
A Fast Algorithm for Subspace Clustering

by Pattern Similarity

Haixun Wang Fang Chu1 Wei Fan Philip S. Yu Jian Pei2

IBM T. J. Watson Research Center, {haixun,weifan,psyu}@us.ibm.com
1Dept. of Computer Science, Univ. of California, Los Angeles, fchu@cs.ucla.edu

2Dept. of Computer Science, SUNY Buffalo, jianpei@cse.buffalo.edu

Abstract

Unlike traditional clustering methods that focus on
grouping objects with similar values on a set of dimen-
sions, clustering by pattern similarity finds objects that
exhibit a coherent pattern of rise and fall in subspaces.
Pattern-based clustering extends the concept of tradi-
tional clustering and benefits a wide range of applica-
tions, including large scale scientific data analysis, tar-
get marketing, web usage analysis, etc. However, state-
of-the-art pattern-based clustering methods (e.g., the
pCluster algorithm) can only handle datasets of thou-
sands of records, which makes them inappropriate for
many real-life applications. Furthermore, besides the
huge data volume, many data sets are also character-
ized by their sequentiality, for instance, customer pur-
chase records and network event logs are usually mod-
eled as data sequences. Hence, it becomes important
to enable pattern-based clustering methods i) to handle
large datasets, and ii) to discover pattern similarity em-
bedded in data sequences. In this paper, we present a
novel algorithm that offers this capability. Experimental
results from both real life and synthetic datasets prove
its effectiveness and efficiency.

1 Introduction

Clustering large datasets is a challenging data mining
task with many real life applications. Much research
has been devoted to the problem of finding subspace
clusters [2, 3, 4, 7, 12]. Along this direction, we further
extended the concept of clustering to focus on pattern-
based similarity [21]. Several research work have since
studied clustering based on pattern similarity [22, 15],
as opposed to traditional value-based similarity.

These efforts represent a step forward in bringing
the techniques closer to the demands of real life ap-
plications, but at the same time, they also introduced
new challenges. For instance, the clustering models in
use [21, 22, 15] are often too rigid to find objects that
exhibit meaningful similarity, and also, the lack of an ef-

ficient algorithm makes the model impractical for large
scale data. In this paper, we introduce a novel clustering
model which is intuitive, capable of capturing subspace
pattern similarity effectively, and is inducive to an effi-
cient implementation.

1.1 Subspace Pattern Similarity

We present the concept of subspace pattern similarity
by an example in Figure 1. We have three objects.
Here, the X axis represents a set of conditions, and
the Y axis represents object values under those condi-
tions. In Figure 1(a), the similarity among the three
objects are not visibly clear, until we study them un-
der two subsets of conditions. In Figure 1(b), we find
the same three objects form a shifting pattern in sub-
space {b, c, h, j, e}, and in Figure 1(c), a scaling pattern
in subspace {f, d, a, g, i}.

This means, we should consider objects similar to each
other as long as they manifest a coherent pattern in a
certain subspace, regardless of whether their coordinate
values in such subspaces are close or not. It also means
many traditional distance functions, such as Euclidean,
cannot effectively discover such similarity.

1.2 Applications

We motivate our work with applications in two impor-
tant areas.

Analysis of Large Scientific Datasets. Scien-
tific data sets often consist of many numerical columns.
One such example is the gene expression data. DNA
micro-arrays are an important breakthrough in exper-
imental molecular biology, for they provide a power-
ful tool in exploring gene expression on a genome-wide
scale. By quantifying the relative abundance of thou-
sands of mRNA transcripts simultaneously, researchers
can discover new functional relationships among a group
of genes [6, 9].

Investigations show that more often than not, sev-
eral genes contribute to one disease, which motivates
researchers to identify genes whose expression levels rise

1



0

10

20

30

40

50

60

70

80

90

a b c d e f g h i j

Object 1
Object 2
Object 3

0

10

20

30

40

50

60

70

80

90

b c h j e

Object 1
Object 2
Object 3

0

10

20

30

40

50

60

70

80

90

f d a g i

Object 1
Object 2
Object 3

(a) Raw data: (b) A Shifting Pattern in (c) A Scaling Pattern in
3 objects, 10 columns subspace {b, c, h, j, e} subspace {f, d, a, g, i}

Figure 1: Objects form patterns in subspaces.

and fall coherently under a subset of conditions, that
is, they exhibit fluctuation of a similar shape when con-
ditions change [6, 9]. Table 1 shows that three genes,
VPS8, CYS3, and EFB1, respond to certain environ-
mental changes coherently.

More generally, with the DNA micro-array as an ex-
ample, we argue that the following queries are of interest
in scientific data analysis.

Example 1. Counting
How many genes whose expression level in sample CH1I
is about 100±5 units higher than that in CH2B, 280±5
units higher than that in CH1D, and 75± 5 units higher
than that in CH2I?

Example 2. Clustering
Find clusters of genes that exhibit coherent subspace pat-
terns, given the following constraints: i) the subspace
pattern has dimensionality higher than minCols; and
ii) the number of objects in the cluster is larger than
minRows.

Answering the above queries efficiently is important in
discovering gene correlations [6, 9] from large scale DNA
micro-array data. The counting problem of Example 1
seems easy to implement, yet it constitutes the most
primitive operation in solving the clustering problem of
Example 2, which is the focus of this paper.

