
Efficient Pattern-Growth Methods for Frequent
Tree Pattern Mining?

Chen Wang1 Mingsheng Hong1 Jian Pei2 Haofeng Zhou1 Wei Wang1 Baile Shi1

1 Fudan University, China
{chenwang, 9924013, haofzhou, weiwang1, bshi}@fudan.edu.cn

2 State University of New York at Buffalo, USA. jianpei@cse.buffalo.edu

Abstract. Mining frequent tree patterns is an important research prob-
lems with broad applications in bioinformatics, digital library, e-commerce,
and so on. Previous studies highly suggested that pattern-growth meth-
ods are efficient in frequent pattern mining. In this paper, we systemat-
ically develop the pattern growth methods for mining frequent tree pat-
terns. Two algorithms, Chopper and XSpanner, are devised. An extensive
performance study shows that the two newly developed algorithms out-
perform TreeMinerV [13], one of the fastest methods proposed before,
in mining large databases. Furthermore, algorithm XSpanner is substan-
tially faster than Chopper in many cases.

1 Introduction

Recently, many emerging application domains encounter tremendous demands
and challenges of discovering knowledge from complex and semi-structural data.
For example, one important application is mining semi-structured data [2, 4, 7,
11–13]. In [12], Wang and Liu adopted an Apriori-based technique to mine fre-
quent path sets in ordered trees. In [7], Miyahara et al. used a directly generate-
and-test method to mine tree patterns. Recently, Zaki [13] and Asai et al. [2]
proposed more efficient algorithms for frequent subtree discovery in a forest,
respectively. They adopted the method of rightmost expansion, that is, their
methods add nodes only to the rightmost branch of the tree.

Recently, some interesting approaches for frequent tree pattern mining have
been proposed. Two typical examples are reported in [6, 13]. These methods
observe the Appriori property among the frequent tree sub-patterns: every non-
empty subtree of a frequent tree pattern is also frequent. Thus, they smartly
extend the candidate-generation-and-test approach to tackle the mining. The
method for frequent tree pattern mining is efficient and scalable when the pat-
terns are not too complex. Nevertheless, if there are many complex patterns in
the data set, there can be a huge number of candidates need to be generated
and tested. That may degrade the performance dramatically.

Some previous studies strongly indicate that the depth-first search based,
pattern-growth methods, such as FP-growth [5], TreeProjection [1] and H-mine

? This research is supported in part by the Key Program of National Natural Science
Foundation of China (No. 69933010), China National 863 High-Tech Projects (No.
2002AA4Z3430 and 2002AA231041), and US NSF grant IIS-0308001.

[8] for frequent itemset mining, and PrefixSpan [9] for sequential pattern mining,
can mine long patterns efficiently from large databases. That stimulates our
thinking: “Can we extend the pattern-growth methods for efficient frequent tree
mining?” This is the motivation of our study.

Is it straightforward to extend the pattern-growth methods to mine tree pat-
terns? Unfortunately, the previously developed pattern-growth methods cannot
be extended simply to tackle the frequent tree pattern mining problem efficiently.
There are two major obstacles. On the one hand, one major cost in frequent tree
pattern mining is to test whether a pattern is a subtree of an instance in the
database. New techniques must be developed to make the test efficient. On the
other hand, there can be many possible “growing points” (i.e., possible ways
to extend an existing pattern to more complex ones) in a tree pattern. It is
non-trivial to determine the “good” growth strategy and avoid redundance.

In this paper, we systematically study the problem of frequent tree pattern
mining and develop two novel and efficient algorithms, Chopper and XSpanner,
to tackle the problem. In algorithm Chopper, the mining of sequential patterns
and the extraction of frequent tree patterns are separated as two phases. For
each sequential pattern, Chopper generates and tests all possible tree patterns
against the database. In algorithm XSpanner, the mining of sequential patterns
and the extraction of frequent tree patterns are integrated. Larger frequent tree
patterns are “grown” from smaller ones.

