
Pattern-based Similarity Search for Microarray Data

Haixun Wang
IBM T. J. Watson Research

Hawthorne, NY 10532
haixun@us.ibm.com

Jian Pei
Simon Fraser University

Canada
jpei@cs.sfu.ca

Philip S. Yu
IBM T. J. Watson Research

Hawthorne, NY 10532
psyu@us.ibm.com

ABSTRACT
One fundamental task in near-neighbor search as well as other sim-
ilarity matching efforts is to find a distance function that can effi-
ciently quantify the similarity between two objects in a meaningful
way. In DNA microarray analysis, the expression levels of two
closely related genes may rise and fall synchronously in response
to a set of experimental stimuli. Although the magnitude of their
expression levels may not be close, the patterns they exhibit can be
very similar. Unfortunately, none of the conventional distance met-
rics such as theLp norm can model this similarity effectively. In
this paper, we study the near-neighbor search problem based on this
new type of similarity. We propose to measure the distance between
two genes by subspace pattern similarity, i.e., whether they exhibit
a synchronous pattern of rise and fall on a subset of dimensions.
We then present an efficient algorithm for subspace near-neighbor
search based on pattern similarity distance, and we perform tests
on various data sets to show its effectiveness.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing; I.5.2 [Pattern Recognition]: Design Methodology—Pattern
analysis

Keywords
pattern recognition, near neighbor, distance function

1. INTRODUCTION
Given a distance functiondist(·, ·) that measures the similarity

between two objects, a query objectq’s near-neighbors within a
given tolerance radiusr in a databaseD is defined as:

NN (q, r) = {p| p ∈ D, dist(q, p) ≤ r} (1)

The distance functiondist(·, ·) has a direct impact on the efficiency
of the search of near-neighbors [3]. More importantly, it also de-
termines the meaning of similarity and the meaning of the near-
neighbor search.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

260

280

300

320

340

360

0 2 4 6 8 10 12 14 16

ex
pr

es
si

on
 le

ve
ls

conditions

YGL106W
YAL046C

Figure 1: Similarity between two yeast genes

Applications. In this paper, we address a new type of similarity
that cannot be effectively captured by conventional distance metric
such as theLp norm. As a motivating example, in Figure 1, we
show the expression levels of two Yeast genes under 17 different
external conditions. It is clear that the two genes manifest similarity
under a subset of conditions (linked in thick lines).

In many scientific experiments, we measure objects in differ-
ent environments. Figure 2(a) is a dataset that contain the mea-
surements of 3 objects in 8 different environments. Now, given a
new objectX whose measurements are shown in Figure 2(b), we
want to findX ’s near neighbors in the dataset. Figure 2(c) and
(d) show potential near-neighbors of objectX. In Figure 2(c), the
values of object X and A rise and fall coherently under conditions
{a, b, d, e, g}. Figure 2(d) reveals, in much the same way, the sim-
ilarity of X andC under{a, b, c, e, h}.

Finding near neighbors based on subspace pattern similarity is
important to many applications including DNA microarray analy-
sis [1, 8, 7]. A DNA microarray is a two dimensional matrix where
entrydij represents the expression level of genei in samplej. In-
vestigations show that more often than not, several genes contribute
to a disease, which motivates researchers to identify genes whose
expression levels rise and fall synchronously under a subset of con-
ditions, that is, whether they exhibit fluctuation of a similar shape
when conditions change.

Problems.Assume we are given a new gene for which we do
not know in which conditions it might manifest coherent patterns
with other genes. This new gene might be related to any gene in
the database as long as both of them exhibit a pattern in some sub-
space. The dimensionality of the subspace is often an indicator of
the degree of their closeness, that is, the more columns the pattern
spans, the closer the relationship between the two genes.

