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Abstract. Formal concept analysis has become an active field of study for data
analysis and knowledge discovery. A formal concept C is determined by its extent
(the set of objects that fall under C) and its intent (the set of properties or attributes
covered by C). The intent for C, also called a closed itemset, is the maximum set
of attributes that characterize C. The minimal generators for C are the minimal
subsets of C’s intent which can similarly characterize C. This paper introduces
the succinct system of minimal generators (SSMG) as a minimal representation
of the minimal generators of all concepts, and gives an efficient algorithm for
mining SSMGs. The SSMGs are useful for revealing the equivalence relationship
among the minimal generators, which may be important for medical and other sci-
entific discovery; and for revealing the extent-based semantic equivalence among
associations. The SSMGs are also useful for losslessly reducing the size of the
representation of all minimal generators, similar to the way that closed itemsets
are useful for losslessly reducing the size of the representation of all frequent
itemsets. The removal of redudancies will help human users to grasp the structure
and information in the concepts.
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1 Introduction
Formal concept analysis (FCA) [7] is an important tool for data analysis and knowl-
edge discovery. A formal concept C is determined by its extent (the set of objects or
transactions that fall under C) and its intent (the set of properties, attributes, or items
covered by C). Take the transaction database TDB in Figure 1 as an example. Each
transaction has an identity Tid and a set of items; the set of items is written as a list of
items alphabetically and the set brackets are omitted. Itemset bcghi and transaction set
{T1, T3, T5} form a formal concept, where itemset bcghi is its intent and transaction
set {T1, T3, T5} is its extent. Intuitively, bcghi is the largest itemset that is contained in
transactions T1, T3 and T5. No other transactions contains bcghi. The formal concepts
in the transaction database are listed in Figure 2.

In general, the intent of a formal concept C is the closure of the properties, attributes,
or items that form a maximum characterization for C: Every object satisfying the intent
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Tid Items

T1 abcdeghi

T2 acdg

T3 bcdghi

T4 abdhi

T5 bceghi

Fig. 1. A transaction
database TDB

Closure Minimal generators Sup SuccMinGen

ad a 3 a

bhi b, h, i 4 b, h, i

cg c, g 4 c, g

d d 4 d

bceghi e 2 e

abdhi ab, ah, ai 2 ab

acdg ac, ag 2 ac

abcdeghi ae, de, abc, abg, 1 ae, de, abc
ach, aci, agh, agi

bcghi bc, bg, ch, ci, gh, gi 3 bc

bdhi bd, dh, di 3 bd

cdg cd, dg 3 cd

bcdghi bcd, bdg, cdh, cdi, dgh, dgi 2 bcd

Fig. 2. The formal concepts and their closures, minimal generators
and succinct system of minimal generators in TDB of Figure 1

is in C. The closure (or a closed itemset ) serves as the upper bound of the attributes
covered by the formal concept. Mining the intents of concepts or closed itemsets has
attracted a lot of attention (e.g., [9, 10, 8, 12, 15, 14]) for their importance in knowledge
discovery, and for the significant reduction in the number of necessary frequent itemsets
achieved by removing redundant (recoverable) ones.

Each formal concept actually corresponds to a set of itemsets, which are all equiv-
alent since they capture the same intent. While the closures are the maximal sets of
attributes/items presenting the concept, it is often interesting to ask, “What are the criti-
cal combinations of attributes that manifest the concept?” That is, for a concept, we want
to identify the minimal combinations of attributes—the so-called minimal generators—
that distinguish the objects in this concept from the others. Such minimal generators can
offer a complementary, perhaps simpler way to understand the concept, because they
may contain far fewer attributes than closed itemsets.

Technically, the minimal generators of a formal concept C are the minimal subsets
of C’s intent that can characterize C, and are the lower bounds of the itemsets char-
acterizing C [10, 12]. For the running example, itemsets bc, bg, ch, ci, gh, gi are the
minimal generators of formal concept bcghi, since any transaction containing any of
those minimal generators must also contain the other items in the closure.