Based on the above ideas, we develop effective optimizations to achieve ef-
ficient algorithms. We compare both Chopper and XSpanner with algorithm
TreeMinerV [13], one of the best algorithms proposed previously, by an exten-
sive performance study. As an Apriori-based algorithm, TreeMinerV achieves the
best performance for mining frequent tree patterns among all published meth-
ods. Our experimental results show that both Chopper and XSpanner outperform
TreeMinerV while the mining results are the same. XSpanner is more efficient
and more scalable than Chopper.

The remainder of this paper is organized as follows. In Section 2, we define the
problem of frequent tree pattern mining. Algorithm Chopper and XSpanner are
developed in Section 3 and 4 respectively. In Section 5, we present the results on
synthetic and real dataset via comparing with TreeMinerV. Section 6 concludes
the paper.

2 Problem Definition

A tree is an acyclic connected graph. In this paper, we focus on ordered, labelled,
rooted trees. A tree is denoted as T (v0, N, L, E), where (1) v0 ∈ N is the root
node; (2) N is the set of nodes; (3) L is the set of labels of nodes, for any node
u ∈ N , L(u) is the label of u; and (4) E is the set of edges in the tree. Please
note that two nodes in a tree may carry the identical label.

Let v be a node in a tree T (v0, N, L,E). The level of v is defined as the length
of the shortest path from v0 to v. The height of the tree is the maximum level
of all nodes in the tree. For any nodes u and v in tree T (v0), if there exists a
path v0-. . . -u-. . . -v such that every edge in the path is distinct, then u is called
an ancestor of v and v a descendant of u. Particularly, if (u, v) is an edge in the
tree, then u is the parent of v and v is a child of u. For nodes u, v1 and v2, if

AE

E

D

(b) An embedded subtree

(a) Tree T

B

A C

D A

B G

E

E

C

B

Fig. 1. Tree and embedded subtree.

B

A

C D

C

A C

D

D

C

A

TID Tree

1 A1B2C3D3C2B3

2 C1A2B2C3B2C3D4

3 D1D2A2C3E3D3

B E

B B

C

D

D C

Fig. 2. An example of tree database TDB.

u is the parent of both v1 and v2, then v1 and v2 are siblings. A node without
any child is a leaf node, otherwise, it is an internal node. In general, an internal
node may have multiple children. If for each internal node, all the children are
ordered, then the tree is an ordered tree. We denote the k-th child of node u as
childk(u). In the case that such a child does not exist, childk(u) = null.

Hereafter, without special mention, all trees are labelled, ordered, and rooted.
An example is shown in Figure 1(a). The tree is of height 4.

Given a tree T (v0, N, L, E), tree T ′(v′0, N
′, L′, E′) is called an embedded sub-

tree of T , denoted as T ′ v T , if (1) N ′ v N ; (2) for any node u ∈ N ′,
L(u) = L′(u); and (3) for every edge (u, v) ∈ E′ such that u is the parent
of v, u is an ancestor of v in T . Please note that the concept embedded subtree
defined here is different from the conventional one.3 In Figure 1(b), an embedded
subtree of tree T in Figure 1(a) is shown.

A tree database is a bag of trees. Given a tree database TDB, the support of
a tree T is the number of trees in TDB such that T is an embedded subtree, i.e.,
sup(T) = ‖{T ′ ∈ TDB|T v T ′}‖. Given a minimum support threshold min sup,
a tree T is called as a frequent tree pattern if sup(T) ≥ min sup.
Problem statement. Given a tree database TDB and a minimum support
threshold min sup, The problem of frequent tree pattern mining is to find the
complete set of frequent tree patterns from database TDB.

In an ordered tree, by a preorder traversal of all nodes in the tree, a preorder
traversal label sequence (or l-sequence in short) can be made. For example, the
l-sequence of tree T in Figure 1(a) is BACDBGEAED. Preorder traversal se-
quences are not unique with respect to trees. That is, multiple different trees may
result in an identical preorder traversal sequence. To overcome this problem, we
can add the levels of nodes into the sequence and make up the preorder traversal
label-level sequence (or l2-sequence in short). For example, the l2-sequence of tree
T is B0A1C1D2B3G3E4A2E3D1. We have the following results.

