
Wang H, Pei J. Clustering by pattern similarity. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 23(4):

481–496 July 2008

Clustering by Pattern Similarity

Haixun Wang1 (王海勋) and Jian Pei2 (裴 健)

1IBM T. J. Watson Research Center, Hawthorne, NY 10533, U.S.A.
2Simon Fraser University, British Columbia, Canada

E-mail: haixun@us.ibm.com; jpei@cs.sfu.ca

Received December 4, 2007; revised May 28, 2008.

Abstract The task of clustering is to identify classes of similar objects among a set of objects. The definition of similarity
varies from one clustering model to another. However, in most of these models the concept of similarity is often based on
such metrics as Manhattan distance, Euclidean distance or other Lp distances. In other words, similar objects must have
close values in at least a set of dimensions. In this paper, we explore a more general type of similarity. Under the pCluster
model we proposed, two objects are similar if they exhibit a coherent pattern on a subset of dimensions. The new similarity
concept models a wide range of applications. For instance, in DNA microarray analysis, the expression levels of two genes
may rise and fall synchronously in response to a set of environmental stimuli. Although the magnitude of their expression
levels may not be close, the patterns they exhibit can be very much alike. Discovery of such clusters of genes is essential in
revealing significant connections in gene regulatory networks. E-commerce applications, such as collaborative filtering, can
also benefit from the new model, because it is able to capture not only the closeness of values of certain leading indicators
but also the closeness of (purchasing, browsing, etc.) patterns exhibited by the customers. In addition to the novel similarity
model, this paper also introduces an effective and efficient algorithm to detect such clusters, and we perform tests on several
real and synthetic data sets to show its performance.

Keywords data mining, clustering, pattern similarity

1 Introduction

Cluster analysis, which identifies classes of similar
objects among a set of objects, is an important data
mining task[1−3] with broad applications. Clustering
methods have been extensively studied in many ar-
eas, including statistics[4], machine learning[5,6], pat-
tern recognition[7], and image processing. Much active
research has been devoted to various issues in cluster-
ing, such as scalability, the curse of high-dimensionality,
etc.

However, clustering in high dimensional spaces is of-
ten problematic. Theoretical results[8] have questioned
the meaning of closest matching in high dimensional
spaces. Recent research work[9−13] has focused on dis-
covering clusters embedded in subspaces of a high di-
mensional data set. This problem is known as subspace
clustering. In this paper, we explore a more general
type of subspace clustering which uses pattern similar-
ity to measure the distance between two objects.

1.1 Goal

Most clustering models, including those used in sub-

space clustering, define the similarity among different
objects by distances over either all or only a subset of
the dimensions. Some well-known distance functions
include Euclidean distance, Manhattan distance, and
cosine distance. However, distance functions are not al-
ways adequate for capturing correlations among the ob-
jects. In fact, strong correlations may still exist among
a set of objects even if they are far apart from each

Fig.1. Small data set of 3 objects and 10 attributes.

Regular Paper

482 J. Comput. Sci. & Technol., July 2008, Vol.23, No.4

other as measured by the distance functions. As an
example, let us consider the data set plotted in Fig.1.

In Fig.1, which shows a data set of 3 objects and 10
attributes (columns), no patterns among the 3 objects
are visibly explicit. However, if we pick the subset of
the attributes {b, c, h, j, e}, and plot the values of the
3 objects on these attributes as shown in Fig.2(a), it is
easy to see that they manifest similar patterns. How-
ever, these objects may not be considered to be in a
cluster by any traditional (subspace) clustering model
because the distance between any two of them is not
close to each other.

Fig.2. Objects form patterns on a set of columns. (a) Objects

in Fig.1 form a Shifting Pattern in subspace {b, c, h, j, e}. (b)

Objects in Fig.1 form a Scaling Pattern in subspace {f, d, a, g, i}.

The same set of objects can form different patterns
on different sets of attributes. In Fig.2(b), we show
another pattern in subspace {f, d, a, g, i}. This time,
the three curves do not have a shifting relationship.
Instead, values of object 2 are roughly three times
larger than those of object 3, and values of object 1
are roughly three times larger than those of object 2.

If we think of columns f, d, a, g, i as different environ-
mental stimuli or conditions, the pattern shows that
the 3 objects respond to these conditions coherently,
although object 1 is more responsive or more sensitive
to the stimuli than the other two.

We use pattern similarity to denote the shifting and
scaling correlations exhibited by objects in a subspace
(Fig.2). While most traditional clustering algorithms
focus on value similarity, that is, they consider two ob-
jects similar if at least some of their coordinate values
are close, our goal is to model and discover clusters
based on shifting or scaling correlations from raw data
sets such as the one shown in Fig.1.

1.2 Applications

Discovery of clusters in data sets based on pattern
similarity is of great importance because of its poten-
tial for actionable insights. Here, let us mention two
elaborate applications as follows.

Application 1: DNA Micro-Array Analysis. Micro-
array is one of the latest breakthroughs in experimen-
tal molecular biology. It provides a powerful tool by
which the expression patterns of thousands of genes can
be monitored simultaneously and is already producing
huge amounts of valuable data. Analysis of such data
is becoming one of the major bottlenecks in the uti-
lization of the technology. The gene expression data
are organized as matrices — tables where rows rep-
resent genes, columns represent various samples such
as tissues or experimental conditions, and numbers in
each cell characterize the expression level of the partic-
ular gene in the particular sample. Investigations show
that more often than not, several genes contribute to a
disease, which motivates researchers to identify a sub-
set of genes whose expression levels rise and fall coher-
ently under a subset of conditions, that is, they exhibit
fluctuation of a similar shape when conditions change.
Discovery of such clusters of genes is essential for re-
vealing the significant connections in gene regulatory
networks[14].

Application 2: E-Commerce. Recommendation sys-
tems and target marketing are important applications
in the E-commerce area. In these applications, sets
of customers/clients with similar behavior need to be
identified so that we can predict customers’ interest
and make proper recommendations. Let us consider
the following example. Three viewers rate four movies
of a particular type (action, romance, etc.) as (1, 2, 3,
6), (2, 3, 4, 7), and (4, 5, 6, 9), respectively, where 1
is the lowest and 10 is the highest score. Although the
rates given by each individual are not close, these three
viewers have coherent opinions on the four movies. In

Haixun Wang et al.: Clustering by Pattern Similarity 483

the future, if the first viewer and the third viewer rate
a new movie of that category as 7 and 9 respectively,
then we have certain confidence that the 2nd viewer
will probably like the movie too, since they have simi-
lar tastes in that type of movies.

1.3 Our Contributions

Our objective is to cluster objects that exhibit sim-
ilar patterns on a subset of dimensions. Traditional
subspace clustering is a special case in our task, so in
the sense that objects in a subspace cluster have ex-
actly the same behavior, there is no coherence need to
be related by shifting or scaling. In other words, these
objects are physically close — their similarity can be
measured by functions such as the Euclidean distance,
the Cosine distance, and etc.

Our contributions include:
• We propose a new clustering model, namely the

pCluster①, to capture not only the closeness of objects
but also the similarity of the patterns exhibited by the
objects.
• The pCluster model is a generalization of subspace

clustering. However, it finds a much broader range of
applications, including DNA array analysis and collab-
orative filtering, where pattern similarities among a set
of objects carry significant meanings.
• We propose an efficient depth-first algorithm

to mine pClusters. Compared with the bicluster
approach[15,16], our method mines multiple clusters si-
multaneously, detects overlapping clusters, and is re-
silient to outliers. Our method is deterministic in that
it discovers all qualified clusters, while the bicluster ap-
proach is a random algorithm that provides only an
approximate answer.