Complementary to closures, minimal generators provide an important way to charac-
terize formal concepts. However, very little has been done on understanding and mining
the minimal generators. Some previous studies (e.g., [10, 15]) use minimal generators
only as a means to achieve other goals such as mining closed itemsets. [12] considers
the mining of all minimal generators, but its algorithm leaves considerable room for
improvement.

Since formal concepts and closed itemsets are in one-to-one correspondence, we henceforth
treat a closed itemset and its corresponding formal concept as the same thing.

Interestingly, the minimal generators still may contain a lot of redundant information.
Consider the formal concepts in Figure 2. Closed itemset bcghi has six minimal gener

-
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ators: bc, bg, ch, hg, ic and ig. From any one of them we can derive all the others, since
b, h and i always appear together in transactions and are thus equivalent, and similarly
for c and g. Those facts are indicated by formal concepts bhi and cg, respectively.

Can we remove the redundant information and achieve a succinct representation of
the minimal generators? In this paper, we propose a novel concept of succinct system of
minimal generators (SSMG for short). The idea is to remove the redundant information
by choosing one (e.g., the lexically smallest) minimal generator of a formal concept as
its representative minimal generator, and exclude non-representative minimal generators
of the concept to occur as parts of minimal generators of any other concepts.

For example, we can choose b as the representative minimal generator for the formal
concept bhi, and c for cg. For the concept bcghi only the minimal generator bc will be
included in the SSMG; all the other five (i.e. bg, ch, hg, ic and ig) are excluded and can
be derived. Using SSMG there are a total of 17 minimal generators (Figure 2), compared
with a total of 38 standard minimal generators. This big reduction in size causes no loss
of information, as all minimal generators can be inferred from the SSMG.

Using the SSMG, the same equivalence information between the minimal generators
of a concept will not occur redundantly. This helps reduce the result of mining and make
it easier to browse, understand and manage, and reduce the need for the user to digest
the same information multiple times and hence helps the user to concentrate on the new
equivalence among minimal generators. Since the results on the equivalence among the
minimal generators also reveal the minimal equivalence relation among associations and
itemsets, results on SSMG are also useful for association mining.

In this paper, we give an efficient algorithm for mining SSMGs. Our algorithm
is substantially more effective and efficient than the algorithm in [12], which mines all
minimal generators. While the problem of mining SSMGs is computationally expensive,
our experiments demonstrate that our algorithm can deal with high dimensional and large
real data sets. We will also illustrate the power of our method on real data sets in terms of
both effectiveness and efficiency. It should be noted that the SSMG mining is significantly
more involved than the closed itemset mining, since it provides information on all the
minimal generators in addition to the closed itemsets. We applied the algorithm on some
real data sets and obtained some some interesting findings. But the details are omitted
due to space limit.

Section 2 provides definitions of SSMG. Section 3 describes the algorithm. Section 4
reports experimental results on effectiveness and efficiency. Section 5 discusses related
works and potential extensions.

2 Definition of SSMG

After revisiting the preliminaries of formal concepts, this section introduces the notion
of succinct system of minimal generators (SSMG).

2.1 Preliminaries

Let I = {i1, . . . , in} be a set of items. An itemset is a subset of I . A transaction is a
tuple 〈tid, X〉, where tid is a transaction identity and X is an itemset. A transaction
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database TDB is a set of transactions. A transaction 〈tid, X〉 is said to contain itemset
Y if Y ⊆ X . Let TDB be a given transaction database. The support of an itemset
X , denoted as sup(X), is the number of transactions in TDB that contain X . Given a
minimum support threshold min sup, X is frequent if sup(X) ≥ min sup.

The transaction set of an itemset X , denoted as T (X), is the set of all transactions
in TDB that contain X . For our running example (Figure 1), T (bc) = {T1, T3, T5}.
Two itemsets X and Y are called equivalent, denoted as X ∼ Y , if T (X) = T (Y ).
The equivalence class of an itemset X is the set of all itemsets that are equivalent to X .
For Figure 1, itemsets bc and gi are equivalent since T (bc) = {T1, T3, T5} = T (gi);
the equivalence class of b is {b, h, i, bh, bi, hi, bhi}. Symmetrically, the itemset of a
set of transactions D ⊆ TDB, denoted as I(D), is the set of items that appear in every
transaction in D, i.e., I(D) = ∩(tid,X)∈DX . In Figure 1, I({T1, T3, T5}) = bcghi.

