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Abstract
Web spam, which refers to any deliberate actions bring-
ing to selected web pages an unjustifiable favorable rel-
evance or importance, is one of the major obstacles for
high quality information retrieval on the web. Most of
the existing web spam detection methods are supervised
that require a large and representative training set of
web pages. Moreover, they often assume some global
information such as a large web graph and snapshots
of a large collection of web pages. However, in many
situations such assumptions may not hold.

In this paper, we study the problem of unsupervised
web spam detection. We introduce the notion of spam-
icity to measure how likely a page is spam. Spamicity
is a more flexible and user-controllable measure than
the traditional supervised classification methods. We
propose efficient online link spam and term spam de-
tection methods using spamicity. Our methods do not
need training and are cost effective. A real data set is
used to evaluate the effectiveness and the efficiency of
our methods.

1 Introduction
Ranking web pages is essential in web search and search
engines. Due to a huge number of business opportunities
brought by popular web pages, many tricks have been
attempted to affect the search results and the rankings
in search engines. Conceptually, web spam refers to any
deliberate actions that bring to selected web pages an
unjustifiable favorable relevance or importance. Web
spam seriously hurts the quality of information retrieval
on the web. Combating web spam has become more and
more important in web search.

Detecting web spam is a challenging web mining
task. The first generation of web spam detection
methods often adopt a supervised learning model (a
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brief review is in Section 2). A training set consisting of
pages labeled spam or normal is used to train a classifier,
and the classifier is used to categorize other web pages.

However, there is some subtlety about modeling
web spam detection as a traditional classification prob-
lem. The critical difference between a popular web page
and a spam page is whether the popularity is justifiable.
However, the measurement of justifiability is often sub-
tle and subjective. In other words, it is often hard to
label a web page absolutely spam or non-spam. Obtain-
ing a reliable training data set for effective web spam
detection is difficult, if possible at all.

Moreover, the scale of the web is huge, and keeps
increasing with a fastened pace. It is hard to collect
and maintain a training set sufficient for confident spam
detection. New tricks emerge from time to time. New
training samples have to be captured in order to combat
new tricks.

In addition, the applicability of spam detection
methods is an important concern. Most of the existing
methods assume explicitly or implicitly that the spam
detection methods are run at search engine sites where
the detectors have good knowledge about the web
including the web graph and the snapshots of the web.
However, this assumption may not always hold. Spam
detection is often required in practice, too, for off-search
engine applications. By off-search engine applications,
we refer to the scenarios where spam detection has to
be conducted on sites where both the knowledge about
the web and the computational resources are limited.
Particularly, such a spam detector does not have the
global knowledge about the web such as the web graph
and the snapshots of many web pages. Moreover,
the computational resources are constrained so that
constructing a large web graph or crawling many web
pages are not an acceptable solution. This is also partly
due to the online response requirement.

Intelligent web browsers on personal computers are
an example of such off-search engine applications. A
web page currently shown in an intelligent web browser
may have multiple links pointing to other web pages. It
is desirable that such an intelligent browser can online
detect whether those pages are spam or not. The



detection can annotate the current web page and give
users more information and more control in the courses
of browsing. In such a case, the spam detection has to be
conducted on the browser site which may not have the
information about the web graph and the snapshots of
the web. Moreover, the spam detection has to be online
since a user may not want to wait long for a detection
result. To the best of our knowledge, all existing spam
detection methods are based on large training data sets
and/or global knowledge about the web. They may not
be applicable to off-search-engine applications.

In this paper, we make the following progress. First,
we propose to use spamicity to measure how likely a web
page is spam. Spamicity is a more flexible and user-
controllable measure than the traditional classification
methods. Second, we propose efficient link spam and
term spam detection methods based on spamicity. Our
spamicity-based methods can return the spamicity score
of a web page without any threshold. The score gives
the degree of spamicity of the web page. This procedure
does not need any training and is cost effective. Last,
we use a real data set to evaluate the effectiveness
and the efficiency of our spam detection methods using
spamicity. For comparison, we try to find a threshold
fitting the domain experts’ judgment on spamicity.
However, the threshold may be different for various
users. A user can tune the threshold to reflect her/his
tolerance of web spam.

The rest of the paper is organized as follows. In
Section 2, we review related work. Link spam detection
and term spam detection are addressed in Sections 3
and 4, respectively. A systematic empirical evaluation
using a real data set is reported in Section 5. The paper
is concluded in Section 6.

2 Related Work
In this section, we review some recent web spam detec-
tion methods very briefly. Limited by space, a system-
atic survey is far beyond the scope of the paper.

Most of the popular web search engines currently
adopt some link-based ranking algorithms, such as
PageRank [12] and HITS [10]. Driven by the huge po-
tential benefit of promoting rankings of pages, many at-
tempts have been conducted to boost page rankings by
making up some linkage structures, which are known as
link spam [8]. Because PageRank scores are determined
based on the link structures of the web, PageRank is a
natural target of link spam. Gyöngyi et al. [8] referred
link spam to the cases where spammers set up struc-
tures of interconnected pages, called link spam farms,
with the only purpose to boost the link-based ranking.

Some methods have been proposed to detect link
spam. For example, Fetterly et al. [5] used statistical

analysis to detect link spam. Features like in-degrees
and out-degrees are used to conduct the analysis, and
outliers are marked as spam candidates. Wu and
Davison [14] proposed a supervised learning algorithm
which starts with a seed set of link spam pages, and then
identifies other link spam pages using links to and from
the seed set. Recently, Gyöngyi et al. [7] introduced
the concept of spam mass, a measure of the impact of
link spam on a page’s ranking. They discussed how to
estimate spam mass and how the estimations can help to
identify pages that benefit significantly from link spam.

