
Online Interval Skyline Queries on Time Series
Bin Jiang, Jian Pei

School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
{bjiang, jpei}@cs.sfu.ca

Abstract— In many applications, we need to analyze a large
number of time series. Segments of time series demonstrating
dominating advantages over others are often of particular inter-
est. In this paper, we advocate interval skyline queries, a novel type
of time series analysis queries. For a set of time series and a given
time interval [i : j], an interval skyline query returns the time
series which are not dominated by any other time series in the
interval. We illustrate the usefulness of interval skyline queries
in applications. Moreover, we develop an on-the-fly method
and a view-materialization method to online answer interval
skyline queries on time series. The on-the-fly method keeps the
minimum and the maximum values of the time series using radix
priority search trees and sketches, and computes the skyline at
the query time. The view-materialization method maintains the
skylines over all intervals in a compact data structure. Through
theoretical analysis and extensive experiments, we show that both
methods only require linear space and are efficient in query
answering as well as incremental maintenance.

I. INTRODUCTION

In many applications such as environment surveillance,
telecommunication, and finance market analysis, we need to
analyze a large number of time series. More often than not,
segments of time series demonstrating dominating advantages
over others are of particular interest.

Example 1 (Motivation): A power supplier needs to ana-
lyze the electricity consumption of different regions in the
service area. The power consumption in a region over time can
be captured by a time series. For illustration, Figure 1 shows
three synthesized time series of three regions in a monitoring
period June 15-23. An analyst may ask, “In the week of June
16-22, which regions have high power consumption?” Here,
June 16-22 is a query interval.

Region 2 is interesting to the analyst since it has the highest
average power consumption in the query interval. Moreover,
region 1 is also interesting since it has the highest power
consumption on June 20. The analyst may want to take a
closer look to find out the cause of the burst. On the other
hand, region 3 should not be returned to the analyst for this
query since the power consumption of region 3 on every day
in the query interval is lower than that of region 2.

To compare multiple time series in a query interval, it is
interesting to find the time series that are not subsumed by any
other time series. Technically, a time series s is interesting if,
in the query interval, there does not exist another time series
s′ such that s′ is better than s on at least one timestamp and
s′ is not worse than s on every timestamp. In order words,
s is a skyline point [1] if we consider each timestamp in the
query interval as a dimension and each time series as a point

6/16 6/17 6/18 6/19 6/20 6/21 6/226/15 6/23

region 1

region 2

region 3

Date

Query interval

Power consumption

Fig. 1. A set of power consumption time series.

in the space constructed as such. In this paper, we model such
queries as interval skyline queries.

We can easily give more application examples where inter-
val skyline queries are useful. For instance, consider finding
popular web pages in terms of the number of hits. A web
analytics manager may be interested in the popular pages in a
specific time interval. Page p1 is more popular than page p2 if
the number of hits of p1 is larger than or equal to the number
of hits of p2 on every day in the query interval, and p1 has
strictly more hits than p2 on at least one day.

Since the skyline operator was introduced to the database
community by Börzsönyi, et al. [1], a large amount of research
has been dedicated to developing efficient skyline computation
method. Can interval skyline queries be answered straightfor-
wardly using an existing skyline computation method?

A naı̈ve method is that, every time a query interval is given,
we apply an efficient skyline computation method on the time
series in the space formed by the query interval. However,
such a method is not efficient due to three reasons.

First, most of the existing skyline computation methods,
as analyzed in Section V, consider answering skyline queries
from scratch and thus cannot be applied directly for online
query answering. They also do not consider the incremental
maintenance against updates on adding and removing dimen-
sions, i.e., timestamps in the time series context.

Second, for two overlapping query intervals, the naı̈ve
method does not explore any sharing in computation. For
example, in Figure 1, after observing the skyline regions in
interval June 16-22, an analyst may further be interested in
the skyline regions in some other intervals such as June 19-
22 and June 1-30. While the naı̈ve method has to apply the
skyline computation on those intervals from scratch, can we



build some compact data structure so that the computation for
different intervals can share?

Last, most of the existing skyline computation methods can
handle low dimensional cases well, but may not be capable
in high dimensional cases. It is not rare at all that time series
contain at hundreds of or even more timestamps. Therefore,
how to efficiently answer interval skyline queries on intervals
of tens or hundreds of timestamps is far from trivial.

To address the above challenges, can we develop some
effective data structures and methods so that interval skyline
queries can be answered efficiently? Moreover, time series data
is often collected incrementally. The data structures have to be
maintainable with low cost for incremental updates.

There are a few recent studies on skyline computation
on data streams [2], [3], which consider how to efficiently
maintain the skyline points against a stream of data points
in a fixed space. Different from those studies, incremental
maintenance of data structures for online interval skyline
queries on time series have to address an orthogonal problem:
data on new timestamps as new dimensions keeps arriving
while the number of time series (i.e., data points in the context
of data streams) is fixed in our problem. Thus, the methods
in [2], [3] are not applicable here.

To the best of our knowledge, we are the first to model and
tackle the problem of interval skyline queries on time series
data. We make several contributions in this paper.

First, we model interval skyline queries, a novel type
of queries on time series data. We show that interval sky-
line queries are interesting. Second, we devise online query
answering methods. Particularly, we develop an on-the-fly
method and a view-materialization method to answer interval
skyline queries on time series. The on-the-fly method keeps
the minimum and the maximum values of the time series using
radix priority search trees and sketches, and computes the
skyline at the query time. The view-materialization method
maintains the skylines over all intervals in a compact data
structure. We also consider the incremental maintenance of
the data structures. Through theoretical analysis and extensive
experiments, we show that both methods only require linear
space and are efficient in query answering as well as incre-
mental maintenance.

The rest of the paper is organized as follows. In Section II,
we define interval skyline queries formally, and explore their
properties. We develop the on-the-fly method in Section III
and the view-materialization method in Section IV, followed
by an experimental study in Section VI. Finally, Section VII
concludes the paper.

II. INTERVAL SKYLINE QUERIES

A time series s consists of a set of (value, timestamp)
pairs. The data values are ordered with respect to the times-
tamps. To keep our discussion simple, we assume that all
timestamps take positive integer values. We denote the value of
s at timestamp i by s[i], and write a time series s as a sequence
of values s[1], s[2], . . .. We assume that all time series are

synchronized. That is, each time series s has a value s[i] on
a timestamp i > 0.

A (time) interval [i : j] (i ≤ j) specifies a range in time. Let
s[i : j] = s[i], s[i+1], . . . , s[j] (i ≤ j) denote the subsequence
of time series s in interval [i : j]. We write k ∈ [i : j] if
i ≤ k ≤ j. For two intervals [i1 : j1] and [i2 : j2], [i1 : j1] ⊆
[i2 : j2] if i2 ≤ i1 and j1 ≤ j2.

Time series s is said to dominate time series q in interval
[i : j], denoted by s Â[i:j] q, if ∀k ∈ [i : j], s[k] ≥ q[k]; and
∃l ∈ [i : j], s[l] > q[l].

Given a set S of time series and interval [i : j], the interval
skyline is the set of time series that are not dominated by any
other time series in [i : j], denoted by

Sky[i : j] = {s ∈ S|@s′ ∈ S, s′ Â[i:j] s}.
Interval skyline has the following property.