1.4 Paper Layout

The rest of the paper is structured as follows. In Sec-
tion 2, we study the background of this work and review
some related work, including the bicluster model. We
present the pCluster model in Section 3. In Section 4,
we present the process of finding base clusters. Section
5 studies different pruning approaches. The experimen-
tal results are shown in Section 6 and we conclude the
paper in Section 7.

2 Background and Related Work

As clustering is always based on a similarity model,
in this section, we discuss traditional similarity models

used for clustering, as well as some new models that
focus on correlations of objects in subspaces.

2.1 Traditional Similarity Models

Clustering in high dimensional spaces is often prob-
lematic as theoretical results[8] questioned the meaning
of closest matching in high dimensional spaces. Re-
cent research work[9−13,17] has focused on discovering
clusters embedded in the subspaces of high dimensional
data sets. This problem is known as subspace cluster-
ing.

A well known clustering algorithm capable of find-
ing clusters in subspaces is CLIQUE[11]. CLIQUE is a
density-and grid-based clustering method. It discretizes
the data space into non-overlapping rectangular cells by
partitioning each dimension to a fixed number of bins
of equal length. A bin is dense if the fraction of to-
tal data points contained in the bin is greater than a
threshold. The algorithm finds dense cells in lower di-
mensional spaces and merges them to form clusters in
higher dimensional spaces. Aggarwal et al.[9,10] used
an effective technique for the creation of clusters for
very high dimensional data. The PROCLUS[9] and the
ORCLUS[10] algorithms find projected clusters based
on representative cluster centers in a set of cluster di-
mensions. Another interesting approach, Fascicles[12],
finds subsets of data that share similar values in a sub-
set of dimensions.

The above algorithms discover value similarity, that
is, the objects in the cluster share similar values in a
subset of dimensions. The similarity among the objects
is measured by distance functions, such as Euclidean.
However, this model captures neither the shifting pat-
tern in Fig.2(a) nor the scaling pattern in Fig.2(b),
since objects therein do not share similar values in the
subspace where they manifest the patterns. Rather, we
are interested in pattern similarity, that is, whether ob-
jects exhibit a certain type of correlation in subspace.

The task of capturing the similarity exhibited by ob-
jects in Fig.2 is not to be confused with pattern discov-
ery in time series data, such as trending analysis in
stock closing prices. In time series analysis, patterns
occur during a continuous time period. Here, mining is
not restricted by any fixed ordering among the columns
of the data set. Patterns on an arbitrary subset of the
columns are usually deeply buried in the data when the
entire set of the attributes are present, as exemplified
in Figs.1 and 2.

The similar reasoning reveals why the models treat-
ing the entire set of attributes as a whole do not work in

①pCluster stands for pattern-based cluster.

484 J. Comput. Sci. & Technol., July 2008, Vol.23, No.4

mining pattern-based clusters. For example, the Pear-
son R model[18] studies the coherence among a set of
objects, and Pearson R defines the correlation between
two objects X and Y as:

∑

i

(Xi −X)(Yi − Y)

√∑

i

(Xi −X)2 ×
∑

i

(Yi − Y)2

where Xi and Yi are the i-th attribute value of X and
Y , and X and Y are the means of all attribute values
in X and Y , respectively. From this formula, we can
see that the Pearson R correlation measures the corre-
lation between two objects with respect to all attribute
values. A large positive value indicates a strong pos-
itive correlation while a large negative value indicates
a strong negative correlation. However, some strong
coherence may only exist on a subset of dimensions.
For example, in collaborative filtering, six movies are
ranked by viewers. The first three are action movies
and the next three are family movies. Two viewers
rank the movies as (8, 7, 9, 2, 2, 3) and (2, 1, 3, 8, 8, 9).
The viewers’ ranking can be grouped into two clusters,
the first three movies in one cluster and the rest in an-
other. It is clear that the two viewers have consistent
bias within each cluster. However, the Pearson R cor-
relation of the two viewers is small because globally no
explicit pattern exists.

2.2 Correlations in Subspaces

One way to discover the shifting pattern in Fig.2(a)
using traditional subspace clustering algorithms (such
as CLIQUE) is through data transformation. Given N
attributes, a1, . . . , aN , we define a derived attribute,
Aij = ai − aj , for every pair of attributes ai and
aj . Thus, our problem is equivalent to mining sub-
space clusters on the objects with the derived set of
attributes. However, the converted data set will have
N(N−1)/2 dimensions and it becomes intractable even
for a small N because of the curse of dimensionality.

Cheng et al. introduced the bicluster concept[15] as
a measure of the coherence of the genes and conditions
in a sub matrix of a DNA array. Let X be the set
of genes and Y the set of conditions. Let I ⊂ X and
J ⊂ Y be subsets of genes and conditions, respectively.
The pair (I, J) specifies a sub matrix AIJ with the fol-
lowing mean squared residue score:

H(I, J) =
1

|I‖J |
∑

i∈I,j∈J

(dij − diJ − dIj + dIJ)2, (1)

where

diJ =
1
|J |

∑

j∈J

dij , dIj =
1
|I|

∑

i∈I

dij ,

dIJ =
1

|I||J |
∑

i∈I,j∈J

dij

are the row and column means and the means in the
submatrix AIJ , respectively. A submatrix AIJ is called
a δ-bicluster if H(I, J) 6 δ for some δ > 0. A random
algorithm is designed for finding such clusters in a DNA
array.

Yang et al.[16] proposed a move-based algorithm to
find biclusters more efficiently. It starts from a random
set of seeds (initial clusters) and iteratively improves
the clustering quality. It avoids the cluster overlapping
problem as multiple clusters are found simultaneously.
However, it still has the outlier problem, and it requires
the number of clusters as an input parameter.

We noticed several limitations of this pioneering
work as follows.

Fig.3. Mean squared residue cannot exclude outliers in a biclus-

ter. (a) Dataset A: Residue 4.238 (without the outlier residue is

0). (b) Dataset B: Residue 5.722.

Haixun Wang et al.: Clustering by Pattern Similarity 485

1) The mean squared residue used in [15, 16] is an
averaged measurement of the coherence for a set of ob-
jects. A much undesirable property of (1) is that a sub-
matrix of a δ-bicluster is not necessarily a δ-bicluster.
This creates difficulties in designing efficient algorithms.
Furthermore, many δ-biclusters found in a given data
set may differ only in one or two outliers they contain.
For instance, the bicluster shown in Fig.3(a) contains
an obvious outlier but it still has a fairly small mean
squared residue (4.238). The only way to get rid of
such outliers is to reduce the δ threshold, but that will
exclude many biclusters which do exhibit coherent pat-
terns, e.g., the one shown in Fig.3(b) with residue 5.722.

2) The algorithm presented in [15] detects a biclus-
ter in a greedy manner. To find other biclusters after
the first one is identified, it mines on a new matrix de-
rived by replacing entries in the discovered bicluster by
random data. However, clusters are not necessarily dis-
joint, as shown in Fig.4. The random data will obstruct
the discovery of the second cluster.

Fig.4. Replacing entries in the shaded area by random values

may obstruct the discovery of the second cluster.

3 pCluster Model

This section describes the pCluster model for mining
clusters of objects that exhibit coherent patterns on a
set of attributes. The notations used in this paper are
summarized in Table 1.

