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Abstract

Trustworthy data processing, which ensures the credibil-
ity and irrefutability of data, is crucial in many business ap-
plications. Recently, the Write-Once-Read-Many (WORM)
devices have been used as trustworthy data storage. Nev-
ertheless, how to efficiently retrieve data stored in WORM
devices has not been addressed sufficiently and thus re-
mains a grand challenge for large trustworthy databases.
In this paper, we describe a trustworthy search tree frame-
work (called TS-tree), which is a simple yet effective non-
alterable search tree index for trustworthy databases. It
can take the role of B-trees in trustworthy databases to an-
swer various queries including range queries. It is efficient
and scalable on large databases. A systematic simulation
verifies our design.

1 Introduction

Many regulations, such as Sarbanes-Oxley Act by the
Congress of the USA, the USA Patriot Act, HIPAA, the
European Union Data Protection Directive, and SEC Rule
17a-4 by the Securities and Exchange Commission, require
that electronic data records must be trustworthy. To meet
the regulations on trustworthy data storage, the Write-Once-
Read-Many (WORM) devices have been used. In May
2003, the Securities and Exchange Commission (SEC) clar-
ified that any electronic storage system could be used, pro-
vided that it meets the non-rewritable and non-erasable re-
quirements. In the light of the regulations, both the optical
WORM storage systems and the hard-drive-based WORM
storage systems such as IBM TotalStorage DR550 and IBM
Tivoli Storage Manager for Data Retention can be used.

Conceptually, in a WORM device, a unit of storage (e.g.,
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a byte or a word) can be in one of the two states: unset or
set. A unit is in this state if the unit has not been used yet,
i.e., no data is stored into this unit. A unit is set when a
data entry is written into it. Once a unit is set, it cannot be
rewritten or altered.

While most of the existing techniques focus on how
to fulfill the non-rewritable and non-erasable requirements,
how to efficiently retrieve the data stored in WORM devices
remains a grand challenge and has not been addressed suffi-
ciently. Without a proper index, searching a large database
by linear scans can be costly. However, to make the ac-
cess to a non-rewritable and non-erasable database trustwor-
thy, the index itself must also be non-rewritable and non-
erasable. Otherwise, the data stored in the WORM storage
can be hidden or altered in the query results. Clearly, most
of the existing indexing techniques in database systems do
not satisfy the requirement – they are neither non-rewritable
nor non-erasable in incremental maintenance.

In a pioneering study [9], Zhu and Hsu established the
linchpin of trustworthy indexes as the following five re-
quirements. First, once a record is committed to a WORM
storage, the record and the path to access the record must
also be committed and immutable. Second, the index must
be incrementally maintainable, and be scalable to large
databases. Third, the data must be searchable using the
index efficiently. Fourth, the cost of the index in space must
be reasonable. Last, a record should be destroyed when it
is expired. They also proposed the Generalized Hash Tree
(GHT) techniques, which index non-rewritable and non-
erasable records on WORM devices by hashing.

Although GHT satisfies the requirements on being trust-
worthy and can handle probing queries well, GHT is not an
ordered index and cannot efficiently handle many database
queries other than probing ones due to the inherent limita-
tion of hashing indexes. For example, it is hard to use GHT
for range queries, that is, finding all records whose indexed
attribute values are in a given range.

Ordered indexes are critical for many database opera-
tions. However, the task of designing a trustworthy ordered
index for non-rewritable and non-erasable data is challeng-
ing. Generally, such a design needs to achieve three goals
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simultaneously. First, we need to maintain a virtual sorted
list of records. How to maintain the virtual sorted list
against updates without changing any access paths to the ex-
isting records is far from trivial. The dynamic updates on
the existing access paths during incremental maintenance
prevent most of the existing indexes from being used for
trustworthy purposes.

Second, we need to design a (relatively) balanced data
structure. If the index is far from balanced, then the search
cost for some records can be high.

Last, we need to provide an effective mechanism to detect
adversarial changes. Even with the database non-alterable,
an adversary may still be able to hide some data items by
adding some other new items in a way bypassing the nor-
mal index maintenance methods. Thus, a highly trustworthy
index should provide a mechanism to detect such changes
effectively.