EXAMPLE 1 (NEAR-NEIGHBOR SEARCH IN ANY SUBSPACES).
Given a geneq, and a dimensionality thresholdr, find all genes

whose expression levels manifest coherent patterns with those ofq

0

2

4

6

8

10

12

14

16

a b c d e f g h

m
ea

su
re

s

environment

A
B
C

(a) a dataset of 3 objects

0

2

4

6

8

10

12

14

16

a b c d e f g h

m
ea

su
re

s

environment

X

(b) a query object X

0

2

4

6

8

10

12

14

16

a b c d e f g h

m
ea

su
re

s

X
A

X (subspace)
A (subspace)

(c) X and A

0

2

4

6

8

10

12

14

16

a b c d e f g h

m
ea

su
re

s

X
C

X (subspace)
C (subspace)

(d) X and C

Figure 2: What is a near neighbor?

in any subspaceS, where|S| ≥ r.

Our Contributions.We introduce a new measure to capture
pattern-based similarity exhibited by objects in subspaces. With
the new distance measure, we extend the concept of near-neighbor
to the realm of pattern-based similarity, which often carries signif-
icant meanings. We also propose a novel method to perform near-
neighbor search by pattern similarity. Experiments show that our
method is effective and efficient, and it outperforms alternative al-
gorithms (based on an adaptation of the R-Tree index) by an order
of magnitude.

2. PATTERN DISTANCE
Let u, v be two objects in datasetD. How can we measure their

pattern-based similarity in a given subspace, sayS = {a, b, c, d, e}?

a b c d e a b c d e

0

object u

object v

Figure 3: pattern in subspaceS = {a, b, c, d, e}

A straightforward way is tonormalizeboth objects in subspace
S (Figure 3) by shiftingu andv by an amount ofus andvs re-
spectively, whereus (vs) is the average coordinate value ofu (v)
in subspaceS. After normalization, we can check whetheru andv
exhibit a pattern of good quality in subspaceS:

DEFINITION 1 (COHERENTPATTERN). Objectsu, v ∈ D
exhibit a coherent pattern in subspaceS ⊆ A if

dS(u, v) = max
i∈S

|(ui − us)− (vi − vs)| ≤ ε (2)

whereus = 1
|S|

∑
i∈S ui, vs = 1

|S|
∑

i∈S vi are average coordi-
nate values ofu andv in subspaceS, andε ≥ 0.

The above definition, although intuitive, may not be applicable
or effective for near-neighbor search in arbitrary subspaces. Near-
neighbor search queries often rely on index structures to speed up
the search process. The definition of the coherent pattern (Eq 2)
uses not only coordinate values (i.e.,ui, vi) but also average coor-
dinate values in subspaces (i.e.,us, vs). It is unrealistic, however,
to index average values for each of the2|A| subsets.

To avoid the curse of dimensionality, we relax Definition 1 by
eliminating the need of computing average values in Eq 2. Instead,
we use the coordinate values ofany columnk ∈ S as the base
for comparison. Given a subspaceS and any columnk ∈ S, we
define:

dk,S(u, v) = max
i∈S

|(ui − uk)− (vi − vk)| (3)

However, the choice of columnk may be questionable: does an
arbitraryk affect our ability in capturing pattern similarity? The
following property relieves this concern.

THEOREM 1. If there existsk ∈ S such thatdk,S(u, v) ≤ ε,
then we have:

∀i ∈ S di,S(u, v) ≤ 2ε and dS(u, v) < 2ε

PROOF. (sketch) Note:

|(uj − ui)− (vj − vi)| ≤ |(uj − vj)− (uk − vk)|+
|(uk − vk)− (ui − vi)|,

and

|(ui − uS)− (vi − vS)| ≤ 1

|S|
∑

j∈S
|(ui − uj)− (vi − vj)|.