Theorem 1 (Uniqueness of l2-sequences). Given trees T1(v1, N1, L1, E1)
and T2(v2, N2, L2, E2), their l2-sequences are identical if and only if T1 and T2

are isomorphic, i.e., there exists a one-to-one mapping f : N1 → N2 such that

3 Conventionally, a tree G′ whose graph vertices and graph edges form subsets of the
graph vertices and graph edges of a given tree G is called a subtree of G.

(1) f(v1) = f(v2); (2) for every node u ∈ N1, L1(u) = L2(f(u)); and (3) for
every edge (u1, u2) ∈ E1, (f(u1), f(u2)) ∈ E2.

Lemma 1. Let S be the l2-sequence of tree T (v0, N, L,E).

1. The first node in S is v0 whose level number is 0;
2. For every immediate neighbors L(u)iL(v)j in S, j ≤ (i + 1); and
3. For nodes u and v such that u is the parent of v, L(u)i (i ≥ 0) is the nearest

left neighbor of L(v)j in S such that j = (i− 1).

Although an l-sequence is not unique with respect to trees, it can serve as
an isomorph for multiple trees. In other words, multiple l2-sequences and thus
their corresponding trees can be isomers of an l-sequence.

Given a sequence S = s1 · · · sn. A sequence S′ = s′1 · · · s′m is called a subse-
quence of S and S as a super sequence of S′, denoted as S′ v S if there exist
1 ≤ i1 < · · · < im ≤ n such that sij

= s′j for (1 ≤ j ≤ m). Given a bag of
sequences SDB, the support of S in SDB is number of S’s super sequences in
SDB, i.e., sup(S) = ‖{S′ ∈ SDB|S v S′}‖.

Given a tree database TDB, the bag of the l-sequences of the trees in TDB
form a sequence database SDB. We have the following interesting result.

Theorem 2. Given a tree database TDB, let SDB be the corresponding l-
sequence database. For any tree pattern T , let l(T) be the l-sequence of T . Then,
sup(T) ≤ sup(l(T)); and T is frequent in TDB only if l(T) is frequent in SDB.

Theorem 2 provides an interesting heuristic for mining frequent tree pat-
terns: we can first mine the sequential patterns in the l-sequence database, and
then mine tree patterns accordingly. In particular, a sequential pattern in the
l-sequence database (with respect to the same support threshold in both tree
database and l-sequence database) is called an l-pattern.

Given a tree T , not every subsequence of T ’s l-sequence corresponds to an
embedded subtree of T . For example, consider the tree T in Figure 1(a). The
l-sequence is BACDBGEAED. CBD is a subsequence. However, there exists
no an embedded subtree T ′ in T such that its l-sequence is CBD.

Fortunately, whether a subsequence corresponds to an embedded subtree
can be determined easily from an l2-sequence. Let S be the l2-sequence of a
tree T . For a node v i in S, the scope of v is the longest subsequence S′

starting from v such that the label-level of each node in S′, except for v it-
self, is greater than i. For example, the l2 sequence of tree T in Figure 1(a) is
B0A1C1D2B3G3E4A2E3D1. The scope of B0 is B0A1C1D2B3G3E4A2E3D1
and the scope of D2 is B3G3E4. We have the following result.

Lemma 2. Given a tree T . An l-sequence S = v1 . . . vk corresponds to an em-
bedded subtree in T if and only if there exists a node v1 in the l2-sequence of T
such that v2 . . . vk is a subsequence in the scope of a node v1.

3 Algorithm Chopper

Algorithm Chopper is shown in Figure 3. The correctness of the algorithm follows
Theorem 2. In the first 2 steps, Chopper finds the sequential patterns (i.e., l-
patterns) from the l-sequence database. Based on Theorem 2, we only need to

Input: a tree database TDB and a support threshold min sup;
Output: all frequent tree patterns with respect to min sup;
Method:
(1) scan database TDB once, generate its l-sequence database SDB;
(2) mine l-patterns from SDB using algorithm l-PrefixSpan;
(3) scan TDB, generate candidates according to l-patterns and find frequent tree;

Fig. 3. Algorithm Chopper

consider the trees whose l-sequence is an l-pattern. In the last step, Chopper
scans the database to generate candidate tree patterns and verify the frequent
tree patterns.