In this paper, we present a relatively balanced search tree
index TS-tree as an effective solution. The idea is simple
yet effective: We use a probabilistic method to accommo-
date records in a search tree structure such that the tree is
balanced in expectation. Moreover, we provide a real time
mechanism to detect any adversarial changes at the query
time. We report an extensive simulation to evaluate the per-
formance of TS-trees using both synthetic data sets and real
data sets. To the best of our knowledge, this is the first or-
dered index for trustworthy databases, and the first method
that provides adversary detection in real time.

The remainder of the paper is organized as follows. In
Section 2, we review related work. In Section 3, we con-
sider a rudimentary simple search tree method. We develop
the TS-tree structure in Section 4, and present the adversary
detection mechanism in Section 5. Section 6 gives algo-
rithms for answering queries using TS-trees. An extensive
simulation study is reported in Section 7.

2 Related Work

A Trustworthy archive is to create concrete proof and
precise details about the events that have been occurred and
recorded.

In [6], Hsu and Ong proposed an end-to-end trustwor-
thy process. The central idea is that the trustworthy pro-
cess prohibits any change to the history. In [9], Zhu and
Hsu developed the Generalized Hash Tree (GHT) technique
as a non-alterable index for trustworthy databases. The
general idea is to use a universal hash function h(x) =
((ax + b) mod p) mod r to hash the records level by level
and form a tree, where p is a prime number chosen such that
all the possible keys are less than p, r is the size of the target
range, a ∈ {1, 2, . . . , p − 1} and b ∈ {0, 1, 2, . . . , p − 1}.
Insertions or lookups of a record start from the root node
of the tree. If unsuccessful, the process recurses at one or
more of its children subtrees. If a record cannot be inserted

into any of the existing nodes, a new node is created and
added to the tree as a leaf. While the GHT techniques are
effective, one serious problem remains unsolved. Due to the
inherent limitation of hashing indexes, GHT can only work
well for probing queries.

Indexing is the fundamental practice in database research
and development. Among many others, ordered index such
as balanced search trees (e.g., B-tree, B+-tree and their vari-
ations and extensions) and hashing indexes are fundamental
in both theory and practice. .

There exist previous attempts to build ordered indexes
on WORM storage. A natural idea is to use copies (i.e.,
versions) of the index structure. Some previous studies such
as [8, 3] developed methods to copy only the changed nodes
in the index structure, i.e., the unchanged parts are shared
by versions. As analyzed in [9], when the copying-based
methods are used for WORM storage, if a node r is copied,
any node having a pointer to r must also be copied. In
other words, any paths from the root of a search tree to
any changed nodes must be copied. The space overhead is
non-trivial. Moreover, an adversary may omit or counterfeit
entries in the ongoing copying of newly modified paths.

To avoid the frequent copying, the idea of node split-
ting was exploited in write-once B-tree [4], multi-version
B-tree [2], and append-only trie [7]. When a node over-
flows, it is split into new nodes and pointers are used in its
parent node to override the earlier pointer. Again, in the
context of WORM storage, the semantics of “overriding”
raises a chance for an adversary to tamper the index.

In real applications, an adversary may want to hide some
historical records that were already stored in a trustworthy
database. In the context of trustworthy indexes, an adver-
sarial attack on a record in a trustworthy database tries to
change the corresponding access path in the trustworthy in-
dex so that the target record cannot be located using the
index. As an assurance of trustworthy indexing services,
it is important for trustworthy indexes to detect adversaries
effectively. To the best of our knowledge, the adversary de-
tection issue has not been technically addressed in the previ-
ous studies about trustworthy indexes or indexes on WORM
devices.

For example, in GHT, an adversary may change the hash-
ing function at some level to hide the data in some subtrees.
No method is provided to detect the adversarial changes un-
less one scans the whole database and verifies the GHT in-
dex.

3 Simple Search Trees

To keep our discussion easy to follow, we present the
ideas and algorithms using binary search trees. The ideas
and the methods can be easily generalized to arbitrary k-
nary (i.e., k-way) search trees. We will report the experi-
mental results on k-nary trees in Section 7.
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A value in the indexed attribute is called a key. In a
query (i.e., lookup), the index attribute value to be searched
is called the search key.