Current database techniques cannot solve the above
problems efficiently. Algorithms such as the pClus-
ter [21] have been proposed to find clusters of objects
that manifest coherent patterns. Unfortunately, they
can only handle datasets containing no more than thou-
sands of records.

Discovery of Sequential Patterns. We use net-
work event logs to demonstrate the need to find clus-
ters based on sequential patterns in large datasets. A
network system generates various events. We log each
event, as well as the environment in which it occurs, into
a database. Finding patterns in a large dataset of event

CH1I CH1B CH1D CH2I CH2B · · ·

VPS8 401 281 120 275 298

SSA1 401 292 109 580 238
SP07 228 290 48 285 224
EFB1 318 280 37 277 215

MDM10 538 272 266 277 236
CYS3 322 288 41 278 219

DEP1 317 272 40 273 232
NTG1 329 296 33 274 228

...

Table 1: Expression data of Yeast genes

logs is important to the understanding of the tempo-
ral causal relationships among the events, which often
provide actionable insights for determining problems in
system management.

We focus on two attributes, Event and Timestamp
(Table 2), of the log database. A network event pat-
tern contains multiple events. For instance, a candidate
pattern might be the following:

Example 3. Sequential Pattern
Event CiscoDCDLinkUp is followed by MLMStatusUp
that is followed, in turn, by CiscoDCDLinkUp, under the
constraint that the interval between the first two events
is about 20± 2 seconds, and the interval between the 1st
and 3rd events is about 40± 2 seconds.

Previous works [20, 19] have studied the problem of
efficiently locating a given sequential pattern, however,
finding all interesting sequential patterns is a difficult
problem. A network event pattern becomes interesting
if: i) it occurs frequently, and ii) it is non-trivial, mean-
ing it contains a certain amount of events. The challenge
here is to find such patterns efficiently.

Although seemingly different to the problem shown in
Figure 1, finding patterns exhibited over the time in se-
quential data is closely related to finding coherent pat-
terns in tabular data. It is another form of clustering
by subspace pattern similarity: if we think of different

2



Event Timestamp
...

...
CiscoDCDLinkUp 19:08:01
MLMSocketClose 19:08:07
MLMStatusUp 19:08:21

...
...

MiddleLayerManagerUp 19:08:37
CiscoDCDLinkUp 19:08:39

...
...

Table 2: A Stream of Events

type of events as conditions on the X axis of Figure 1,
and their timestamp as the Y axis, then, we are actually
looking for clusters of subsequences that exhibit (time)
shifting patterns as in Figure 1(b).

1.3 Our Contributions.

This paper presents a novel approach to clustering
datasets based on pattern similarity.

• We present a novel model for subspace pattern sim-
ilarity. In comparison with previous models, the
new model is intuitive for capturing subspace pat-
tern similarity, and reduces computation complexity
dramatically.

• We unify pattern similarity analysis in tabular data
and pattern similarity analysis in sequential data
into a single problem. Indeed, tabular data are
transformed into their sequential form which is in-
ducive to an efficient implementation.

• We present a scalable sequence-based method, Seq-
Clus, for clustering by subspace pattern similarity.
The technique outperforms all known state-of-the-
art pattern clustering algorithms and makes it fea-
sible to perform pattern similarity analysis on large
dataset.

The rest of the paper is organized as follows. We in-
troduce a novel distance function for measuring subspace
pattern similarity in Section 2. Section 3 presents an ef-
ficient clustering algorithm based on a novel counting
tree structure. Experiments and results are reported in
Section 4. In Section 5, we review related work. We
conclude in Section 6.

2 The Distance Function

The choice of distance functions has great implications
on the meaning of similarity, and this is particularly im-
portant in subspace clustering because of computational
complexity. Hence, we need a distance function that
makes measuring of the similarity between two objects
in high dimensional space meaningful and intuitive, and
at the same time yields to an efficient implementation.

2.1 Tabular and Sequential Data

Finding objects that exhibit coherent patterns of rise
and fall in a tabular dataset (e.g. Table 1) is similar to
finding subsequences in a sequential dataset (e.g. Ta-
ble 2). This indicates that we should unify the data rep-
resentation of tabular and sequential datasets so that a
single similarity model and algorithm can apply to both
tabular and sequential datasets for clustering based on
pattern similarity.

We use sequences to represent objects in a tabular
dataset D. We assume there is a total order among its
attributes. For instance, let A = {c1, · · · , cn} be the set
of attributes. We assume c1 ≺ · · · ≺ cn is the total order.
Thus, we can represent any object x by a sequence1:

〈(c1, xc1
), · · · , (cn, xcn

)〉

where xci
is the value of x in column ci. We can then

concatenate objects in D into a long sequence, which is
a sequential representation of the tabular data.

After the conversion, pattern discovery on tabular
datasets is no different from pattern discovery in a se-
quential dataset. For instance, in the Yeast DNA micro-
array, we can use the following sequence to represent a
pattern:

〈(CH1D, 0), (CH2B, 180), (CH2I, 205), (CH1I, 280)〉

In words, for genes that exhibit this pattern, their ex-
pression levels under condition CH2B, CH2I, and CH1I
must be 180, 205, 280 units higher than that under
CH1D.