An itemset X is call closed if there exists no proper superset X ′ ⊃ X such that
sup(X) = sup(X ′). Easily, we can show that an itemset X is closed iff I(T (X)) = X .
Symmetrically, a set of transaction D is closed if and only if T (I(D)) = D.

Definition 1. A formal concept is a pair C = (X, D) where X and D are a closed
itemset and a closed transaction set, respectively, such that D = T (X) and X = I(D).
Given two concepts C = (X, D) and C ′ = (X ′, D′), C is said to be more general than
C ′ if X ⊂ X ′.

Under the set containment order, the itemsets form a lattice L. Moreover, under the
same order on the closed itemsets, the formal concepts form a lattice LC , which is a
Galois lattice (see Figure 3). Apparently, the lattice of the formal concepts is a quotient
lattice with respect to L, i.e., LC = L/ ∼.

bdhi bcghi

cg bhid

abcdeghi

{}

cdg

acdg abdhi bcdghi bceghi

ad

Fig. 3. Galois lattice for TDB of Figure 1

Observe that each equivalence class of itemsets contains a unique closed itemset,
which serves as the upper bound for the equivalence class. Also, each class contains one
or more lower bounds, which are the minimal generators. For example in Figure 1, b, h
and i are the minimal generators of formal concept (bhi, {T1, T3, T4, T5}) (Figure 2).

Definition 2. An itemset Y is called a minimal generator for a formal concept (X, D)
if T (Y ) = D but for every proper subset Y ′ ⊂ Y , T (Y ′) 	= D.

2.2 Succinct System of Minimal Generators

As discussed earlier, the minimal generators may still contain a lot of redundant infor-
mation. Consider again the formal concept C = (bcghi, {T1, T3, T5}) in our running



Mining Succinct Systems of Minimal Generators of Formal Concepts 179

example. In the same database, there is another concept C1 = (cg, {T1, T2, T3, T5}). C1
is more general than C, and C1 has c and g as minimal generators. We can observe the
following: If itemset cX is a minimal generator for C such that g 	∈ X , then gX is also
be a minimal generator for C. This can be verified from Figure 2. Since we have bc, ch
and ci as the minimal generators containing c but no g, we also have minimal generators
bg, gh and gi. So, we only need to keep either the minimal generators containing c or
those containing g, but not both; the rest can be inferred.

Can we have a non-redundant representation of the minimal generators? The answer
is yes. The idea is intuitive though not straightforward. To illustrate the general idea,
suppose a user wishes to browse the minimal generators of the formal concepts in the
coarse-to-fine (or general-to-specific) order . For each new concept C to be browsed,
we would like to present to the user a minimal but complete set of all new minimal
generators that cannot be inferred from the others for this concept C and from the
minimal generators of the more general formal concepts already browsed.

Formally, for each formal concept C, we need to define a new equivalence relation:
Two itemsets X and Y are C-equivalent, denoted X ≈C Y if (i) both X and Y are
minimal generators of formal concept C ′ such that C ′ is more general than C, or (ii) X
can be obtained from Y by replacing a subset Z ⊂ X with Z ′ ⊂ Y such that Z ≈C Z ′.

In our running example, if C is the formal concept whose closed itemset is bcghi,
then b ≈C h, b ≈C i, c ≈C g, bc ≈C bg, bc ≈C hg, etc. (Note that C has two more
general formal concepts.) If C is the formal concept whose closed itemset is bhi, then
X ≈C Y if and only if X = Y since there are no concept more general than C.