To make the implementation of Chopper as efficient as possible, several tech-
niques are developed. The first step of Chopper is straightforward. Since the trees
are stored as l2-sequences in the database, Chopper does not need to form the
explicit l-sequence database SDB. Instead, it uses the l2-sequence database and
just ignores the level numbers.

In the second step of Chopper, we need to mine sequential patterns (i.e., l-
patterns) from the l-sequence database. A revision of algorithm PrefixSpan [9],
called l-PrefixSpan, is used. Some specific techniques have been developed to
enable efficient implementation of PrefixSpan. Interested readers should refer to
[9] for a detailed technical discussion.

While PrefixSpan can find the sequential patterns, the tree pattern mining
needs only part of the complete set as l-patterns. One key observation here is that
only those l-patterns having a potential frequent embedded tree pattern should be
generated. The idea is illustrated in the following example.

Example 1. Figure 2 shows a tree database as the running example in this paper.
Suppose that the minimum support threshold is 2, i.e., every embedded subtree
is a frequent tree pattern if it appears at least in two trees in the database.

The l2-sequences of the trees are also shown in Figure 2. If we ignore the level
numbers in the l2-sequences, we get the l-sequences. Clearly, sequence 〈BCB〉
appears twice in the l-sequence database, and thus it is considered as a sequential
pattern by PrefixSpan. However, we cannot derive any embedded tree in the
database whose l-sequence is BCB. Thus, such patterns should not be generated.

We revise PrefixSpan to l-PrefixSpan to mine only the promising l-patterns
and prune the unpromising ones. In l-PrefixSpan, when counting sup(S) for
a possible sequential pattern S from the (projected) databases, we count only
those trees containing an embedded subtree whose l-sequence is S. Following
Lemma 2, we can determine whether an l-sequence corresponds to an embedded
subtree in a tree easily. For example, sup(BCB) = 0 and sup(ABC) = 1. Thus,
both BCB and ABC will be pruned in l-PrefixSpan.

It can be verified that many patterns returned by PrefixSpan, such as AB,
ABC, ABCD, etc., will be pruned in l-PrefixSpan. In our running example, only
9 l-patterns are returned, i.e., A, AC, AD, B, BC, BCD, BC, C and D.

In the last step of Chopper, a näıve implementation would be as follows. We
can generate all possible tree patterns as candidates according to the l-patterns

Input and output: same as Chopper;
Method:
(1) scan database TDB once, find frequent length-1 l-patterns;
(2) for each length-1 l-pattern xi, do
(3) output a frequent tree pattern xi0;
(4) form the 〈xi0〉-projected database TDBxi0;
(5) if TDBxi0 has at least min sup trees then mine the projected database;

Fig. 4. Algorithm XSpanner

found by l-PrefixSpan, and then scan the tree database once to verify them.
Unfortunately, such a näıve method does not scale well for large databases:
There can be a huge number of candidate tree patterns!

Chopper adopts a more elegant approach here. It scans the tree database
against the l-patterns found by l-PrefixSpan. For each tree in the tree database,
Chopper firstly verifies whether the tree contains some candidate tree patterns.
If so, the counters of the tree patterns will be incremented by one. Then, Chop-
per also verifies whether more tree candidate patterns corresponding to some
l-patterns can be generated from the current tree. If so, they will be generated
and counters will be set up with an initial value 1. Moreover, to facilitate the
matching between a tree in the tree database and the l-patterns as well as can-
didate tree patterns, all l-patterns and candidate tree patterns are indexed by
their prefixes. Please note that a tree is stored as an l2-sequence in the database.

The major cost of Chopper comes from two parts. On the one hand, l-
PrefixSpan mines the l-patterns. The pruning of unpromising l-patterns improves
the performance of the sequential pattern mining here. On the other hand, Chop-
per has to check every tree against the l-patterns and the candidate tree patterns
in the last step. In this step, only one scan needed.