2.2 Sequence-based Pattern Similarity

In this section, we propose a new distance measure that
is capable of capturing subspace pattern similarity and
is inducible to an efficient implementation.

Here we consider the shifting pattern of Figure 1(b)
only, as scaling patterns are equivalent to shifting pat-
terns after a logarithmic transformation of the data.

To tell whether two objects exhibit a shifting pattern
in a given subspace S, the simplest way is to normalize
the two objects by subtracting x̄s from each of their
coordinate value xi (i ∈ S), where x̄s is the average
coordinate value of x in subspace S. This, however,
requires us to compute and keep track of x̄s for each
subspace S. As there are as many as 2|A| − 1 different
ways of normalization, it makes the computation of such
similarity model impractical for large datasets.

To find a distance function that yields to an efficient
implementation, we choose an arbitrary dimension k ∈ S
for normalization. We show that the choice of k has very
limited impact on the similarity measure.

1We also use 〈xc1 , · · · , xcn
〉 to represent x if no confusion arises.

3



More formally, given two objects x and y, a subspace
S, a dimension k ∈ S, we define the sequence-based dis-
tance between x and y as follows:

distk,S(x, y) = max
i∈S
|(xi − yi)− (xk − yk)| (1)

Figure 2 demonstrates the intuition behind Eq (1).
Let S = {k, a, b, c}. With respect to dimension k, the
distance between x and y in S is less than δ if the differ-
ence between x and y on any dimension of S is within
∆±δ, where ∆ is the difference of x and y on dimension
k.

k a b c

∆

∆±δ

∆±δ

∆±δ

...

object x

object y

...

Figure 2: The meaning of distk,S(x, y) ≤ δ.

Clearly, with a different choice of dimension k, we may
find the distance between two objects different. How-
ever, such difference is bounded by a factor of 2.

Property 1. For any two objects x, y, and a subspace
S, if ∃k ∈ S such that distk,S(x, y) ≤ δ, then ∀j ∈ S,
distj,S(x, y) ≤ 2δ.

Proof.

distj,S(x, y) = max
i∈S
|(xi − yi)− (xj − yj)|

≤ max
i∈S
|(xi − yi)− (xk − yk)|+

max
j∈S
|(xj − yj)− (xk − yk)|

≤ 2δ

Since δ is but a user-defined threshold, Property 1
shows that Eq (1)’s capability of capturing pattern sim-
ilarity does not depend on the choice of k, which can be
an arbitrary dimension in S. As a matter of fact, as long
as we use a fixed dimension k for any given subspace S,
then, with a relaxed δ, we can always find those clus-
ters discovered by Eq (1) where a different dimension k
is used. This gives us great flexibility in defining and
mining clusters based on subspace pattern similarity.

Problem Statement Our task is to find subspace
clusters of objects where the distance between two ob-
jects is measured by Eq (1). Since in Eq (1), any di-
mension k is equally good in capturing subspace pattern
similarity, we shall choose the one that leads to the most
efficient computation.

3 The Clustering Algorithm

We define the concept of pattern and then we divide the
pattern space into grids (Section 3.1). We then construct
a tree structure which provides a compact summary of
all of the frequent patterns in a data set (Section 3.2).
We show that the tree structure enables us to find effi-
ciently the number of occurrences of any specified pat-
tern, or equivalently, the density of any cell in the grid
(Section 3.3). A density and grid based clustering al-
gorithm can then be applied to merge dense cells into
clusters. Finally, we introduce an Apriori-like method
to find clusters in any subspace (Section 3.4).

3.1 Pattern and Pattern Grids

Let D be a dataset in a multidimensional space A. A
pattern p is a tuple (T , δ), where δ is a distance threshold
and T is an ordered sequence of (column, value) pairs,
that is,

T = 〈(t1, 0), (t2, v2), · · · , (tk, vk)〉

where ti ∈ A, and t1 ≺ · · · ≺ tk. Let S = {t1, · · · , tk}.
An object x ∈ D exhibits pattern p in subspace S if

vi − δ ≤ xti
− xt1 ≤ vi + δ, 1 ≤ i ≤ k. (2)

Apparently, if two objects x, y ∈ D are both instances of
pattern p = (T, δ), then we have

distk,S(x, y) ≤ 2δ.

In order to find clusters, we start with high density pat-
terns: a pattern p = (T, δ) is of high density if given
p, the number of objects that satisfy Eq (2) reaches a
user-defined density threshold.

Xt2-Xt1

Xt3-Xt1

dense
cells

Figure 3: Pattern grids for subspace {t1, t2, t3}

We discretize the dataset so that patterns fall into
grids. For any given subspace S, after we find the dense
cells in S, we use a grid and density based clustering
algorithm to find the clusters (Figure 3).

The difficult part, however, lies in finding the the
dense cells efficiently for all subspaces. The rest of this
section deals with this issue.