Some other link spam detection methods resemble
PageRank computation. Benczur et al. [2] proposed
a method called SpamRank, which is based on the
concept of personalized PageRank that detects pages
with an undeserved high PageRank score. Gyöngyi et
al. [9] developed an algorithm, TrustRank, to combat
link spam. The basic assumption of TrustRank is that
good pages usually point to good pages and seldom have
links to link spam pages. Their method first selects a
set of labeled good seed pages and assigns high trust
scores to them. Then, it follows an approach similar
to PageRank: the trust scores are propagated via out-
links to other web pages. Finally, after convergence,
the pages with high trust scores are categorized as good
pages. However, TrustRank is vulnerable if the seed set
used by TrustRank is not sufficiently representative to
cover different topics on the web. Also, for a given seed
set, TrustRank has a bias towards larger communities.
To address the above issues, Wu et al. [15] proposed the
use of topical information to partition the seed set and
calculate the trust scores for each topic separately. A
combination of these trust scores for a page is used to
determine its ranking.

Term spam is the other type of web spam which
disguises the content of a page so that it appears
relevant to popular searches. Most of the term spam
detection methods proposed so far adopted statistical
analysis.

For example, in [5], Fetterly et al. studied the
prevalence of term spam based on certain content-based
properties of web sites. They found that some features,
such as long host names, host names containing many
dashes, dots and digits, as well as little variation in
the number of words in pages within a site are good
indicators of term spam pages. Later, in [6], Fetterly
et al. investigated the special case of “cut-and-paste”
content spam, where web pages are mosaics of textual
chunks copied from legitimate pages on the web. They
presented methods to detect such pages by identifying
popular shingles. Recently, Ntoulas et al. [11] presented
a number of heuristic methods for detecting term spam
that essentially extend the previous work [5, 6]. Some
of those methods are more effective than the others,



however, the methods may not identify all kinds of
term spam pages when used in isolation. Thus, [11]
combined the term spam detection methods to create a
C4.5 classifier to detect term spam pages.

All the existing methods assume explicitly or im-
plicitly that the detector has some “global” knowledge
about the web, such as the web graph and an exten-
sive collection of web page snapshots so that statistics
can be derived. Moreover, most of the existing methods
require a training data set containing a good number
of representative spam pages and/or normal pages. As
analyzed in Section 1, those assumptions may not hold
all the time.

3 Link Spamicity and Link Spam Detection
In this section, we first present a brief introduction
to link spam. Then, we propose a utility-based link
spamicity. Last, we discuss how the link spamicity of
a web page can be figured out efficiently using a small
number of “link search” queries to search engines.

3.1 Link Spam Web links can be modeled as a
directed web graph G = (V,E), where V is the set of
web pages, and E is the set of hyperlinks. A link from
page p to page q is denoted by an edge p → q. An
edge p → q can also be written as a tuple (p, q). A
page p may have multiple hyperlinks pointing to page
q, however, in the web graph, only one edge p → q is
formed. Hereafter, by default our discussion is about a
directed web graph G = (V,E).

The link-based ranking methods such as PageRank
and HITS are popularly used by major search engines in
ranking web pages. PageRank measures the importance
of a page p by considering how collectively other web
pages point to p directly or indirectly. Formally, for a
web page p, the PageRank score is defined as

PR(p, G) = d
∑

pi∈M(p)

PR(pi, G)
OutDeg(pi)

+
1− d

N
,

where M(p) = {q|q → p ∈ E} is the set of pages having
a hyperlink pointing to p, OutDeg(pi) is the out-degree
of pi (i.e., the number of hyperlinks from pi pointing
to some pages other than pi), d is a damping factor
which models the random transitions on the web, and
N = |V | is the total number of pages in the web graph.
The second additive term on the right hand side, 1−d

N , is
traditionally referred to as the random jump probability
and corresponds to a minimal amount of PageRank
score that every page gets by default.

Link spam is to deliberately build auxiliary pages
and links to boost the PageRank or other link-based
ranking score of the target page. Due to the extensive
adoptions of the link-based ranking metrics, link spam

has been used by many spam pages. Basically, link
spammers build some artificially well constructed link
structures with the only purpose to boost the ranking
scores of the target pages. In most of the cases, such
structures are referred to as link spam farms. A single
target link spam farm consists of three parts: a single
target page whose ranking is boosted, a reasonable
number of boosting pages that deliberately improve the
ranking of the target page, and some external links
accumulated from pages outside the link spam farm,
such as public blogs and forums.

3.2 Utility-Based Link Spamicity Link spam is
typically a local activity. In order to boost the ranking
of one page, a small number of pages and links (compar-
ing to the whole web) are created deliberately. Driven
by this critical insight, in order to determine whether
one target page is link spam or not, we can extract some
important neighbor pages to capture the “local environ-
ment” of the target page. We can calculate the utility-
based link spamicity score, that is, how the PageRank
score of the target page is boosted, to evaluate the like-
lihood that the target page is link spam.

Simply selecting those k-neighbor pages is not a
precise way to capture the local environment of the
target page, since different neighbor pages may have
different importance to the ranking score of the target
page. How can we capture the important neighbor pages
and the local environment of a target page?

Consider a web graph G = (V, E). For a subset
of vertices H ⊂ V , the induced subgraph on H with
respect to PageRank calculation is G(H) = (V,E′)
where E′ = E − {p → q|p 6∈ H}. Please note that
only the out-links of vertices not in H are removed,
since removing the vertices in (V − H) may affect the
outdegrees of some vertices in H, and further affect
the PageRank score calculation. Moreover, the distance
from page p to page q is the number of edges in the
shortest directed path from p to q.