Property 1 (Interval skyline): Given a set S of time series
and an interval [i : j], time series s ∈ S is in Sky[i : j]
if there exist timestamps k1, . . . , kl (i ≤ k1 < · · · < kl ≤ j)
such that

∑l
x=1 s[kx]

l achieves the maximum among S on those
timestamps, and s is the only such a time series. That is,

s = arg max
s′∈S

{
∑l

x=1 s′[kx]
l

}.

Proof: We prove by contradiction. Assume
∑l

x=1 s[kx]

l
is the maximum and s is the only time series achieving the
maximum, but s 6∈ Sky[i : j]. Then, there must be another
time series s′ ∈ S, s′ 6= s such that s′ dominates s. Thus,
s′[kx] ≥ s[kx] for 1 ≤ x ≤ l and there exists 1 ≤ x0 ≤ l such
that s′[kx0 ] > s[kx0 ]. As a consequence,

l∑
x=1

s[kx] <

l∑
x=1

s′[kx].

Thus, ∑l
x=1 s[kx]

l
<

∑l
x=1 s′[kx]

l
.

In other words,
∑l

x=1 s[kx]

l is not the maximum, which leads
to a contradiction.

Property 1 is particularly interesting for interval skyline
queries on time series. Interval average aggregates are often
important for time series analysis. The answer to an interval
skyline query contains all time series which achieve the highest
average aggregate values on any subsets of timestamps. As
one application, an interval skyline query with an interval of
m timestamps can be used to obtain the answers to all average
aggregate queries on 2m−1 timestamp subsets. Interval skyline
queries can be very effective in time series analysis.

We note that the converse proposition of Property 1 does
not always hold, that is, a skyline time series may not have
the maximum sum value on any combination of timestamps.

Many time series applications involve continuous updates
over time. Recent data is often considered more important.
Therefore, it is practical to assume that we are always asked



TABLE I
A SUMMARY OF FREQUENTLY USED NOTIONS.

Notion Meaning
s, q time series.

[i : j] (i ≤ j) an interval.
Sky[i : j] the skyline in interval [i : j].

NRSky[i : j] the non-redundant skyline in [i : j].
tc the most recent timestamp.
w the size of the base interval.

W = [tc − w + 1 : tc] the base interval of time series.
n the number of time series in the data set.

to maintain the most recent w timestamps, where w can be a
large number. Let tc be the most recent timestamp. We call
interval W = [tc − w + 1 : tc] the base interval. Whenever a
new timestamp tc +1 comes, the oldest one tc−w+1 expires.
Consequently, the base interval becomes W ′ = [tc − w + 2 :
tc + 1]. This is similar to the sliding window model for data
stream analysis. In this paper, we tackle the following problem.

Problem Definition Given a set of time series S such that
each time series is in the base interval W = [tc − w + 1 :
tc], we want to maintain a data structure D such that any
interval skyline queries in interval [i : j] ⊆ W can be answered
efficiently using D.

Table I summaries the notions frequently used in this paper.

III. AN ON-THE-FLY METHOD

In this section, we give a simple on-the-fly method to
answer interval skyline queries. The on-the-fly method keeps
the minimum and the maximum values for each time series
and computes the interval skyline at query time.

We first present an interval skyline query answering algo-
rithm and then describe how to make it online.

A. An Interval Skyline Query Answering Algorithm

For time series s, let s.max denote the maximum value
of s in the base interval W , i.e., s.max = maxk∈W {s[k]}.
Let s.min[i : j] denote the minimum value of s in interval
[i : j] ⊆ W , i.e., s.min[i : j] = mink∈[i:j]{s[k]}.

Using the maximum values and the minimum values in
intervals of the time series, we can determine the domination
relation between some time series without checking the details.

Lemma 1 (Max-Min): For two time series p, q and interval
[i : j] ⊆ W , if s.min[i : j] > q.max, then s dominates q in
[i : j].

Proof: ∀k ∈ [i : j], s[k] ≥ s.min[i : j] > q.max ≥ q[k].
Thus, s dominates q in [i : j].

To some extent, for a time series s, s.max reflects the
capability of s not being dominated by other time series. If
s.max is small, likely s may be dominated by some other time
series since s has a value at most s.max on every timestamp.

Lemma 1 leads to Algorithm 1, a simple interval skyline
query answering algorithm. We iteratively process the time
series in S in their max value descending order. This order

Algorithm 1 The on-the-fly query algorithm.
Input: a set S of time series, an interval [i : j];
Output: the skyline in [i : j];
Description:

1: L = a sorted list of the time series in S in the descending
order of their s.max.

2: Sky = ∅;
3: maxmin = −∞;
4: let s be the first time series in L;
5: while L is not empty and maxmin ≤ s.max do
6: if no time series in Sky dominates s in [i : j] then
7: remove the time series from Sky dominated by s in

[i : j];
8: Sky = Sky ∪ {s}
9: maxmin = maxq∈Sky{q.min[i : j]};

10: end if
11: s = the next time series in L;
12: end while
13: return Sky;

TABLE II
A SET OF TIME SERIES DATA.

Time series Timestamps
ID 1 2 3 4 5 . . .
s1 4 3 2 5 5 . . .
s2 5 5 1 5 5 . . .
s3 2 2 5 3 4 . . .
s4 1 1 3 4 2 . . .
s5 3 4 4 1 3 . . .

TABLE III
THE SORTED LIST L IN ALGORITHM 1.

Time series s2 s3 s5 s1 s4

max 5 5 4 4 3
min[2 : 3] 1 2 4 2 1

is maintained in a sorted list L (line 1). We also keep the
skyline candidates in Sky. Let maxmin be the maximum
min[i : j] value of time series in Sky. For a time series s, if s
is not dominated by any time series in Sky, then s is a skyline
candidate (line 8); otherwise, s is discarded. Meanwhile, we
also remove false positives in Sky (line 7). maxmin is
updated accordingly (line 9). The algorithm terminates as early
as maxmin is greater than the max value of the next time
series in list L (line 5). Because the remaining time series in
the list all have max values less than maxmin, according to
Lemma 1, they are dominated.

Example 2 (The on-the-fly query algorithm): Table II
shows 5 time series. Suppose currently the data in interval
W = [1 : 3] is maintained. Let us compute the skyline in
interval [2 : 3].

Table III shows the sorted list L of the 5 time series along
with their max and min[2 : 3] values.

We first put s2 in the skyline candidate list and update
maxmin to 1. Then we process s3. s2 and s3 do not dominate
each other in [2 : 3]. Thus, s3 is pushed into the candidate list.



Fig. 2. An example of a radix priority search tree.

Consequently, maxmin = 2.
Next, s5 is processed and becomes a candidate. maxmin

is updated to 4. The next time series in list L is s1, which is
dominated by s5 and thus discarded. Now maxmin is larger
than s4.max, thus the algorithm terminates. Sky[2 : 3] =
{s2, s3, s5}.

Algorithm 1 is not ready for online query answering yet.
The algorithm needs to check the max value for each time
series. Moreover, the algorithm needs to check the min[i : j]
value for the query interval [i : j]. Checking those values
on-the-fly is apparently costly. Can we maintain a succinct
data structure so that those values can be obtained efficiently
online? Moreover, can the data structure be incrementally
maintained with low cost? We answer these questions in the
rest of this section.