Not only the difference among base columns is limited, Theo-
rem 1 also shows that, the difference between using Eq 2 and Eq 3
is bounded by a factor of 2 in terms of the pattern quality. In the
same light, we can show that ifu andv exhibit an coherent pattern
in subspaceS, then∀k ∈ S, we havedk,S(u, v) ≤ 2ε. Thus, in
order to find all coherent pattern, we can usedk,S(u, v) ≤ 2ε as the
criteria and then prune the results, since Eq 3 is much less costly to
compute.

In order to find patterns defined by a consistent measure, we fix
the base columnk for any subspaceS ⊆ A. We assume there is a
total order among the dimensions inA. Given a subspaceS, we use
its least dimension in terms of the total order as the base column.
Now we arrive at the definition ofε-pattern that induces an efficient
implementation.

DEFINITION 2 (ε-PATTERN). Objectsu, v ∈ D exhibit anε-
pattern in subspaceS ⊆ A if

dk,S(u, v) ≤ ε

wherek is the least dimension inS andε ≥ 0.

The ε-pattern definition focuses on pattern similarity in a given
subspace. How to measure similarity between two objects when no
subspace is specified? Usually, we do not care over which subspace
two objects exhibit a similar pattern, but rather, how many dimen-
sions the pattern spans. Thus, the dimensionality of the subspace
can be used as an indicator of the degree of the similarity.

DEFINITION 3 (SUBSPACE PATTERN SIMILARITY).
Given two objectsu, v ∈ D and someε ≥ 0, we say that the
similarity betweenu andv is r, or

s(u, v) = r

if r is the maximum dimensionality of all subspacesS ⊆ A where
u andv exhibit anε-pattern.

Thus, two objects that exhibit anε-pattern in the entire spaceA
will have the largest similarity of|A|. The distance between the two
objects is reversely proportional to their similarity. For instance,
we can definedist(u, v) = 1/s(u, v). Note that the distance de-
fined above is non-metric in that it does not satisfy the triangular
inequality. One object can shareε-patterns with two other objects
in different subspaces, and the sum of the distances to the two ob-
jects might be smaller than the distance between the two objects,
which may not share synchronous patterns in any subspace.

Problem Statement.We define the following problem of near
neighbor search. Given an objectq, a tolerance radiusr, find
NN (q, r) in datasetD:

NN (q, r) = {u ∈ D | s(q, u) ≥ r} (4)

3. NEAR-NEIGHBOR SEARCH BY SUBSPACE
PATTERN SIMILARITY

In this section, we propose a new index structure calledPS-Index
(pattern similarity index)to support near-neighbor search in pattern
distance space.

3.1 Building a Trie
Given a datasetD in spaceA = {c1, c2, ..., cn}, wherec1 ≺

c2 ≺ · · · ≺ cn is a total order on attributes, we represent each
objectu ∈ D as a sequence of (column, value) pairs, that is:

u = (c1, u1), (c2, u2), ..., (cn, un)

An aligned suffixof u is defined as:

f(u, i) = (ci, 0), (ci+1, ui+1 − ui), ..., (ck, uk − ui) (5)

We use an example to demonstrate the data sequentializing pro-
cess.

EXAMPLE 2. Let databaseD be composed of the following ob-
ject defined in spaceA = {c1, c2, c3, c4, c5}.

obj c1 c2 c3 c4 c5

#1 3 0 4 2 0

We derive all aligned suffices of length≥ 2 of the object, and
insert them into a trie. Figure 4 demonstrates the insertion of the
following sequence:

f(#1, 1) = (c1, 0), (c2,−3), (c3, 1), (c4,−1), (c5,−3)

Each leaf noden in the trie maintains anobject list, Ln. Assum-
ing the insertion off(#1, 1) leads to nodex, which is under arc
(e,−3), we append 1 (object #1), to object listLx.

3.2 Building PS-Index over a Trie
The trie enables us to find near-neighbors of a query objectq =

(c1, v1), ..., (cn, vn) in a given subspaceS, providedS is defined
by a set ofconsecutivecolumns, i.e.,S = {ci, ci+1, ..., ci+k}.
The PS-index, described below, allows us to ’jump’ directly from a
columncj to any columnck, wherek > j.

c1,0

c2,-3

c3,1

c4,-1

c5,-3

-3
1

distance to
base column

1

Lx:
object
list of
node x

x

y

Figure 4: Insertion of sequencef(#, 1).