Although l-PrefixSpan can prune many unpromising l-patterns, some un-
promising l-patterns still may survive from the pruning, such as BCD in our run-
ning example. The reason is that the l-pattern mining process and the tree pat-
tern verification process are separated in Chopper. Such unpromising l-patterns
may bring unnecessary overhead to the mining. Can we integrate the l-pattern
mining process into the tree pattern verification process so that the efficiency can
be improved further? This observation motivates our design of XSpanner.

4 Algorithm XSpanner

Algorithm XSpanner is shown in Figure 4. Clearly, by scanning the tree database
TDB only once, we can find the frequent items in the database, i.e., the items
appearing in at least min sup trees in the database. They are length-1 l-patterns.
This is done in Step (1) in algorithm XSpanner.

Suppose that x1, . . . , xm are the m length-1 l-patterns found. We have the
following two claims. On the one hand, for (1 ≤ i ≤ m), xi0 is a frequent tree
pattern in the database. On the other hand, the complete set of frequent tree
patterns can be divided into m exclusive subsets: the i-th subset contains the
frequent tree patterns having xi as the root.

Example 2. Let us mine the frequent tree patterns in the tree database TDB in
Figure 2. By scanning TDB once, we can find 4 length-1 l-patterns, i.e., A, B,
C and D. Clearly, A0, B0, C0 and D0 are the four frequent tree patterns. On
the other hand, the complete set of tree patterns in the database can be divided
into 4 exclusive subsets: the ones having A, B, C and D as the root, respectively.

The remainder of XSpanner (line (2)-(5)) mines the subsets one by one.
For each length-1 l-pattern xi, XSpanner first outputs a frequent tree pattern

xi0 (line (3)). Clearly, to find frequent tree patterns having xi0 as a root, we
need only the trees containing xi. Moreover, for each tree in the tree database
containing xi, we need only the subtrees having xi as a root. We collect such
subtrees as the 〈xi0〉-projected database. This is done in line (4) in the algorithm.

In implementation, constructing a physical projected database can be expen-
sive in both time and space. Instead, we apply the pseudo-projection techniques
[9, 8]. The idea is that, instead of physically constructing a copy of the subtrees,
we reuse the trees in the original tree database. For each node, the tree id and a
hyperlink are attached. By linking the nodes labelled xi together using the hy-
perlinks, we can easily get the 〈xi0〉-projected database. Please note that such
hyperlinks can be reused latter to construct other projected databases.

Example 3. Figure 5 shows the B0-projected database. Basically, all the subtrees
rooted at a node B are linked, except for the leaf nodes labelled B. The leaf node
labelled B in the left tree is not linked.

A

D

C E D

A

C

C D

B

B

C

D

D

CC

BBA

Fig. 5. The B0-projected database

A

D

C E D

D

A

C

C D

B

B

C

A B B

C C

D

Fig. 6. The C0-projected database

Why the leaf nodes should not be linked? The leaf node cannot contain any
embedded subtree larger than the tree pattern we have got so far. In other words,
not linking such leaf nodes will not affect the result of the mining. Thus, it is
safe to prune them in the projected database.

Please note that there can be more than one node with the same label in a
tree, such as the tree at the middle of Figure 5. These subtrees are processed as
follows: a node labelled with B is linked only if it is not a descendant of some
other node that is also labelled with B. As another example, Figure 6 shows the
C0-projected database. In the tree at the middle, only the root node is linked.

As shown in Figure 5, more than one subtree from a tree in the tree database
may be included in the projected database. When counting the support of a tree
pattern, such as BC, the pattern should gain support 1 from the same original
tree, even it may be matched in multiple subtrees.