First, let us consider whether we can build non-
rewritable and non-erasable search trees. That is, at this
moment we ignore the requirement of being relatively bal-
anced for the search trees.

We can start from an empty tree, which is a trivial search
tree for an empty set, to construct a search tree incremen-
tally. To honor the non-rewritable and non-erasable require-
ments, at each step, we cannot change the access path of any
existing node. Instead, we can only extend the current tree
by adding new branches. In other words, we cannot balance
the tree by adjusting the relative positions of the existing
nodes in the tree.

As an important advantage, a simple search tree is im-
mune to adversarial attacks on records already in the tree.
That is, once a record is inserted into a simple search tree, its
access path is completely fixed and thus cannot be changed
later. As described in Section 5, this property can be used
to detect adversarial attacks.

A simple search tree satisfies the non-rewritable and non-
erasable requirements. However, the shape of a simple
search tree is very sensitive to the arriving order of tuples.

4 TS-tree

4.1 Ideas

Suppose we are building a binary search tree, and the
keys are real numbers uniformly distributed in range [l, u].
Consider the first tuple t1 whose key is v1. If we put v1

at the root of the search tree, what is the probability that
the left subtree and the right subtree of the root would be
balanced, i.e., have the same number of nodes in the future?

Intuitively, if v1 is about the mean of the range, i.e., v1 ≈
l+u
2 , then putting v1 at the root node has a good chance to

lead to a tree in the future whose left and right subtrees have
similar numbers of nodes.

On the other hand, if v1 is close to l, the left end of the
domain, then putting the tuple at the root node may lead to
a small left subtree and a large right subtree in the future.
In other words, the search tree in the future may be poorly
balanced. Thus, it would be better to create a root node
with an unfilled key value and not associated with any tuple
at this moment, and accommodate v1 and tuple t1 in the left
subtree. Symmetrically, if v1 is close to u, the right end of
the domain, then it would be better to create a root node
with an unfilled key value and not associated with any tuple
at this moment, and accommodate v1 and tuple t1 in the
right subtree.

The critical idea is that we accommodate a tuple in a
search tree according to its probability to balance the num-
bers of nodes in its left and right subtrees. By such a proba-

bilistic arrangement, we hope to achieve a compact yet rel-
atively balanced search tree index in expectation.

4.2 TS-tree Construction: the Framework

Assume that the index attribute is in the domain of [l, u]
and follows a distribution p, that is,

∫ u

l
p(x)dx = 1. In

practice, we can estimate the distribution of data roughly by
domain knowledge or sampling the data.

For any node c in a search tree, c is called balanced (in
expectation) if the expected number of nodes in the left sub-
tree of c equals the expected number of nodes in the right
subtree of c.

The search tree is initiated as an empty tree. When the
first tuple t1 comes, let v1 be its key. If v1 is put at the root
node, then the probability that a future tuple is in v1’s left
subtree is pleft =

∫ v1

l
p(x)dx. Similarly, the probability that

a future tuple is in v1’s right subtree is pright =
∫ u

v1
p(x)dx.

In addition, we have pleft + pright = 1.
The probability that the expected number of nodes in

v1’s left subtree is not equal to the expected number of
nodes in v1’s right subtree is

pdiff = |pleft − pright| = |2 · pleft − 1|. (1)

The smaller the difference between pleft and pright, the better
that v1 is chosen as the root node. Thus, we can use (1 −
pdiff) as the probability to put v1 as the root node of the
search tree and link t1 to the root.

If v1 is chosen as the root, then the first tuple is accom-
modated and we are ready to insert the second tuple. Oth-
erwise, we create a root node that is not linked to any tuple
and the key value at the root node is unfilled. The left sub-
tree is expected to store tuples with index attribute values
in range [l, w) and the right subtree is to store tuples with
index attribute values in range (w, u], where

∫ w

l

p(x)dx =
∫ u

w

p(x)dx = 0.5. (2)

Value w is the mean of the distribution.
Therefore, we put t1 into the left subtree of the root node

if pleft < 0.5, and put t1 into the right subtree of the root
node if pright < 0.5 (i.e., pleft > 0.5). Recall that if pleft =
0.5, v1 will be taken as the root node since 1− pdiff = 1.