B. Online Interval Skyline Query Answering

We use a radix priority search tree for each time series
to maintain the min[i : j] values for all possible intervals.
Moreover, we maintain a sketch to keep the max values for
each time series. In this subsection, we describe these data
structures and their incremental maintenance methods.

1) Radix Priority Search Tree: A radix priority search
tree [4] is a two-dimensional data structure that allows efficient
range queries where the ranges on at least one dimension are
unbounded. It is a hybrid of a heap on one dimension and a
binary search tree on the other dimension.

A radix priority search tree contains a set of points in a
two dimensional space (X, Y ). A tree node contains a range
[x1, x2] on dimension X and a data point p of the smallest
value on dimension Y among all points in the range [x1, x2]
on dimension X and not in any ancestor node. The range of
the root on dimension X is the domain of dimension X (we
assume that dimension X has a finite domain). Recursively,
the range of a node on dimension X is divided exactly in half.
The left half range on dimension X becomes the range of the
left child, and the right half goes to the right child. It is easy
to see that a radix priority search tree uses linear space with
respect to the number of points indexed.

Example 3 (Radix Priority search tree): Figure 2 shows a
radix priority search tree with 8 points. The root corresponds

to range [1, 8] on dimension X and contains p1 that has the
smallest value on dimension Y . The rest of the points are
divided into two partitions. p2, p4 and p5 are in the left
partition with range [1, 4] on dimension X; p3, p6, p7 and
p8 are in the right partition with range [5, 8] on dimension X .
Similarly, p2 and p3 are in the roots of the left and the right
subtrees, respectively. The tree is built recursively.

Using a radix priority search tree, we can find the point of
the smallest value on dimension Y among those whose values
on X dimension falling in a query range [lowX, highX].
We start with the root node N . If the point at N lies in
[lowX, highX] on dimension X , then the Y value of this
point is the solution. Otherwise, we recursively search the
subtrees whose ranges on X dimension overlap with the query
range until we find such a point. If both subtrees of N are
searched and two points are returned from the two subtrees,
the point with the smaller value on dimension Y is the answer.
[4] proves that finding the smallest Y value in a radix priority
search tree with h levels takes time O(h). Besides, an insertion
or a deletion operation only moves the existing nodes in the
radix priority search tree down or up along a single path in
the tree. Thus, those operations can be done in O(h).

2) Maintaining a Radix Priority Search Tree for Each
Time Series: A radix priority search tree involves one heap
dimension Y and one binary search tree dimension X . To
process a time series, we use the time dimension (i.e., the
timestamps) as the binary tree dimension X and the data
values as the heap dimension Y .

Since the base interval W always consists of w timestamps
represented by w consecutive natural numbers, we can apply
the module w operation to the timestamps of W , i.e., ∀k ∈
W , we map k into k mod w. By doing this, we map W
into a fixed domain of X , which is {0, . . . , w − 1}. Under
the mapping, the value at each timestamp of a time series
corresponds to one point in the radix priority search tree. This
fixed X domain results in a balanced radix priority search
tree with minimum height dlog we. Thus, we can obtain the
optimal performance in query answering and update using the
radix priority search tree.

Let tc be the most recent timestamp. Let wt = tc mod w.
Then, W = [tc − w + 1 : tc] is mapped into wt + 1, wt +
2, . . . , w− 1, 0, 1, . . . , wt with the timestamp order preserved.
When the new timestamp tc + 1 comes, the base interval
becomes W ′ = [tc−w+2 : tc+1]. The mapping of timestamps
k ∈ [tc − w + 2 : tc] does not change. Thus, those points in
the radix priority search tree corresponding to the values at
timestamps tc−w +2, . . . , tc do not need to be changed. The
new timestamp tc+1 and the expired timestamp tc−w+1 are
mapped to the same value wt + 1 in the X dimension. Thus,
they correspond to the same point in the radix priority search
tree. We only need to substitute the Y value of this point by
the value at the new timestamp. This can be done using at
most one insertion and one deletion on the tree which take
O(log w) time. The tree remains balanced after the update.



Example 4 (Radix Priority search tree mapping): Suppose
the current base interval is W = [1 : 3] and w = 3. The time
series s1 in Table II is mapped into 3 points (1, 4), (2, 3), and
(3, 2) in the radix priority search tree. When the base interval
becomes W ′ = [2 : 4], s1 is mapped into (1, 5), (2, 3), and
(3, 2). The Y value of the point with X = 1 is changed from
4 to 5.

3) Retrieving min[i : j] Values: In order to retrieve the
min[i : j] value in interval [i : j], we map [i : j] into the X
domain. Let wi = i mod w and wj = j mod w. One of the
following two cases may arise.
• If wi ≤ wj , then [i : j] is mapped into a single X-

interval [wi, wj ]. We query the radix priority search tree
for the point with the minimum Y value among the points
whose X values falling into range [wi, wj ]. The Y value
returned is min[i : j].

• If wi > wj , then [i : j] is mapped into two separate X-
intervals, [0, wj ] and [wi, w−1]. We issue two queries to
the radix priority search tree, respectively, for the points
with the minimum Y values among the points whose X
values falling into ranges [0, wi] and [wj , w− 1]. min[i :
j] is the smaller one between the two returned Y values.

Clearly, in each of the above two cases, the cost of finding
min[i : j] is O(log w).

4) Maintaining max Values Using Sketches: The space re-
quirement of maintaining the maximum element of a streaming
time series s in the base interval W is log w [5]. We represent
s as a set of (value, timestamp) pairs. We only maintain
pairs that have a value larger than the values in all pairs with
newer timestamps. That is, a pair (v, t) is maintained if there
is no other pair (v′, t′) such that v′ ≥ v and t′ > t. In this
way, we only keep log w pairs on average [6].

In fact, the set of w value-timestamp pairs can be
viewed as a set of w points in two dimensional space
(value, timestamp). The pairs maintained form the skyline
of this set of points if we prefer large values and large
timestamps on these two dimensions. Given w independently
distributed points, the expected number of points in the skyline
is O(log w) [6].

With the sketches, we can find the maximum value in the
base interval W in O(1) time. The average time cost for update
when a new timestamp arrives is O(log w).

Example 5 (Sketches for max values): Suppose the cur-
rent base interval is W = [1 : 3]. For time series s1 in Table II,
its sketch of max values consists of 3 value-timestamp pairs
(4, 1), (3, 2) and (2, 3). When the base interval becomes
W ′ = [2 : 4], the updated sketch contains only one pair (5, 4).

In Algorithm 1, all time series are sorted in the descending
order of their maximum values in W . When a new timestamp
arrives, the base interval changes. The maximum values of
some time series may also change. In real applications, the
variance of the values of a time series is often small within a
time interval. The variance of its maximum values is even

smaller. Thereby, after update, the previous sorted list is
substantially sorted with a few inversions. In this case, we
use insertion sort to re-sort the previous sorted list. Insertion
sort takes linear time O(w + d) where d is the number of
inversions.

For every time series, we use O(w) space to store a radix
priority search tree and O(log w) space to maintain the sketch
of the max values. The total space for n time series is O(nw).

