.2 Storing IX-Cubes
We use a tree to store an IX-Cube. Given an XML tree

and an IX-Cube definition 〈Excube, Mxcube, Dxcube〉, the re-
sulting IX-Cube is a directed labeled tree
Txcube = 〈root,E, V, lE〉, where

• root is the root of Txcube. V is the set of nodes, and E

is the set of edges in Txcube.

• Each e ∈ V ∪ {root} has three attributes, val, ins
and agg. Here, val is a valid dimension value or Φ;
root.val = Φ; ins is a set of context nodes; and agg
is the aggregate computed on the measure values of
context nodes in ins.

• lE is the labeling function for edges in T , mapping an
edge to a dimension name.

Figure 3 shows the IX-Cube computed on the XML tree
in Figure 1 given the specification in Table 1. We use the di-
mension value to represent a node. The number in bracket
beside the value is the aggregate. Limited by space, we
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Figure 3: An example of IX-Cube.

do not show the context nodes associating with each node,
i.e. the ins attribute of a node. For example, the ins at-
tribute of the node in the dashed circle is {b1}. The pur-
pose of keeping such information in the tree is for easy in-
cremental update of the IX-Cube. A path from the root
to a node represents a cell in an IX-Cube. For example,
the node in the dashed circle represents a cell “({CUPress},
*, {Ben,John}:1)”, which means the number of books pub-
lished by CUPress and written by Ben and John together is
1, counting all the categories. Note that a total order on
the dimensions is assumed, which can be an arbitrary choice
or one based on the statistics of queries. In the example, the
order is publisher ≺ category ≺ author. In the next section
we shall see how the order can affect the performance of
answering some queries.

As we can see, common prefixes are shared in the tree
structure so that space can be saved. Besides, this construct
allows the aggregates of the internal nodes to be computed
so that the early pruning can be applied based on the iceberg
threshold [12].

The dashed lines partition the aggregates for different di-
mensions. They also separate an IX-Cube into different lay-
ers, one for each dimension (or concept hierarchy for a di-
mension). There is a special layer for “All”, which is called
the top layer. The layer containing the leaf nodes is called
the bottom layer.

5. ANSWERING OLAP QUERIES USING IX-
CUBES

In this section, we discuss how an IX-Cube can be used
to answer OLAP queries, and how an index can be built
to accelerate such queries. Here, we assume that an IX-
Cube is materialized. The computation of IX-Cubes will be
discussed in Section 6.

5.1 Cell Queries
A cell query asks for the aggregate of a specific group-by.

For example, one may query“the total number of books writ-
ten by Ben and John published by CUPress”. This query has
two dimensions, “publisher” and “author”. For convenience,
we use an SQL-like syntax as follows.

SELECT COUNT("/library//book/")

FROM ACUBE(Entity="//book")

WHERE publisher=CUPress AND

author=Ben,John

The answer to this query is a cell in the IX-Cube, i.e., the
cell represented by the node with dashed circle in Figure 3.



Answering a cell query using an IX-Cube is straightforward.
To answer the above query, we traverse the IX-Cube starting
from the root until we get a path
“/root/{CUPress}/{Ben,John}”, where the labels lE(root,
{CUPree}) = publisher, lE({CUPress}, {Ben,John}) = au-
thor. Then, the path, together with the aggregate stored in
the node with value {Ben,John}, form the resulting cell, i.e.
“({CUPress}, *, {Ben,John}:1)”.

In general, given a cell query using a set of dimensions
D = {D1 = V1, D2 = V2,. . . ,Dm = Vm}, where D1, D2, . . . ,

Dk are in the IX-Cube, we get the path Pcell =“/root/e1/
. . . /ek” in the IX-Cube such that ei.val = Vi and lE(ei−1, ei)
is Di.DName, where 1 ≤ i ≤ k and e0 = root. The cell
formed by Pcell and ek.agg should be returned.

5.2 Sub-cube Queries
OLAP queries often involve report-style queries, which

are queries on a sub-cube of the iceberg cube. Since the
IX-Cube materializes all cuboids (group-by’s of all subsets
of dimensions), we can generate the result from an IX-Cube
by looking up the corresponding layers of the IX-cube, e.g.,
from the root, get all publisher child nodes, and from each
such node get all the author child nodes, those nodes form
the cuboid. In OLAP, roll-up is to climb a concept hierarchy
for a dimension or to reduce the number of dimensions, while
drill-down is the opposite operation. By going up or down
the branches in the IX-cube, we can also perform roll-up or
drill-down operations.

5.3 CubeIndex: a B+-tree Index on IX-Cubes
To accelerate query answering, we propose a B+-tree style

index on IX-Cube. We call the index CubeIndex. Given
an IX-Cube T = 〈root, E, V, lE〉, for each node ek with in-
coming path “root/e1/e2/. . ./ek−1”, where
lE(ei−1, ei) = di(1 ≤ i ≤ k, e0 = root), we insert ek into the
CubeIndex using the key 〈d1, d2, . . . , dk, e1.val, e2.val, . . . ,

ek.val〉. We also store ek.ins and ek.agg.
To answer a cell query, we can search the CubeIndex with

dimension names and values as the key. Using the IX-Cube
in Figure 3 as an example. To access the cell in dashed cir-
cle, we search the CubeIndex by key
〈publisher, author, {CUPress}, {Ben, John}〉, and get the
aggregate, i.e., 1. Then, a cell“({CUPress}, *, {Ben,John}:1)”
is formed and returned.

6. COMPUTING AN IX-CUBE
In this section, we discuss how to compute an IX-Cube.

Our proposed cubing algorithm is a bottom-up approach.
The input consists of an XML tree T , an IX-Cube definition,
〈Excube, Mxcube, Dxcube〉, where Dxcube = {D1, D2, . . . , Dk},
and each Di is a 2-tuple 〈Di.DName, Di.Paths〉, and two
user-defined parameters, δ and minsupp, where δ is for get-
ting valid dimension and measure values, and minsupp is for
computing iceberg IX-Cube. Txcube = 〈root, V, E, lE〉 can
be computed by the following steps.

For those dimensions whose values are missing, we use Φ
as the place holder. Then, for each context node, its measure
value and all dimension values form a tuple. Then, we apply
a similar idea as the BUC algorithm [4] to compute the IX-
Cube. We store the results into the B+-tree CubeIndex for
the resulting IX-cube. We call our algorithm RCubeAlg
and there are two steps:

Step 1: Flatten the tree. The task of this step is to trans-
form the relevant datacube information from the XML data
into a relational table. We call such a table a base table.
The basic idea is as follows. We scan the XML tree in pre-
order. For each context node, we pick up its dimension or
measure values according to the paths in the dimension or
measure definitions. For those dimensions whose values are
missing, we using Φ as the place holder. Then all the values
form a tuple.

Step 2: Given the base table, we apply the BUC algo-
rithm[4] to compute a cube based on the base table. The
output cube is stored as an IX-Cube as introduced in Section
4.2. Note that, as the structure features are eliminated af-
ter flattening the tree, the labels of the edges in an IX-Cube
computed by RCubeAlgo are dimension names.

7. CONCLUSION
In this paper, we propose a new data structure, IX-Cube,

over XML data. Although the purpose of computing data
cube over XML data is the same as that of relational data,
the technique is quite different due to the difficulties in han-
dling the semi-structure nature of XML data. We first intro-
duce the definition of IX-Cube, which includes the definition
of a target entity, a measure and multiple dimensions. Next
a computing algorithm is proposed, and OLAP operations
over the IX-Cube are defined.
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