Let us consider the situation where pleft < 0.5 and v1 is
not chosen as the root. Since at this moment, the left sub-
tree is empty, whether v1 should be accommodated as the
root of the left subtree (i.e., the left child of the root node
of the whole tree) depends on its probability to be balanced
for the future tuples in range [l, w). Technically, this can
be determined by comparing pleft and 0.25. We can make

a decision according to probability 1− |pleft−0.25|
0.25 . The re-

cursion can go on until either t is chosen at some node or a
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Function find-m-left(r)
// find mleft of node r in a TS-tree
// the key is in domain [l, u]
BEGIN
1. IF r has a right child rright
2. THEN return find-m-left(rright);
3. ELSE-IF r stores a key value v
4. THEN return v;
5. ELSE-IF r has a left child rleft
6. THEN return find-m-left(rleft);
7. ELSE return l;
END

Figure 1. Finding mleft.

termination condition is reached. The termination condition
will be discussed in Section 4.3.

Similarly, if pleft > 0.5 and v1 is not chosen as the root,
we can accommodate v1 at some node in the right subtree
of the root.

Suppose a search tree T is built. When a new tuple t
comes, whose key is v, we need to insert the new tuple into
the tree.

We first compare v and the key value v0 at the root node
of tree T . Two cases may happen.

If v0 is unset, i.e., the root node has not stored a key
value yet, then we need to determine whether v is good to
be stored at the root node. In order to be stored at the root
node, v must satisfy two requirements as follows. First, v
should be close to value w in Equation 2. Second, mleft <
v < mright, where mleft and mright are the largest key value
in the left subtree and the smallest key value in the right
subtree of the root node, respectively.

If the root node does not have a left child, then the largest
key value in the left subtree of the root node is l. Otherwise,
we can call find-m-left(rleft) in Figure 1 to search
for the largest key value mleft from the left subtree of the
root node, where rleft is the left child of the root node. Sym-
metrically, we can search for the smallest index attribute
value mright from the right subtree of the root node.

Similar to the discussion in Section 4.2, we can also
compute pdiff (Equation 1) for v and use (1 − pdiff) as the
probability to store v at the root node.

If v does not satisfy the second condition, or v is not
chosen as the root node, then we check whether v ≤ mleft
or pleft =

∫ v

l
p(x)dx < 0.5. If so, then t will be inserted

into the left subtree. Otherwise, t will be inserted into the
right subtree.

If v0 is set, then we compare v and v0 to decide whether
tuple t should be inserted into the left subtree or the right
subtree. Inserting a tuple into a subtree can be conducted
as the recursion of the above process. Particularly, if a sub-
tree is empty, then the subtree is expanded as described in
Section 4.2.

Generally, the scope of a node r in a TS-tree can be deter-
mined as follows. First, the scope of the root node is [l, u].
Second, for node r, if the key value stored in the parent of
r is vp, and the scope of the parent of r is [l′, u′], then the
scope of r is [l′, vp] if r is the left child, and [vp, u

′] if r is
the right child. Last, for node r, if the key value stored in
the parent of r is unset, and the scope of the parent of r is
[l′, u′], then the scope of r is [l′, w] if r is the left child, and
[w, u′] if r is the right child, where w is the mean in range
[l′, u′]. That is,

∫ w

l′ p(x)dx =
∫ u′

w
p(x)dx = 1

2

∫ u′

l′ p(x)dx.
During the insertion, when a node r which has not stored

a key value yet is met, we can accommodate the being in-
serted tuple at r using the probability that the key of the
tuple can balance the subtrees of r in its scope.

4.3 Controlling the Size of a TS-Tree

Consider the insertion of the first tuple as described in
Section 4.2. In the worst case, how long the path would be
from the root to the node storing the tuple?

If the domain of the index attribute is categorical with
cardinality n, then the length of the path is dlog2 ne in the
worst case. If the domain of the index attribute is infinite,
then, the length of the path is also infinite in the worst case.

Clearly, the tree size in the worst case is highly undesir-
able. Can we confine the tree size such that it is linear to
the expected number of tuples in the database?

Suppose that the expected number of tuples in the
database is m. For a node r in the search tree whose scope
is [lr, ur], we can compute the probability pindex that a
tuple is indexed by the subtree rooted at r as pindex =∫ ur

lr
p(x)dx.