A page farm model was proposed in [17]. For given
parameters θ (0 < θ < 1) and integer k > 0, a
(θ, k)-farm is a minimal set of pages whose distances
to p are no more than k, and whose induced subgraph
contributes to a θ portion of the PageRank score of
a target page. The page farm of target page p as an
induced subgraph is denoted by Farm(p). As shown
in [17, 16] using real data sets, when θ ≥ 0.8 and k ≥ 3,
the (θ, k) farms capture the local environments of web
pages accurately.

Using page farms, we can develop a utility-based
link spam detection method. Intuitively, if p is link
spam, then Farm(p) should try to achieve the PageR-
ank of p as high as possible. We can calculate the max-
imum PageRank score using the same number of pages



and the same number of links as Farm(p) has. The
utility of the page farm of p is the ratio of the PageR-
ank of p against the maximum PageRank that can be
achieved. The utility can be used as a measure on the
likelihood that p is link spam. If the utility is closer to
1, the page is more likely to be link spam.

What is the largest PageRank score that a farm of
n pages and l links can achieve?

Theorem 3.1. (Maximum PageRank scores)
Suppose that Farm(p) contains n pages p1, . . . , pn

except for p, and l hyperlinks e1, . . . , el. The following
structure maximizes the PageRank score of p.

ei =





pi → p (1 ≤ i ≤ n)
p → pi−n (n + 1 ≤ i ≤ 2n)
pd i−2n

n−1 e → ph(i) (2n + 1 ≤ i ≤ l)

where h(i) = 1 + (i− 2n− d i−2n
n−1 e(n− 2) + 1) mod n.

Proof sketch. The structures are shown in Figure 1,
where the third situation in the theorem is elaborated
in Figures 1(c) and (d), (c) being a special case of (d).
The proof can be constructed by an induction on the
number of edges in the farm. Limited by space, we
omit the details here.

Based on Theorem 3.1, we denote by PRmax(n, l)
the maximum PageRank score of the target page that
a page farm of n pages and l links can achieve. A page
farm of n pages and l hyperlinks is called an optimal
spam farm if it achieves the maximum PageRank score
of the target page.

Definition 1. (Utility-based link spamicity)
For a target page p, we define the utility-based link

spamicity of p as ULSpam(p) =
PR(p)

PRmax(|V |, |E|) .

The utility-based link spamicity of a web page is
between 0 and 1. The higher the utility-based link
spamicity, the more the page farm is utilized to boost
the PageRank of the target page. Spammers (i.e., the
builders of spam web pages) build up the “link spam
farms” with the only purpose to boost the rankings of
the target pages as much as possible. The optimal spam
farms do not commonly happen on the web, because
they are quite different from those normal page farms.

Moreover, since optimal spam farms are highly reg-
ular as indicated by Theorem 3.1, a search engine may
easily detect the optimal spam farms. To disguise, a
spammer may modify the optimal spam farm. How-
ever, the utility of the page farm of a spam page has to
be high in order to obtain a high PageRank score us-
ing a relative small number of supporting pages. Using
the utility-based link spamicity, we can still capture the
disguised link spam.

3.3 Efficient Link Spam Detection In this sec-
tion, we present an online link spam detection method
based on the utility-based link spamicity. To make
our method extensively applicable, we assume that the
whole web graph is unavailable. Consequently, we have
to obtain the local link structure of a page by parsing
the content of the page and querying web search engines.
The major search engines including Google, Yahoo, and
Microsoft Live Search can answer “link search” queries.
A user can submit one URL to a search engine. The
engine returns a list of pages having a hyperlink point-
ing to the submitted URL. Moreover, given a page p,
we can parse the content of the page so as to know the
pages that p points to.

The major cost in link spam detection can be
divided into two parts. First, the search engine querying
load (in-link search) is the cost of sending a link search
query to a search engine and obtaining the list of pages
that have a hyperlink pointing to the query page. The
average cost of an in-link search is denoted by c1.
Second, the web page out-link parsing load (out-link
search) is the cost of retrieving a page and extracting
the outgoing links in the page. The average cost of an
out-link search is denoted by c2.

3.3.1 Page Contribution and Path Contribu-
tion Utility-based link spamicity is based on page
farms. A major operation to find page farms is to cal-
culate the PageRank score of a page in various induced
subgraphs. The notions of page contribution and path
contribution can help.

Consider two pages v and p in a set of pages V .
What is the contribution of v to the PageRank of p? If
v = p, according to the definition of PageRank score,
1−d
N is the amount of PageRank score that every page

gets by default, and thus can be regarded as the self-
contribution. If v 6= p, intuitively, the contribution from
v to p is the decrease of the PageRank score of page p
after we void page v.

Definition 2. (Page contribution) For a target
page p ∈ V , the page contribution of page v ∈ V to
the PageRank score of p is

PCont(v, p) =
{

PR(p,G)− PR(p,G(V − {v})) (v 6= p)
1−d
N (v = p)

where d is the damping factor, and N is the total
number of pages in the web graph.

Computing contributions page by page is costly.
Can we reduce the cost effectively? One idea is to
compute contributions path by path.

Definition 3. (Path contribution) Consider web
graph G = (V,E) and target page p ∈ V . Let P =
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the figure, s = d l−2n

n−1 e.