The time costs for updating the radix priority search tree and
updating the sketch are both O(log w). Thus, the amortized
update cost is O(n log w).

IV. A VIEW-MATERIALIZATION METHOD

The on-the-fly method presented in the previous section
stores some critical statistics to answer interval skyline queries.
In this section, we tackle the interval skyline queries from an
angle other than the on-the-fly method. We explore how ma-
terialization of skylines can help to answer queries efficiently.

The view-materialization method maintains a set of non-
redundant interval skylines in the base interval. The base
interval with width w has w(w−1)

2 distinct sub-intervals. A
time series s is called a non-redundant skyline time series in
interval [i : j] if (1) s is in the skyline in interval [i : j]; and
(2) s is not in the skyline in any subinterval [i′ : j′] ⊂ [i : j].
In this case, we also call [i : j] a minimal skyline interval
of s. The non-redundant interval skyline of [i : j], denoted
by NRSky[i : j], consists of all non-redundant skyline time
series in [i : j].

Non-redundant interval skylines have the following prop-
erty.

Theorem 1 (Number of minimal skyline intervals): In a
base interval W of w timestamps, a time series s has at most
w minimal skyline intervals.

Proof: Assume that s has more than w minimal skyline
intervals. There are only w timestamps in the base interval W .
Due to the pigeonhole principle, there must be two different
skyline intervals [i : j1] and [i : j2] which share the same
starting timestamp. Since either j1 < j2 or j1 > j2, one of
the two intervals is not a minimal skyline interval.

Based on Theorem 1, the space to store all non-redundant
interval skylines is O(nw). When w is large, this is signifi-
cantly better than the O(nw2) space used to store the exact
interval skylines.

A. Query Answering Algorithm

Following with the definitions of non-redundant skyline and
minimal skyline interval, we immediately have the following
result.

Proposition 1 (Sub-interval skylines): Given a time series
s and an interval [i : j], if there does not exist an interval
[i′ : j′] ⊆ [i : j] such that s is a non-redundant skyline in
[i′ : j′], then s is not a skyline in interval [i : j].

According to Proposition 1, to find skylines in interval [i :
j], we only need to consider the non-redundant skylines whose



Algorithm 2 The view-materialization query algorithm.
Input: a set of non-redundant interval skylines, an interval

[i : j];
Output: the skyline in [i : j];
Description:

1: Sky = ∅;
2: for each interval [i′ : j′] ⊆ [i : j] do
3: for each time series s ∈ NRSky[i′ : j′] do
4: if no time series in NRSky[i′ : j′] dominates s in

[i : j] then
5: Sky = Sky ∪ {s};
6: end if
7: end for
8: end for
9: return Sky;

minimal skyline intervals are within [i : j]. The following rule
can be used to qualify the interval skyline-ship of such time
series.

Lemma 2 (Interval skyline): Given a time series s and an
interval [i : j], if for all interval [i′ : j′] ⊆ [i : j] such that
s ∈ NRSky[i′ : j′], s 6Â[i:j] s′ for any time series s′ ∈
NRSky[i′ : j′], then s ∈ Sky[i : j].

Proof: Assume s /∈ Sky[i : j]. Then, there exists another
time series q dominating s in [i : j]. Therefore, q[k] ≥ s[k]
for ∀k ∈ [i : j]. For any interval [i′ : j′] such that s ∈
NRSky[i′ : j′], either q Â[i′:j′] s or q is also in NRSky[i′ :
j′]. A contradiction.

Suppose all non-redundant interval skylines are material-
ized. Using Proposition 1 and Lemma 2, Algorithm 2 gives a
method to retrieve the skyline in interval [i : j] from the set
of non-redundant interval skylines. To compute the skyline in
interval [i : j], Algorithm 2 only unions the non-redundant
interval skylines over all intervals contained in [i : j] and
removes the false positives: those that fail Lemma 2. We note
that Proposition 1 and Lemma 2 are similar to Lemmas 1 and 2
in [7], respectively.

In general, the query time is linear to the number of time
series in Sky[i : j] with a small overhead for removing false
positives using Lemma 2.

Example 6 (The view-materialization query algorithm):
Suppose the current base interval is W = [2 : 4]. Table IV
shows the non-redundant interval skylines in all sub-intervals
for the set of time series in Table II. To compute the interval
skyline in [3 : 4], we union the non-redundant interval skylines
in [3 : 3], [4 : 4] and [3 : 4] to get the result {s1, s3, s4}. We
see that s2 is a false positive since it is dominated by s1 in
[3 : 4]. Clearly, s1 and s2 are both in NRSky[4 : 4].

Among a set of long time series, there can be many non-
redundant interval skylines. Now, the problem is how to
maintain those non-redundant interval skylines, which is the
topic of the next subsection.

TABLE IV
AN EXAMPLE OF NON-REDUNDANT SKYLINES.

Interval Non-redundant skyline
[2:2] {s2}
[3:3] {s3}
[4:4] {s1, s2}
[2:3] {s5}
[3:4] {s4}
[2:4] ∅

B. Maintaining Non-Redundant Interval Skylines

We divide all w(w−1)
2 intervals of the base interval W into

w exclusive partitions. The m-th partition consists of w−m+1
intervals whose left-end timestamps are tc − w + m. That is,
the m-th partition includes intervals [tc − w + m : tc − w +
m], . . . , [tc − w + m : tc] (1 ≤ m ≤ w).

When a new timestamp tc + 1 arrives, the base interval
becomes W ′ = [tc − w + 2 : tc + 1]. We classify the updates
of non-redundant interval skylines into three cases.
• Case 1: all intervals in the first partition are discarded,

since tc − w + 1 expires.
• Case 2: all existing non-redundant interval skylines in

the intervals in the m-th partition (2 ≤ m ≤ w) remain
unchanged.

• Case 3: one new interval [tc − w + m : tc + 1] is added
to each partition except for the first one due to the new
timestamp.

In Case 3, we need to compute the non-redundant skyline
in the new intervals. Here, we employ a shared divide-and-
conquer algorithm [8] (SDC for short). However, with very
high dimensionality (e.g. w = 1, 000) and large data set
(e.g., 100, 000 time series), SDC is inefficient. Moreover,
we have to remove redundant time series to obtain the non-
redundant interval skylines. We develop a three-step procedure
to improve SDC.
• Step 1: We compute the skyline over the new base

interval W ′ = [tc − w + 2 : tc + 1] and find possible
false negatives if there is any.

• Step 2: We apply the shared divide-and-conquer algo-
rithm to compute the interval skylines in all new intervals
with the result of Step 1 as input, which is often much
smaller than the whole set of time series.

• Step 3: We convert interval skylines into non-redundant
interval skylines.

We explain each step in a subsequent section in detail.

1) Step 1: We can use the on-the-fly algorithm to obtain
the interval skyline in the new base interval W ′. However,
instead of computing it from scratch, we compute it from the
interval skyline in the previous base interval W . Intuitively, if
a time series is in the interval skyline in W , it is very likely
to be in the interval skyline in W ′ because only one attribute
changes. In fact, if s is in the interval skyline in W , we can
quickly eliminate time series that cannot dominate s in W ′ by
checking the values at the expiring timestamp tc −w + 1 and
the new timestamp tc + 1 using the following rule.