We use the following two steps to build the PS-index on top of a
trie. First, after all sequences are inserted, we assign to each node
x a pair of labels,〈nx, sx〉, wherenx is the prefix-order of nodex
in the trie (starting from 0, which is assigned to the root node), and
sx is the number ofx’s descendent nodes.

Next, we store nodes into buffers. For each unique edge(col, dist)
in the trie1, we create a buffer. Nodes are appended to the buffers
during a depth-first walk of the trie. When we encounter a nodex
under edge(col, dist), we appendx’s label 〈nx, sx〉 to the buffer
of (col, dist). From the definition of base-column aligned suffixes,
it is clear that a buffer is composed of nodes that have the same
distance from their base columns (root node).

The labeling scheme and the node buffers have the following
property.

THEOREM 2 (PS-INDEX PROPERTY).

1. If nodex and y are labeled〈nx, sx〉 and 〈ny, sy〉 respec-
tively, andnx < ny ≤ nx + sx, theny is a descendent node
of x;

2. nodes in any link are ordered by their prefix-order number;
and

3. if a link contains nodesu . . . v . . . w (in that order), andu
andw have a common ancestorx, thenx is alsov’s ancestor.

PROOF. 1) and 2) are due to the labeling scheme which is based
on depth-first traversal. For 3), note that if nodesu, ..., v, ..., w are
in a link, andu, v are descendents ofx, we havenx < nu < nv <
nw ≤ nx + sx, which meansv is also a descendent ofx.

The above properties enable us to use range queries to find de-
scendents of a given node in a given link.

Algorithm 1 summarizes the index construction procedure. The
time complexity of building the PS-index isO(|D||A|). The Ukko-
nen algorithm [6] builds suffix tree in linear time. The construction
of the trie for pattern-similarity indexing is less time consuming be-
cause the length of the indexed subsequences is constrained by|A|.
Thus, it can be constructed by a brute-force algorithm [4] in linear
time. The space taken by the PS-Index is linearly proportional to
the data size. Since each node appears once and only once in the
pattern distance links, the total number of entries equals the total
number of nodes in the trie, orO(|D||A|2) in the worst case (if
none of the nodes are shared by any subsequences). On the other
hand, there are exactly|D|(|A| − 1) object ids stored. Thus, the
space is linearly proportional to the data size|D|.
1For each columncol, there are at most2ξ−1 unique edges, where
ξ is the number of unique values of that column.

Input : D: objects in multi-dimensional spaceA
Output : PS-Index ofD
for eachu ∈ D do

insertf(u, i), 1 ≤ i < |A| into a trie; (Eq 5)

for each nodex encountered in a depth-first traversal of the
trie do

label nodex by 〈nx, sx〉;
let (c, d) be the arc that points tox;
append〈nx, sx〉 to link (c, d);

Algorithm 1: Index Construction

3.3 Near-Neighbor Search
In this section, we provide an efficient solution to the 2nd prob-

lem defined in Section 2.

The Coverage Property.Each nodex in the trie represents a
coverage, which we denote as a rangec(x) = [nx, nx+sx] (assum-
ing x is labeled〈nx, sx〉). Finding near-neighbors with similarity
≥ r boils down to finding leaf nodes whose preorder number is
inside at leastr ranges associated with the query object.

Let q be a query object, andp ∈ D be a near-neighbor ofq (with
similarity above thresholdr, or s(p, q) ≥ r). Hence, there exists
a subspaceS, |S| = r, in which p andq share a pattern. Con-
siderf(q, i) = (ci, 0), · · · , (ck, qk − qi), · · · , (c|A|, q|A| − qi). Each
element(ck, qk − qi) of f(q, i) corresponds to a pattern distance
link, which contains a set of nodes. LetP (q, i) denote the set of
all nodes that appear in the pattern distance links of the elements in
f(q, i), and letP (q) =

⋃
i∈A

P (q, i).