Figure 1: Achieving the maximum PageRank scores.

v0 → v1 → · · · → vn → p be a directed path from v0 to
p in the graph. The path contribution to the PageRank
of p from P is defined as

LCont(P, p) =
1
N

dn+1(1− d)
n∏

i=0

1
OutDeg(vi)

,

where OutDeg(vi) is the out-degree of page vi, and N
is the total number of pages in the web graph.

As shown in [3], PageRank scores can be calculated
using the path contributions.

PR(p,G) =
1− d

N
+

∑

v∈W (p)

(
∑

P∈DP (v,p)

LCont(P, p)),

where W (p) = {v|there is a directed path from v to p},
DP (v, p) = {directed path P from v to p}, and N is
the total number of pages in the web graph.

Moreover, page contribution can also be calculated
using path contributions.

Corollary 3.1. (Page and path contributions)
For vertices p and q in web graph G = (V, E), if
the in-degree of q is 0, i.e., InDeg(q) = 0, then
PCont(q, p) =

∑
path P from q to p LCont(P, p). If

InDeg(q) > 0, then

PCont(q, p) =
∑

path P1 from q to p LCont(P1, p)+∑
v∈Wq(p)

∑
path P2 from v to p through q LCont(P2, p),

where Wq(p) = {v|there is a directed path from v to p
through q}.

3.3.2 Online Utility-Based Link Spam Detec-
tion The problem of utility-based link spam detection
can be defined as follows. For a target page p and a
utility threshold α, determine whether the utility-based
link spamicity of p is greater than or equal to α. If so,
then p is a suspect of link spam and the spamicity of
p should be reported. Otherwise, p is reported to be
not-spam.

Based on page contribution and path contribution,
we can have the following greedy algorithm to extract
approximate (θ, k)-farms. For a given target page p, we
greedily add pages with the highest page contribution
to p into the farm until p achieves a θ portion of the
global PageRank score of p. Using the page farm, we
can calculate the utility-based link spamicity score. In
the later analysis, we call this algorithm the local greedy
search method.

In this local greedy search method, we have to
extract the whole (θ, k)-farm of the target page. We
have to conduct an in-link search and an out-link search
for every page in the farm. To reduce the search cost,
can we detect link spam but avoid extracting the whole
page farm in many cases?

A critical observation is that, if pages are added
in the page contribution descending order, the utility
of adding new pages to improve the PageRank of the
target page decreases monotonically.

Theorem 3.2. (Monotonicity) Let G = (V, E) be
the web graph. For a target page p, let q1 be a page
which has a hyperlink to p and the PageRank score of
p in G({p, q1}) is maximized. Let qi (i > 1) be a page
which has a hyperlink to at least one of p, q1, . . . , qi−1

and the PageRank score of p in G({p, q1, . . . , qi−1, qi})
is maximized. Let PRj(p) (j ≥ 1) be the PageRank of
p in G({p, q1, . . . , qj}) and Ni be the number of edges in
G({p, q1, . . . , qi}). Then,

PRi(p)
PRmax(i, Ni)

≥ PRi+1(p)
PRmax(i + 1, Ni+1)

.

Proof sketch. The proof can be given by an induction
on the distance (i.e., the number of edges) from qi to p.
The intuition is that when the distance increases (i.e.,
more remote neighbors are added into the page farm),
the utility of the new page towards the improvement
of the PageRank score of p decreases, since a page in
the optimal structure always links to the target page
directly. Limited by space, we omit the details here.

Theorem 3.2 leads to an efficient utility-based link
spam detection method. We initialize the page farm of



p by p itself. In each iteration, let F be the current
farm. Among all pages that are connected to F , we
greedily add a page to the current farm which makes
the largest improvement on the PageRank of p in the
updated farm. The iteration continues until the utility-
based link spamicity computed using the current farm is
lower than the utility threshold, or all the pages whose
distance to p is up to k are in the farm. Theorem 3.2
guarantees that once the utility-based spamicity is lower
than the threshold in an iteration, it will never come
back and thus the page is not spam. On the other
hand, if all pages whose distance to p is at most k are
searched, the page is suspect of link spam and should
be output. In the later analysis, we call this algorithm
the monotone greedy search method.

The advantage of the pruning using Theorem 3.2
is that, for many non-spam pages, the utility drops
quickly as more pages are added to the farm. As
shown in our experimental results, we often only need to
conduct a small number of in-link and out-link searches
to determine that a page is not spam. We do not need
to extract the whole page farm or a large portion of
it. Another advantage is that we even do not need the
value of θ.

Only when a page is link spam, we have to extract
all neighbor pages up to distance of k. Nevertheless,
most of the pages on the web are not spam. Some recent
studies [5, 8] indicated that about 10% to 15% of the
pages are spam.

4 Term Spamicity and Term Spam Detection
In this section, we tackle the problem of online term
spam detection. We first give a brief introduction to
term spam. Then, we propose two methods: a utility-
based method and a characteristics-based method.

4.1 Term Spam The term-based ranking methods
such as TFIDF [1] adopted by web search engines are
victims of term spam. The previous studies (e.g., [8])
show that the algorithms used by search engines to
rank web pages based on their content information use
various forms of the fundamental TFIDF metric. A web
page p and a search query Q can be regarded as a set
of keywords. The TFIDF score of a web page p with
respect to a search query Q is defined as

TFIDF (p,Q) =
∑

t∈p∩Q

TF (t)× IDF (t),

where TF (t) is the term frequency of keyword t in p, and
IDF (t) is the inverse document frequency of keyword t
which is the total number of documents in the collection
divided by the number of documents that contain t.

