Pattern-growth Methods for Sequential Pattern Mining: Principles

and Extensions

Jiawei Han

Department of Computer Science
University of Illinois at Urbana-Champaign

School of Computing Science
Simon Fraser University
Email: han@cs.sfu.ca

Abstract

Sequential pattern mining is an important data mining
problem with broad applications. It is challenging since one
may need to examine a combinatorially explosive number
of possible subsequence patterns. Most of the previously
developed sequential pattern mining methods follow the
methodology of Apriori which may substantially reduce the
number of combinations to be examined. However, Apriori-
like methods still encounter problems when a sequence
database is large and/or when sequential patterns to be
mined are numerous and/or long.

Recently, we proposed two pattern-growth methods,
FreeSpan [6] and PrefixSpan [11], for efficient sequential
pattern mining. These methods explore efficient database
projections guided by patterns already found. Performance
studies show that both methods outperform Apriori-based
GSP method and PrefixSpan achieves the best performance
in mining large sequence databases.

In this paper, we provide an overview of pattern-growth
sequential pattern mining methods. Moreover, pattern-
growth methods can be extended to mine many other kinds
of temporal patterns from large time-related databases.
As an example, we show that with minor modification,
PrefixSpan can be extended to mine sequential patterns
with regular expression constraints, which is an interesting
mining problem proposed in [4].

1 Introduction

Sequential pattern mining, which discovers frequent
subsequences as patterns in a sequence database, is
an important data mining problem with broad appli-
cations, including the analyses of customer purchase
behavior, Web access patterns, scientific experiments,
disease treatments, natural disasters, DNA sequences,
and so on.

The sequential pattern mining problem was first
introduced by Agrawal and Srikant in [2]: Given a
set of sequences, where each sequence consists of a
list of elements and each element consists of a set of
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items, and qiven a user-specified min_support threshold,
sequential pattern mining is to find all of the frequent
subsequences, 1.e., the subsequences whose occurrence
frequency in the set of sequences is no less than
min_support.

Many studies have contributed to the efficient min-
ing of sequential patterns or other frequent patterns in
time-related data, e.g., [2, 12, 9, 10, 3, 8, 5, 4]. Al-
most all of the previously proposed methods for mining
sequential patterns and other time-related frequent pat-
terns are Apriori-like, i.e., based on the Apriori property
proposed in association mining [1], which states the fact
that any super-pattern of a nonfrequent pattern cannot
be frequent.

Based on this heuristic, a typical Apriori-like method
such as GSP [12] adopts a multiple-pass, candidate-
generation-and-test approach in sequential pattern min-
ing. This is outlined as follows. The first scan finds all
of the frequent items which form the set of single item
frequent sequences. Each subsequent pass starts with
a seed set of sequential patterns, which is the set of se-
quential patterns found in the previous pass. This seed
set is used to generate new potential patterns, called
candidate sequences. Each candidate sequence contains
one more item than a seed sequential pattern, where
each element in the pattern may contain one or multiple
items. The number of items in a sequence is called the
length of the sequence. So, all the candidate sequences
in a pass will have the same length. The scan of the
database in one pass finds the support for each candi-
date sequence. All of the candidates whose support in
the database is no less than min_support form the set
of the newly found sequential patterns. This set then
becomes the seed set for the next pass. The algorithm
terminates when no new sequential pattern is found in
a pass, or no candidate sequence can be generated.

Similar to the analysis of Apriori frequent pattern
mining method in [7], one can observe that the
Apriori-like sequential pattern mining method, though
reduces search space, bears three nontrivial, inherent
costs which are independent of detailed implementation
techniques.



¢ Potentially huge set of candidate sequences.
Since the set of candidate sequences includes all the
possible permutations of the elements and repetition
of items in a sequence, an Apriori-based method may
generate a really large set of candidate sequences
even for a moderate seed set. For example, if there
are 1000 frequent sequences of length-1, such as
(a1), (az), ..., {(@a1o00), an Aptriori-like algorithm
will generate 1000 x 1000 4 1098x999 = 1 499, 500
candidate sequences, where the first term is derived
from the set (a1a1), {(aia2), ..., {a1a1000), {a2a1),
(asaz2), ..., {aio00@1000), and the second term
is derived from the set ((aias)), ((a1as)), ...,
<(d999&1000)>~

¢ Multiple scans of databases. Since the length
of each candidate sequence grows by one at each
database scan, to find a sequential pattern {(abe)(abc)
(abe)(abe)(abe)}, an Apriori-based method must scan
the database at least 15 times.