THEOREM 3. (The Coverage Property) For any objectp that
shares a pattern with query objectq in subspaceS, there exists
a set of|S| nodes{x1, ..., x|S|} ⊆ P (q), and a leaf nodey that
containsp (p ∈ Ly), such thatny ∈ c(x1) ⊆ · · · ⊆ c(x|S|),
whereny is the prefix-order of nodey.

PROOF. (Sketch) Letci be thefirst column ofS (that is, there
does not exist anycj ∈ S such thatj < i). Assume the insertion
of f(p, i) follows the path consisting of nodesxi, xi+1, · · · , x|A|,
which leads toc(x|A|) ⊆ · · · ⊆ c(xi+1) ⊆ c(xi). Assume node
xj is in the list of(cj , pj − pi). Sincep andq share pattern inS,
(cj , pj−pi) = (cj , pj−qi) holds for at least|S| different columns,
which means|S| of the nodes inxi, xi+1, · · · , x|A| also appear in
P (q, i) ⊂ P (q).

The proof also shows that, to find objects that share patterns with
q in subspace S, of whichci is thefirst column, we only need to
consider ranges of the objects inP (q, i), instead of in the entire
object setP (q).

The reverse of the coverage property is also true, and can be
proved under the same spirit: for any{x1, · · · , xn} ⊆ P (q) satis-
fying c(x1) ⊆ · · · ⊆ c(xn), any object∈ Lx1 is a near-neighbor
of q with similarity r ≥ n.

The Algorithm.Based on the coverage property, to findNN (q, r),
we need to find those leaf nodes whose preorder number is inside at
leastr nested ranges. We perform near-neighbor search iteratively.
At the ith step, we find objects that share patterns withq in sub-
spaceS, of whichci is the first column. During that step, we only
need to consider ranges of objects inP (q, i).

We demonstrate the search process with an example.

EXAMPLE 3. Given a query object,

q = (a, 1), (b, 1), (c, 2), (d, 0), (e, 3)

findNN (q, 3) in D (Table 1).

By definition,∀p ∈ NN (q, 3), p andq must share a pattern in 3-
or higher-dimensional space.

obj a b c d e
(1) 3 0 4 2 0
(2) 4 1 5 3 6
(3) 1 4 5 1 6
(4) 0 3 4 0 5

Table 1: datasetD in Example 3

c,1
d,-3

a1

d,0

a,0
b,0

c,0

b,-3

d,-1

0,24

15,0

b,3

c,4

e,5e,-3 e,2

c,4 c,1

e,2

d,2

e,5e,0

d,-4

e,1

e,1e,-4

5,0

4,2

6,0

3,3

2,4

10,0

9,1

8,2

7,3

1,9

14,0

13,2

12,3

18,0

17,1

16,2

11,7

21,0 22,0

20,2

24,0

23,1

19,5

node 5 6 10 14 15 18 21 22 24
objs {1} {2} {3,4} {1} {2} {3,4} {1} {2} {3,4}

Figure 5: suffix trie and object lists of datasetD

In Figure 5, we show a labeled trie built onD, and the object lists
associated with each leaf node of the trie. For presentation simplic-
ity, we did not include suffixes of length less than 3 in Figure 5. It
does not affect the result of Example 3, which looks for patterns in
3- or higher-dimensional space.