Table 1. Notations

D A set of objects

A Attributes of objects in D
(O, T) A submatrix of the data set, where O ⊆ D, T ⊆ A
x, y, . . . Objects in D
a, b, . . . Attributes of A
dxa Value of object x on attribute a

δ User-specified clustering threshold

nc User-specified minimum # of columns of a pCluster

nr User-specified minimum # of rows of a pCluster

Txy A maximal dimension set for objects x and y

Oab A maximal dimension set for columns a and b

Let D be a set of objects, where each object is de-
fined by a set of attributes A. We are interested in
objects that exhibit a coherent pattern on a subset of
attributes of A.

Definition 1 (pScore and pCluster). Let O be
a subset of objects in the database (O ⊆ D), and T be
a subset of attributes (T ⊆ A). Pair (O, T) specifies a
submatrix. Given x, y ∈ O, and a, b ∈ T , we define the
pScore of the 2× 2 matrix as:

pScore
([

dxa dxb

dya dyb

])
= |(dxa − dxb)− (dya − dyb)|.

(2)
For a user-specified parameter δ > 0, pair (O, T)

forms a δ-pCluster if for any 2 × 2 submatrix X in
(O, T), we have pScore(X) 6 δ.

Intuitively, pScore(X) 6 δ means that the change
of values on the two attributes between the two objects
in X is confined by δ, a user-specified threshold. If
such a constraint applies to every pair of objects in O
and every pair of attributes in T , then we have found
a δ-pCluster.

In the bicluster model, a submatrix of a δ-bicluster
is not necessarily a δ-bicluster. However, based on the
definition of pScore, the pCluster model has the follow-
ing property.

Property 1 (Anti-Monotonicity). Let (O, T) be
a δ-pCluster. Any of its submatrix, (O′, T ′), where
O′ ⊆ O, T ′ ⊆ T , is also a δ-pCluster.

Note that the definition of pCluster is symmetric: as
shown in Fig.5(a), the difference can be measured hor-
izontally or vertically, as the right hand side of (2) can
be rewritten as

|(dxa − dxb)− (dya − dyb)| = |(dxa − dya)− (dxb − dyb)|

= pScore
([

dxa dya

dxb dyb

])
.
(3)

When only 2 objects and 2 attributes are consid-
ered, the definition of pCluster conforms with that of
the bicluster model[15]. According to (1), and assuming
I = {x, y}, J = {a, b}, the mean squared residue of a

2× 2 matrix X =
[

dxa dxb

dya dyb

]
is:

H(I, J) =
1

|I||J |
∑

i∈I

∑

j∈J

(dij − dIj − diJ + dIJ)2

=
((dxa − dxb)− (dya − dyb))2

4
= (pScore(X)/2)2. (4)

486 J. Comput. Sci. & Technol., July 2008, Vol.23, No.4

Fig.5. pCluster Definition. (a) Definition is symmetric: |h1 −
h2| 6 δ is equivalent to |v1 − v2| 6 δ. (b) Objects 1, 2, 3 form a

pCluster after we take the logarithm of the data.

Thus, for a 2-object/2-attribute matrix, a δ-bicluster
is a (δ

2)2-pCluster. However, since a pCluster requires
that every 2 objects and every 2 attributes conform
with the inequality, it models clusters that are more
homogeneous. Let us review the problem of bicluster
in Fig.3. The mean squared residue of data set A is
4.238, less than that of data set B, 5.722. Under the
pCluster model, the maximum pScore between the out-
lier and another object in A is 26, while the maximum
pScore found in data set B is only 14. Thus, any δ be-
tween 14 and 26 will eliminate the outlier in A without
obstructing the discovery of the pCluster in B.

In order to model the cluster in Fig.5(b), where there
is a scaling factor among the objects, it seems we need
to introduce a new inequality:

dxa/dya

dxb/dyb
6 δ′. (5)

However, this is unnecessary because (2) can be re-
garded as a logarithmic form of (5). The same pCluster
model can be applied to the dataset after we convert

the values therein to the logarithmic form. As a mat-
ter of fact, in DNA micro-array, each array entry dij ,
representing the expression level of gene i in sample j,
is derived in the following manner:

dij = log
(Red Intensity

Green Intensity

)
, (6)

where Red Intensity is the intensity of gene i, the gene
of interest, and Green Intensity is the intensity of a ref-
erence (control) gene. Thus, the pCluster model can
be used to monitor the changes in gene expression and
to cluster genes that respond to certain environmental
changes in a coherent manner.

Fig.6. pCluster of yeast genes. (a) Gene expression data. (b)

pCluster.

Fig.6(a) shows a micro-array matrix with ten genes
(one for each row) under five experiment conditions
(one for each column). This example is a portion of the
micro-array data that can be found in [19]. A pCluster

Haixun Wang et al.: Clustering by Pattern Similarity 487

({VPS8, EFB1, CYS3}, {CH1I, CH1D, CH2B}) is em-
bedded in the micro-array. Apparently, their similarity
cannot be revealed by Euclidean distance or Cosine dis-
tance.

Objects form a cluster when a certain level of den-
sity is reached. In other words, a cluster often becomes
interesting if it is of reasonable volume. Too small clus-
ters may not be interesting or scientifically significant.
The volume of a pCluster is defined by the size of O
and the size of T . The task is thus to find all those
pClusters beyond a user-specified volume.

Problem Statement. Given: i) δ, a cluster threshold,
ii) nc, a minimal number of columns, and iii) nr, a min-
imal number of rows, the task of mining pClusters or
pattern-based clustering is to find all pairs (O, T) such
that (O, T) is a δ-pCluster according to Definition 1,
and |O| > nr, |T | > nc.

4 pCluster Algorithm

In this section, we describe the pCluster algorithm.
We aim at achieving efficiency in mining high quality
pClusters.

4.1 Overview

More specifically, the pCluster algorithm focuses on
achieving the following goals.
• Our first goal is to mine clusters simultaneously.

The bicluster algorithm[15], on the other hand, finds
clusters one by one, and the discovery of one cluster
might obstruct the discovery of other clusters. This is
not only time consuming but also leads to the second
issue we want to address.
• Our second goal is to find each and every qualifying

pCluster. This means our algorithm must be determin-
istic. More often than not, random algorithms based on
the bicluster approach[15,16] provide only an incomplete
approximation to the answer, and the clusters they find
depend on the order of their search.
• Our third goal is to address the issue of pruning

search spaces. Objects can form clusters in any subset
of the data columns, and the number of data columns in
real life applications, such as DNA array analysis and
collaborative filtering, is usually in hundreds or even
thousands. Many subspace clustering algorithms[9,11]

find clusters in lower dimensions first and then merge
them to derive clusters in higher dimensions. This is
a time consuming approach. The pCluster model gives
us many opportunities of pruning, that is, it enables
us to remove many objects and columns in a candidate
cluster before it is merged with other clusters to form
clusters in higher dimensions. Our approach explores

several different ways to find the effective pruning meth-
ods.

For a better understanding of how the pCluster al-
gorithm achieves these goals, we will present the algo-
rithm in three steps.

1) Pair-Wise Clustering. Based on the maximal di-
mension set Principle to be introduced in Subsection
4.2, we find the largest (column) clusters for every two
objects, and the largest (object) clusters for every two
columns. Apparently, clusters that span a larger num-
ber of columns (objects) are usually of more interest,
and finding larger clusters first also enables us to avoid
generating clusters which are part of other clusters.

2) Pruning Unfruitful Pair-Wise Clusters. Appar-
ently, not every column (object) cluster found in pair-
wise clustering will occur in the final pClusters. To
reduce the combinatorial cost in clustering, we remove
as many pair-wise clusters as early as possible by using
the Pruning Principle to be introduced in Subsection
4.3.