¢ Difficulties at mining long sequential pat-
terns. A long sequential pattern must grow from a
combination of short ones, but the number of such
candidate sequences is exponential to the length
of the sequential patterns to be mined. For ex-
ample, suppose there 1s only a single sequence of
length 100, {aias...a100), in the database, and
the min_support threshold is 1 (i.e., every occur-
ring pattern is frequent), to (re-)derive this length-
100 sequential pattern, the Apriori-based method
has to generate 100 length-1 candidate sequences,
100 x 100 + % = 14,950 length-2 candidate

100 ) — 161,700 length-3 candidate

3
sequences!, .... Obviously, the total number of

candidate sequences to be generated is greater than
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In many applications, it is not unusual that one
may encounter a large number of sequential patterns
and long sequences, such as stock sequence analysis.
Therefore, 1t 1s important to re-examine the sequential
pattern mining problem to explore more efficient and
scalable methods.

Based on our analysis, both the thrust and the
bottleneck of an Apriori-based sequential pattern mining
method come from its step-wise candidate sequence
generation and test. Can we develop a method
which may absorb the spirit of Apriori but avoid or
substantially reduce the expensive candidate generation
and test?

INotice that Apriori does cut a substantial amount of search
space. Otherwise, the number of length-3 candidate sequences
would have been 100 x 100 x 100 4 100 X 100 x 99 4 100X9Ix98 _

3x2
2,151, 700.

With this motivation, recently, the pattern-growth
methodology [7] has been extended to sequential pat-
tern mining and two methods, FreeSpan [6] and PrefixSpa
[11], are proposed. Performance studies show that
they outpeform Apriori-like method GSP and PrefixSpan
achieves best performance in mining large sequence
databases.

Moreover, many applications look for many other
kinds of temporal patterns from large time-related
databases. Can pattern-growth methods be extended
to attack those temporal pattern mining problems effec-
twely and efficiently?

As an example, let us consider mining sequential pat-
terns with regular expression constraints, as proposed
in [4]. For instance, to help planning advertisement
placement, an automobile business analyst may want
to find sequential patterns in user web access logs such
that patterns contain at least one web page of car man-
ufacturer and at least 2 sites about traveling. Such a
mining query can be expressed effectively using a regu-
lar expression. Efficient miningsequential patterns with
regular expressions helps people locate the to-the-point
knowledge effectively.

In this paper, we provide an overview of pattern-
growth sequential pattern mining methods. Moreover,
as an example of mining other kinds of temporal
patterns using pattern-growth methods, we discuss an
extension of pattern-growth methods to mine sequential
patterns with regular expression. Our study indicates
that pattern-growth methods are effectively, efficient,
and scalable for mining large sequence databases. The
pattern-growth methodology opens a door towards
effective and efficient mining many other kinds of
temporal patterns from large time-related databases.

The remaining of the paper i1s organized as follows.
In Section 2, we revisit the sequential pattern mining
problem and the two pattern-growth mining methods,
FreeSpan and PrefixSpan. An empirical evaluation on
some sequential pattern mining methods is presented in
Section 3. In Section 4, we consider mining sequential
patterns with regular expression constraints. The paper
is concluded in Section 5.

2 Sequential Pattern Mining and
Pattern-growth Methods

In this section, we first define the problem of sequen-
tial pattern mining, and then illustrate an Apriori-
like method, GSP, and two recently proposed pattern-
growth methods, FreeSpan and PrefixSpan, using exam-
ples.