4



3.2 The Counting Tree

The counting tree provides a compact summary of the
dense patterns in a dataset. It is motivated by the suffix
trie, which, given a string, indexes all of its substrings.
Here, each record in the dataset is represented by a
sequence, but sequences are different from strings, as
we are interested in non-contiguous sub-sequence match,
while suffix tries only handle contiguous substrings.

c1 c2 c3 c4

x 4 3 0 2
y 3 4 1 3
z 1 2 3 1

Table 3: A dataset of 3 objects

Before we introduce the structure of the counting tree,
we use an example to illustrate our purpose. Table 3
shows a dataset of 3 objects in a 4 dimensional space.
We start with the relevant subsequences of each object.

Definition 1. Relevant subsequences.
The relevant subsequences of an object o in an n-
dimensional space are:

xi = 〈xi+1 − xi, · · · , xn − xi〉 1 ≤ i < n

In relevant subsequence xi, column ci is used as the
base for comparison. Assuming C is a cluster in subspace
S, wherein i is the minimal dimension, we shall search
for C in dataset {xi|∀x ∈ D}. In any such subspace S,
we use ci as the base for comparison, in other words, ci

serves as the dimension k in Eq (1). As an example, the
relevant subsequences of object z in Table 3 are:

c1 c2 c3 c4

z1 1 2 0
z2 1 -1
z3 -2

To create a counting tree for a dataset D, for each
object z ∈ D, we insert its relevant subsequences into
a tree structure. Also, assuming the insertion of a se-
quence, say z1, ends up at node t in the tree (Figure 4),
we increase the count associated with node t by 1.

More often than not, we are interested in patterns
equal to or longer than a given size, say ξ ≥ 1. A rele-
vant subsequence whose length is shorter than ξ cannot
contain patterns longer than ξ. Thus, if ξ is known be-
forehand, we only need to insert xi where 1 ≤ i < n−ξ+1
for each object x. Figure 4 shows the counting tree for
the dataset of Table 3 where ξ = 2.

In the second step, we label each tree node t with
a triple: (ID`, IDa, Count). The first element of the
triple, ID`, uniquely identifies node t, and the second
element, IDa, is the largest ID` of t’s descendent nodes.
The IDs are assigned by a depth-first traversal of the tree
structure, during which we assign sequential numbers
(starting form 0, which is assigned to the root node) to

[1,9,3] [2,4,1] [3,4,1] [4,4,1]

[5,9,2] [6,7,1] [7,7,1]

[8,9,1] [9,9,1]

[11,12,2] [12,12,2]

[13,14,1] [14,14,1]

x

y

z

x,y

z

c1 c2 c3 c4

-1 -4 -2

1
-2 0

2

0

-3

1

-1

-1

t

[10,13,3]

s

Figure 4: The Counting Tree

the nodes as they are encountered one by one. If t is
a leaf node, then the 3rd element of the triple, Count,
is the number of objects in t’s object set, otherwise, it
is the sum of the counts of its child nodes. Apparently,
we can label a tree with a single depth-first traversal.
Figure 4 shows a labeled tree for the sample dataset.

To count pattern occurrences using the tree structure,
we introduce counting lists. For each column pair (ci,
cj), i < j, and each possible value v = xj−xi (after data
discretization), we create a counting list (ci, cj , v). The
counting lists are also constructed during the depth-first
traversal. Suppose during the traversal, we encounter
node t, which represents sequence element xj − xi = v.
Assuming t is to be labeled (ID`, IDa, cnt), and the last
element of counting list (ci, cj , v) is ( , , cnt′), we append
a new element (ID`, IDa, cnt + cnt′) into the list2.

link head list of node labels
· · · · · ·

(c1, c3,−4) ⇒ [3, 4, 1]
· · · · · ·

(c1, c4,−2) ⇒ [4, 4, 1]
(c1, c4, 0) ⇒ [7, 7, 1], [9, 9, 2]
(c2, c4,−1) ⇒ [12, 12, 2], [14, 14, 3]
· · · · · ·

Above is a part of the counting lists for the tree struc-
ture in Figure 4. For instance, link (c2, c4,−1) contains
two nodes, which are created during the insertion of x2

and z2 (relevant subsequences of x and z in Table 3).
The two nodes represent element x4 − x2 = −1 and
z4 − z2 = −1 in sequence x2 and z2 respectively. We
summarize the process of building the counting tree in
Algorithm 1.

Thus, our counting tree is composed of two structures,
the tree and the counting lists. We observe the following
properties of the counting tree:

1. For any two nodes x, y labeled (ID`
x , IDa

x , Countx)
and (ID`

y , IDa
y , County) respectively, node y is a

descendent of node x if ID`
y ∈ [ID`

x , IDa
x ].

2. Each node appears once and only once in the count-
ing lists.

2If list (ci, cj , v) is empty, we make (ID`, IDa, Count) the first
element of the list.

5



3. Nodes in any counting list are in ascending order of
their ID`.

The proof of the above properties is straightforward
and we omit it here. These properties are essential to
finding the dense patterns efficiently (Section 3.3).

Input: D: a dataset in multidimensional space A
ξ: minimal pattern length (dimensionality)

Output: F : a counting tree

F ← empty tree;
for all objects x ∈ D do

i← 1;
while i < |A| − ξ + 1 do

insert xi into F ;
i← i + 1;

make a depth-first traversal of F ;
for each node s encountered in the traversal do

let s represents sequence element xj − xi = v;
label node s by [id`

s , idas , count];
lcnt← count of the last element in list (ci, cj , v),
or 0 if (ci, cj , v) is empty;
append [id`s , idas , count + lcnt] to list (ci, cj , v);

Algorithm 1: Build the Counting Tree

3.3 Counting Pattern Occurrences

We describe SeqClus, an efficient algorithm for finding
the occurrence number of a specified pattern using the
counting tree structure introduced above.