A web page p can be divided into several parts, such

as the page body, the page title, the meta tags in the
HTML header, the URL address, and the anchor fields.
Each part is called a field. Except for anchor fields which
contain anchor text associated with URLs that point to
p in pages other than p, all other fields are in p.

The appearances of keywords in different fields
carry different significance. For example, a keyword
appears in the page title may have higher importance
than that in the page body. When ranking web pages, in
order to evaluate the content relevance, search engines
may assign different weights to different fields. For
example, the keywords in the text fields are used to
determine the global relevance of the page with respect
to a specific query.

Term spam refers to tricks that tailor the contents
of text fields to make spam pages relevant for some
queries. Spammers want to increase the TFIDF scores
of term spam pages as much as possible. Since the
IDF score for a specific keyword is often hard to be
affected substantially by a spammer, the primary way to
increase the TFIDF score is to increase the frequencies
of keywords within some specific text fields of the term
spam pages.

According to the TFIDF-based ranking methods,
spammers may have two different strategies to deliber-
ately influence the ranking results. On the one hand, a
spammer can make a term spam page relevant to a large
number of search queries. In other words, the term spam
page receives a positive TFIDF score for a large set of
queries. This can be done by including a large number
of distinct keywords in the page. On the other hand, a
spammer can make a term spam page highly relevant to
a specific search query. That is, the page receives a high
TFIDF score for the given query. This can be done by
repeating some targeted keywords in the page.

4.2 Utility-Based Term Spamicity For a page, we
can calculate a term spamicity score to measure the
likelihood of the page being term spam. In order to
determine whether a page p is term spam, we only need
to parse page p and those pages having a link pointing
to p (to collect the anchor fields). As the first try, we
propose the utility-based term spamicity here.

If page p is term spam, to be relevant to a search
query Q, p should try to achieve the TFIDF score as
high as possible. We can calculate the maximum TFIDF
score for a query Q using the same number of keywords
that p has. The utility of page p with respect to term
spam is the ratio of the TFIDF score of p against the
maximum TFIDF score of p that can be achieved. The
utility can be used as a measure of the likelihood that
p is term spam. Intuitively, if the utility is closer to 1,
the page is more likely to be term spam.

Then, what is the largest TFIDF score that a page



p with n keywords of l occurrences can achieve?
The TFIDF score of page p with respect to a query

Q depends on the number of common keywords shared
by p and Q. Spammers would like to increase the fre-
quency of some keywords in their term spam pages.
Once a query contains those keywords, the term spam
pages are ranked high by search engines. To detect
whether a web page is term spam, we can consider the
keywords in page p as the targeted keywords to which
the builder of the page wants to make p relevant. Gen-
erally, each keyword may have a different probability to
appear in queries. Although the frequencies of keywords
in queries can be obtained by search engines from their
query logs, the information is generally not available for
spammers and off search engine spam detectors. Here,
we assume that each keyword takes the same possibility
to appear in a query.

For a web page p of l keyword occurrences, let
Q = {w1, · · · , wn} be the set of keywords in the
page, and di (i = 1, . . . , n) be the inverted document
frequency of word wi. As perfect term spam, page
p should get TFIDF scores as high as possible with
respect to queries having keywords in Q. Therefore,
we define the term spam utility maximization problem
as to assign term frequency fi to keyword wi in p so
that

∑n
i=1 TFIDF (p, wi) is maximized. We have the

following result.

Theorem 4.1. (Maximum TFIDF Scores) In the
term spam utility maximization problem, let wi0 be
the keyword having the largest inverted document
frequency. Then, assigning fi0 = 1 − n−1

l and fj = 1
l

(1 ≤ j ≤ n, j 6= i0) maximizes
∑n

i=1 TFIDF (p, wi).

Please note that the inverted document frequency
of a keyword can be obtained by querying search
engines using the keyword. Search engines return
the approximation of the total number of documents
containing the keyword. Based on Theorem 4.1, we
denote by TFIDFmax(p) the maximum TFIDF score
that a page p can achieve.

Definition 4. (Utility-based term spamicity)
For a target page p, the utility-based term spamicity of
p is

UTSpam(p) =
TFIDF (p,Q)
TFIDFmax(p)

,

where Q is the set of keywords in p.

The utility-based term spamicity of a web page p is
between 0 and 1. The higher the utility-based term
spamicity, the more page p is utilized to boost the
TFIDF score.

The assumption in the utility-based term
spamicity that a spammer wants to maximize

∑n
i=1 TFIDF (p, wi) may be problematic. In gen-

eral, different queries may carry different weights to
spammers, since different keywords may have different
probabilities to appear in queries. Next, we explore
effective term spam detection by analyzing fields in a
web page.

4.3 Characteristics-Based Spamicity Comparing
to link spam, term spam is even more likely a local
activity. The possible fields where term spam exists are
in the target page and those pages having a link directly
pointing to the target page. For a target page p, we
can extract the content of p and its 1-in-neighbor pages
(i.e., those pages having a link pointing to p). We can
examine the characteristics of the content information
to evaluate the likelihood of term spam for the target
page.

Fetterly et al. [5] and Ntoulas et al. [11] proposed
some content-based heuristics to combat term spam.
Beyond their work, we identify three other useful heuris-
tics here to measure the likelihood of term spam for a
web page.

4.3.1 Keyword Stuffing Detection “Keyword
stuffing” [8] is one popular way to create term spam
web pages. The content of a web page is augmented
with a number of popular keywords so that the page
is relevant to some popular search queries. In order to
raise the TFIDF score, spammers have to increase the
term frequency as much as possible. An effective way to
spam the content of a page is to repeat some keywords.