3) Forming δ-pCluster. In this step, we combine
pruned pair-wise clusters to form pClusters.
The following subsections present the pCluster algo-
rithm in these three steps.

4.2 Pairwise Clustering

Our first step is to generate pairwise clusters in the
largest dimension set. Note that if a set of objects clus-
ter on a dimension set T , then they also cluster on any
subset of T (Property 1). Clustering will be much more
efficient if we can find pClusters on the largest dimen-
sion set directly. To facilitate further discussion, we
define the concept of Maximal Dimension Set (MDS).

Definition 2 (Maximal Dimension Set). As-
suming c = (O, T) is a δ-pCluster. Column set T is a
Maximal Dimension Set (MDS) of c if there does not
exist T ′ ⊃ T such that (O, T ′) is also a δ-pCluster.

In our approach, we are interested in objects clus-
tered on column set T only if there does not exist
T ′ ⊃ T , such that the objects also cluster on T ′. We
are only interested in pClusters that cluster on MDSs,
because all other pClusters can be derived from these
maximum pClusters using Property 1. Note that from
the definition, it is clear that an attribute can appear in
more than one MDS. Furthermore, for a set of objects
O, there may exist more than one MDS.

Given a set of objects O and a set of columns A, it
is not trivial to find all the maximal dimension sets for
O, since O may cluster on any subset of A. Below, we
study a special case where O contains only two objects.
Given objects x and y, and a column set T , we define

488 J. Comput. Sci. & Technol., July 2008, Vol.23, No.4

S(x, y, T) as:

S(x, y, T) = {dxa − dya|a ∈ T }.

Based on the definition of δ-cluster, we can make the
following observation.

Property 2 (Pairwise Clustering). Given ob-
jects x and y, and a dimension set T , x and y form
a δ-pCluster on T iff the difference between the largest
and the smallest values in S(x, y, T) is no more than δ.

Proof. Given objects x and y, we define function
f(a, b) on any two dimensions a,b ∈ T as:

f(a, b) = |(dxa − dya)− (dxb − dyb)|.

According to the definition of δ-pCluster, objects x
and y cluster on T if ∀a, b ∈ T , f(a, b) 6 δ. In
other words, ({x, y}, T) is a pCluster if the following
is true: maxa,b∈T f(a, b) 6 δ. It is easy to see that
maxa,b∈T f(a, b) = max S(x, y, T)−minS(x, y, T). ¤

According to the above property, we do not have to
compute f(a, b) for every two dimensions a, b in T . In-
stead, we only need to know the largest and smallest
values in S(x, y, T).

We use S(x, y, T) to denote a sorted sequence of val-
ues in S(x, y, T). That is,

S(x, y, T) = s1, . . . , sk,

si ∈ S(x, y, T) and si 6 sj where i < j.

Thus, x and y form a δ-pCluster on T if sk − s1 6 δ.
Given a set of attributes A, it is also not difficult to
find the maximal dimension sets for object x and y.

Proposition 3 (Maximal Dimension Set
(MDS) Principle). Given a set of dimensions A,
Ts ⊆ A is a maximal dimension set of x and y iff:

i) S(x, y, Ts) = si · · · sj is a (contiguous) subse-
quence of S(x, y, T) = s1 · · · si · · · sj · · · sk, and

ii) sj−si 6 δ, whereas sj+1−si > δ and sj−si−1 >
δ.

Proof. Given S(x, y, Ts) = si · · · sj and sj − si 6 δ,
according to the pairwise clustering principle, Ts is
a δ-pCluster. Furthermore, ∀a ∈ T − Ts, we have
dxa − dya > sj+1 or dxa − dya 6 si−1, otherwise a ∈ Ts

since S(x, y, Ts) = si · · · sj . If dxa − dya > sj+1, from
sj+1−si > δ we get (dxa−dya)−si > δ, thus {a}∪Ts is
not a δ-pCluster. On the other hand, if dxa−dya 6 si−1,
from sj − si−1 > δ we get sj − (dxa − dya) > δ, thus
{a} ∪ Ts is not a δ-pCluster either. Since Ts cannot be
enlarged, Ts is an MDS. ¤

According to the MDS principle, we can find the
MDSs for objects x and y in the following manner: we
start with both the left-end and the right-end placed on

the first element of the sorted sequence, and we move
the right-end rightward one position at a time. For ev-
ery move, we compute the difference of the values at the
two ends, until the difference is greater than δ. At that
time, the elements between the two ends form a maxi-
mal dimension set. To find the next maximal dimension
set, we move the left-end rightward one position, and
repeat the above process. It stops when the right-end
reaches the last element of the sorted sequence.

Fig.7. Finding MDS for two objects. (a) Raw data. (b) Sort by

dimension discrepancy. (c) Cluster on sorted differences (δ = 2).

Fig.7 gives an example of the above process. We
want to find the maximal dimension sets for two ob-
jects, whose values on 8 dimensions are shown in
Fig.7(a). The patterns are hidden until we sort the
dimensions by the difference of x and y on each dimen-
sion. The sorted sequence S = −3,−2,−1, 6, 6, 7, 8, 10
is shown in Fig.7(c). Assuming δ = 2, we start from the

Haixun Wang et al.: Clustering by Pattern Similarity 489

left end of S. We move rightward until we stop at the
first 6, since 6−(−3) > 2. The columns between the left
end and 6, {e, g, c}, is an MDS. We move the left end
to −2 and repeat the process until we find all 3 max-
imal dimension sets for x and y: {e, g, c}, {a, d, b, h},
and {h, f}. Note that maximal dimension sets might
overlap.

The pseudocode of the above process is given in Al-
gorithm 1. Thus, to find the MDSs for objects x and
y, we invoke the following procedure:

pairCluster(x, y,A,nc)

where nc is the (user-specified) minimal number of
columns in a pCluster.

Algorithm 1. Find Two-Object pClusters: pairCluster(x,

y, T , nc)

Input: x, y: two objects, T : set of columns, nc: minimal

number of columns, δ: cluster threshold

Output: All δ-pClusters with more than nc columns

s ← dx − dy ; /* i.e., si ← dxi − dyi for each i in T */

sort array s;

start ← 0; end ← 1;

new ← TRUE; /* new=TRUE indicates there is an

untested column in [start , end] */

repeat

v ← send − sstart ;

if |v| 6 δ then

/* expands δ-pCluster to include one more columns */

end ← end + 1;

new ← TRUE;

else

Return δ-pCluster if end − start > nc and new = TRUE;

start ← start + 1;

new ← FALSE;

until end > |T |;
Return δ-pCluster if end − start > nc and new = TRUE;

According to the definition of the pCluster model,
the columns and the rows of the data matrix carry the
same significance. Thus, the same method can be used
to find MDSs for each column pair, a and b:

pairCluster(a, b,O,nr).

The above procedure returns a set of MDSs for column
a and b, except that here the maximal dimension set is
made up of objects instead of columns.

As an example, we study the data set shown in
Fig.8(a). We find 2 object-pair MDSs and 4 column-
pair MDSs.

c0 c1 c2

o0 1 4 2

o1 2 5 5

o2 3 6 5

o3 4 200 7

o4 300 7 6

(a)

(o0, o2) → {c0, c1, c2}
(o1, o2) → {c0, c1, c2}

(b)

(c0, c1) → {o0, o1, o2}
(c0, c2) → {o1, o2, o3}
(c1, c2) → {o1, o2, o4}
(c1, c2) → {o0, o2, o4}

(c)

Fig.8. Maximal dimension sets for Column- and Object-pairs

(δ = 1, nc = 3, and nr = 3). (a) 5× 3 data matrix. (b) MDS for

object pairs. (c) MDS for column pairs.