2.1 Problem Definition and GSP

Let I = {iy,i2,...,in} be a set of all items. An
itemset is a subset of items. A sequence is an ordered
list of itemsets. A sequence s is denoted by (s1s2---s1),
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where s; is an itemset, i.e., s; C 1 for 1 < j <. s;
is also called an element of the sequence, and denoted
as (¢1%2 - &m), where zj is an item, i.e., zx € I for
1 < k < m. For brevity, the brackets are omitted if
an element has only one item. That is, element ( ) is
written as z. An item can occur at most once in an
element of a sequence, but can occur multiple times
in different elements of a sequence. The number of
instances of items in a sequence is called the length
of the sequence. A sequence with length [ is called an
l-sequence. A sequence a = (ajas---ay,) is called a
subsequence of another sequence f = (biby---by,)
and f a super sequence of «, denoted as a C 3, if
there exist integers 1 < j1 < j2 < -+ < jn < m such
that ay C b;,, as Cbj,, ..., an Cb;, .

A sequence database S is a set of tuples (sid, s),
where sid is a sequence_id and s is a sequence. A
tuple (sid,s) is said to contain a sequence «a, if «
is a subsequence of s, i.e., @« C s. The support
of a sequence a in a sequence database S is the
number of tuples in the database containing «, i.e.,
supports(a) = | {(sid, s)|({sid,s) € S) A (« C s)} |. Tt
can be denoted as support(a) if the sequence database
is clear from the context. Given a positive integer &
as the support threshold, a sequence « is called a
(frequent) sequential pattern in sequence database S
if the sequence is contained by at least ¢ tuples in the
database, i.e., supports(a) > &. A sequential pattern
with length [ is called an [-pattern.

Example 1 Let our running database be sequence
database S given in Table 1 and min_support = 2. The
set of items in the database is {a,b,c,d,e, f,g}.

| Sequence_id | Sequence |

10 (a(abc)(ac)d(cf))
20 ((ad)c(be)(ae))
30 ((cf)(ab)(df)cb)
40 eg(af)cbe)

Table 1: A sequence database

A sequence {a(abc)(ac)d(cf)) has five elements: (a),
(abe), (ac), (d) and (cf), where items a and ¢ appear
more than once respectively in different elements.
It is also a 9-sequence since there are 9 instances
appearing in that sequence. Item @ happens three
times in this sequence, so it contributes 3 to the
length of the sequence. However, the whole sequence
(a(abe)(ac)d(cf)) contributes only one to the support
of (a). Also, sequence (a(bc)df) is a subsequence of
(a(abe)(ac)d(ef)). Since both sequences 10 and 30
contain subsequence s = ((ab)c), s is a sequential
pattern of length 3 (i.e., 3-pattern). O

Problem Statement. Given a sequence database and

a min_support threshold, the problem of sequential
pattern mining is to find the complete set of sequen-
tial patterns in the database.

Apriori heuristic, which is an anti-monotone property,
holds for sequential patterns: ewvery non-empty sub-
sequence of a sequential pattern is a sequential pattern.
With the Apriori heuristic, a typical sequential pattern
mining method, GSP [12], proceeds as shown in the
following example.

Example 2 (GSP) Given the database S and min_support

in Example 1, GSP first scans S, collects the support
for each item, and finds the set of frequent items (in
the form of item : support) as below,

a:4,b:4,¢c:4,d:3,e:3,f:3,9g:1

By filtering infrequent items, g, we obtain the
first seed set Ly = {{a), (b),{c),(d),{e),{(f)}, each
representing a l-element sequential pattern. Each
subsequent pass starts with the seed set found in the
previous pass and uses it to generate new potential
sequential patterns, called candidate sequences.

For Li, a set of 6 length-1 sequential patterns
generates a set of 6 x 6+ =52 6X5 = 51 candidate sequences,

Co = {{aa), (ab), ... (af), (ba), (BB}, ...., (1), {(ab),
((ac)), .., ((efN}-

The multi-scan mining process is shown in Figure 1,
with the following explanations.

The set of candidates is generated by a self-join of the
sequential patterns found in the previous pass. In the
k-th pass, a sequence is a candidate only if each of its
length-(k — 1) subsequences is sequential patterns found
at the (k — 1)-st pass.

A new scan of the database collects the support
for each candidate sequence and finds the new set of
sequential patterns. This set becomes the seed for
the next pass. The algorithm terminates when no
sequential pattern is found in a pass, or when there
is no candidate sequence generated.