Lemma 3 (Interval skyline update): Given two time series
s and q such that s is in the skyline of the previous base
interval W = [tc − w + 1 : tc]. If q[tc + 1] < s[tc + 1] or
q[tc − w + 1] > s[tc − w + 1], then q cannot dominate s in
the new base interval W ′ = [tc − w + 2 : tc + 1].

Proof: If q[tc+1] < s[tc+1], obviously, by the definition
of the dominance relation, q does not dominate s in W ′.

If q[tc − w + 1] > s[tc − w + 1], suppose q dominate s in
W ′, then q[k] > s[k] for ∀k ∈ [tc − w + 2 : tc]. Therefore,
q dominates s in W , contradicting that s is in the interval
skyline in W .

If s is in the interval skyline in W , when determining the
skyline membership of s in W ′, by Lemma 3, we do not
compare s with time series q if q[tc + 1] < s[tc + 1] or q[tc−
w + 1] > s[tc − w + 1]. Suppose the probability that q[tc +
1] < s[tc + 1] is p, and the values at different timestamps
are independent, then the probability that q[tc − w + 1] >
s[tc−w+1] is 1−p. Therefore, 1−p(1−p)×100% time series
do not need to compare with s. Apparently, 1−p(1−p) ≥ 0.75.
In order words, Lemma 3 provides a good pruning power.

Given an interval [i : tc + 1] ⊂ W ′, is a time series in
Sky[i : tc + 1] also in Sky[W ′]?

Lemma 4 (False negatives): Given an interval [i : tc +1] ⊂
W ′ = [tc−w+2 : tc+1] and a time series s ∈ Sky[i : tc+1],
s ∈ W ′ if there does not exist another time series q ∈ Sky[i :
tc + 1] such that s and q have the same value at timestamp
tc + 1.

Proof: If s 6∈ Sky[W ′], there exists another time series
q in the interval skyline in W ′ such that q ÂW ′ s. Then,
∀k ∈ W ′, q[k] ≥ s[k]. If q[tc+1] > s[tc+1], then q Â[i:tc+1] s
since [i : tc + 1] ⊂ W ′, contradicting that s is in the interval
skyline in [i : tc + 1]. Thus, q[tc + 1] = s[tc + 1].

Example 7 (False negatives): In the example shown in Ta-
ble II, the interval skyline of interval [3 : 5] consists of s1,
s3, s4, and s5. s2 is not in this interval skyline since s1

dominates s2 in [3 : 5]. However, s2 is in the skyline of interval
[5 : 5] ⊂ [3 : 5]. So s2 is a false negative when we perform
the update. Clearly, s2 has the same value (i.e., 5) as s1 at
timestamp 5.

By Lemma 4, to compute the interval skylines in intervals
[tc−w + 2 : tc + 1], [tc−w + 3 : tc + 1], . . . , [tc + 1 : tc + 1],
we only need to consider the interval skyline in W ′ and the
time series with the same value as those skyline time series
in W ′ at the new timestamp. Therefore, the input for SDC in
step 2 is significantly reduced.

2) Step 2: Now, we present the shared divide-and-conquer
algorithm (SDC for short) that can share the computation when
we compute the interval skylines for multiple new intervals
[tc − w + 2 : tc + 1], . . . , [tc + 1 : tc + 1].

The shared divide-and-conquer [8] is the extension of the
divide-and-conquer algorithm (DC for short) for computing the
skyline in a single space. In our problem of interval skyline,

(a) Dividing at timestamp 3.

(b) Merging. (c) Dividing at timestamp 2.

(d) Filtering. (e) Merging.

Fig. 3. An example of SDC.

a space is defined as a time interval. Both DC and SDC
process in two steps – dividing and merging. In SDC, the
computation of the two steps for multiple related spaces is
shared. Therefore, it is much more efficient than computing
the skyline in each space separately.

The related spaces (intervals) have to be organized as a path.
For example, a set of intervals [j : j], [j − 1 : j], . . . , [i : j]
(i < j) form an interval path where each interval contains
all preceding intervals. A skylist data structure is developed
to store the intermediate results of the skylines over a path
of intervals during the computation. The skylist for the above
example has j − i + 1 elements where the k-th element (0 ≤
k ≤ j− i) stores time series that are in the interval skyline in
interval [j−k : j] and do not appear in the preceding elements.

Let us describe SDC through an example.

Example 8 (SDC): Table II lists 5 time series. We are going
to compute the skylines in intervals [3 : 3], [2 : 3], and [1 : 3].
Figure 3 shows the procedure of SDC. At the beginning,
we put all 5 time series in the first element of skylist l1
corresponding to interval [3 : 3].

Next, SDC recursively divides l1 on timestamp 3 (Fig-
ure 3(a)). We have 5 skylists that contain only one time series
thus cannot be further partitioned. Then we go to the merging
phase (Figure 3(b)). It is trivial to merge l4 and l5 since only
one comparison is required. In this iteration, s3 dominates s5

in [3 : 3], therefore s5 cannot be in the skyline of [3 : 3]. We
push s5 into the next element [2 : 3]. Similarly, l8 and l9 are
merged into l10 that is further merged with l7 into l12, and s1

and s2 are pushed into the second element.
Then, we divide the previous skylists on timestamp 2

(Figure 3(c)). Figure 4 shows the projection of the 5 time
series on timestamps 2 and 3 and the corresponding skylists
after the partitioning. Clearly, we do not need to compare the
time series in l14 and the time series in l15. We only need to
compare l13 and 15, l14 and l16, l13 and l16, respectively. This



Fig. 4. The projection after the dividing of Figure 3(c).

is how DC and SDC avoid redundant comparisons.
Figure 3(d) shows that we use l13 to filter l15. That is, each

time series in l15 is compared with all time series in l13. s5

does not dominate s2 over [2 : 3], so s2 stays in the second
element in l17. When filtering l16, s3 dominates s4 over [1 : 3],
s4 is removed from the skylist l18. Then l18 is filtered by l13.

Finally, in Figure 3(e) we merge l13, l14, l17 and l19 to
get the final result l20. Thus, Sky[1 : 3] = {s1, s2, s3, s5},
Sky[2 : 3] = {s2, s3, s5} and Sky[3 : 3] = {s3}.

By the definition of skylist, a time series can only appear
in one element. However, an element of the final skylist is
not the non-redundant interval skyline of the corresponding
time interval. That is, a skylist still may contain redundancy.
For example, s2 is in the second element of the final skylist,
namely, s2 is in the interval skyline in [2 : 3]. However, we can
easily see that s2 is in the interval skyline of [2 : 2], s2[2] = 5
which is the largest value at timestamp 2 among the 5 time
series. Thereby, s2 is not in the non-redundant interval skyline
in [2 : 3]. We develop a method to remove the redundant time
series in Step 3.

3) Step 3: Given the interval skyline (or the corresponding
element of a skylist) in an interval [k : tc + 1], we have to
remove “redundant time series” s ∈ Sky[k : tc + 1] such that
s ∈ Sky[i : j] and [i : j] ⊂ [k : tc + 1]. This can be done in
O(1) time for each time series by comparing [k : tc + 1] with
the most recent minimal skyline interval of s.