We start withf(q, 1), that is, we look for patterns in subspaces
that contain columna (the 1st column ofA).

f(q, 1) = (a, 0), (b, 0), (c, 1), (d,−1), (e, 2)

For each element inf(q, 1), we consult the corresponding hori-
zontal link and record the labels of the nodes in the horizontal
link. For instance,(a, 0) finds one node, which is labeled〈1, 9〉.
We record it in Figure 6. For the remaining elements off(q, 1),
our search is confined within that range, since we are looking for
subspaces where columna is present. We consult the horizontal
link of elements inf(q, 1) one by one. After we consult(b, 0),
(c, 1), and(d,−1) and record the results, we find region[4, 6] in-
side three brackets (Figure 6). It means objects in the leaf nodes
whose prefix-order are in range[4, 6] already match the query ob-
ject in a 3-dimension space. To find what those objects are, we
perform a range query[4, 6] in the object list table shown in Fig-
ure 5, which returns object 1 and 2, and they belong to leaf node
5 and 6 respectively. The two objects share a pattern withq in 3-
dimension space{a, c, d}. We repeat this process forf(q, 2), and
so on.

Optimization. In essence, the searching process maintains a set
of embedded ranges represented by brackets (Figure 6), and the
goal is to find regions withinr brackets. The performance of the
search can be greatly improved by immediately dropping those re-
gions from further consideration if i) all nodes inside the region

after checking result

(a,0):
1 10

(b,0):
1 10

(c,1):
1 103 6

(d,-1):
1 103 664

(e,2):
1 103 664

Figure 6: Embedded ranges during the search off(q, 1)

already satisfy the query, or ii) no node inside the region can possi-
bly satisfy the query. More specifically,

1. A region inside less thanr − |A| + i brackets after theith
dimension ofA is checked is discarded. It is easy to see that
such regions will not be insider brackets after the remaining
|A| − i dimensions are checked.

2. If a region is already insider brackets, we output the objects
in the leaf nodes within that region, and discard the region
(unless the users want the output objects ordered by their dis-
tance to the query object.)

For instance, in Figure 6, after the range of[4, 6] is returned, only
region[3, 4] shall remain before(e, 2) is checked.

Input : q = (c1, v1), · · · , (cn, vn): a query object
r: distance threshold,ε: pattern tolerance
F : index file forD

Output : NN (q, r)

for i = 1, ..., r + 1 do
R ← the range of the (only) node in link(ci, 0);
j ← i + 1;
while R 6= φ and j ≤ |A| do

search link(cj , v) for nodes inside any range ofR,
wherev ∈ [vj − vi − ε, vj − vi + ε];
updateR by adding the ranges of those nodes;
if a regions of R is inside|A| − r bracketsthen

output objects inLx wherex ∈ s;
eliminates from R;

end
if a regions of R is inside less thanr − j brackets
then

eliminate the region froms;

end
j ← j + 1;

end
end

Algorithm 2: Near-Neighbor Search

4. EXPERIMENTS
We tested PS-Index with both synthetic and real life data setson

a Linux machine with a 700 MHz CPU and 256 MB main memory.
The yeast micro-array is a2, 884×17 matrix (2,884 genes under 17
conditions) [5]. The mouse cDNA array is a10, 934 × 49 matrix
(10,934 genes under 49 conditions) [2] and it is pre-processed in
the same way. We also generate synthetic data, which are random
integers from a uniform distribution in the range of 1 toξ. Let

|D| be the number of objects in the dataset and|A| the number of
dimensions. The total data size is4|D||A| bytes.

260

280

300

320

340

360

0 2 4 6 8 10 12 14 16

e
x
p

re
s
s
io

n
 l
e

v
e

ls

conditions

YGL106W
YAL046C

250

300

350

400

0 2 4 6 8 10 12 14 16

e
x
p

re
s
s
io

n
 l
e

v
e

ls

conditions

YAL046C

(a)s(·, ·) ≥ 13 (b) s(·, ·) ≥ 12

Figure 7: Near-neighbors of YAL046C (ε = 20)

Near-Neighbor Search Results.We show results of near-
neighbor search over the yeast microarray data, where genes’ ex-
pression levels (of range 0 to 600 [1]) have been discretized into
ξ = 30 bins. Assume we are interested in genes related to gene
YAL046C. Let ε = 20 (or 1 after discretization). We found one
gene, YGL106W, within pattern distance 3 of gene YAL046C, i.e.,
YAL046C and YGL106W exhibit anε-pattern in a subspace of di-
mensionality 14. This is illustrated by Figure 7(a), where except
under conditions 1, 3, and 9 (CH1B, CH2I, andRAT2), the expres-
sion levels of the two genes rise and fall in sync.