Keyword stuffing may happen to the fields of page
body, page titles, page meta tags, and page anchor text.
Here, meta tags are the information in the “HEAD”
area of the HTML code of web pages. Information in
this area is not seen by users of browsers. Instead, the
information in meta tags are mostly used to commu-
nicate with web browsers and search engines such as
declaring keywords or providing a content description.
Anchor text is the visible text in a hyperlink of a page.
Since the anchor texts associated with hyperlinks that
point to a page p often describe very well the content of
p, these anchor texts can be considered highly related
to page p.

In order to detect keyword stuffing in the above
fields, we define the following measures. The keyword
redundancy H1(p) of a web page is the ratio of the
total number of keywords in the body against the
number of distinct keywords in the body. The title
keyword redundancy H2(p) of a web page is the ratio
of the number of keywords in the title against the
number of unique keywords in the title. The meta tag
keyword redundancy H3(p) in a web page as the ratio
of the number of keywords in the meta tags against



the number of unique keywords in the meta tags. The
anchor text keyword redundancy H4(p) in a web page is
the ratio of the number of keywords in the anchor texts
against the number of unique keywords in the anchor
texts.

Heuristic 1. (Keyword stuffing detection)
The larger the keyword redundancy, the more likely the
page is term spam.

4.3.2 Invisible Keywords in the Body The “key-
word stuffing” tricks may easily be noticed by web users.
Thus, a number of tricks have been exercised to “hide”
term spam from users visiting spam pages. One simple
way is called “content hiding” [8]. The spam keywords
in a page can be made “invisible” to web users by simply
setting the font in the same color as the background.

We define the invisible rate H5(p) of a web page as
the ratio of the number of “invisible” keywords in the
body against the total number of keywords in the body.
A web page having a large invisible rate is likely term
spam.

Heuristic 2. (Invisible rate) The larger the invisi-
ble rate, the more likely the page is term spam.

4.3.3 Page URL Spam Some previous studies [8]
show that some search engines also break down the URL
of a page into a set of keywords, which can be used to
determine the ranking of the page. URL spam refers
to the term spam tricks that some spam keywords are
embedded in the URL address of the page.

Since search engines take into account the keywords
in URL addresses, some spammers may want to create
long URLs that include spam keywords.

We define the URL keyword utility H6(p) in a web
page as the ratio of the total length of keywords in
the URL address against the total length of the URL
address. A web page having a large URL keyword utility
is likely term spam.

Heuristic 3. (URL keyword utility) The larger
the URL keyword utility, the more likely the page is
term spam.

4.3.4 Characteristics-Based Term Spamicity
The experimental results shown in Section 5 indicate
that an individual heuristic may be not good enough
to reflect the spamicity of a web page. To integrate all
heuristics, we normalize the heuristic values (H1 to H6)
into range [0, 1], and then use the Minkowski distance
to integrate all heuristics into a characteristics-based
term spamicity measure. Minkowski distance is a gen-
eral distance notion, and is widely used in various kinds
of scenarios. Its distance order (γ in the definition) is

tunable. In off-search engine applications, no training
data can be used to assign weights to each heuristic.
Intuitively, each heuristic focuses on one specific term
spam activity, thus it is reasonable to make them carry
the same weight. To keep our discussion simple, we still
denote the normalized heuristic values as H1 to H6.

Definition 5. (Characteristics-based spamicity)
For a web page p, the characteristics-based term spam-
icity is

CTSpam(p) =
γ

√∑6
i=1 Hi(p)γ

6

where γ > 0 is the Minkowski distance parameter and
Hi(p) is the i-th term spam heuristic discussed before.

4.4 Efficient Term Spam Detection The problem
of unsupervised term spam detection can be defined
as, given a (utility-based or characteristics-based) term
spamicity threshold and a web page, determine whether
the term spamicity of the page is greater than or equal
to the threshold. If so, then the page is a suspect of
term spam. Otherwise, the page is not spam.

We can take a cost model similar to the one for link
spam detection. Essentially, there are three major types
of cost.

First, the web page keyword parsing load (keyword
search) is to extract the keywords from a web page
by retrieving the page and parsing it. We denote the
average cost of parsing a web page by c3. Second, the
search engine querying load (in-link search) is needed to
extract the 1-in-neighbor pages in order to extract the
anchor texts. This cost is the same as c1 in online link
spam detection. Last, if the IDF scores of keywords
are not available, then we also need to derive them
by querying search engines. However, a detector can
accumulate the information about IDF scores as more
detections are conducted. We denote the average cost
of a query to the search engine for a keyword by c4.

Given a web page p and a term spamicity threshold
β, we calculate its utility-based term spamicity score
or characteristics-based term spamicity score. For the
utility-based term spamicity, we only need to consider
the content of the target page. Thus, the total cost for a
target page p is c3 + n1c4, where n1 is the total number
of keywords whose IDF scores are not available at the
detector side.

However, for the characteristics-based term spamic-
ity, we not only consider the content of the target page,
but also consider the content of pages that pointing
to the target page. Thus, the total cost for a target
page p is c3 + c1 + n2c1 = c3 + (n2 + 1)c3 where n2 is
the number of pages having a link pointing to p. Al-



though the characteristics-based term spamicity needs
more cost than the utility-based term spamicity, it is
more accurate according to the experimental results.

5 Experimental Results
We use the webspam-UK2006 data set [4] recently re-
leased by the Search Engine Spam Project at Yahoo! Re-
search Barcelona (http://aeserver.dis.uniroma1.it/
webspam). The data set is the result of the effort
of a team of volunteers. The base data set contains
77, 862, 535 pages in the domain of .UK downloaded
in May 2006 by the Laboratory of Web Algorithmics,
Universitá degli Studi di Milano.