The number of scans is at least the maximum length
of sequential patterns. It needs one more scan if
the sequential patterns obtained in the last scan still
generate new candidates.

GSP, though benefits from the Apriori pruning, still
generates a large number of candidates. In this
example, 6 length-1 sequential patterns generate 51
length-2 candidates, 22 length-2 sequential patterns
generate 64 length-3 candidates, etc.

Candidates generated by GSP may not appear in the
database at all. For example, 13 out of 64 length-3
candidates do not appear in the database. a

2.2 Pattern-growth Methods

As analyzed before, the bottleneck of sequential pattern
mining is candidate generation and test. To overcome



4th scan, 6 candidates

<(ab)dc> [ <efbes| ...

4 length-4 sequential patterns <a(bc)a>
3rd scan, 64 candidates
21 length-3 sequentia patterns | <aab>|

El

13 candidates not appear in database at all

2nd scan, 51 candidates
22 length-2 sequentia patterns
9 candidates not appear in database at all

1st scan, 7 candidates
6 length-1 sequentia patterns

|:| Candidate cannot pass support threshold
D Candidate does not appear in database at all

Figure 1: Candidates and sequential patterns in GSP

this difficulty, a new category of methods for sequential
pattern mining, called pattern-growth methods, are
developed in [6, 11]. They adopt a divide-and-conquer
methodology and mine sequential patterns (almost)
without candidate generation. These approaches have
several distinct features:

1. Instead of generating a large number of candidates,
the methods preserve (in some compressed forms)
the essential groupings of the original data elements
for mining. Then the analysis is focused on counting
the frequency of the relevant data sets instead of
candidate sets.

2. Instead of scanning the entire database to match
against the whole corresponding set of candidates
in each pass, the methods partition the data set to
be examined as well as the set of patterns to be
examined by database projection. Such a divide-
and-conquer methodology substantially reduces the
search space and leads to high performance.

3. With the growing capacity of main memory and the
substantial reduction of database size by database
projection as well as the space needed for manipu-
lating large sets of candidates, a substantial por-
tion of data can be put into main memory for
mining. Pseudo-projection has been developed for
pointer-based traversal. The performance studies
have shown the effectiveness of such techniques.

Here, we illustrate the general ideas of FreeSpan and
PrefixSpan using examples, respectively.

2.2.1 FreeSpan

To improve the performance of sequential pattern
mining, a FreeSpan algorithm is developed in a recent

study [6]. Tts major ideas are illustrated in the following
example.

Example 3 (FreeSpan) Given the database S and
min_support in Example 1, FreeSpan first scans S,
collects the support for each item, and finds the set
of frequent items. Frequent items are listed in support
descending order (in the form of item : support) as
below,

flist =a:4,6:4,¢c:4,d:3,e:3,f:3

According to f_list, the complete set of sequential
patterns in S can be divided into 6 disjoint subsets: (1)
the ones containing only item a, (2) the ones containing
item b but containing no items after b in f_list, (3) the
ones containing item ¢ but no items after ¢ in f_list, and
so on, and finally, (6) the ones containing item f.

The subsets of sequential patterns can be mined by
constructing projected databases. Infrequent items, such
as ¢ in this example, are removed from construction of
projected databases. The mining process is detailed as
follows.

e Finding sequential patterns containing only
item a. By scanning sequence database once, the
only two sequential patterns containing only item a,
(a) and (aa), are found.

e Finding sequential patterns containing item
b but no item after b in flist. This can be
achieved by constructing the {b}-projected database.
For a sequence a in S containing item b, a subse-
quence o’ is derived by removing from « all items
after b in f_list. o' is inserted into {b}-projected
database. Thus, {b}-projected database contains



four sequences: (a(ab)a), {(aba), {(ab)b) and (ab).
By scanning the projected database once more, all
sequential patterns containing item b but no item

after b in f_list are found. They are (b), (ab), (ba),
((ab)).

¢ Finding other subsets of sequential patterns.
Other subsets of sequential patterns can be found
similarly, by constructing corresponding projected
databases and mining them recursively.