Intuitively, if pindex is very small, further pushing a key
value v deep into the search tree does not bring any benefit,
since likely no tuple will be indexed by the subtree rooted
at r. Thus, we can stop growing the tree and simply adopt v
at the current node if pindex ≤ 1

α·m , where α ≥ 1 is a space
reservation ratio which is a fudge parameter set by the user,
and m is the expected number of tuples in the database.

For any node r with pindex ≤ 1
α·m , all tuples falling into

the subtree rooted at r will be organized in a simple search
tree as discussed in Section 3.

Often, the size of a large database cannot be predicted
accurately. Moreover, a database may grow over time. To
handle such incrementally growing databases, we can in-
crease the estimation of the number of tuples m periodi-
cally. Please note that parameters m and r do not affect
the correctness of a TS-tree, and thus they can be changed
dynamically.

5 Adversary Detection

If data records are inserted into a TS-tree following the
tree construction and maintenance algorithms, a TS-tree is
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Figure 2. An example of adversarial changes.

guaranteed as a correct trustworthy index on the underlining
non-alterable database. However, if an adversary bypasses
the TS-tree maintenance method and inserts an obstructing
entry, a TS-tree may be in an inconsistent state such that
some data entries may not be properly accessible using the
index. It is important to provide a mechanism to detect such
adversarial attacks in acceptable cost.

In a TS-tree, the following consistent constraint is main-
tained by the tree construction and maintenance algorithms.

Property 1 (Consistent constraint) In a TS-tree, let u and
v be two nodes with key values u and v, respectively. u 6= v.
Then, one of the following holds: (1) if u is in the left subtree
of v then u < v; (2) if u is in the right subtree of v then
u > v; or (3) if u and v are in the left and right subtrees of
a common ancestor, then u < v.

An adversary may break the consistent constraint and
thus temper the index if the tree maintenance method can
be bypassed.

Example 1 (Adversary) Consider the segment of a TS-
tree shown in Figure 2(a).

If an adversary wants to hide the record with key 60,
she/he can put one obstructing record of key value 75 into
the TS-tree as the parent of the target tuple, as shown in
Figure 2(b). This is an adversarial attack: it bypasses the
TS-tree maintenance method and makes the TS-tree incon-
sistent. After the change, a query looking for key value 60
using the tempered TS-tree may miss the record.

For trustworthy indexes, an adversarial attack on a
record in a trustworthy database is try to change the cor-
responding access path in the trustworthy index so that the
target record cannot be accessed using the index.

In a TS-tree, an adversarial attack makes a subtree vi-
olates the consistent constraint. Thus, a straightforward
approach to detecting adversarial attacks is to test a TS-
tree thoroughly against the consistent constraint. That is,
we conduct a depth-first search of the tree and check every
node. Then, any inconsistency can be identified.

For example, a depth-first search of the tree in Fig-
ure 2(b) would find out that for the node with key 75, the

minimum value in its right subtree is less that 75. Thus,
there is an adversarial attack.

While the full-tree test method is correct, it may not be
efficient and practical.

Interestingly, no adversarial changes can be made to a
simple search tree described in Section 3, because once a
record is inserted into a simple search tree, all nodes in the
access path from the root to the record have been fixed.

Therefore, we can naturally combine the two structures
as a double-tree approach. The trustworthy database is or-
ganized as a simple search tree. That is, all data records
are stored and linked to form a simple search tree. This
tree structure is used for verification only and not for query
answering. A TS-tree is built as a trustworthy secondary in-
dex. Each node in a TS-tree with a filled key value will be
linked to the corresponding node in the simple search tree.

The double-tree approach can provide real-time verifica-
tion to detect adversarial changes that may affect the result
of any query.

Suppose a query is looking for a key value k, and can-
not find it in the TS-tree. Then, we should also look for
the maximum value l1 that is less than k and the minimum
value l2 that is greater than k from the TS-tree. The method
will be explained in Section 6. Then, we should search the
simple search tree for all nodes in the range of [l1, l2], and
find out whether a record of key value k exists. If such a
record is found, then an adversarial change was made.

Note that this checking of simple search tree is not
needed if the result set is not empty when looking for a key
value of k. By construction, there cannot be partial hiding
of tuples with a given value.