The ≈C equivalence relation partitions C’s minimal generators into equivalence
classes. We can achieve the goal of deriving a minimal non-redundant subset of minimal
generators by presenting one minimal generator for each of the equivalence classes. For
example, if C is the formal concept whose closed itemset is bcghi, then all of its six
minimal generators, namely bc, bg, ch, ci, gh, gi, belong to one equivalence class; if C
is the formal concept whose closed itemset is abcdeghi, then its minimal generators can
be partitioned into three equivalence classes: {ae}, {de}, {abc, abg, ach, aci, agh, agi}.
Then, we can choose one representative for each class of minimal generators.

Which member of an equivalence class should be shown to the user, in order to
minimize the overall overhead on the user? We choose one minimal generator of each
formal concept as its representative minimal generator. This can be done freely for most
basic formal concepts such as bhi, cg and d in Figure 3. To be succinct, for other concepts,
we should choose one of those canonical minimal generators X such that X does not
contain any non-representative minimal generators of more general formal concepts.
For example, if C is the formal concept whose closed itemset is bcghi, if b and c are
respectively the representative minimal generators for the concepts for bhi and cg, then
bc should be the representative of C.

Definition 3. A succinct system of minimal generators, or SSMG for short, consists of,
for each formal concept C = (X, D), a representative minimal generator and a set of
canonical minimal generators.

In fact, our definitions can deal with any order of browsing.2

2
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An SSMG will remove the redundancy of minimal generators, give the users a con-
sistent handle on each class using the representative minimal generators, and also can be
used to derive all the minimal generators. The last column of Figure 2 gives an SSMG for
our running example TDB, where the first minimal generators are the representatives for
the concepts of the corresponding rows. Given an SSMG, clearly we can reconstruct all
of the minimal generators. Also, the SSMG is not unique, even though different SSMGs
have the same number of minimal generators.

ProblemDefinition.Givena transaction databaseTDB andasupport thresholdmin sup,
the problem of mining the succinct system of minimal generators is to find a succinct sys-
tem of minimal generators for all formal concepts C = (X, D) that sup(X) ≥ min sup.

3 The SSMG-Miner Algorithm

This section introduces our algorithm for mining SSMGs. It includes several novel
techniques for computing local minimal generators and closed itemsets in a depth-first
manner, and for using them to derive the SSMGs. While the high-level structure of the
algorithm is similar to many existing DFS based algorithms, the new algorithmic contri-
butions lie with the efficient techniques for producing representative minimal generators
and removing the non-representative ones.

3.1 Depth-First Search Framework

The SSMG-Miner algorithm follows the general depth-first search framework that can be
described using a depth-first search tree (e.g. set-enumeration tree (or SE-tree) [13]). The
SE-tree enumerates all possible itemsets for a given set of items, with a global order on
the items. For each node v in the tree we have a head H (consisting of items considered
so far), and a tail T (consisting of items to be considered among descendant nodes). The
search space associated with v consists of all itemsets of the form Z = H ∪ T ′, where
T ′ is a nonempty subset of T . For the node labelled by ab in the SE-tree for {a, b, c, d},
we have H = ab and T = cd, and its search space consists of abc, abd, and abcd. The
algorithm will remove useless branches of the SE-tree, as discussed later.

3.2 Computing Local Minimals/Closures

The SSMG-Miner will efficiently compute “local minimal generators and closed item-
sets” for each visited node in the depth-first search. Later we will show that some local
minimal generators and closed itemsets may not be true minimal generators and closed
itemsets for formal concepts, and consider efficient techniques to remove such itemsets.

In our DFS computation, for each node v with head H and tail T , those items x in
T such that T (Hx) = T (H) (or equivalently, sup(Hx) = sup(H), in other words,
item x appears in every transaction that contains H) are in the local closed itemsets,
and are removed from T . Let the local closure of H be LC(H) = {x ∈ H ∪ T |
T (H) = T (Hx)}. The removal of items from T as described above will ensure that,
for all ancestor nodes v′ of v with head H ′ and tail T ′, LC(H ′) is a proper subset of
LC(H). Hence H is considered as the local minimal generator for LC(H).