Note that {b}-, {c}-, ..., {f}-projected databases
are constructed simultaneously during one scan of the
original sequence database. All sequential patterns
containing only item a are also found in this pass.

This process is performed recursively on projected-
databases. Since FreeSpan projects a large sequence
database recursively into a set of small projected
sequence databases based on the currently mined
frequent sets, the subsequent mining is confined to
each projected database relevant to a smaller set of
candidates. Thus, FreeSpan is more efficient than GSP.

O

The major cost of FreeSpan is to deal with projected
databases. If a pattern appears in each sequence of
a database, its projected database does not shrink
(except for the removal of some infrequent items). For
example, the {f}-projected database in this example
is the same as the original sequence database, except
for the removal of infrequent item g. Moreover, since
a length-k subsequence may grow at any position, the
search for length-(k + 1) candidate sequence will need
to check every possible combination, which is costly.

2.2.2
To further improve the performance of sequential pat-
tern mining, another pattern-growth method, PrefixSpan,
is develop in [11].

PrefixSpan

Example 4 (PrefixSpan) Let us re-consider mining
sequential patterns in sequence database S, shown in
Table 1, with the support threshold set to 2. PrefixSpan
works as follows.

First, we find length-1 sequential patterns by scanning
S once. This derives the set of frequent items in
sequences, i.e., the set of length-1 sequential patterns:
{((a) = 4), ((8) = 4), ((e) : 4), (d) : 3), (¢} : 3), and
() 3)).

Then, the search space can be partitioned into the
following six subsets according to the six prefixes: (1) the
ones with prefix {(a); ...; and (6) the ones with prefix
(f). The subsets of sequential patterns can be mined
by constructing corresponding projected databases and
mine each recursively. The projected databases as well
as sequential patterns found in them are listed in Table
2, and the mining process is explained as follows.

The sequential patterns with prefix (a) are mined
in the (prefix) (a)-projected database. Tt is the col-
lection that contains only those subsequences pre-
fixed with the first occurrence of (a). For exam-
ple, in sequence ((ef)(ab)(df)cb), only the subsequence
((-b)(df)cb) should count. Notice that (_b) means that
the last element in the prefix, which is a, together with
b, form one element (i.e., occurring together). Thus
the (a)-projected database consists of four postfix se-
quences: ((abe)(ac)d(cf)), {(-d)c(be)(ae)), ((-b)(df)ch)
and ((_f)cbe). By scanning (a)-projected database
once, all the length-2 sequential patterns prefixed with
(a) can be found. They are: ({aa) : 2), ({(ab) : 4),
({(ab)) : 2), ((ac) : 4), ((ad) : 2), and ((af) :2).

Recursively, all sequential patterns with prefix (a)
can be partitioned into 6 subsets: (1) that prefixed
with (aa), (2) that with (ab), ..., and finally, (6)
that with (af). These subsets can be mined by
constructing respective projected databases and mining
each recursively.

For example, the (aa)-projected database consists
of only one non-empty (postfix) subsequences prefixed
with (aa): ((-be)(ac)d(cf)). Since there is no hope
to generate any frequent subsequence from a single
sequence, the processing of (aa)-projected database
terminates.  Similarly, the (ab)-projected database
consists of three postfix sequences: ((_¢)(ac)d(cf)),
((-¢)a), and {c). Recursively mining it returns four
sequential patterns: ((_¢)), {(-c)a), (a), and (¢) (i.e.,
(a(be)), {a(bc)a), (aba), and (abc).)

Using the same method, sequential patterns with
prefix (b), (¢}, (d), {e) and (f), can be mined from the
corresponding projected databases respectively. The
projected databases as well as the sequential patterns
found are shown in Table 2. a

The example shows that PrefixSpan examines only
the prefix subsequences and projects only their corre-
sponding postfix subsequences into projected databases,
and in each projected database, sequential patterns are
grown by exploring only local frequent patterns.