6 Query Answering Using TS-Trees

In this section, we discuss how to use TS-trees to answer
typical database queries. Particularly, we focus on prob-
ing queries and range queries, which are essential in many
database services. Given a search key on the index attribute,
a probing query searches for the tuples that have the same
key value as the search key in the database. Given a range
[a, b], a range query searches for the tuples whose keys are
in the range.

The probing query answering algorithm using a TS-tree
is very similar to that of a regular search tree, except that,
for a tree node with an unset key value, we need to search
the scopes of its left and right subtrees to determine whether
one of the subtrees should be searched.

Technically, given a search key, we start the search from
the root of the TS-tree. When we meet a node whose index
value is set, by comparing the search key and the key value
in the node, we can determine whether a match is found
or we need to search the left subtree or the right subtree.
When we meet a node whose index value is unset, we need
to search mleft and mright, the largest key value in the left
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Figure 3. Answering range queries.

subtree and the smallest key value in the right subtree, re-
spectively (Section 4.2). If the search key is less than or
equal to mleft, the left subtree should be searched. Symmet-
rically, if the search key is greater than or equal to mright,
the right subtree should be searched. Otherwise, there exists
no tuple in the database matching the search key.

Given a range [a, b], the range query can be answered
in two steps. First, we find the node r1 with the least key
value in the database that is larger than or equal to a. In
the second step, we traverse in depth-first manner the right
subtree of r1, as well as the right ancestors of r1 and their
descendants, until a node r2 is met whose index attribute
value is b or over. Here, a node u1 is a right ancestor of u2

if u2 is either the left child of u1 or a descendant of the left
child of u1. Figure 3 illustrates the idea.

All the nodes searched, except for r2 if its key value is
over b, contain either an unset key value or a key value in
range [a, b]. thus, all the tuples associated with those nodes
should be returned. On the other hand, any tuples indexed
by the TS-tree but not fall into this subset of nodes must
have a key value outside the range.

We can extend the probing query answering algorithm to
find r1, the node with the least key value in the database that
is larger than or equal to a.

We call v the nearest right neighbour of q if v is the least
key value in the database that is greater than or equal to a
given search key q. Similar to answering a probing query,
we search the TS-tree from the root. Generally, when a node
r is met, two cases may happen.

On the one hand, if r stores a key value vr, then we
compare q and vr. If vr = q, then vr is the answer. If
q < vr, then we need to check the left subtree of r. If r has
a left subtree and q ≤ mleft, then the left subtree should be
searched. Otherwise, vr is the answer. If q > vr, then we
need to check the right subtree of r. If r does not have a
right subtree, then the nearest right neighbour with respect
to q does not exist. Otherwise, the right subtree should be
searched.

On the other hand, if r does not store a key value, then
we check the subtrees of r. If r has a left child rl with scope
[ll, ul], and q ≤ ul, then the left subtree should be searched.
If r does not have a left child, or q does not fall in the scope
of the left child of r, then the right child of r should be
checked. If r has a right child rr with scope [lr, ur] and
q ≤ ur then the right subtree should be searched. If r does

Property B-tree GHT TS-tree
Index type Ordered Hashing Ordered

Probing queries Yes Yes Yes
Range queries Yes No Yes
Trustworthy No Yes Yes

Figure 4. Comparison between B-tree, GHT
and TS-tree indexes.
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not have a right child or q > ur, then the nearest right neigh-
bour with respect to q does not exist.

7 Simulation Results

In this section, we report a systematic simulation to em-
pirically evaluate the effectiveness and the efficiency of our
TS-tree design. All the experiments are run on a PC com-
puter with an Intel Pentium 4 2.0 GHZ CPU and 785,904
KB main memory, running Microsoft Windows XP operat-
ing system.

We compare three methods: the B-tree, the GHT [9] and
the TS-tree developed in this paper. Some important proper-
ties of the three methods are compared in Figure 4. Among
the three methods, only TS-trees are trustworthy and can
answer both probing queries and range queries efficiently.

We report the experimental results on both synthetic and
real data sets. In the synthetic data sets, the key values
follow the uniform distribution in range [1, 1000000]. The
data sets contain 1, 000, 000 tuples. We also use samples
of various size of the synthetic data sets in the experiment.
Since the range of the domain of key values is the same as
the number of tuples in the synthetic data sets, using vari-
ous samples and the full data set can illustrate the trend of
performance of the indexes against the incremental mainte-
nance.