4.3 Pruning

For a given pair of objects, the number of its MDSs
depends on the clustering threshold δ and the user-
specified minimum number of columns, nc. However,
if nr > 2, then only some of these MDSs are valid, i.e.,
they actually occur in δ-pClusters whose size is equal
to or larger than nr × nc. In this section, we introduce
a pruning principle, based on which invalid pairwise
clusters can be eliminated.

Given a clustering threshold δ, and a minimum clus-
ter size nr×nc, we use Txy to denote an MDS for objects
x and y, and Oab to denote an MDS for columns a and
b. We have the following result.

Proposition 4 (MDS Pruning Principle). Let
Txy be an MDS for objects x, y, and a ∈ Txy. For any
O and T , a necessary condition of ({x, y}∪O, {a}∪T)
being a δ-pCluster is ∀b ∈ T , b 6= a, ∃Oab ⊇ {x, y}.

Proof. Assume ({x, y} ∪O, {a} ∪ T) is a δ-pCluster.
Since a submatrix of a δ-pCluster is also a δ-pCluster,
we know ∀b ∈ T , ({x, y} ∪ O, {a, b}) is a δ-pCluster.
According to the definition of MDS, there exists at least
one MDS Oab ⊇ {x, y} ∪ O ⊇ {x, y}. Thus, there are
at least |T | such MDSs. ¤

We are only interested in δ-pClusters ({x, y} ∪
O, {a} ∪ T) with size > nr × nc. In other words, we
require |T | > nc − 1, that is, we must be able to find
at least n− 1 column pair MDSs that contain {x, y}.

Symmetric MDS Pruning
Based on Proposition 4, the pruning criterion can

be stated as follows. For any dimension a in an MDS
Txy, we count the number of Oab that contains {x, y}. If
the number of such Oab is less than nc− 1, we remove
a from Txy. Furthermore, if the removal of a makes
|Txy| < nc, we remove Txy as well.

Because of the symmetry of the model (Definition
1), the pruning principle can be applied to object-pair
MDSs as well as column-pair MDSs. That is, for any
object x in an MDS Oab, we count the number of Txy

that contains {a, b}. If the number of such Txy is less

490 J. Comput. Sci. & Technol., July 2008, Vol.23, No.4

than nr − 1, we remove x from Oab. Furthermore, if
the removal of x makes |Oab| < nr, we remove Oab as
well.

This means we can prune the column-pair MDSs
and object-pair MDSs by turns. Without loss of gen-
erality, we first generate column-pair MDSs from the
data set. Next, when we generate object-pair MDSs,
we use column-pair MDSs for pruning. Then, we prune
column-pair MDSs using the pruned object-pair MDSs.
This procedure can go on until no more MDSs can be
eliminated.

We continue with our example using the dataset
shown in Fig.8(a). To prune the MDSs, we first
generate column-pair MDSs, and they are shown in
Fig.9(a). Second, we generate object-pair MDSs. MDS
(o0, o2) → {c0, c1, c2} is to be eliminated because the
column-pair MDS of (c0, c2) does not contain o0. Third,
we review the column-pair MDSs based on the remain-
ing object-pair MDSs, and we find that each of them is
to be eliminated. Thus, the original data set in Fig.8(a)
does not contain any 3× 3 pCluster.

(c0, c1) → {o0, o1, o2}
(c0, c2) → {o1, o2, o3}
(c1, c2) → {o1, o2, o4}
(c1, c2) → {o0, o2, o4}

(a)

(o0, o2) → {c0, c1, c2}
× (o1, o2) → {c0, c1, c2}

(b)

(c0, c1) → {o0, o1, o2}
× (c0, c2) → {o1, o2, o3}
× (c1, c2) → {o1, o2, o4}
× (c1, c2) → {o0, o2, o4}

×
(c)

Fig.9. Generating and Pruning MDS iteratively (δ = 1, nc = 3,

and nr = 3). (a) Generating MDSc from data. (b) Generating

MDSo from data, using MDSc in (a) for pruning. (c) Pruning

MDSc in (a) using MDSo in (b).

Algorithm 2 gives a high level description of the sym-
metric MDS pruning process. It can be summarized as
two steps. In the first step, we scan the dataset to find
column-pair MDSs for every column-pair, and object-
pair MDSs for every object-pair. This step is realized
by calling for procedure pairCluster() in Algorithm 1.
In the second step, we iteratively prune column-pair
MDSs and object-pair MDSs until no changes can be
made.

MDS Pruning by Object Block
Symmetric MDS pruning iteratively eliminates

column-pair MDSs and object-pair MDSs as the def-
inition of pCluster is symmetric for rows and columns.
However, in reality, large datasets are usually not sym-
metric in the sense that they often have much more
rows (objects) than columns (attributes). For instance,

the yeast microarray contains expression levels of 2884
genes under 17 conditions[19].

Algorithm 2. Symmetric MDS Pruning:

symmetricPrune()

Input: D: data set, δ: pCluster threshold, nc: minimal
number of columns, nr: minimal number of rows

Output: all pClusters with size > nr × nc

for each a, b ∈ A, a 6= b do

find column-pair MDSs: pairCluster(a, b,D, nr);

for each x, y ∈ D, x 6= y do

find object-pair MDSs: pairCluster(x, y,A, nc);

repeat

for each object-pair pCluster ({x, y}, T) do

use column-pair MDSs to prune columns in T ;

eliminate MDS ({x, y}, T) if |T | < nc;

for each column-pair pCluster ({a, b}, O) do

use object-pair MDSs to prune objects in O;

eliminate MDS ({a, b}, O) if |O| < nr;

until no pruning takes place;

In symmetric MDS pruning, for any dimension a in
an MDS Txy, we count the number of Oab that contains
{x, y}. When the size of the dataset increases, the size
of each column-pair MDS also increases. This brings
some negative impacts on efficiency. First, generating
a column-pair MDS takes more time, as the process has
a complexity of O(n log n). Second, it also makes the
set-containment query time consuming during pruning.
Third, it makes symmetric pruning less effective be-
cause we cannot remove any column-pair Oab before we
reduce it to contain less than nr objects, which means
we need to eliminate more than |Oab| − nr objects.

To solve this problem, we group object-pair MDSs
into blocks. Let Bx = {Txy|∀y ∈ D} represent block x.
Apparently, any pCluster that contains object x must
reside in Bx. Thus, mining pClusters over dataset D
is equivalent to finding pClusters in each Bx. Pruning
will take place within each block as well, yet removing
entries in one block may trigger the removing of entries
in other blocks, which improves pruning efficiency.

Algorithm 3 gives a detailed description of the pro-
cess of pruning MDS based on blocks. The algorithm
can be summarized as two steps.

In the first step, we compute object-pair MDSs. We
represent an object-pair MDS by a bitmap: the i-th
bit is set if column i is in the MDS. However, unlike
Algorithm 2, we do not compute column-pair MDSs.

In the second step, we prune object-pair MDSs.
To do this, we collect column information for objects
within each block. This is more efficient than comput-
ing column-pair MDSs for the entire dataset (the com-

Haixun Wang et al.: Clustering by Pattern Similarity 491

putation has a complexity of O(n log n) for each pair),
and still, we are able to support the pruning across
the blocks using column information maintained in each
block. Indeed, cross-pruning occurs on three levels and
pruning on lower levels will trigger pruning on higher
levels: i) clearing a bit in a bitmap for pair {x, y} in Bx

will cause the corresponding bit to be cleared in By; ii)
removing a bitmap (when it has less than nc bits set) for
pair {x, y} in Bx will cause the corresponding bitmap
to be removed in By; and iii) removing Bx (when it
contains less than nr − 1 {x, y} pairs) will recursively
invoke ii) on every bitmap it has.