We now illustrate the local minimal generators and closures computed for 6 nodes,
using our running example (Figure 1). (1) At the root node, H = ∅, T = abcdeghi,
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LC(H) = ∅. (2) For the first child of the root, H = a and T = bcdeghi; since
T (a) = T (ad), we remove d from T (so T becomes bceghi; this node now has 6
children instead of the original 7); LC(H) = ad; a is the local minimal generator
for ad and ad is the local closure for a. (3) For the node with (H, T ) = (ab, ceghi),
LC(ab) = abdhi with sup(ab) = 2. (4) For (H, T ) = (abc, eg), LC(abc) = abcdeghi
with sup(abc) = 1. (5) For (H, T ) = (abe, g), LC(abe) = abdeghi with sup(abe) = 1.
(6) For (H, T ) = (ae, ∅), LC(ae) = aeghi with sup(ae) = 1.

The SSMG-Miner algorithm keeps a tuple of the form (MinList : Max, Count)
for each formal concept, where MinList is the list of minimal generators, Max is the
closed itemset, and Count is the support count. The first minimal generator in MinList
is the representative minimal generator. For Figures 1 and 2, the tuple (b, h, i : bhi, 4)
is for the formal concept (bhi, {T1, T3, T4, T5}).

3.3 Determining Equivalence

The local minimal generators and closures computed at different nodes may belong to the
same formal concept. The SSMG-Miner will check on this and remove any redundancy.

Lemma 1. Let v be a node with head H and tail T . Then LC(H) belongs to an existing
formal concept at the time v is visited if and only if there is a node v′ visited before, with
head H ′ and tail T ′, such that LC(H) ⊂ LC(H ′) and sup(H) = sup(H ′).

If one does the equivalence check based on the above lemma, the check will be
inefficient. The reason is that, for each new node v with head H and tail T , we will need
to go through all existing formal concepts and conduct the subset checking based on
the support equivalence. In general, checking whether an itemset is a subset of another
itemset in collection of itemset is very expensive.

Lemma 2. Let v be a node with head H and tail T . Then LC(H) belongs to an existing
formal concept at the time v is visited if and only if there is a node v′ with head H ′ and
tail T ′ such that v′ is visited before v and v′ satisfies the following three conditions:
(1) sup(LC(H)) = sup(LC(H ′)); (2) LC(H) and LC(H ′) share a common suffix
starting from x, where x is the last item of H; (3) the prefix of LC(H)) before x is a
subset of the prefix of LC(H ′) before x, where x is as above. Here, the values of T and
T ′ are those when the nodes are created.

Rationale. Clearly the “if” holds, since conditions (1–3) imply that LC(H) ⊂ LC(H ′)
and sup(H) = sup(H ′), which in turn imply that LC(H) and LC(H ′) are subsets of
some common closed itemset. “Only if”: Suppose LC(H) belongs to an existing formal
concept at the time v is visited. Let v′ be the node when LC(H)’s formal concept is
first inserted; let H ′ be its head and T ′ its tail. Since LC(H) and LC(H ′) belong to
the same concept, condition (1) holds. Since v′ is the first node when LC(H)’s formal
concept is inserted, by the nature of DFS computation, we have {y | y ∈ H and y is
before x} ⊆ {y | y ∈ H ′ and y is before x}, and so (3) holds. This implies (2) holds.

This lemma allows us to efficiently implement the check using some comparison on
the support counts, and certain suffixes and prefixes of itemsets and the local closure.

Example 1. We illustrate by considering these three formal concepts for example in
Figures 1 and 2: (a : ad, 3), (ab : abdhi, 2) and (abc : abcdeghi, 1). For the node with
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H = abe and T = g, LC(abe) = abdeghi and sup(abe) = 1. We need to decide if
this is a new formal concept and, if not new, which existing concept is that of abe. We
do this as follows: We look for (1) concepts with the same support count as abe, and we
compare their closed itemsets against LC(abe) = abdeghi. The concept C of abc is the
only such concept. We note the following: (2) The closed itemset of C, namely abcdeghi,
and LC(abe) = abdeghi share the common suffix of eghi, starting at the item e (the
last item of abe). (3) The prefix of LC(abe) = abdeghi before e, namely abd, is a subset
of the prefix of abcdeghi before e. Lemma 2 ensures that, when this happens, abe is not
generating a new formal concept, but abe is another potential generator for the concept
of C.