The spam test collection data set consists of 8, 415
different pages chosen from the base data set. A team
of volunteers were asked to classify this set of pages
as “normal”, “spam” or “borderline”. Moreover, the
project organizers added two kinds of special votes:
all the UK pages mentioned in the Open Directory
Project (http://www.dmoz.org) in May 2006 are voted
“normal”, and all the UK pages ending in .ac.uk,
.sch.uk, .gov.uk, .mod.uk, .nhs.uk or .police.uk are voted
“normal”. It is believed that the pages in those domains
are rarely spam.

Whether a page is spam is labeled by assigning 1
point to each vote of “spam”, 0.5 point to each vote
of “borderline”, and 0 point to each vote of “normal”.
The final label for a page is determined by the average
of points from all votes on this page: an average of over
0.5 point is “spam”, an average of less than 0.5 point is
“normal”, and an average of 0.5 point is “undecided”.

Among the 8, 415 pages in the spam test collection
data set, 176 pages are labeled as “borderline”. How-
ever, the web spam detection methods proposed so far
only classify web pages into two categories, “normal”
pages or “spam” pages. In order to make a fair com-
parison and remove the noisy information, we discarded
those pages labeled as “borderline” in the experimental
evaluation. One thing we have to mention is that our
spamicity-based spam detection method still can work
well for those “borderline” pages, since the spamicity
score of a page reveals the likelihood and the degree of
one page being spam. Finally, 8, 239 pages in the data
set that have a label either “normal” or “spam” were
considered. Among the 8, 239 pages, 767 pages are la-
beled as “spam”. By default, we use this data set in the
empirical evaluation reported here.

To implement the term spam detection methods,
we first extracted keywords from web pages. The
Google stopwords (http://www.ranks.nl/tools/stopwo-
rds.html) were discarded. Then we counted the keyword
frequencies. In order to estimate the IDF score of a
keyword t, we submitted the keyword query t to a search
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Figure 2: The effectiveness of spamicity measures.

engine and obtained the approximate number of pages
containing t. The total number of indexed pages on the
web was estimated by submitting one query “*a*” to a
search engine. Finally we calculated the TFIDF scores
and the maximum TFIDF scores for pages in the data
set.

In the characteristics-based term spamicity, by de-
fault we set γ = 2. We observed that the effectiveness
of the measure is not sensitive to γ.

All the experiments were conducted on a PC com-
puter running the Microsoft Windows XP SP2 Profes-
sional Edition operating system, with a 3.0 GHz Pen-
tium 4 CPU, 1.0 GB main memory, and a 160 GB hard
disk. The program was implemented in C/C++ using
Microsoft Visual Studio. NET 2003.

5.1 Effectiveness of Spamicity Measures We
first test the effectiveness of the three spamicity mea-
sures proposed in this paper: utility-based link spamic-
ity (ULSpam), utility-based term spamicity (UTSpam),
and characteristics-based term spamicity (CTSpam).
Figure 2 shows the distribution of normal and spam
pages in groups with various ranges of spamicity scores.
When the spamicity values are low, most pages are nor-
mal pages. When the spamicity values are high, most
pages are spam pages. This clearly shows that the spam-
icity measures can discriminate normal pages and spam
ones.

Characteristics-based term spamicity is an integra-
tion of 6 heuristic values. Figure 3 shows the effective-
ness of the six individual heuristics. No single heuristic
works perfectly. However, different heuristics are used
to detect different spam tricks. The integrated effect
turns out to be good. In fact, the CTSpam measure
performs better than any single heuristic. This is con-
sistent with the observations in [11].

In spam detection, we use a spamicity threshold
to detect spam pages. Figure 4 shows the effect of
spamicity thresholds on the accuracy, recall, and F-
measure of the three spamicity measures. When the
spamicity threshold increases, less pages are reported
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Figure 3: The effectiveness of the 6 heuristics for characteristics-based term spam detection.
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Figure 4: Comparison of the three spamicity measures in precision, recall, and F-measure.

as spam. The precision increases since those pages with
high spamicity values are very likely spam. However,
the recall decreases. Utility-based link spamicity has
the best effectiveness. The F-measure curve shows that
when the threshold is about 0.74, it has the best perfor-
mance. Characteristics-based term spamicity performs
better than utility-based term spamicity. As analyzed
before, the assumption that each keyword has the same
probability to appear in a query hurts the effectiveness
of utility-based term spamicity. The characteristics-
based term spamicity and the utility-based term spam-
icity perform the best when the thresholds are set to
0.76 and 0.65, respectively.

5.2 Efficiency of Spam Detection We evaluate
the efficiency of our spam detection methods. We
also compare our methods with some state-of-the-art
methods.

5.2.1 Online Link Spam Detection The mono-
tone greedy search is an approximation of the local

greedy search for utility-based link spam detection. Fig-
ure 5 compares the effectiveness of the two methods as
well as SpamRank [2], the only existing method that
detects link spam by assigning a spamicity-like score
and does not need supervised training. SpamRank as-
sumes that link spam pages have a biased distribution of
pages that contribute to the undeserved high PageRank
score of the spam page. SpamRank penalizes pages that
originate a suspicious PageRank share and personalizes
PageRank on the penalties. We tried our best to imple-
ment the method as described in [2]. We normalized the
SpamRank values into the range [0, 1]. SpamRank has
to access the whole web graph, and conduct an iterative
PageRank-like computation.