Algorithm 3. MDS Pruning by Blocks: blockPrune()

Input: D: data set, δ: pCluster threshold, nc, nr: mini-
mal number of columns and rows

Output: pruned object-pair MDSs

for each x, y ∈ D, x 6= y do

invoke pairCluster(x, y,A, nc) to find MDSs for {x, y};
represent each MDS by a bitmap (of columns) and

add it into block Bx and block By;

repeat

for each block Bx do

for each column i do

cc[i] ← number of unique {x, y} pairs whose
MDS bitmap has the i-th bit set

if cc[i] < nr − 1 then

for each entry {x, y} in block x do

if {x, y}’s MDS bitmap has less than
nc− 1 bits set

then

remove the bitmap (if it is the only

MDS bitmap for {x, y}, then remove

entry {x, y} in Bx and By);

else

clear bit i in the bitmaps of {x, y} in

Bx and By;

eliminate Bx if it contains less than nr − 1 entries;

until no changes take place;

4.4 Clustering Algorithm

In this subsection, we focus on the final step of find-
ing pClusters. We mine pClusters from the pruned
object-pair MDSs. A direct approach is to combine
smaller clusters to form larger clusters based on the
anti-monotonicity property[20]. In this paper, we pro-
pose a new approach, which views the pruned object-
pair MDSs as a graph, and mines pClusters by finding
cliques in the graph. Our experimental results show

that the new approach is much more efficient.
After MDS pruning in the second step, the remaining

objects can be viewed as a graph G = (V, E). In graph
G, each node v ∈ V is an object, and an edge e ∈ E
that connects two nodes v1 and v2 means that v1 and
v2 cluster on an MDS {c1, . . . , ck}. We use {c1, . . . , ck}
to label edge e.

Property 5. A pCluster of size nr × nc is a
clique G′ = (V ′, E′) that satisfies |V ′| = nr and
|⋂e∈E′ label(e)| = nc where label(e) is the MDS of an
object-pair connected by edge e in G′.

Proof. Let G′ = (V ′, E′) be a clique. Any two nodes
{v1, v2} ⊂ V ′ is connected by an edge e ∈ E′. Since
e’s label, which represents the MDS of {v1, v2}, con-
tains at least nc same columns, it means {v1, v2} form
a pCluster with the column set. Thus, according to the
definition of pCluster,

(V ′,
⋂

e∈E′
label(e))

is a pCluster of size at least nr × nc. ¤
Furthermore, there is no need to find cliques in the

graph composed of the entire set of object-pair MDSs.
Instead, we can localize the search within each pruned
block Bx = {Txy|∀y ∈ D}. This is because Bx contains
all objects that are connected to object x. Thus, if ob-
ject x indeed appears in a pCluster, the objects in that
pCluster must reside entirely in Bx. This means we do
not need to search cliques or pClusters across blocks.

Algorithm 4 illustrates the process of finding pClus-
ters block by block. First, we collect all available
MDSs that appear in each block. For MDSs that
associate with > nr objects, we invoke the Cliquer
procedure[21] to find cliques of size > nr. The proce-
dure will check edges between objects using information
of other blocks. It also allows one to set the maximum
search time for finding a clique. Next, we generate new
MDSs by joining the current MDSs and repeat the pro-
cess on the new MDSs which contain > nc columns,
provided that the potential cliques are not subsets of
found pClusters.

4.5 Algorithm Complexity

The step of generating MDSs for symmetric prun-
ing has time complexity O(M2N log N + N2M log M),
where M is the number of columns and N is the num-
ber of objects. For block pruning, this is reduced to
O(N2M log M) since only object-pair MDSs are gener-
ated. The worst case for symmetric pruning and block
pruning is O(M2N2), although on average it is much
less, since the average size of a column-pair MDS (num-

492 J. Comput. Sci. & Technol., July 2008, Vol.23, No.4

ber of objects in an MDS) is usually much smaller than
M . In the worst case, the final clustering process (Algo-
rithm 4) has exponential complexity with regard to the
number of columns. However, since most invalid MDSs
are eliminated in the pruning phase, the actual time it
takes is usually much less than that of generating MDSs
and pruning MDSs.

Algorithm 4. Main Algorithm for Mining pClusters:

pCluster()

Input: D: data set, δ: pCluster threshold, nc, nr: mini-

mal number of columns and rows

Output: all pClusters with size > nr × nc

for each block Bx do

S ← all MDSs that appear in Bx;

(each s ∈ S is associated with no less than nr

objects in Bx);

repeat

for each MDS s ∈ S do

if s and the objects it associates is not a

subset of a found pCluster then

invoke Cliquer on s and the objects

it associates with;

if a clique is found then

output a pCluster;

prune entries in related blocks;

S′ ← {};
for every s1, s2 ∈ S do

s′ ← s1 ∩ s2;

if |s′| > nc then

S′ = S′ ∪ {s′};

S ← S′;

until no clique can be found;

5 Experimental Results

We experimented our pCluster algorithm with both
synthetic and real life data sets. The algorithm is im-
plemented on a Linux machine with a 1.0GHz CPU and
256MB main memory.

The pCluster algorithm is the first algorithm that
studies clustering based on subspace pattern similarity.
Traditional subspace clustering algorithms cannot find
clusters based on pattern similarity. For the purpose of
comparison, we implemented an alternative algorithm
that first transforms the matrix by creating a new col-
umn Aij for every two columns ai and aj , provided

i > j. The value of the new column Aij is set to ai−aj .
Thus, the new data set will have N(N − 1)/2 columns,
where N is the number of columns in the original data
set. Then, we apply a subspace clustering algorithm on
the transformed matrix, and discover subspace clusters
from the data. There are several subspace clustering
algorithms to choose from and we used CLIQUE[11] in
our experiments.

5.1 Data Sets

We experiment our pCluster algorithm with syn-
thetic data and two real life data sets: one is the Movie-
Lens data set and the other is a DNA microarray of
gene expression of a certain type of yeast under various
conditions.

Synthetic Data
We generate synthetic data sets in matrix forms.

Initially, the matrix is filled with random values rang-
ing from 0∼500, and then we embed a fixed number
of pClusters in the raw data. Besides the size of the
matrix, the data generator takes several other parame-
ters: nr, the average number of rows of the embedded
pClusters; nc, the average number of columns; and k,
the number of pClusters embedded in the matrix. To
make the generator algorithm easy to implement, and
without loss of generality, we embed perfect pClusters
in the matrix, i.e., each embedded pCluster satisfies a
cluster threshold δ = 0. We investigate both the cor-
rectness and the performance of our pCluster algorithm
using the synthetic data.

Gene Expression Data
Gene expression data are being generated by DNA

chips and other microarray techniques. The yeast mi-
croarray contains expression levels of 2884 genes un-
der 17 conditions[19]. The data set is presented as a
matrix. Each row corresponds to a gene and each col-
umn represents a condition under which the gene is
developed. Each entry represents the relative abun-
dance of the mRNA of a gene under a specific condi-
tion. The entry value, derived by scaling and logarithm
from the original relative abundance, is in the range of
0 and 600. Biologists are interested in finding a subset
of genes showing strikingly similar up-regulation and
down-regulation under a subset of conditions[15].