Each node s in the counting tree represents a pattern
p, which is embodied by the path leading from the root
node to t. For instance, the node s in Figure 4 represents
pattern 〈(c1, 0), (c2, 1)〉.

How do we find the number of occurrence of pattern
p′ which is one element longer than p? That is,

p′ = 〈(ci, vi), · · · , (cj , vj)
︸ ︷︷ ︸

p

, (ck, v)〉.

The counting tree structure makes this operation very
easy. First, we only need to look for nodes in count-
ing list (ci, ck, v), since all nodes of xk − xi = v are
in that list. Second, we are only interested in nodes
that are under node s, because only those nodes sat-
isfy pattern p, a prefix of p′. Assuming s is labeled
(ID`

s , IDa
s , count), we know s’s descendent nodes are

in the range of [ID`
s , IDa

s ]. According to the counting
properties, elements in any counting list are in ascending
order of their ID` values, which means we can binary-
search the list. Finally, assume list (ci, ck, v) contain the
following nodes:

· · · , ( , , cntu), (id`v , idav , cntv), · · · , (id
`
w, idaw, cntw)

︸ ︷︷ ︸

[ID`
s

,IDa
s
]

, · · ·

Then, we know all together there are cntw−cntu objects3

that satisfy pattern p′.
We denote the above process by count(r, ck, v), where

r is a range, and in this case r = [ID`
s , IDa

s ]. If, how-
ever, we are looking for patterns even longer than p′,
then instead of returning cntw − cntu, we shall continue
the search. Let L denote the list of the sub-ranges rep-
resented by the nodes within range [ID`

s , IDa
s ] in list

(ci, ck, v), that is,

L = {[id`v , idav ], · · · , [id`w, idaw]}

Then, we repeat the above process for each range in L,
and the final count comes to

∑

r∈L

count(r, c, v)

where (c, v) is the next element following p′.
We summarize the counting process described above

in Algorithm 2.

Input: Q: a query pattern on dataset D
F : the counting tree of D

Output: number of occurrences of Q in D

assume Q = 〈(q1, 0), (q2, v2), · · · , (qj , vj), · · · 〉;
(r, cnt)← count(Universe, q1, 0);
return countPattern(r, 2);

Function countPattern(r, j)
the jth element of Q is (qj , vj);
(L, cnt)← count(r, qj , vj);
if j = |Q| then

return cnt;

else
return

∑

r′∈L countPattern(r′, j + 1)

end

Function count(r, c, v)
cl← the counting list for (q1, c, v);
perform range query r on cl and assume cl contain
the following elements:
· · · , ( , , cnt′), (id`j , idaj , cntj), · · · , (id

`
k , idak , cntk)

︸ ︷︷ ︸

r

, · · ·

return (L, cnt) where:
cnt = cntk − cnt′;
L = {[id`j , idaj ], · · · , [id`k , idak ]};

Algorithm 2: Algorithm count()

3.4 Clustering

The counting algorithm in Section 3.3 finds the number
of occurrences of a specified pattern, or the density of the

3or just cntw objects if id`v is the first element of the list.

6



cells in the pattern grids of a given subspace (Figure 3).
We can then use a density and grid based clustering
algorithm to group the dense cells together.

We start with patterns containing only two columns
(in a 2-dimensional subspace), and grow the patterns
by adding new columns into them. During this process,
patterns that correspond to no more than minRows ob-
jects are pruned, as introducing new columns into the
pattern will only reduce the number of objects.

(C1-C0=0,cnt,L)

(C1-C0=k,cnt,L)

(C2-C0=0,cnt,L)

...

(Cn-mincols+1-Cn-mincols=k,cnt,L)

root

...

(C2-C1=k,cnt,L)

...

...

(C2-C0=0,cnt,L)

join

Figure 5: The Cluster Tree

Figure 5 shows a tree structure for growing the clus-
ters. Each node t in the tree is a triple (item, count,
range-list). The items in the nodes along the path
from the root node to node t constitutes the pattern
represented by t. For instance, the node in the 3rd level
in Figure 5 represents 〈(c0, 0), (c1, 0), (c2, 0)〉, a pattern
in a 3-dimensional space. The value count in the triple
represents the number of occurrences of the pattern in
the dataset, and range-list is the list of ranges of the
IDs of those objects. Both count and range-list are
computed by the count() routine in Algorithm 2.

First of all, we count the occurrences of all patterns
containing 2 columns, and insert them under the root
node if they are frequent (count ≥ minRows). Note there
is no need to consider all the columns. As any ci−cj = v
to be the first item in a pattern with at least minCols
columns, ci must be less than cn−minCols+1 and cj must
be less than cn−minCols.

In the second step, for each node p on the current
level, we join p with its eligible nodes to derive nodes on
the next level. A node q is node p’s eligible nodes if it
satisfies the following criteria:

• q is on the same level as p;

• if p denotes item a− b = v and q denotes c−d = v′,
then a ≺ c , b = d.