10
−1

10
0

10
1

10
1

10
2

10
3

10
4

Threshold (%)

T
im

e
(s

)

TreeMinerV
Chopper
XSpanner

10000 20000 30000 40000 50000
0

500

1000

1500

2000

Data Size

T
im

e
(s

)

TreeMinerV
Chopper
XSpanner

6 6.5 7 7.5 8 8.5 9
10

1

10
2

10
3

10
4

Height

T
im

e
(s

)

TreeMinerV
Chopper
XSpanner

4 4.5 5 5.5 6 6.5 7
10

1

10
2

10
3

10
4

Maximum Fanout

T
im

e
(s

)

TreeMinerV
Chopper
XSpanner

(a) Sup vs. time (b) Size vs. time (c) Height vs. time (d) Fanout vs. time

Fig. 7. Results on synthetic data sets

The projected databases can be mined recursively. In the 〈xi0〉-projected
database, the length-1 l-patterns should be found. For each length-1 l-pattern
xj , xi0xj1 is a frequent tree pattern. The set of frequent tree patterns having xi

as a root can be divided into smaller subsets according to xj ’s.
In general, suppose that P is a frequent tree pattern and P -projected database

is formed. Let S be the l-pattern of P . By scanning the P -projected database
once, XSpanner finds frequent items in the projected database. Then, for each
frequent item xi, XSpanner checks whether Sxi is an l-pattern in the P -projected
database and there exists a frequent tree pattern corresponds to Sxi. If so, then
the new frequent tree pattern is output and the recursive mining continues.
Otherwise, the search in the branch is terminated.

The correctness of the algorithm can be proved. Limited by space, we omit
the details here.

5 Experiments and Performance Study

In this section, we will evaluate the performance of XSpanner and Chopper in
comparison with TreeMinerV [13]. All the experiments are performed on a Pen-
tium IV 1.7GHz PC machine with 512MB RAM. The OS platform is Linux Red
Hat 9.0 and the algorithms are implemented in C++.

We wrote a synthetic data generation program to output all the test data.
There are 8 parameters for adjustment: the number of the labels |S|, the proba-
bility threshold of one node in the tree to generate children or not p, the number
of the basic pattern trees (BPT) |L|, the average height of the BPT |I|, the
maximum fanout(children) of nodes in the BPT |C|, the data size of synthetic
trees |N |, the average height of synthetic trees |H| and the maximum fanout of
nodes |F | in synthetic trees. The actual height of each (basic pattern) tree is
determined by the Gaussian distribution having the average of |H|(|I|) and the
standard deviation of 1.

At first, we consider the scalability with minsup of the three algorithms, while
other parameters are:S = 100, p = 0.5, L = 10, I = 4, C = 3, N = 10000,H =
8, F = 6. Figure 7(a) shows the result, where the minsup is set from 0.1 to
0.004. In this figure, both X and Y axes have been processed by log10 T for the
convenience of observation.

From the figure 7(a), we can find that when support threshold is larger than
5%, the three algorithms perform approximately the same. With the threshold

becoming smaller, the algorithm XSpanner and Chopper begin to outperform
TreeMinerV. What should be explained here is the reason when the threshold
changes from 2% to 1%, the running time went up suddenly. We choose 10000
trees as our test dataset; however, there are only 100 node labels. So much more
frequent structures are generated, which leads to the greater time consuming.
During this period, we can find that TreeMinerV runs out of memory, while
XSpanner and Chopper retain the ability to finish computing. This is because of
the large amount of candidates generated by Apriori-based algorithms. It is also
clear that when the threshold continues to decrease, XSpanner surpasses Chop-
per in performance. XSpanner estimates and differentiates between the isomers
during the generation of frequent sequences, which can reduce a large number of
frequent sequences but infrequent substructures generated when the threshold
is low.

Then, figures 7((b) shows the scalability with data size. The data size N
varies from 10000 to 50000, while other parameters are:S = 100, p = 0.5, L =
10, I = 4, C = 3,H = 8, F = 6,minsup = 0.01. Here we find the cost of both
time and space of XSpanner and Chopper is extremely smaller than that of
TreeMinerV which is halted for memory overflow. The reason is that XSpanner
and Chopper can save time and space cost by avoiding false candidate subtree
generation.

Finally, the scalability with tree size is shown in Figures 7(c) and (d). The
Tree size of H and F varies, while other parameters are:S = 100, p = 0.5, L =
10, I = 4, C = 3, N = 10000,minsup = 0.01. In figure 7(c), we only vary H
from 6 to 9. It is easy to find that, when H equals to 6 or 7, the performance of
XSpanner and Chopper is better than that of TreeMinerV. However, when the
trees become higher, the superiority grows. In particular, when H equals to 8 or
9, the two algorithms thoroughly defeat TreeMinerV for the reason that TreeM-
inerV is halted for memory overflow. In figure 7(d), the performance of the two
algorithms and TreeMinerV is similar to the case above. XSpanner and Chopper
performs better than TreeMinerV, while the fanout continues to increase.