On the other hand, if there is no concept C satisfying the conditions, then the new
local minimal generator and closure form a new formal concept. Consider the formal
concept (bd : bdhi, 3) and we compute LC(cd) = cdg and sup(cd) = 3 at the node
with H = cd. We conclude that cd and bd do not belong to any previously found formal
concept, since LC(cd) is not a subset of any closed itemsets of existing concepts with
the same support.

More specifically, Lemma 2 implies that equivalence checking can be accomplished
efficiently by using a search tree structure. In such a tree, the items are ordered under the
reverse of the original order on the items. We have one such tree for each support count.
The trees will be built in a lazy manner. For each formal concept C, we use the closed
itemset for C to search and insert. This is done similarly for local closures computed at
nodes. For example, if the original order of items is the alphabetical order, for the closed
itemset abcdeghi, we have a branch of i → h → g → e → ... For the search involving
LC(abe) = abdeghi, we follow the branch i → h → g → e. Then we go through
the formal concepts stored below this branch to check for containment of the prefixes.
Since the search of the suffix only needs to continue if exact match is found and can be
terminated as soon as a mismatch is found, it is very efficient.

3.4 Removing Non-minimal Generators and Clutters

Some local minimal generators computed in the DFS process may turn out to be not
minimal generators for their formal concepts. Also, the clutters caused by redundant
minimal generators need to be removed. We now discuss how SSMG-Miner handles
these issues.

To show the removal of non-minimal generators, let us examine the running example
again (Figures 1 and 2). For node H = ae, we have four formal concepts computed: (a :
ad, 3), (ab : abdhi, 2), (abc, abe, abg, ace, ach, aci : abcdeghi, 1), (ac : acdg, 2). We
find that ae is a new minimal generator for the concept of abcdeghi. Since abe and ace are
supersets of ae, they are not true minimal generators for their formal concept, and should
be removed. So the third formal concept becomes (abc, abg, ach, aci : abcdeghi, 1),
before ae is inserted. Since ae is earlier than abc in the “cognitive-order”, we select ae
to replace abc as the representative minimal generator.

To exemplify the removal of clutters, let us consider the running example (Figures 1
and 2). Suppose our current set of formal concepts are as given above, and we next
consider the node H = ag. We find that LC(ag) = adg. We see that adg and acdg
are equivalent, hence ag is the second minimal generator of acdg. We then remove
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all minimal generators of other concepts which contain ag (the redundant generators).
For example, abg is removed from the set of minimal generators of abcdeghi. So we
get the following formal concepts: (a : ad, 3), (ab : abdhi, 2), (ae, ach, aci, abc :
abcdeghi, 1), (ac, ag : acdg, 2).

Regarding implementation, for each formal concept we have a concept identifier
CID. For each item x, we have an inverted list consisting of all those formal concepts
that have one or more minimal generators containing x. These inverted lists will be used
to locate formal concepts that may contain a given itemset (minimal generator).

3.5 The Pseudo-Code of SSMG-Miner

The SSMG-Miner (Figure 4) calls the DFS function for the root node, with these three
arguments: H = ∅, T = I − LC, and LC = ∅, where I is the set of all items.