Figure 7(b) shows 11 near-neighbors of YAL046C found with
distance radius of 4. That is, except for 4 columns, each of the
11 genes shares anε-pattern with YAL046C. It turns out that none
of any two genes shareε-patterns with YAL046C in the same sub-
space. Naturally, these genes do not show up together in any sub-
space cluster discovered by algorithms such as bicluster [1]. Thus,
subspace near-neighbor search may provide insights to understand-
ing their interrelationship overlooked by previous techniques.

Space Analysis.The space requirement of the pattern-similarity
index is linearly proportional to the data size (Figure 8). In Fig-
ure 8(a), we fix the dimensionality of the data at 20 and changeξ,
the discretization granularity, from 5 to 80. It shows thatξ has lit-
tle impact on the index size when the data size is small. When the
data size increases, the growth of the trie slows down as each trie
node is shared by more objects (this is more obvious for smallerξ
in Figure 8(a)).

In Figure 8(b) and 8(c), the discretization granularityξ is fixed
at 20, while the dimensionality of the dataset varies. The dimen-
sionality affects the index size. With a dataset of dimensionality
|A|, the lowest similarity between two objects is 2, i.e., they do not
share patterns in any subspace of dimensionality 2 or larger. How-
ever, given a query objectq, our interest is in finding near-neighbors
of q, that is, findingNN (q, r) where the similarity thresholdr is
high. Thus, instead of inserting each suffix of an object sequence
into the trie, we insert only those suffixes of length larger than a
thresholdt. This enables us to findNN (q, r) wherer ≥ t. For
a 40 Mbytes dataset of dimensionality|A| =80, restricting near-
neighbor search withinr ≥ 72 reduces the index size by 71%.

Time Analysis.We compare the algorithms presented in this
paper with two alternative approaches, i) brute force linear scan,
and ii) R-Tree family indices. The linear scan approach for near-
neighbor search is straightforward to implement. The R-Tree, how-

0

50

100

150

200

250

10 20 30 40 50 60 70 80

in
de

x
si

ze
 (

M
eg

a
by

te
s)

dataset size (Mega bytes)

ξ=80
ξ=60
ξ=40
ξ=20
ξ=10
ξ= 5

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80

in
de

x
si

ze
 (

M
eg

a
by

te
s)

dataset size (Mega bytes)

|A|=40
|A|=20
|A|=10
|A|= 5

0

100

200

300

400

500

600

100 200 300 400 500 600 700 800 900 1000

in
de

x
si

ze
 (

M
eg

a
by

te
s)

dataset size (K objects)

|A|=30
|A|=20
|A|=10
|A|= 5

(a) |A| = 20, ξ = 5, ..., 80 (b) varying total data size,ξ = 20 (c) varying # of objects,ξ = 20

Figure 8: Index Size.

0.1

1

10

100

1000

5 10 15 20 25 30 35 40 45 50

tim
e

(s
ec

.)

dataset size (Mega Bytes)

R-Tree index
linear scan

PD-Index

0.1

1

10

100

1000

5 10 15 20 25 30 35 40 45 50

tim
e

(s
ec

.)

dataset size (Mega Bytes)

linear scan
PD-Index NN(q,7)
PD-Index NN(q,5)
PD-Index NN(q,3)
PD-Index NN(q,1)

0.1

1

10

5 10 15 20 25 30 35 40 45 50

tim
e

(s
ec

.)

dataset size (Mega Bytes)