Besides p’s eligible nodes, we also join p with item in the
form of cn−minCols+k − b = v, since column cn−minCols+k

does not appear in levels less than k.
The join operation is easy to perform. Assume p, rep-

resented by triple (a− b = v, count, range-list), is
to be joined with item c − b = v′, we simply compute
count(r, c, v′) for each range r in range-list. If the sum
of the returned counts is larger than minRows, then we

insert a new node (c− b = v′, count’, range-list’)
under p, where count’ is the sum of the returned counts,
and range-list’ is the union of all the ranges returned
by count(). Algorithm 3 summarizes the clustering pro-
cess described above.

4 Experiments

We implement the algorithms in C on a Linux machine
with a 700 MHz CPU and 256 MB main memory. We
tested it on both synthetic and real life data sets.

Input: minCols: dimensionality threshold
minRows: cluster size threshold
F : tree structure for D

Output: clusters of objects in D

T ← create root note of tree;
Queue← ∅ ;
for i = 1 to |A|-minCols do

(cnt, L)← count(NULL, Ci, 0);
if cnt ≥ minCols then

insert (ci, 0, cnt, L) under T and into Queue;

end

end
while Queue 6= ∅ do

remove the 1st element x from Queue;
assume x = (ci, v, cnt, L);
join x with eligible node y = (cj , v

′, cnt′, L′);
(cnt′′, L′′)← count(L, Cj , v);
if cnt′′ ≥minRows then

Insert (cj , v
′′, cnt′′, L′′) under x and into

Queue;

end

end
for each leaf node x of the tree do

assume x = (ci, v, cnt, L);
columns ← path from root to x;
objects ← findAll(L);
return cluster {columns,objects};

end

Algorithm 3: Clustering Algorithm

4.1 Data Sets

We generate synthetic datasets in tabular and sequential
forms. For real life datasets, we use time-stamped event
sequences generated by a production network (sequential
data), and DNA micro-arrays of yeast and mouse gene
expressions under various conditions (tabular data).

Synthetic Data We generate synthetic data sets in
tabular forms. Initially, the table is filled with random
values ranging from 0 to 300, and then we embed a fixed
number of clusters in the raw data. The clusters em-
bedded can also have varying quality. We embed perfect
clusters in the matrix, i.e., the distance between any two
objects in the embedded cluster is 0 (i.e., δ = 0). We

7



also embed clusters whose distance threshold among the
objects is δ = 2, 4, 6, · · · . We also generate synthetic se-
quential datasets in the form of · · · (id,timestamp) · · · ,
where instead of embedding clusters, we simply model
the sequences by probabilistic distributions. Here, the
ids are randomly generated; however, the occurrence
rate of different ids follows either a uniform or a Zipf
distribution. We generate ascending timestamps in such
a way that the number of elements in a unit window fol-
lows either uniform or Poisson distribution.

Gene Expression Data Gene expression data are
presented as a matrix. The yeast micro-array [18] can
be converted to a weighted-sequence of 49,028 elements
(2,884 genes under 17 conditions). The expression lev-
els of the yeast genes (after transformation) range from
0-600, and they are discretized into 40 bins. The mouse
cDNA array is 535,766 in size (10,934 genes under 49
conditions) and it is pre-processed in the same way.

Event Management Data The data sets we use
are taken from a production computer network at a
financial service company. NETVIEW [16] has six
attributes: Timestamp, EventType, Host, Severity,
Interestingness, and DayOfWeek. We are concerned
with attribute Timestamp and EventType, which has 241
distinctive values. TEC [16] has attributes Timestamp,
EventType, Source, Severity, Host, and DayOfYear.
In TEC, there are 75 distinctive values of EventType and
16 distinctive types of Source. It is often interesting to
differentiate same type of events from different sources,
and this is realized by combining EventType and Source
to produce 75× 16 = 1200 symbols.

4.2 Performance Analysis

We evaluate the scalability of the clustering algorithm on
synthetic tabular datasets and compare it with pClus-
ter [21]. The number of objects in the dataset increases
from 1,000 to 100,000, and the number of columns from
20 to 120. The results presented in Figure 6 are average
response times obtained from a set of 10 synthetic data.

Data sets used for Figure 6(a) are generated with num-
ber of columns fixed at 30. We embed a total of 10 per-
fect clusters (δ = 0) in the data. The minimal number of
columns of the embedded cluster is 6, and the minimal
number of rows is set to 0.01N , where N is the number
of rows of the synthetic data.

The pCluster algorithm is invoked with minCols= 5,
minRows= 0.01N , and δ = 3, and the SeqClus algorithm
is invoked with δ = 3. Figure 6(a) shows that there is
almost a linear relationship between the time and the
data size for the SeqClus algorithm. The pCluster algo-
rithm, on the other hand, is not scalable, and it can only
handle datasets with size in the range of thousands.

For Figure 6(b), we increase the dimensionality of
the synthetic datasets from 20 to 120. Each embed-
ded cluster is in subspace whose dimensionality is at

0

200

400

600

800

1000

1200

0 20000 40000 60000 80000 100000

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

.)