Recall that an interval is a minimal skyline interval of s
if s is in the non-redundant interval skyline in this interval.
The most recent minimal skyline interval of s is the minimal
skyline interval of s whose left-end timestamp is the newest
(i.e., the largest) among all minimal skyline intervals of s.
Formally, [i : j] is the most recent minimal skyline interval of
s if s ∈ NRSky[i, j] and there exists no interval [i′ : j′] such
that s ∈ NRSky[i′ : j′] and i′ > i.

Example 9 (The most recent minimal skyline interval):
Suppose the base interval is W = [2 : 4]. From Table IV,
we see that time series s2 has two minimal skyline intervals,
[2 : 2] and [4 : 4]. So [4 : 4] is the most recent minimal
skyline interval of s2.

Whether a time series is redundant in a new interval [k :
tc + 1] can be determined using the following rule.

Lemma 5 (Non-reduandant interval skyline): For a given
time series s in the skyline in a new interval [k : tc + 1],
let [i : j] be the most recent minimal skyline interval of s.
s ∈ NRSky[k : tc + 1] if and only if i < k.

Proof: (Direction only-if) If s ∈ NRSky[k : tc + 1],
since tc + 1 is the newest timestamp, tc + 1 > j. If i ≥ k,
then [i : j] ⊂ [k : tc + 1], resulting in a contradiction.

(Direction if) If i < k, suppose s /∈ NRSky[k : tc+1], then
there exists an interval [i′ : j′] such that s ∈ NRSky[i′ : j′]
and [i′ : j′] ⊂ [k : tc + 1]. Thus, i′ ≥ k > i which contradicts
that [i : j] is the most recent minimal skyline interval.

C. Complexity Analysis

We show before that the space complexity of the view-
materialization method is O(nw), linear with respect to the
total number of data elements. The update operation is efficient
because Step 1 significantly reduces the number of time
series involved in the shared divide-and-conquer algorithm.
The query time is proportional to the number of time series in
the solution plus a small overhead for false positive detection.

V. RELATED WORK

In computational geometry, Kung et al. [9] first investigate
skylines referred as maxima. Börzsönyi et al. [1] introduce
the concept of skylines in the context of databases and
propose a SQL syntax for skyline queries. They also develop
the block-nested-loop and the divide-and-conquer algorithms.
Chomicki et al. [10] propose the sort-filter-skyline algorithm
(SFS for short) to take the advantages of pre-sorting. The
SFS algorithm is further improved by Godfrey et al. [11].
Tan et al. [12] develop a progressive skyline algorithm. Koss-
mann et al. [13] present an algorithm based on the nearest
neighbor search. Papadias et al. [14] propose a branch-and-
bound algorithm using the R-tree index.

Recently, skyline computation has been extended from full
space to multiple subspaces [15], [8], [16], [7], [17]. Tao et
al. [18] propose the SUBSKY method to index multidimen-
sional data points using a B+-tree for subspace skyline queries.

In the context of data stream processing, Lin et al. [2],
Tao et al. [3], and Morse et al. [19], [20] consider the
problem of continuously processing skyline queries against a
data stream of multidimensional data points.

Most of the previous studies focus on data sets of low di-
mensionality, and assume that the set of attributes (dimensions)
are given and do not change over time. Moreover, they only
consider updates at the object level, that is, updating the sky-
line when some points are inserted or deleted. However, in our
problem, the dimensionality is extremely high (e.g., an interval
of hundreds of timestamps), and an attribute is generated at
each new timestamp, resulting in the updates of all time series.
Thus, time series data raises several new challenges which
cannot be addressed efficiently by the previous work.

Skyline analysis is also extended in various aspects, in-
cluding computing skylines in a distributed environment [21],



-3

-2

-1

 0

 1

1 10 20 30

va
lu

e

timestamp

(a) σ = 0.1.

-3

-2

-1

 0

 1

 2

 3

1 10 20 30

va
lu

e

timestamp

(b) σ = 0.5.

-3

-2

-1

 0

 1

 2

 3

 4

1 10 20 30

va
lu

e

timestamp

(c) σ = 0.9.

Fig. 5. Synthetic data sets with different standard deviation σ.

[22] and for partially-ordered domains [23], approximate sky-
line computation [24], high dimensional skylines [25], [26],
handling and learning flexible user preferences in skyline
queries [27], [28], [29], and materializing dominance relation-
ships [30].

Last, in [31], a group of time series are approximated and
represented by a “skyline bounding region”, which is a region
surrounded by a “top skyline” and a “bottom skyline”. Here,
the top skyline is a synthesized time series whose value at
each timestamp is the maximum value of all time series in the
group. The bottom skyline takes the minimum values at time
stamps. [31] shows that using the skyline bounding regions
in a skyline index can facilitate similarity search substantially.
Clearly, the notion of “skyline” in [31] is completely different
from our problem definition. Consequently, the methods are
completely different.

VI. EMPIRICAL STUDY

We conduct extensive experiments to study the query cost
and the update cost of the on-the-fly algorithm and the view-
materialization algorithm, using both synthetic data sets and
a stock data set. All algorithms are implemented in C++ and
compiled by GCC. We conduct experiments on an Intel Core
2 Duo 2.2GHz PC with 1GB memory running Ubuntu Linux
7.04 operating system.

A. Synthetic Data Sets

A synthetic data set consists of n time series. We first
generate the means µi (1 ≤ i ≤ n) of all n time series using
a standard normal distribution N (0, 1). Then each time series
si follows a normal distribution N (µi, σ) with the mean µi

and standard deviation σ. In our experiments, we vary the
number of time series n from 20, 000 to 100, 000 and the
standard deviation σ from 0.1 to 0.9. By default, n = 60, 000
and σ = 0.5. The size w of the base interval is between 100
and 500, we use 300 as the default value. To study the query
efficiency, we issue interval skyline queries with interval size
m from 50 to 250, and set 150 as the default value. Table V
summaries the above experiment parameters, the default values
are shown in bold font. In the following report, we run every

TABLE V
A SUMMARY OF EXPERIMENT PARAMETERS

Parameter Values
n 20k, 40k,60k, 80k, 100k
σ 0.1, 0.3,0.5, 0.7, 0.9
w 100, 200,300, 400, 500
m 50, 100,150, 200, 250

experiment 100 times on different data sets with the same
setting and report the average result.

1) Data Sets Properties: We first study the properties of
the synthetic data sets in order to understand the difficulty of
interval queries on time series. Figures 5(a), (b), and (c) plot
three data sets with the standard deviation σ of time series 0.1,
0.5, and 0.9, respectively. Each data set has 10 time series of
30 timestamps.

[1] proposes three benchmark distributions for skyline com-
putation – correlated, independent, and anti-correlated. When
σ is small (σ = 0.1 in Figure 5(a)), the values of a time series
are stable. The data set can be considered as a correlated data
set; while σ is large (Figure 5(c)), the values of a time series
fluctuate dramatically. So the data set is similar to an anti-
correlated data set.

Figure 6 shows that the percentage of the number of
time series in the interval skyline with respect to various
parameters. In Figure 6(a), the percentage of skyline increases
exponentially when the standard deviation σ increases. This
is similar to the case of traditional skyline study where the
number of skyline points is small in correlated data sets while
much larger in anti-correlated data sets.