Algorithm SSMG Miner:
Input: A transaction database TDB, support threshold min sup.
Output: Succinct system of minimal generators for formal concepts in TDB.
Method:

let SSMG = ∅; // SSMG is a global variable;
let LC = {items occurring in all transactions};
call DFS(H = ∅, T = I − LC, LC);
return SSMG;

Function DFS(H,T,LC) // H: head, T : tail
// LC: local closure, with value of parent node initially

if sup(H) < min sup return;
for each x ∈ T

if sup(H ∪ {x}) = sup(H)
let T = T − {x}, LC = LC ∪ {x};

if (H : LC, sup(H)) is a new concept
add (H : LC, sup(H)) to SSMG;

else add H as minimal generator for LC and remove clutter
for each x in T

let Hx = H ∪ {x} and Tx = {y ∈ T | y > x};
call DFS(Hx, Tx, LC);

Fig. 4. Algorithm SSMG-Miner

The DFS function first determines if H meets the minimal support threshold. If the
answer is yes, it will move all those items x such that sup(H) = sup(H ∪{x}) from T
to LC. At this time, (H, LC, sup(H)) becomes a candidate new concept. If LC is not
equivalent to any current concept, then it inserts (H, LC, sup(H)) as a new concept.
Otherwise it inserts H as a new minimal generator of its concept, and removes the
clutters. The check regarding equivalence, the insertion of new minimal generators and
the removal of clutters are discussed in the previous subsections. Limited by space, their
pseudo-code is omitted. DFS calls itself for each child node of the current node.
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4 Performance Study

We now report experiments on the performance of the SSMG-Miner algorithm and its
effect in reducing the amount of redundant information. Experiments show that the
algorithm can deal with fairly high dimensional data sets within a short time. We also
provide comparison with previous work as much as we could, and with a post-processing
approach. All experiments (unless indicated otherwise) were performed on a PC with
P4 2.4G CPU and 512M main memory, running on Windows XP.

We used two data sets in our efficiency experiments. (1) The Mushroom data set has
been frequently used for evaluating data mining algorithms and is obtained from the
UCI Machine Learning Repository. It includes 22 attributes and 8, 124 tuples. There are
a total of 121 attribute-value pairs (items). (2) The Colon tumor gene expression data set
is from [2]. It consists of micro-array gene expression data for 62 sample tissues, with
22 being normal tissues and 40 colon tumor tissues. Microarrays are a technology for
simultaneously profiling the expression levels of tens of thousands of genes in a patient
sample. It is increasingly clear that better diagnosis methods and better understanding of
disease mechanisms can be derived from a careful analysis of microarray measurements
of gene expression profiles. As with most association-type data mining, we discretized
each gene into two intervals: low and high. We also used the entropy method to select
the top 45 most “relevant” genes from total of 2000 genes. These data sets are typical
examples of data that might be used in scientific discovery process by data mining
techniques. Please also note that these two data sets are quite dense and thus challenging
to mine, as indicated by many previous studies.

4.1 Redundant Information Reduction

Figure 5 shows the succinct minimal generator concept leads to a huge reduction in the
number of minimal generators in the result of mining. The Colon data set is used. For
the case of 40 items, 76% of the minimal generators are redundant, and for 45 items
93% of the minimal generators are redundant. The reduction on Mushroom is similar
(the details are omitted due to space).

4.2 Comparison with Postprocessing Approach

Post processing seems to be much worse than the SSMG-Miner, even though we do
not ask the postprocessing algorithm to remove the reduntant minimal generators. For
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example, we compared with the postprocessing approach which combines the Charm
algorithm [15] for closed itemset mining, and the Border-Diff algorithm [6] for mining
the minimal generators from the closed itemsets. First, the Charm algorithm is used
to compute the closed itemsets satisfying given support threshold. (We used our own
implementation of the Charm algorithm.) Then, for each closed itemset X , let SX =
{Y | Y ⊂ X and Y is a closed itemset}; then the Border-Diff algorithm is called to mine
the minimal itemsets which occur in X but not in any itemset in SX . Let M1, ..., Mk be
the result of this operation. It can be verified that M1, ..., Mk are the minimal generators
for the class represented by X . It turns out that this algorithm is very expensive: On
the Colon data, on 20, 25 and 30 projected columns of the data, SSMG-Miner used 1, 1
and 2 seconds respectively, whereas post-processing used 305, 964, and 4090 seconds
respectively. The main cost of the Charm+Border-Diff algorithm is due to the large
number of calls fo Border-Diff.