To examine the effectiveness of the indexes on real
data sets, we use the Weather data set [5], which contains
1, 015, 367 tuples on 9 dimensions. The dimensions with
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Figure 6. Average access length versus
database size.

the cardinalities of each dimension are as follows: station-
id (7, 037), longitude (352), solar-altitude (179), latitude
(152), present-weather (101), day (30), weather-change-
code (10), hour (8), and brightness (2). We build an index
using the lexicographic order on all attributes in the data set.
That is, for tuples t1 and t2, t1 < t2 if there exists a dimen-
sion Di such that t1.Di < t2.Di and t1.Dj = t2.Dj for any
(j < i). In the real data set, the domain is 1.45× 1025 and
is much larger than the number of tuples in the database.
The distribution of the tuples is unknown and TS-trees uses
uniform distribution to construct the index, which achieve
good performance.

We also test using three cases of block size in the in-
dexes: the ones that can hold 3, 7 and 15 key values each
node for B-trees and TS-trees, respectively. Correspond-
ingly, the GHT indexes use the blocks of the same size as
B-trees and TS-trees to construct the hashing buckets. In
other words, in a test, all the three methods use the blocks
of the same size to construct the trees.

We test the size of the indexes on the number of tuples
in the database. Figure 5(a) and (b) show the results on the
synthetic data set with uniform distribution and the Weather
data set, respectively. In each figure, we plot the three cases
of different node size, k = 3, 7, 15, respectively, where k is
the maximal number of keys per node in B-trees/TS-trees.
We set the space reservation factor in TS-trees to 1.0 by
default. From the figures, we make the following observa-
tions.

First, the number of nodes in all three indexes follows a
sublinear trend in our experiments. This strongly suggests
that TS-trees and GHT trees for trustworthy data bases have
a scalability similar to B-trees.

Second, TS-trees can be smaller than B-trees. In fact, in
most experiments on the synthetic data sets (Figure 5(a)),
when the number of tuples is large, the TS-trees are smaller
than the B-trees. The key values in our synthetic data sets
are in range [1, 1000000] and follow the uniform distribu-
tion. Thus, when the number of tuples is close to one mil-
lion, many key values in the range appear. Since the space
reservation factor is set to 1, many nodes in the TS-trees are
filled and the TS-trees is relatively campact. On the other
hand, in order to be balanced, a B-tree may contain many
nodes that are not full. That may lead to the situations where

a TS-tree is smaller than a B-tree.
On the real data set Weather, the domain of the keys is

much larger than the number of tuples in the database. Fig-
ure 5(b) shows an interesting tradeoff. When the tree nodes
are small and thus can hold a small number of keys (e.g.,
k = 3 in the figure), TS-trees are substantially smaller than
B-trees. When the tree nodes are large (e.g., k = 15 in the
figure), B-trees are smaller than TS-trees. When k = 7,
the number of nodes in both trees are similar. With larger
nodes, a TS-tree may have more unfilled fields and thus may
cost more in space.

Third, between GHT trees and TS-trees which one is
smaller depends on the data distributions. In our experi-
ments, GHT trees and TS-trees have similar size on the syn-
thetic data sets, and GHT trees are a little bit smaller in most
cases. However, on the real data set Weather, the TS-trees
are clearly smaller than the GHT trees.

Last, for all the three methods, the larger the nodes, the
smaller the number of nodes. That is intuitive.

The length of the access paths in the indexes is critical for
the efficiency of query answering. For a tree T , we define

the average access length as L(T ) =
∑

v∈T
l(v)

|v∈T | , where l(v)
is the length of the path from the root node to v. In other
words, under the assumption that each key value stored in a
tree T will be queried with the same probability, L(T ) is the
expected access length of all key values indexed in the tree.
We argue that L(T ) is a better measurement of expected
query efficiency than H(T ) if T is not balanced. It is easy
to see L(T ) ≤ H(T ) if H(T ) > 1.