MovieLens Data Set
The MovieLens data set[22] was made available by

the GroupLens Research Project at the University of
Minnesota. The data set contains 100 000 ratings, 943
users and 1682 movies. Each user has rated at lease 20
movies. A user is considered as an object while a movie
is regarded as an attribute. In the data set, many en-
tries are empty since a user only rated less than 10%

Haixun Wang et al.: Clustering by Pattern Similarity 493

movies on average.

5.2 Performance Analysis Using Synthetic
Datasets

We evaluate the performance of the pCluster algo-
rithm as we increase the number of rows and columns
in the dataset. The results presented in Fig.10 are av-
erage response time obtained from a set of 10 synthetic
datasets.

Fig.10. Performance study: pruning (2nd step). (a) Varying #

of rows in data sets. (b) Varying # of columns in data sets.

As we know, the columns and the rows of the ma-
trix carry the same significance in the pCluster model,
which is symmetrically defined in (2). The performance
of the algorithm, however, is not symmetric in terms of
the number of columns and rows. Apparently, the algo-
rithm based on block pruning is not symmetric, because
it only generates object-pair MDSs. Although the al-
gorithm based on symmetric pruning generates both
types of MDSs using the same algorithm, one type of
the MDSs (column-pair MDSs in our algorithm) has to
be generated first, which breaks the symmetry in per-
formance.

The synthetic data sets used for Fig.10(a) are gen-
erated with the number of columns fixed at 30. There
is a total of 30 embedded pClusters in the data. The
mining algorithm is invoked with δ = 1, nc = 5, and
nr = 0.01N , where N is the number of rows of the syn-
thetic data. Data sets used in Fig.10(b) are generated
in the same manner, except that the number of rows
is fixed at 3000. The mining algorithm is invoked with
δ = 3, nr = 30, and nc = 0.02C, where C is the number
of columns of the data set.

Fig.11. Performance study: pruning and clustering (2nd and 3rd

step). (a) Varying # of columns in data sets. (b) Varying # of

columns in data sets.

We first compare our approach with the approach
in [20]. The two approaches differ in the 2nd and 3rd
steps of the algorithm. We used block-based pruning in
the 2nd step and clique-based clustering in the 3rd step,
while the approach in [20] used symmetric-based prun-
ing and direct clustering based on the anti-monotonicity
property only. The pruning effectiveness and the advan-
tage of the clique-based clustering method are demon-
strated in Fig.11.

Second, we specifically focus on the pruning meth-

494 J. Comput. Sci. & Technol., July 2008, Vol.23, No.4

ods. The two approaches we compare in Fig.10 use the
same clique-based clustering method but different prun-
ing method. We find that block pruning outperforms
symmetric pruning. Their differences become more sig-
nificant when the dataset becomes larger. Particularly,
in Fig.10(b), we find that the block pruning almost has
linear performance, while symmetric pruning is clearly
super linear with regard to the number of columns.
However, it is clear that the performance difference is
not as large as those shown in Fig.11. The above results
demonstrate that, i) clique-based clustering is more ef-
ficient than the direct clustering; ii) block-based prun-
ing is not only more efficient but also more effective
— it prunes more invalid object-column pairs than the
symmetric pruning method, which further improves the
performance of clique-based clustering.

Fig.12. Subspace clustering vs. pCluster.

Finally, in Fig.12, we compare the pCluster algo-
rithm with an alternative approach based on the sub-
space clustering algorithm CLIQUE[11]. The data set
has 3000 objects and the subspace algorithm does not
scale when the number of columns goes beyond 100.

5.3 Experimental Results on Real Life
Datasets

We apply the pCluster algorithm on the yeast gene
microarray[19]. First, we show that pClusters do exist
in DNA microarrays.

Table 2. pClusters in Yeast DNA Microarray Data

δ nc nr # of Maximum pClusters # of pClusters

0 9 30 5 5520

0 7 50 11 −
0 5 30 9370 −

In Table 2, with different parameters of nc and nr,
we find 5, 11, and 9370 pure pClusters (δ = 0) in the
Yeast DNA microarray data. Note that the entire set
of pClusters is often huge (every subset of a pCluster is
also a pCluster), and the pCluster algorithm only out-
puts maximum pClusters.

Next, we show the quality of the found pClusters
and we compare them with those found by the biclus-
ter approach[15] and the δ-cluster approach[16]. The
results are shown in Table 3. We use each of the three
approaches to find the top 100 clusters. Because it is
unfair to compare their quality by the pScore measure
used in our pCluster model, we use the residue mea-
sure, which is adopted by both the bicluster and the
δ-cluster approaches. We found that the pCluster ap-
proach is able to find larger clusters with small residue,
which means genes in the pClusters are more homoge-
neous.

Table 3. Quality of Clusters Mined from Yeast

DNA Microarray Data

Avg Avg Avg # Avg # of

Residue Volume of Genes Conditions

bicluster[15] 204.3 1577.0 167 12.0

δ-cluster[16] 187.5 1825.8 195 12.8

pCluster 164.4 1930.3 199 13.5

Third, we show some pattern similarities in the Yeast
DNA microarray data and a pCluster that is based on
such similarity. In Fig.13(a), we show a pairwise clus-
ter, where the two genes, YGL106W and YAL046C,
exhibit a clear shifting pattern under 14 out of 17 condi-
tions. Fig.13(b) shows a pCluster where-gene YAL046C
is a member. Clearly, these genes demonstrate pattern-
based similarity under a subspace formed by set of
the conditions. However, because of the limitation
of the bicluster model and the random nature of the
bicluster algorithm[15], the strong similarity between
YGL106W and YAL046C that span 14 conditions is
not revealed in any of the top 100 biclusters they dis-
cover. It is well known that YGL106W plays an im-
portant role② in the essential light chain for myosin
Myo2p. Although YAL046C has no known function,
it is reported[23] that gene X1.22067 in African clawed
frog and gene Str.15194 in tropical clawed frog exhibit
similarity to hypothetical protein YAL046C, and the
transcribed sequence has 72.3% and 77.97% similar-
ity to that of human. We cannot speculate whether
YGL106W and YAL046C are related as they exhibit
such high correlation, nevertheless, our goal is to pro-

②It may stabilize Myo2p by binding to the neck region; may interact with Myo1p, Iqg1p, and Myo2p to coordinate formation and
contraction of the actomyosin ring with targeted membrane deposition.

Haixun Wang et al.: Clustering by Pattern Similarity 495

pose better models and faster algorithms so that we
can better serve the needs of biologists in discovering
correlations among genes and proteins.

Fig.13. Pattern similarity and pCluster of genes.

In terms of response time, the majority of maxi-
mal dimension sets are eliminated during pruning. For
Yeast DNA microarray data, the overall response time
is around 80 seconds, depending on the user parame-
ters. Our algorithm has performance advantage over
the bicluster algorithm[15], as it takes roughly 300∼400
seconds for the bicluster algorithm to find a single clus-
ter.

We also discovered some interesting pClusters in the
MovieLens dataset. For example, there is a cluster
whose attributes consists of two types of movies, family
movies (e.g., First Wives Club, Adam Family Values,
etc.) and the action movies (e.g., Golden Eye, Rum-
ble in the Bronx, etc.). Also the rating given by the
viewers in this cluster is quite different, however, they
share a common phenomenon: the rating of the action
movies is about 2 points higher than that of the family
movies. This cluster can be discovered in the pCluster
model. For example, two viewers rate four movies as

(3, 3, 4, 5) and (1, 1, 2, 3). Although the absolute dis-
tance between the two rankings are large, i.e., 4, but
the pCluster model groups them together because they
are coherent.