Dataset size (# of objects)

pCluster (# of Columns=30)
SeqClus (# of Columns=30)

(a) Scalability with the # of rows in data sets

0

500

1000

1500

2000

2500

3000

3500

4000

20 40 60 80 100 120

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

.)

Dataset size (# of columns)

SeqClus (# of Rows=30K)
SeqClus (# of Rows=3K)
pCluster (# of Rows=3K)

(b) Scalability with the # of columns in data sets

Figure 6: Performance Study: scalability.

least 0.02C, where C is the number of columns of the
data set. The pCluster algorithm is invoked with δ = 3,
minCols= 0.02C, and minRows= 30. The curve of Se-
qClus exhibits quadratic behavior. However, it shows
that, with increasing dimensionality, SeqClus can almost
handle datasets of size an order of magnitude larger than
pCluster (30K vs. 3K). We were unable to get the per-
formance result of pCluster on datasets of 30K objects.

300

400

500

600

700

800

900

2 3 4 5 6

T
im

e 
(s

ec
.)

distance threshold delta

pCluster (# of Rows=3K)
SeqClus (# of Rows=30K)

Figure 7: Time vs. distance threshold δ

Next we study the impact of the quality of the em-
bedded clusters on the performance of the clustering
algorithms. We generate synthetic datasets containing
3K/30K objects, 30 columns with 30 embedded clusters
(each on average contains 30 objects, and the clusters
are in subspace whose dimensionality is 8 on average).
Within each cluster, the maximum distance (under the
pCluster model) between any two objects ranges from
δ = 2 to δ = 6. Figure 7 shows that, while the perfor-
mance of the pCluster algorithm degrades with the in-
crease of δ, the SeqClus algorithm is more robust under

8



this situation. The reason is because much of the com-
putation of SeqClus is performed on the counting tree,
which provides a compact summary of the dense pat-
terns in the dataset, while for pCluster, a higher δ value
has a direct, negative impact on its pruning effect [21].

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
ec

.)

Data Sequence # of elements (X 1000)

SeqClus (window size=1 min)

Figure 8: Scalability on sequential dataset

We also study clustering performance on timestamped
sequential datasets. The dataset in use is in the form
of · · · (id,timestamp) · · · , where every minute con-
tains on average 10 ids (uniform distribution). We
place a sliding window of size 1 minute on the sequence,
and create a counting tree for the subsequences inside
the windows. The scalability result is shown in Fig-
ure 8. We also tried different distributions of id and
timestamp, but did not observe significant differences in
performance.

4.3 Cluster Analysis

We report the clusters found in real life datasets. Table 4
shows the number of clusters found by the pCluster and
SeqClus algorithm in the raw Yeast micro-array dataset.

δ minCols minRows # of clusters
pCluster SeqClus

0 9 30 5 5
0 7 50 11 13
0 5 30 9370 11537

Table 4: Clusters found in the Yeast dataset

For minCols= 9 and minRows= 30, the two algorithms
found the same clusters. But in general, using the same
parameters, SeqClus produces more clusters. This is be-
cause the similarity measure used in the pCluster model
is more restrictive. We find that the objects (genes) in
those clusters overlooked by the pCluster algorithm but
discovered by the SeqClus method exhibit easily per-
ceptible coherent patterns. For instance, the genes in
Figure 9 shows a coherent pattern in the specified sub-
space, and this subspace cluster is discovered by SeqClus
but not by pCluster. This indicates the relaxation of the
similarity model not only improves the performance but
also provides extra insight in understanding the data.

250

300

350

400

0 2 4 6 8 10 12 14 16

ex
pr

es
si

on
 le

ve
ls

conditions

Figure 9: A cluster in subspace {2,3,4,5,7,8,10,11,12,13,14,15,16}.

The SeqClus algorithm works directly on both tabular
and sequential datasets. Table 5 shows event sequence
clusters found in the NETVIEW dataset [16]. We apply
the algorithm on 10 days’ worth of event logs (around
41M bytes) of the production computer network.

δ # events # sequences SeqClus
2 sec 10 500 31
4 sec 8 400 143
6 sec 6 300 2276

Table 5: Clusters found in NETVIEW

5 Related Work

The study of clustering based on pattern similarity is
related to previous work on subspace clustering. Many
recent studies [2, 3, 4, 7, 12] focus on mining subspace
clusters embedded in high-dimensional spaces.

Still, strong correlations may exist among a set of ob-
jects even if they are far apart from each other as mea-
sured by distance functions (such as Euclidean) used fre-
quently in traditional clustering algorithms. Many sci-
entific projects collect data in the form of Figure 1, and
it is essential to identify clusters of objects that manifest
coherent patterns. A variety of applications, including
DNA microarray analysis, E-commerce collaborative fil-
tering, will benefit from fast algorithms that can capture
such patterns. Cheng et al [8] proposed the bicluster
model, which captures the coherence of genes and con-
ditions in a sub-matrix of a DNA micro-array.

In this paper, we show that clustering by pattern sim-
ilarity is closely related to the problem of subsequence
matching. There has been much research on string in-
dexing and substring matching. For instance, a suffix
tree [14] is a very useful data structure that embodies a
compact index to all the distinct, non-empty substrings
of a given string. Suffix arrays [13] and PAT-arrays [11]
also provide fast searches on text databases. Similarity
based subsequence matching [10, 17] has been a research
focus for applications such as time series databases.