From all of the experiments we did, we can conclude that it is an acceptable
and efficient way to put the process of distinguishing isomers in the process of
generating frequent sequences.

We also tested XSpanner and Chopper in Web Usage Mining. We downloaded
the Weblog of Hyperreal (http://music.hyperreal.org), chose those dating from
Sep. 10 to Oct.9 in 1998 as the input data. and then transformed the Weblog
into tree-like data set which includes 12000 more records totally.

Figure 8(a) shows the performance of the three algorithms, where the minsup
is set from 0.1 to 0.0003. In this figure, both X and Y axes have been processed
by log10 T for the convenience of observation. We can find, that the performance
of XSpanner and Chopper is better than that of TreeMinerV. Especially, TreeM-
inerV is halted in 3 hours for memory overflow when minsup = 0.0006, while
the two algorithms go well. From the figure, we notice that the performance
of XSpanner is more stable than that of Chopper. With threshold decreasing,
XSpanner surpasses Chopper gradually. It should also be noted that, XSpanner
does not perform excellently until minsup is dropped to 0.0003.

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

10
4

Threshold (%)

T
im

e
(s

)

TreeMinerV
Chopper
XSpanner

10
−2

10
−1

10
0

10
1

10
0

10
2

10
4

10
6

10
8

Threshold (%)

of

 P
at

te
ns

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

6

7

8

Threshold (%)

A
vg

 #
 o

f P
at

te
rn

s

(a) Sup vs. time (b) Sup vs. # patterns (c) Sup vs. avg # nodes

Fig. 8. Results on real data sets

Finally, figure 8(b) shows number of frequent patterns generated by the al-
gorithm, while figure 8(c) shows average number of nodes of frequent patterns
generated by the algorithm, where the minsup is set from 0.1 to 0.0003.

6 Conclusions

In this paper, we present two pattern-growth algorithms, Chopper and XSpanner,
for mining frequent tree patterns. In the future, we would like to explore pattern-
growth mining of other complex patterns, such as frequent graph patterns.

References

1. R. C. Agarwal, et al. A tree projection algorithm for generation of frequent item
sets. J. of Parallel and Distributed Computing, 61(3):350–371, 2001.

2. T. Asai, et al. Efficient substructure discovery from large semi-structured data. In
Proc. 2002 SIAM Int. Conf. Data Mining, Arlington, VA.

3. D. Cook and L. Holder. Substructure discovery using minimal description length
and background knowledge. J. of Artificial Intelligence Research, 1:231–255, 1994.

4. L. Dehaspe, et al. Finding frequent substructures in chemical compounds. In
KDD’98, New York, NY.

5. J. Han, et al. Mining frequent patterns without candidate generation. In SIG-
MOD’00, Dallas, TX.

6. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM’01, San
Jose, CA.

7. T. Miyahara, et al. Discovery of frequent tree structured patterns in semistructured
web documents. In PAKDD’01, Hong Kong, China.

8. J. Pei, et al. H-Mine: Hyper-structure mining of frequent patterns in large
databases. In ICDM’01, San Jose, CA.

9. J. Pei, et al. PrefixSpan: Mining sequential patterns efficiently by prefix-projected
pattern growth. In ICDE’01, Heidelberg, Germany.

10. R. Srikant and R. Agrawal. Mining generalized association rules. In VLDB’95,
Zurich, Switzerland.

11. J.T.L. Wang, et al. Automated discovery of active motifs in multiple RNA sec-
ondary structures. In KDD’96, Portland, Oregon.

12. K. Wang and H. Liu. Schema discovery for semistructured data. In KDD’97,
Newport Beach, CA.

13. M.J. Zaki. Efficiently mining frequent trees in a forest. In KDD’02, Edmonton,
Alberta, Canada.