ξ=10, |A|=40
ξ=20, |A|=40
ξ=10, |A|=30
ξ=20, |A|=30

(a) Pattern matching in (b) Near-neighbor search in subspaces (c) Impact ofξ and|A| in
given subspaces beyond given dimensionalities near-neighbor queryNN (q, 7)

Figure 9: Query Performance (average of 1000 runs).

ever, indexes values not patterns. To support queries based on pat-
tern similarity, we create an extra dimensioncij = ci−cj for every
two dimensionsci andcj . Still, R-Tree index supports only queries
in given subspaces and does not support finding near-neighbors that
manifest patterns in any subspace of dimensionality above a given
threshold.

The query time presented in Figure 9(a) indicates that PS-Index
scales much better than the two alternative approaches for pattern
matching in given subspaces. The comparisons are carried out on
synthetic datasets of dimensionality|A| = 40 and discretization
level ξ = 20. Each time, a subspace is designated by randomly
selecting 4 dimensions, and random query objects are generated
in the subspace. We find that the R-Tree approach is slower than
brute force linear-scan for two reasons: i) the R-Tree approach de-
grades to linear-scan under high-dimensionality, and ii) the fact that
it indexes on a much larger dataset (with|A|2/2 extra dimensions)
means that it scans a much larger index file. In Figure 9(b), we
show the results of near-neighbor search with different tolerance
radiuses. PS-Index is much faster than linear-scan2. Still, the re-
sponse time of PS-Index increases rapidly when the radius expands,
as a lot more branches have to be traversed in order to find all ob-
jects satisfying the criteria. Figure 9(c) also confirms that dimen-
sionality is a major concern in query performance.

5. CONCLUSIONS
We identify the need of finding near-neighbors under subspace

pattern similarity, a new type of similarity not captured by Eu-
clidean, Manhattan, etc., but essential to a wide range of appli-
cations, including DNA microarray analysis and e-commerce tar-
get marketing. Two objects are similar if they manifest a coherent

2The complexity of checking whether two objects manifest anε-
pattern in a subspace of dimensionality beyond a given threshold is
at leastO(n log(n)), wheren = |A|.

pattern of rise and fall in an arbitrary subspace, and their degree
of similarity is measured by the dimensionality of the subspace.
A non-metric distance function is defined to model near-neighbor
search in subspaces. We propose PS-Index, which maps objects
to sequences and index them using a tree structure. Experimental
results show that PS-Index achieves orders of magnitude speedup
over alternative algorithms based on naive indexing and linear scan.

6. REFERENCES
[1] Y. Cheng and G. Church. Biclustering of expression data. In

Proc. of 8th International Conference on Intelligent System
for Molecular Biology, 2000.

[2] R. Miki et al. Delineating developmental and metabolic
pathways in vivo by expression profiling using the riken set of
18,816 full-length enriched mouse cDNA arrays. In
Proceedings of National Academy of Sciences, 98, pages
2199–2204, 2001.

[3] Piotr Indyk. On approximate nearest neighbors in
non-euclidean spaces. InIEEE Symposium on Foundations of
Computer Science, pages 148–155, 1998.

[4] E. M. McCreight. A space-economical suffix tree construction
algorithm.Journal of the ACM, 23(2):262–272, April 1976.

[5] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church.
Yeast micro data set. In
http://arep.med.harvard.edu/biclustering/yeast.matrix, 2000.

[6] E. Ukkonen. Constructing suffix-trees on-line in linear time.
Algorithms, Software, Architecture: Information Processing,
pages 484–92, 1992.

[7] Haixun Wang, Chang-Shing Perng, Wei Fan, Sanghyun Park,
and Philip S. Yu. Indexing weighted sequences in large
databases. InICDE, 2003.

[8] Haixun Wang, Wei Wang, Jiong Yang, and Philip S. Yu.
Clustering by pattern similarity in large data sets. In
SIGMOD, 2002.