Figure 6(a) and (b) show, on the synthetic data sets fol-
lowing the uniform distribution and the Weather data set,
respectively, the average access length of the three indexes
with respect to the number of tuples in databases. The re-
sults are consistent. First, for all the three indexes, the aver-
age access length increases as the database becomes larger
and larger. However, the increase is very moderate. Second,
while the height of the TS-trees can be large in the worst
case, the average access length is quite moderate. Third, the
average access path in TS-trees is only up to 4 times of the
average access path in the corresponding B-trees. In other
words, the TS-trees are relatively balanced. Last, GHT trees
are the shortest among the three indexes. This is the inher-
ent advantage of hashing indexes and is consistent with the
results in [9].

We notice that the average access length is substantially
different on the synthetic data set and the Weather data set,
though the numbers of tuples in these two data sets are simi-
lar. By a close examination of the resulting TS-tree, we find
that the right subtree of the root is much larger than the left
subtree. In other words, the distribution on the Weather data
set is far from uniform. However, even in such a case, the
average access length is only degraded slightly. the average
access length is quite stable with respect to the number of
tuples in the database. In fact, although the global distri-

7



 0

 2

 4

 6

 8

 10

 12

 14

 3  6  9  12  15

A
ve

ra
ge

 #
 b

lo
ck

s 
ac

ce
ss

ed

Maximal number of keys per node

GHT
B-tree

TS-tree

(a) Probing query answering
on the synthetic data set

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 3  6  9  12  15

A
ve

ra
ge

 #
 b

lo
ck

s 
ac

ce
ss

ed

Maximal number of keys per node

GHT
B-tree

TS-tree

(b) Probing query answering
on real data set Weather

Figure 7. Probing query answering perfor-
mance versus the size of each node.
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Figure 8. Range query answering perfor-
mance versus the size of the ranges.

bution is far from uniform, in a relatively small subrange
which corresponds to a lower level subtree, the distribution
may have a good chance to be close to uniform.

Figure 7 evaluates the probing query answering perfor-
mance using the three indexes. For each index, we count the
number of nodes accessed during the process of answering a
probing query, and assume that each node is stored in a dis-
tinct block. We issue a probing query for each tuple in the
database and report the average number of blocks read in
query answering. Moreover, we examine the average num-
ber of blocks read with respect to different size of nodes.
Again, we use three sizes: the ones which can hold 3, 7 and
15 keys for B-trees and TS-trees, respectively.

The figures clearly show that all the three indexes can an-
swer probing queries with lower I/O cost when larger blocks
are used. Moreover, GHT has the best performance and B-
tree has the performance similar to GHT. This is again con-
sistent with the results in [9]. While the cost of TS-trees
is the highest, the difference between TS-trees and B-trees
as well as GHT becomes smaller when the block size be-
comes larger. Comparing to query answering using B-trees,
the major extra cost using TS-trees is twofold: a TS-tree
can be higher than a B-tree and we may have to search mleft
and mright for some subtrees during the query answering.
Again, although GHT may have good query answering per-
formance, it cannot answer range queries efficiently since it
is not an ordered index.

To evaluate the range query answering performance, we
issue range queries with ranges of different size. To use a
GHT for range query, we issue a probing query for every
key value in the range. Both the complete synthetic data
set and the Weather data set are used. The average number
of blocks accessed are calculated. The results are shown in
Figure 8.

Both B-trees and TS-trees are efficient for answering
range queries, while the GHTs are much slower. The differ-
ence becomes even bigger with larger ranges. For both B-
trees and TS-trees, once the least key in the range is found,
the other keys in sequel can be found by browsing the nodes
in a depth-first search manner. But for GHTs, a probing
query is needed for each possible key value in the range.
The performance of B-trees and TS-trees are close, while
B-trees are a little bit better. The blocks with unfilled key

values in TS-trees may lead to visiting more blocks in TS-
trees than in B-trees. However, as the size of B-trees and
TS-trees are close to each other, the blocks with unfilled key
values occur only small percentage in the query answering.

8 Conclusions

Trustworthy data processing is essential for many criti-
cal applications. In addition to trustworthy data storage, we
often need trustworthy indexes for searching large trustwor-
thy databases. In this paper, we describe a simple yet effec-
tive ordered index structure TS-trees, which are efficient,
scalable to large databases, and can support many database
tasks including probing queries and range queries.
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