4.3 Comparison with a Previous Algorithm

No previous work has considered the mining of succinct minimal generators. Some
prior work considered the mining of all minimal generators [12]. (Several papers con-
sidered the mining of closed itemsets, and perhaps with one minimal generator for
each closed itemset.) We contacted the authors of [12], but we cannot obtain either
executable or source code. We are able to provide a rough comparison as follows: For
the Mushroom data when all attributes are considered and the minimal support is set
at 1 (so that all itemsets are frequent), our algorithm finished in about 2 hours on our
machine. On the other hand, the algorithm of [12] used about one day and a half. Al-
though the configuration of the test platform is not given in [12], we believe that our
method is substantially faster. We should also note that the algorithm of [12] does not
remove clutters.

4.4 Scalability on Number of Items

Figures 6 and 7 show the computation time of SSMG as the number of items varies.
The minimum support is set at 1% and the different number of items is obtained by
projecting the original data set over the first k items. Although the processing time in-
creases exponentially with the number of items, it is encouraging to know that our algo-
rithm finishes in a reasonable amount of time. We use random subsets of the Mushroom
data to test the scalability on size of database. Figure 8 shows the computation time
vs. the number of instances for the Mushroom data. The computation time is roughly
linear as the number of instances (tuples) increases. Figure 9 shows how computation
time varies as the support threshold varies on the Mushroom data. As the support
threshold decreases, the number of minimal generators increases, leading to increased
computation time.

Summary. From the extensive experiments on the two real data sets, the effectiveness and
efficiency of SSMG-Miner are verified. Our results show that SSMG-Miner is feasible
for mining real data sets.
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5 Related Work and Discussion

5.1 Related Work

Formal Concept Analysis (FCA) was first pioneered by Wille in 1982 [7], and has grown
into an active field for data analysis and knowledge discovery. Other previous research
most related to our work can be divided into two categories: mining closed itemsets and
mining minimal generators.

Closed itemset mining is one of the major classes of research addressing the frequent
itemset mining problem [1]. This class of research aims at mining a concise subset of
the frequent itemsets that can be used to derive all other frequent itemsets and their
support counts. A major approach considers the closed itemset mining problem, initially
proposed in [10], where one mines only those frequent itemsets having no proper superset
with the same support. Mining closed itemsets can lead to orders of magnitude smaller
result set [16] (than mining all frequent itemsets) while retaining the completeness,
i.e., the concise result set can be used to generate all the frequent itemsets with correct
support counts in a straightforward manner. In the last several years, extensive studies
have proposed fast algorithms for mining frequent closed itemsets, such as Aclose [10],
CLOSET [11], MAFIA [4], CHARM [15], and CLOSET+ [14].

While prior research considered closed itemsets, they paid little or no attention to
mining minimal generators. Minimal generators were only used as a means to achieve
other goals if they were considered. The algorithm of [10] focused on the mining of
closed itemsets, but in the computation process it produces one minimal generator as a
by-product. The non-derivable and free itemsets [5, 3] are related to minimal generators.

Reference [12] gave an algorithm to compute the closed itemsets and their minimal
generators incrementally (by inserting tuples one at a time). However, it does not consider
the removal of the redundant minimal generators.

5.2 Further Extensions

Our method can be extended in several aspects, including these three: (1) We can analyze
the SSMGs and their relationship with their corresponding closed itemsets. We can also
analyze the SSMGs for data with multiple classes, such as normal tissues and cancer
tissues for colon cancer discussed above. (2) We can consider SSMGs for approximate
formal concepts, as a generalization of “exact” equivalent classes. We can view itemsets
as approximately equivalent if their transaction sets are approximately equal. This will
help reduce the number of formal concepts significantly. We can also analyze the SSMGs
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of approximately identical formal concepts. (3)We conjecture that the following numbers
can be used as indicators of the structure of the data set under consideration: the number
of formal concepts, the number of formal concepts with multiple minimal generators, and
the reduction ratio from number of minimal generators to succinct minimal generators.

Acknowledgement: We thank Ravi Janga who helped with the coding of the Charm-
BDiff algorithm, and the reviewers of a previous version of this paper.
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