Figure 6(b) shows that, when the cardinality of the data
set increases from 20, 000 to 100, 000, the skyline percentage
decreases. Although the absolute number of the time series in
the skyline increases, the probability of a time series being
in the skyline decreases, since it is easier to be dominated by
other time series in a larger data set.

Figure 6(c) shows that the skyline percentage increases
linearly with respect to the query interval size. The larger
the query interval, the more chances that a time series is not
dominated in the interval.



0.01%

0.1%

1%

10%

0.1 0.3 0.5 0.7 0.9

sk
yl

in
e 

pe
rc

en
ta

ge

(a) Effect of the standard deviation σ.

0%

0.5%

1%

1.5%

2%

20k 40k 60k 80k 100k

sk
yl

in
e 

pe
rc

en
ta

ge

(b) Effect of the number of time series n.

0%

0.5%

1%

1.5%

50 100 150 200 250

sk
yl

in
e 

pe
rc

en
ta

ge

(c) Effect of the interval size m.

Fig. 6. The number of time series in interval skylines.

10-5

10-4

10-3

10-2

10-1

100

101

0.1 0.3 0.5 0.7 0.9

tim
e 

(s
)

NA OTF VM

(a) Effect of the standard deviation σ.

10-4

10-3

10-2

10-1

100

20k 40k 60k 80k 100k

tim
e 

(s
)

NA OTF VM

(b) Effect of the number of time series n.

10-5

10-4

10-3

10-2

10-1

100

50 100 150 200 250

tim
e 

(s
)

NA OTF VM

(c) Effect of the interval size m.

Fig. 7. The query time on synthetic data sets.

10-2

10-1

100

101

102

0.1 0.3 0.5 0.7 0.9

tim
e 

(s
)

OTF
VM

(a) Effect of the standard deviation σ.

 0

 0.2

 0.4

 0.6

 0.8

20k 40k 60k 80k 100k

tim
e 

(s
)

OTF
VM

(b) Effect of the number of time series n.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

100 200 300 400 500

tim
e 

(s
)

OTF
VM

(c) Effect of the base interval size w.

Fig. 8. The update time on synthetic data sets.

2) Query Efficiency: We compare the query efficiency
of the on-the-fly algorithm (OTF), the view-materialization
algorithm (VM), and a naive algorithm (NA) that computes
the interval skyline using the Sort-filter-skyline algorithm
(SFS) [10]. By default, we use data sets with n = 60, 000
time series and σ = 0.5. The default size of the query interval
is m = 150.

Figure 7 plots the running time in logarithm scale of the
three algorithms in different experiment settings. It is clear
that VM is the fastest among the three algorithms in every
setting. VM can answer more than 1, 000 queries in 1 second.
And it is always thousands of times faster than NA. OTF is
also much faster than NA in most cases.

Figure 7(a) shows the trend of the query time with respect
to the variation of time series. OTF is very sensitive to the
variation. It is as fast as VM on data sets with low variations

(σ = 0.1); while it is as slow as NA on data sets with σ = 0.9.
Figure 7(b) shows the effect of the number of time series
on the query time. The query time of all three algorithms
increases approximately linearly. In Figure 7(c), we also see
that the query time goes up slightly when the size of the query
interval increases from 50 to 250.

3) Update Efficiency: Figure 8 studies the update efficiency
of OTF and VM. Generally, VM has greater update cost than
OTF. Figure 8(a) is in logarithm scale. It shows that the update
time of OTF increases slowly when σ increases, since the
change of the variation of time series does not affect the update
of the radix priority search trees or the sketches of maximum
values. Only the cost of the insertion sort increases because
when σ is large, the ordered list may vary a lot after an update.
However, the update cost of VM raises dramatically. For a



0.1%

1%

10%

100%
200%
400%

0.1 0.3 0.5 0.7 0.9

in
de

x 
sp

ac
e 

pe
rc

en
ta

ge

OTF VM

(a) Effect of the standard deviation σ.

0.1%

1%

10%

100%
200%
400%

20k 40k 60k 80k 100k

in
de

x 
sp

ac
e 

pe
rc

en
ta

ge

OTF VM

(b) Effect of the number of time series n.

0.1%

1%

10%

100%
200%
400%

100 200 300 400 500

in
de

x 
sp

ac
e 

pe
rc

en
ta

ge

OTF VM

(c) Effect of the base interval size w.

Fig. 9. The space usage of data structures.

10-6

10-5

10-4

10-3

10-2

10-1

50 100 150 200 250

tim
e 

(s
)

NA OTF VM

(a) The query time w.r.t. the interval size m.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

100 200 300 400 500

tim
e 

(s
)

OTF VM

(b) The update time w.r.t. the base interval size
w.

Fig. 10. Experiments on stock data sets.

data set with large σ, the number of time series in the skyline
is large. Therefore, the input of the SDC algorithm is large,
resulting in the performance decrease of VM update.

Figure 8(b) and (c) show that the update cost of both
algorithms increases linearly with respect to the number of
time series in the data set and the size of the base interval,
respectively.

4) Space Cost: In this subsection, we study the space usage
of the data structures used in OTF and VM. Let r be the space
to store one data element in one time series at one timestamp.
Then a data set with n time series of w timestamps occupies
nwr space. Figure 9 plots the ratio in percentage of the space
used by an index against the size of the raw data set. We
notice that the space used by OTF is always about 2 times of
the size of the data set, and it is not sensitive to the change of
the standard deviation, the number of time series, or the base
interval size. Because for one time series, a radix priority tree
needs O(2w) space to maintain the links of the tree structure,
and the space of the sketches is O(log w) in expectation which
is relatively small.

Surprisingly, VM only uses less than 3% space because
it only stores the non-redundant interval skylines. But the
space usage of VM varies on different data sets since it
depends on the number of time series in interval skylines.
Figure 9(a) shows that the percentage of the space used to
store non-redundant interval skylines increases exponentially
as the variance of time series increases. In Figure 9(b), the

percentage decreases when the number of time series raises,
though the absolute space used by VM increases. This is
similar to the trend of the number of time series in interval
skylines described in Figure 6(b). Figure 9(c) shows that
the percentage increases when the size of the base interval
increases.

B. Stock Data Sets

We use the stock data from the Center for Research in Secu-
rity Prices (http://www.crsp.com/) which provides his-
torical data of stocks listed on the NYSE, AMEX, NASDAQ,
and ARCA exchanges. Our data set consists of 4720 stocks.
Each stock is a time series of the daily dollar volume between
2003 and 2007. The daily dollar volume is approximated by
the product of the closing price and the daily volume. We say
a stock s1 dominates another stock s2 in a time interval, if
the dollar volume of s1 is not less than that of s2 on every
day, and s1 has strictly greater dollar volume than s2 on one
day in this time interval. A stock is in the interval skyline if
it is not dominated by any other stock in this interval. It is
reasonable to say that a stock is active during a period if it is
in the interval skyline of this period.

Figure 10(a) shows that VM and OTF both outperform the
naive algorithm by 3 orders of magnitude for query answering.
However, different to the results on synthetic data sets, OTF
has better query performance than VM. The reason is that there
are less than 10 stocks in the interval skylines. OTF can benefit



from the early termination strategy in Algorithm 1; while
VM still has to scan all sub-intervals of the query interval
to retrieve the interval skyline.