To further improve mining efficiency, two kinds of
optimizations are explored [11]: (1) pseudo-projection,
and (2) bi-level projection. Pseudo-projection is based
on the following idea: When the database can be held
in main memory, instead of constructing a physical
projection by collecting all the postfixes, one can use
pointers referring to the sequences in the database
as a pseudo-projection. Every projection consists of
two pieces of information: pointer to the sequence in
database and offset of the postfix in the sequence. This
avoids physically copying postfixes. Thus, it is efficient
in terms of both running time and space. However, it
is not efficient if the pseudo-projection is used for disk-
based accessing since random access of disk space is very
costly. Therefore, when the sequence database cannot



| Prefix | Projected (postfix) database

Sequential patterns |

(a) | ((abe)(ac)d(cf)), ((d)e(be)(ae)), | (a), (aa), (ab), (a(be)), (a(be)a), (aba), (abe), ((ab)),
((-b)(df)cb), ((-f)cbe) ((ab)c), ((ab)d), ((ab)f), ((ab)dc), {ac), (aca), {(acb),

o (acc), (ad), {ade), (af)

(b) ((—C)(ac)d(Cf)> ((c)(ae)), ((df )eb), {c) (b), (ba), (be), ((be)), {(be)a), (bd), (bdc), (bf)

{c) | Uac)d(cf)), {(bec)(ae)), (b), (be) (¢}, (ca), {cb), (cc)

(d) | {eh)), (c(be)(ae)), ((-f)cb) (d), {db), (dc), (dcb)

(e) {(_f)(ab)(df)cb), {(af)cbc) (e), (ea), {eab), {eac), (each), {eb), (ebc), {ec), {ech},
o () (e1b), {efe), (e feb)

() ((ab)(df)cb), {cbec) (), (fb), (fbe), (fc), (fcb)

Table 2: Projected databases and sequential patterns

be held in main memory, a bi-level projection method
1s explored, which projects databases not at every level
but at every two levels. In comparison with level-by-
level projection, bi-level projection reduces the cost of
database projection and leads to improved performance
when the database is huge and the support threshold is
low.

A systematic performance study in [11] shows that
PrefixSpan with these two optimizations is efficient and
scalable. It mines the complete set of patterns and
runs considerably faster than both Apriori-based GSP
algorithm [12] and FreeSpan [6].
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In this section, we present experimental results on
the performance of GSP, FreeSpan, and PrefixSpan.
It shows that PrefixSpan outperforms other previously
proposed methods and is efficient and scalable for
mining sequential patterns in large databases.

All the experiments are performed on a 233MHz Pen-
tium PC machine with 128 megabytes main memory,
running Microsoft Windows/NT. All the methods are
implemented using Microsoft Visual C++ 6.0.

We compare performance of four methods as follows.

Performance Study

e GSP. The GSP algorithm was implemented as
described in [12].

e FreeSpan. As reported in [6], FreeSpan with al-
ternative level projection is more efficient than
FreeSpan with level-by-level projection. In this pa-
per, FreeSpan with alternative level projection is
used.

o PrefixSpan-1. PrefixSpan-1 is PrefixSpan with level-
by-level projection.

e PrefixSpan-2.  PrefixSpan-2 is PrefixSpan with bi-

level projection.

The synthetic datasets we used for our experiments
were generated using standard procedure described in
[2]. The same data generator has been used in most
studies on sequential pattern mining, such as [12, 6]. We

refer readers to [2] for more details on the generation of
data sets.

We test the four methods on various datasets. The
results are consistent. Limited by space, we report here
only the results on dataset C'10785878. In this data
set, the number of items is set to 1,000, and there are
10,000 sequences in the data set. The average number
of items within elements is set to 8 (denoted as T8).
The average number of elements in a sequence is set to
8 (denoted as S8). There are a good number of long
sequential patterns in it at low support thresholds.

The experimental results of scalability with support
threshold are shown in Figure 2. When the support
threshold is high, there are only a limited number
of sequential patterns, and the length of patterns is
short, the four methods are close in terms of runtime.
However, as the support threshold decreases, the gaps
become clear. Both FreeSpan and PrefixSpan win GSP.
PrefixSpan methods are more efficient and more scalable
than FreeSpan, too. Since the gaps among FreeSpan and
GSP are clear, we focus on performance of various
PrefixSpan techniques in the remaining of this section.