6 Conclusions

Recently, there has been considerable amount of re-
search in subspace clustering. Most of the approaches
define similarity among objects based on their distances
(measured by distance functions, e.g., Euclidean) in
some subspace. In this paper, we proposed a new model
called pCluster to capture the similarity of the patterns
exhibited by a cluster of objects in a subset of dimen-
sions. Traditional subspace clustering, which focuses on
value similarity instead of pattern similarity, is a special
case of our generalized model. We devised a depth-first
algorithm that can efficiently and effectively discover
all the pClusters with a size larger than a user-specified
threshold.

The pCluster model finds a wide range of appli-
cations including management of scientific data, such
as the DNA microarray, and e-commerce applications,
such as collaborative filtering. In these datasets, al-
though the distance among the objects may not be close
in any subspace, they can still manifest shifting or scal-
ing patterns, which are not captured by tradition (sub-
space) clustering algorithms. We have demonstrated
that these patterns are often of great interest in DNA
microarray analysis, collaborative filtering, and other
applications.

As for future work, we believe the concept of simi-
larity in pattern distance spaces has opened the door
to quite a few research topics. For instance, currently,
the similarity model used in data retrieval and nearest
neighbor search is based on value similarity. By extend-
ing the model to reflect pattern similarity will benefit
a lot of applications.

References

[1] Ester M, Kriegel H, Sander J, Xu X. A density-based algo-
rithm for discovering clusters in large spatial databases with
noise. In Proc. SIGKDD, 1996, pp.226–231.

[2] Ng R T, Han J. Efficient and effective clustering methods
for spatial data mining. In Proc. Santiago de Chile, VLDB,
1994, pp.144–155.

[3] Zhang T, Ramakrishnan R, Livny M. Birch: An efficient data
clustering method for very large databases. In Proc. SIG-
MOD, 1996, pp.103–114.

[4] Murtagh F. A survey of recent hierarchical clustering algo-
rithms. The Computer Journal, 1983, 26: 354–359.

[5] Michalski R S, Stepp R E. Learning from observation: Con-
ceptual clustering. Machine Learning: An Artificial Intelli-
gence Approach, Springer, 1983, pp.331–363.

496 J. Comput. Sci. & Technol., July 2008, Vol.23, No.4

[6] Fisher D H. Knowledge acquisition via incremental concep-
tual clustering. In Proc. Machine Learning, 1987.

[7] Fukunaga K. Introduction to Statistical Pattern Recognition.
Academic Press, 1990.

[8] Beyer K, Goldstein J, Ramakrishnan R, Shaft U. When is
nearest neighbors meaningful. In Proc. the Int. Conf.
Database Theories, 1999, pp.217–235.

[9] Aggarwal C C, Procopiuc C, Wolf J, Yu P S, Park J S.
Fast algorithms for projected clustering. In Proc. SIGMOD,
Philadephia, USA, 1999, pp.61–72.

[10] Aggarwal C C, Yu P S. Finding generalized projected clusters
in high dimensional spaces. In Proc. SIGMOD, Dallas, USA,
2000, pp.70–81.

[11] Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Authomatic
subspace clustering of high dimensional data for data mining
applications. In Proc. SIGMOD, 1998.

[12] Jagadish H V, Madar J, Ng R. Semantic compression and pat-
tern extraction with fascicles. In Proc. VLDB, 1999, pp.186–
196.

[13] Cheng C H, Fu A W, Zhang Y. Entropy-based subspace clus-
tering for mining numerical data. In Proc. SIGKDD, San
Diego, USA, 1999, pp.84–93.

[14] D’haeseleer P, Liang S, Somogyi R. Gene expression analysis
and genetic network modeling. In Proc. Pacific Symposium
on Biocomputing, Hawaii, 1999.

[15] Cheng Y, Church G. Biclustering of expression data. In Proc.
of 8th International Conference on Intelligent System for
Molecular Biology, 2000, pp.93–103.

[16] Yang J, Wang W, Wang H, Yu P S. δ-clusters: Capturing
subspace correlation in a large data set. In Proc. ICDE, San
Jose, USA, 2002, pp.517–528.

[17] Nagesh H, Goil H, Choudhary A. Mafia: Efficient and scal-
able subspace clustering for very large data sets. Technical
Report 9906-010, Northwestern University, 1999.

[18] Shardanand U, Maes P. Social information filtering: Algo-
rithms for automating “word of mouth”. In Proc. ACM CHI,
Denver, USA, 1995, pp.210–217.

[19] Tavazoie S, Hughes J, Campbell M, Cho R, Church G. Yeast
micro data set. http://arep.med.harvard.edu/biclustering/ye-
ast.matrix, 2000.

[20] Wang H, Wang W, Yang J, Yu P S. Clustering by pattern
similarity in large data sets. In Proc. SIGMOD, Madison,
USA, 2002, pp.394–405.

[21] Niskanen S, Ostergard P R J. Cliquer user’s guide, ver-
sion 1.0. Technical Report T48, Communications Labora-
tory, Helsinki University of Technology, Espoo, Finland, 2003.
http://www.hut.fi/p̃at/cliquer.html.

[22] Riedl J, Konstan J. Movielens dataset. In http://www.cs.
umn.edu/Research/GroupLens.

[23] Clifton S, Johnson S, Blumberg B et al. Washington uni-
versity Xenopus EST project. Technical Report, Washington
University School of Medicine, 1999.

Haixun Wang is currently a re-
search staff member at IBM T. J.
Watson Research Center. He has
been a technical assistant to Stu-
art Feldman, vice president of com-
puter science of IBM Research, since
2006. He received the B.S. and M.S.
degrees, both in computer science,
from Shanghai Jiao Tong University
in 1994 and 1996. He received the

Ph.D. degree in computer science from the University of
California, Los Angeles in 2000. His main research interest
is database language and systems, data mining, and infor-
mation retrieval. He has published more than 100 research
papers in refereed international journals and conference pro-
ceedings. He has served regularly in the organization com-
mittees and program committees of many international con-
ferences, and has been a reviewer for many leading academic
journals in the database and data mining field.

Jian Pei received his Ph.D. de-
gree in computing science from Si-
mon Fraser University, Canada, in
2002. He is currently an assistant
professor of computing science at
Simon Fraser University, Canada.
His research interests can be sum-
marized as developing effective and
efficient data analysis techniques
for novel data intensive applica-

tions. Currently, he is interested in various techniques of
data mining, data warehousing, online analytical processing,
and database systems, as well as their applications in web
search, sensor networks, bioinformatics, privacy preserva-
tion, software engineering, and education. His research has
been supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), the National
Science Foundation (NSF) of the United States, Microsoft,
IBM, Hewlett-Packard Company (HP), the Canadian Im-
perial Bank of Commerce (CIBC), and the SFU Commu-
nity Trust Endowment Fund. He has published prolifically
in refereed journals, conferences, and workshops. He is an
associate editor of IEEE Transactions on Knowledge and
Data Engineering. He has served regularly in the organi-
zation committees and the program committees of many
international conferences and workshops, and has also been
a reviewer for the leading academic journals in his fields.
He is a senior member of the Association for Computing
Machinery (ACM) and the Institute of Electrical and Elec-
tronics Engineers (IEEE). He is the recipient of the British
Columbia Innovation Council 2005 Young Innovator Award,
an IBM Faculty Award (2006), and an IEEE Outstanding
Paper Award (2007).