Figure 10(b) shows that both VM and OTF are efficient for
update on the stock data set. They can handle hundreds of
updates in 1 second.

In summary, the on-the-fly algorithm and the view-
materialization algorithm are efficient for query answering and
incremental updates on both synthetic data sets and the stock
data set. In general, the view-materialization algorithm has
better query performance while the on-the-fly algorithm has
smaller update cost.

VII. CONCLUSIONS

In this paper, we tackle the problem of computing skylines
on time series data. We advocate interval skyline queries,
a novel type of time series analysis queries. We propose
two interesting methods: the on-the-fly method and the view-
materialization method. Both methods use linear space. An
extensive experimental study shows that both methods are
efficient for query answering and increment maintenance.

As future work, it is interesting and challenging to tackle
the problem of interval skyline queries on streaming time
series. Moreover, it is interesting to consider summarization
of skylines on time series.

ACKNOWLEDGEMENT

This work was supported in part by an NSERC Discovery
Grant, an NSERC Discovery Accelerator Supplements Grant,
and a grant from the Simon Fraser University Community
Trust Endowment Fund. All opinions, findings, conclusions
and recommendations in this paper are those of the authors and
do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,”
in Proc. 2001 Int. Conf. Data Engineering (ICDE’01), Heidelberg,
Germany, April 2001.

[2] X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the sky: Efficient
skyline computation over sliding windows,” in Proc. 2005 Int. Conf.
Data Engineering (ICDE’05), Tokyo, Japan, April 2005.

[3] Y. Tao and D. Papadias, “Maintaining sliding window skylines on data
streams,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 2, pp. 377–391,
2006.

[4] E. M. McCreight, “Priority search trees,” SIAM J. Comput., vol. 14,
no. 2, pp. 257–276, 1985.

[5] M. Garofalakis, J. Gehrke, and R. Rastogi, Data Stream Management:
Processing High-Speed Data Streams (Data-Centric Systems and Appli-
cations). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[6] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson, “On
the average number of maxima in a set of vectors and applications,” J.
ACM, vol. 25, no. 4, pp. 536–543, 1978.

[7] T. Xia and D. Zhang, “Refreshing the sky: the compressed skycube
with efficient support for frequent updates,” in Proceedings of the
2006 ACM SIGMOD international conference on Management of data
(SIGMOD’06). New York, NY, USA: ACM Press, 2006, pp. 491–502.

[8] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang, “Efficient
computation of the skyline cube,” in Proceedings of the 31th Interna-
tional Conference on Very Large Data Bases (VLDB’05), Trondheim,
Norway, August 2005.

[9] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of
a set of vectors,” J. ACM, vol. 22, no. 4, pp. 469–476, 1975.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with pre-
sorting,” in Proc. 2003 Int. Conf. Data Engineering (ICDE’03), Banga-
lore, India, March 2003, p. 717.

[11] P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector computation in
large data sets,” in Proceedings of the 31th International Conference on
Very Large Data Bases (VLDB’05), Trondheim, Norway, August 2005.

[12] K. Tan, P. Eng, and B. Ooi, “Efficient progressive skyline computation,”
in Proc. 2001 Int. Conf. on Very Large Data Bases (VLDB’01), 2001.
[Online]. Available: citeseer.nj.nec.com/455285.html

[13] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: an
online algorithm for skyline queries,” in Proc. 2002 Int. Conf. on Very
Large Data Bases (VLDB’02), Hong Kong, China, Aug. 2002.

[14] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive
algorithm for skyline queries,” in Proc. 2003 ACM SIGMOD Int. Conf.
on Management of Data (SIGMOD’03), San Diego, California, June
2003.

[15] J. Pei, W. Jin, M. Ester, and Y. Tao, “Catching the best views in
skyline: A semantic approach,” in Proceedings of the 31th International
Conference on Very Large Data Bases (VLDB’05), Trondheim, Norway,
August 2005.

[16] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao,
J. X. Yu, and Q. Zhang, “Towards multidimensional subspace skyline
analysis,” ACM Trans. Database Syst., vol. 31, no. 4, pp. 1335–1381,
2006.

[17] J. Pei, A. W. C. Fu, X. Lin, and H. Wang, “Computing compressed
skyline cubes efficiently,” in Proceedings of the 23nd International
Conference on Data Engineering (ICDE’07). Istanbul, Turkey: IEEE,
April 2007.

[18] Y. Tao, X. Xiao, and J. Pei, “Subsky: Efficient computation of skylines
in subspaces,” in Proceedings of the 22nd International Conference on
Data Engineering (ICDE’06). Atlanta, GA, USA: IEEE, April 2006.

[19] M. D. Morse, J. M. Patel, and W. I. Grosky, “Efficient continuous skyline
computation,” in Proceedings of the 22nd International Conference on
Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, 2006,
p. 108.

[20] M. D. Morse, J. M. Patel, and W. Grosky, “Efficient continuous skyline
computation,” Inf. Sci., vol. 177, no. 17, pp. 3411–3437, 2007.

[21] W.-T. Balke, U. Güntzer, and J. X. Zheng, “Efficient distributed skylining
for web information systems.” in EDBT, 2004, pp. 256–273.

[22] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi, “Skyline queries against
mobile lightweight devices in manets,” in Proceedings of the 22nd
International Conference on Data Engineering (ICDE’06). Atlanta,
GA, USA: IEEE, April 2006.

[23] C. Y. Chan, P.-K. Eng, and K.-L. Tan, “Stratified computation of skylines
with partially-ordered domains,” in SIGMOD Conference, 2005, pp.
203–214.

[24] V. Koltun and C. H. Papadimitriou, “Approximately dominating repre-
sentatives,” vol. 371, no. 3. Essex, UK: Elsevier Science Publishers
Ltd., 2007, pp. 148–154.

[25] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,
“On high dimensional skylines,” in EDBT, 2006, pp. 478–495.

[26] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,
“Finding k-dominant skylines in high dimensional space,” in SIGMOD
Conference, 2006, pp. 503–514.

[27] R. C.-W. Wong, J. Pei, A. W.-C. Fu, and K. Wang, “Mining favorable
facets,” in KDD ’07: Proceedings of the 13th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. New York,
NY, USA: ACM, 2007, pp. 804–813.

[28] B. Jiang, J. Pei, X. Lin, D. W.-L. Cheung, and J. Han, “Mining prefer-
ences from superior and inferior examples,” in KDD ’08: Proceedings
of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. New York, NY, USA: ACM, 2008.

[29] R. C.-W. Wong, A. W.-C. Fu, J. Pei, Y. S. Ho, T. Wong, and Y. Liu,
“Efficient skyline querying with variable user preferences on nominal
attributes,” in VLDB ’08: Proceedings of the 34th International Confer-
ence on Very Large Databases. New York, NY, USA: ACM, 2008.

[30] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang, “Dada: a data cube for
dominant relationship analysis,” in SIGMOD ’06: Proceedings of the
2006 ACM SIGMOD international conference on Management of data.
New York, NY, USA: ACM, 2006, pp. 659–670.

[31] Q. Li, I. F. V. López, and B. Moon, “Skyline index for time series data,”
IEEE Trans. Knowl. Data Eng., vol. 16, no. 6, pp. 669–684, 2004.