The spam detection quality of the monotone greedy
search is very close to that of the local greedy search.
The local greedy search method is about 5% better. The
utility-based link spamicity method performs better
than SpamRank. The results show that the utility-
based link spamicity can capture the inherent features
of link spam better.
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Figure 5: Comparison of local greedy search, monotone greedy search, and SpamRank in precision, recall, and
F-measure, and runtime.

All pages Normal pages Spam pages
#c1 #c2 #c1 #c2 #c1 #c2

Local 123 218 126 219 94 208

Monotone 57 103 51 90 114 225

Table 1: The average cost per page in the two utility-
based link spam detection methods (#c1: number of
in-link searches, #c2: number of out-link searches).

In the figure, we also compare the runtime of the
local greedy search and the monotone greedy search.
Both methods have a roughly linear scalability. The
monotone greedy search is more than 2 times faster.
To understand the difference in runtime, we collect the
average cost in both methods in Table 1. The monotone
greedy search method conducts much less in-link and
out-link searches on average than the local greedy search
on all pages and on the normal pages. This explains
the advantage of the monotone greedy search method.
On spam pages, the monotone greedy search method
has 21% more in-link searches, and 8% more out-link
searches. However, as indicated by the ground truth,
most of the pages on the web are normal ones.

We do not plot its runtime here, since it computes
the spamicity of one single page only. When the whole
web graph is available in main memory, the ratio of
the total runtime of SpamRank over the total number
of web pages in the graph is about 0.5 second, which
is twice of average cost in the monotone greedy search
method.

From the above experiments, we can see that the
monotone greedy search method achieves a good trade-
off between spam detection quality and efficiency. It
also outperforms SpamRank in both detection quality
and efficiency.

5.2.2 Online Term Spam Detection Figure 6
compares the runtime of the utility-based term spam
detection method and the characteristics-based term
spam detection method. To explain the difference in
efficiency, Table 2 examines the average cost in both
methods. As analyzed in Section 4.4, characteristics-
based term spam detection is more costly. On the other

#c1 #c3 #c4

Utility-based 0 1 131

Characteristics-based 1 23 /

Table 2: The average cost per page in the utility-
based term spamicity and the characteristics-based
term spamicity methods (#c1: the number of in-link
searches, #c3: the number of pages parsed, #c4: the
number of IDF scores computed).

hand, it is more accurate in detection quality.
We compare our spamicity-based term spam detec-

tion methods with the decision tree method by Ntoulas
et al. [11]. In that method, 10 content-based heuristics
are used to extract features of term spam pages and a
decision tree is constructed using C4.5 [13].

We use the C4.5 executable available due to Quin-
lan. In order to evaluate the accuracy of the classifier,
we employ 10-fold cross validation. The whole data set
is divided randomly into 10 equally-sized partitions, and
10 training and testing steps are conducted. In each
step, we use 9 partitions to train the classifier and the
remaining 1 partition to test its effectiveness. 10 fea-
tures including the total number of words in the page,
the total number words in the title as proposed in [11]
are used to train the decision tree.

The precision of the spam detection using the
decision tree method is 82.0%, and the recall is 83.1%.
The decision tree method outperforms the utility-based
term spamicity method, but is not as good as the
characteristics-based term spamicity method. This
result indicates that the heuristics identified in this
paper seem better in term spam detection.

5.3 Integrating Spam Detection Currently, the
ranking metrics used by most popular web search en-
gines are not purely link-based or purely term-based.
For example, http://searchenginewatch.com indicated
that more than 100 different factors are taken into ac-
count when Google ranks web pages. Consequently,
spammers use both link spam and term spam tricks
together most of the time to achieve the largest spam
benefit. The web spam detection methods proposed so
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tion runtime.
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Figure 7: Integrating link spamicity and term spamicity in web spam detection.

far treat link spam detection and term spam detection
separately. Thus, an effective way to combat web spam
should combine the two categories of spam detection
methods.

In our methods, the spamicity score of a page is
used to evaluate the likelihood of a page is spam. A
simple yet effective way to detect web spam pages
is by setting two spamicity thresholds, one threshold
α for link spamicity, and the other threshold β for
term spamicity. For each page, we calculate the link
spamicity score and term spamicity score, respectively.
A web page is reported as “normal” if and only if both
of its link spamicity and term spamicity are less than
the corresponding spamicity thresholds.

Figure 7 shows the effectiveness of using
characteristics-based term spamicity (CTSpam)
and utility-based link spamicity (ULSpam) with re-
spect to different spamicity thresholds. Combining the
two methods can clearly improve the effectiveness of
spam detection. When the utility-based link spamicity
threshold is set to 0.76 and the characteristics-based
term spamicity is set to 0.833, the integration method
has the best performance.

Comparing Figure 7 to Figure 4, we can clearly see
that the integration method is more robust with respect
to thresholds. This indicates that the two methods
are relatively complementary. They can collaborate to
achieve good accuracy.

6 Conclusions
In this paper, we studied the problem of unsupervised
web spam detection. We introduced the notion of spam-
icity to measure how likely a page is spam. Spamicity
is a more flexible and user-controllable measure than
the traditional classification methods. We proposed effi-
cient link spam and term spam detection methods. Our
methods do not need training and are cost effective. A
real data set is used to evaluate the effectiveness and
the efficiency of our methods. The experimental results
clearly showed that our methods are effective and effi-
cient to detect spam pages.

There is a lot of future work can be done for
web spam detection. For example, spammers may use

different tricks in different spam pages. Can we find
topical spam patterns? For adversarial information
retrieval, it is interesting and useful to construct a spam
search engine which can rank spam pages related to a
query like “what are the spam pages related to digital
camera and ranked high by most search engines?”
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