As shown in Figure 2, the performance curves of
PrefixSpan-1 and PrefixSpan-2 are close when support
threshold is not low. When the support thresh-
old is low, since there are many sequential patterns,
PrefixSpan-1 requires a major effort to generate pro-
jected databases. Bi-level projection can leverage the
problem efficiently. As can be seen from Figure 3, the
increase of runtime for PrefixSpan-2 is moderate even
when the support threshold is pretty low.

Figure 3 also shows that using pseudo-projections
for the projected databases that can be held in main
memory improves efficiency of PrefixSpan further. As
can be seen from the figure, the performance of level-by-
level and bi-level pseudo-projections are close. Bi-level
one catches up with level-by-level one when support
threshold is very low. When the saving of less projected
databases overcomes the cost of for mining and filling
the S-matriz, bi-level projection wins. That verifies our
analysis of level-by-level and bi-level projection.

Since pseudo-projection improves performance when
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Figure 2: PrefixSpan, FreeSpan and
GSP on data set C'10785818.

the projected database can be held in main memory,
a related question becomes: “can such a method be
extended to disk-based processing?” That is, instead
of doing physical projection and saving the projected
databases in hard disk, should we make the projected
database in the form of disk address and offset? To
explore such an alternative, we pursue a simulation test
as follows.

Let each sequential read, i.e., reading bytes in a data
file from the beginning to the end, cost 1 unit of 1/0.
Let each random read, i.e., reading data according to
its offset in the file, cost 1.5 unit of 1/O. Also, suppose
a write operation cost 1.5 T/O. Figure 4 shows the 1/0
costs of PrefixSpan-1 and PrefixSpan-2 as well as of their
pseudo-projection variations over data set C'1kT8S8I8
(where Clk means 1 million sequences in the data
set).
projection variations clearly. It can also be observed

PrefixSpan-1 and PrefixSpan-2 win their pseudo-

that bi-level projection wins level-by-level projection as
the support threshold becomes low. The huge number
of random reads in disk-based pseudo-projections is the
performance killer when the database i1s too big to fit
into main memory.

——PrefixSpan-1
—o—PrefixSpan-2

Runtime (thousand
second)

0 100 200 300 400 500

# of sequences (thousand)

Figure 5: Scalability of PrefixSpan.

Figure 5 shows the scalability of PrefixSpan-1 and

PrefixSpan and PrefixSpan (pseudo-
proj) on data set C'107'8S878.

PrefixSpan (pseudo-proj) on large
data set C'1kT8S8IS.

PrefixSpan-2 with respect to the number of sequences.
Both methods are linearly scalable. Since the support
threshold is set to 0.20%, PrefixSpan-2 performs better.
In summary, our performance study shows that
PrefixSpan is more efficient and scalable than FreeSpan
and GSP, whereas FreeSpan is faster than GSP when
the support threshold is low, and there are many long
patterns. Since PrefixSpan-2 uses bi-level projection to
dramatically reduce the number of projections, it is
more efficient than PrefixSpan-1 in large databases with
low support threshold. Once the projected databases
can be held in main memory, pseudo-projection always
leads to the most efficient solution. The experimental
results are consistent with our theoretical analysis.

4 Extending Pattern-growth
Methods to Mine Sequential
Patterns with Regular Expression
Constraints

Sequential pattern mining often generates a large num-
ber of patterns, which reduces not only the efficiency
but also the effectiveness of mining, since users have to
sift through a large number of patterns to find useful
ones.

Recent work has highlighted the importance of the
paradigm of constraint-based mining: a user is allowed
to express her focus in mining by means of a rich class
of constraints capturing application semantics. Besides
allowing user exploration and control, the paradigm
allows many of these constraints to be pushed deep
inside mining, thus pruning the search and achieving
high performance.

Garofalakis et al. proposed the problem of sequential
pattern mining with regular expression constraints in
[4]. A regular expression constraint (RE-constraint
in short) is specified as a regular expression over the
set of items using regular expression operators, such



as disjunction (|) and Kleene closure (x). Given a
regular expression R, there exists a deterministic finite
automation A(R) such that A(R) accepts exactly the
language generated by R. A sequence s is said satisfy
an RE-constraint R if every state transition in A(R) is
defined when following the sequence of transitions for
the elements of s from the start state.