9



6 Conclusion

Clustering by pattern similarity is an interesting and
challenging problem. The computational complexity
problem of subspace clustering is further aggravated by
the fact that we are concerned with patterns of rise and
fall instead of value similarity. The task of clustering
by pattern similarity can be converted into a traditional
subspace clustering problem by (i) creating a new dimen-
sion ij for every two dimension i and j of any object x,
and set xij , the value of the new dimension, to xi − xj ;
or (ii) creating |A| copies (A is the entire dimension set)
of the original dataset, where xk, the value of x on the
kth dimension in the ith copy is changed to xk − xi, for
k ∈ A. For both cases, we need to find subspace clusters
in the transformed dataset, which is |A| times larger.
These methods are apparently not feasible for datasets
in high dimensional spaces. They also cannot be applied
to sequential datasets, for instance, in event manage-
ment systems where millions of timestamped events are
generated on a daily basis. In this paper, we introduced
a sequence based similarity measure to model pattern
similarity. We proposed an efficient implementation, the
counting tree, which is based on the suffix tree struc-
ture. Experimental results show that the SeqClus algo-
rithm achieves an order of magnitude speedup over the
current best algorithm pCluster. The new model also
enables us to identify clusters overlooked by previous
methods such as the pCluster model. Furthermore, the
sequence model is natural to be applied on sequential
data directly.

References

[1] Alison Abbott. Bioinformatics institute plans pub-
lic database for gene expression data. Nature,
398:646, 1999.

[2] C. C. Aggarwal, C. Procopiuc, J. Wolf, P. S. Yu, and
J. S. Park. Fast algorithms for projected clustering.
In SIGMOD, 1999.

[3] C. C. Aggarwal and P. S. Yu. Finding generalized
projected clusters in high dimensional spaces. In
SIGMOD, pages 70–81, 2000.

[4] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Authomatic subspace clustering of
high dimensional data for data mining applications.
In SIGMOD, 1998.

[5] Alvis Brazma, Alan Robinson, Graham Cameron,
and Michael Ashburner. One-stop shop for microar-
ray data. Nature, 403:699–700, 2000.

[6] P. O. Brown and D. Botstein. Exploring the new
world of the genome with DNA microarrays. Nature
Genetics, 21:33–37, 1999.

[7] C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-
based subspace clustering for mining numerical
data. In SIGKDD, pages 84–93, 1999.

[8] Y. Cheng and G. Church. Biclustering of expression
data. In Proc. of 8th International Conference on
Intelligent System for Molecular Biology, 2000.

[9] P. D’haeseleer, S. Liang, and R. Somogyi. Gene
expression analysis and genetic network modeling.
In Pacific Symposium on Biocomputing, 1999.

[10] C. Faloutsos, M. Ranganathan, and Y. Manolopou-
los. Fast subsequence matching in time-series
databases. In SIGMOD, pages 419–429, 1994.

[11] G. Gonnet, R. Baeza-Yates, and T. Snider. New
indices for text: Pat trees and pat arrays. In Infor-
mation Retrieval: Data Structures and Algorithms,
pages 335–349. Prentice Hall, 1992.

[12] H. V. Jagadish, Jason Madar, and Raymond Ng.
Semantic compression and pattern extraction with
fascicles. In VLDB, pages 186–196, 1999.

[13] U. Manber and G. Myers. Suffix arrays: A new
method for on-line string searches. SIAM Journal
On Computing, pages 935–948, 1993.

[14] E. M. McCreight. A space-economical suffix tree
construction algorithm. Journal of the ACM,
23(2):262–272, April 1976.

[15] Jian Pei, Xiaoling Zhang, Moonjung Cho, Haixun
Wang, and Philip S. Yu. Maple: A fast algorithm
for maximal pattern-based clustering. In ICDM,
2003.

[16] Chang-Shing Perng, Haixun Wang, Sheng Ma, and
Joseph L Hellerstein. A framework for exploring
mining spaces with multiple attributes. In ICDM,
2001.

[17] Chang-Shing Perng, Haixun Wang, Sylvia R.
Zhang, and D. Stott Parker. Landmarks: a new
model for similarity-based pattern querying in time
series databases. In ICDE, pages 33–42, 2000.

[18] S. Tavazoie, J. Hughes, M. Campbell, R. Cho,
and G. Church. Yeast micro data set. In
http://arep.med.harvard.edu/biclustering/yeast.matrix,
2000.

[19] Haixun Wang, Sanghyun Park, Wei Fan, and
Philip S. Yu. ViST: A dynamic index method for
querying XML data by tree structures. In SIG-
MOD, 2003.

[20] Haixun Wang, Chang-Shing Perng, Wei Fan,
Sanghyun Park, and Philip S. Yu. Indexing
weighted sequences in large databases. In ICDE,
2003.

[21] Haixun Wang, Wei Wang, Jiong Yang, and Philip S.
Yu. Clustering by pattern similarity in large data
sets. In SIGMOD, 2002.

[22] Jiong Yang, Wei Wang, Haixun Wang, and Philip S
Yu. δ-clusters: Capturing subspace correlation in a
large data set. In ICDE, pages 517–528, 2002.

10