For example, R = a * (bblbed|dd) is a regular
expression over the set of items {a,b,c,d}. The
deterministic finite automation for R is shown in Figure

6.
a

(1 )————

Figure 6: Deterministic finite automation for regular

expression R = a * (bblbed|dd).

As can be seen, on one hand, regular expressions
have a simple as well as natural syntax for the succinct
specification of sequential patterns. On the other hand,
the expressive power of regular expressions is often
enough for specifying a wide range of interesting and
non-trivial patterns.

In [4], SPIRIT, a group of algorithms has been pro-
posed. SPIRIT is based on extensions of Apriori-like
methods. Since pattern-growth methods are more effi-
cient and scalable than Apriori-like methods, a natural
question is, “can we extend pattern-growth methods to
mine sequential patterns with RE-constraints?

Let us take the fastest pattern-growth method,
PrefixSpan, as the seed algorithm. We have the
following property on satisfiability of patterns with
respect to a deterministic finite automation.

Theorem 4.1 Given an ER-constraint R. If following
a sequence s of transitions from the start state in a
deterministic finite automation A(R) leads to a void
state, any sequence s' with s as a prefix cannot satisfy
constraint R. a

For example, sequence ac is not valid with respect to
the deterministic automation A(R) shown in Figure 6,
neither is any sequence with ac as a prefix, such as acd.
Therefore, none of them can satisfy the constraint.

Based on Theorem 4.1, PrefixSpan can be extended to
find patterns satisfying RE-constraints. Any patterns
failing the RE-constraint should be pruned
immediately. Only patterns valid so far are
grown further. The extended PrefixSpan prunes
invalid patterns much early. For example, an Apriorix-
like method dares not prune patterns ac or acd, even

the pattern violates the automation. Otherwise, 1t may
have trouble in assembling patterns abed, which satisfies
the RE-constraint.

The mining of sequential patterns with RE-constraint
in PrefixSpan can be further optimized. For example,
when mining with RE-constraint a * (bb|bed|dd), any
other items except for a, b, ¢, and d should be removed
from (a)-projected database, since a, b, ¢, and d are the
only items can be used to grow longer and legal patterns
satisfying the constraint. By removing all other items,
the database i1s shrunk and the search space becomes
much smaller.

To explore which items should be included into the
projected databases, we can trace back the automation
from the accept state(s), e.g., state 4 in Figure 6. For
the accept state, the set of feasible items is (). For each
other state st, the set of feasible items of st is the union
of sets of feasible items of states st adjacent to, as well as
the items labeled on the outgoing edges. For example,
in Figure 6, the sets of feasible items of state 4, 3, 2,
and 1 are 0, {d}, {b,c,d}, and {a,b, c,d}, respectively.
Obviously, by browsing the automation only once, all
sets of feasible items in every state can be determined.

Based on the above discussion, it is easy to give
the details of extended PrefixSpan for mining sequential
patterns with RE-constraints. Limited by space, we
leave it as an exercise for interested readers.

5 Conclusions

We have presented a pattern-growth methodoloty for
efficient sequential pattern mining in large sequence
databases. Our performance study shows that pattern-
growth methods are more efficient and scalable than
Apriori-like methods. The high performance of pattern-
growth methods is due to the following factors.

1. Pattern-growth methods adopt a divide-and-conquer
strategy to project and partition a large database
recursively into a set of progressively smaller ones,
and the patterns to be searched for in each projected
database are also reduced substantially.

2. Pattern-growth methods integrate disk-based data
structures and fast in-memory traversal methods,
which can be well-tuned to achieve high doing
pseudo-projections.

3. Pattern-growth methods makes good use of the
Apriori property implicitly, but avoids generating a
large number of candidates, which ensures each
counting and testing is on the real data sets rather
than on the potential candidate sets.

There are many other kinds of interesting temporal
patterns. As an example, we show that pattern-growth



method PrefixSpan can be easily extended to mine se-
quential patterns with regular expression constraints.

We

believe that further extensions of pattern-growth

methods are promising in mining other kinds of pat-
terns, such as episodes [9], partial periodicity [5], etc.
They are the interesting issues for future studies.
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