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Summary. Sequential pattern mining is an important data mining problem with
broad applications. However, it is also a challenging problem since the mining may
have to generate or examine a combinatorially explosive number of intermediate
subsequences. Recent studies have developed two major classes of sequential pat-
tern mining methods: (1) a candidate generation-and-test approach, represented
by (i) GSP [30], a horizontal format-based sequential pattern mining method, and
(ii) SPADE [36], a vertical format-based method; and (2) a sequential pattern growth
method, represented by PrefixSpan [26] and its further extensions, such as CloSpan
for mining closed sequential patterns [35].

In this study, we perform a systematic introduction and presentation of the
pattern-growth methodology and study its principles and extensions. We first in-
troduce two interesting pattern growth algorithms, FreeSpan [11] and PrefixSpan
[26], for efficient sequential pattern mining. Then we introduce CloSpan for mining
closed sequential patterns. Their relative performance in large sequence databases is
presented and analyzed. The various kinds of extension of these methods for (1) min-
ing constraint-based sequential patterns, (2) mining multi-level, multi-dimensional
sequential patterns, (3) mining top-k closed sequential patterns, and (4) their appli-
cations in bio-sequence pattern analysis and clustering sequences are also discussed
in the paper.

Index terms. Data mining, sequential pattern mining algorithm, sequence data-
base, scalability, performance analysis, application.
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1 Introduction

Sequential pattern mining, which discovers frequent subsequences as patterns
in a sequence database, is an important data mining problem with broad
applications, including the analysis of customer purchase patterns or Web
access patterns, the analysis of sequencing or time-related processes such as
scientific experiments, natural disasters, and disease treatments, the analysis
of DNA sequences, and so on.

The sequential pattern mining problem was first introduced by Agrawal
and Srikant in [2] based on their study of customer purchase sequences, as
follows: Given a set of sequences, where each sequence consists of a list of el-
ements and each element consists of a set of items, and given a user-specified
min support threshold, sequential pattern mining is to find all frequent sub-
sequences, i.e., the subsequences whose occurrence frequency in the set of se-
quences is no less than min support.

This problem is introduced from the examination of potential patterns in
sequence databases, as follows.

Let I = {i1, i2, . . . , in} be a set of all items. An itemset is a subset of
items. A sequence is an ordered list of itemsets. A sequence s is denoted
by 〈s1s2 · · · sl〉, where sj is an itemset. sj is also called an element of the
sequence, and denoted as (x1x2 · · ·xm), where xk is an item. For brevity, the
brackets are omitted if an element has only one item, i.e., element (x) is written
as x. An item can occur at most once in an element of a sequence, but can occur
multiple times in different elements of a sequence. The number of instances
of items in a sequence is called the length of the sequence. A sequence with
length l is called an l-sequence. A sequence α = 〈a1a2 · · · an〉 is called a
subsequence of another sequence β = 〈b1b2 · · · bm〉 and β a super-sequence
of α, denoted as α � β, if there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m
such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn

.
A sequence database S is a set of tuples 〈sid, s〉, where sid is a

sequence id and s a sequence. A tuple 〈sid, s〉 is said to contain a se-
quence α, if α is a subsequence of s. The support of a sequence α in a se-
quence database S is the number of tuples in the database containing α, i.e.,
supportS(α) = | {〈sid, s〉|(〈sid, s〉 ∈ S) ∧ (α � s)} |. It can be denoted as
support(α) if the sequence database is clear from the context. Given a posi-
tive integer min support as the support threshold, a sequence α is called a
sequential pattern in sequence database S if supportS(α) ≥ min support.
A sequential pattern with length l is called an l-pattern.

Example 1. Let our running sequence database be S given in Table 1 and
min support = 2. The set of items in the database is {a, b, c, d, e, f, g}.

A sequence 〈a(abc)(ac)d(cf)〉 has five elements: (a), (abc), (ac), (d) and
(cf), where items a and c appear more than once respectively in different
elements. It is a 9-sequence since there are 9 instances appearing in that se-
quence. Item a happens three times in this sequence, so it contributes 3 to
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Table 1. A sequence database

Sequence id Sequence

1 〈a(abc)(ac)d(cf)〉
2 〈(ad)c(bc)(ae)〉
3 〈(ef)(ab)(df)cb〉
4 〈eg(af)cbc〉

the length of the sequence. However, the whole sequence 〈a(abc)(ac)d(cf)〉
contributes only one to the support of 〈a〉. Also, sequence 〈a(bc)df〉 is a sub-
sequence of 〈a(abc)(ac)d(cf)〉. Since both sequences 10 and 30 contain sub-
sequence s = 〈(ab)c〉, s is a sequential pattern of length 3 (i.e., 3-pattern).

�

From this example, one can see that sequential pattern mining problem
can be stated as “given a sequence database and the min support threshold,
sequential pattern mining is to find the complete set of sequential patterns
in the database.”

Notice that this model of sequential pattern mining is an abstraction from
the customer shopping sequence analysis. However, this model may not cover
a large set of requirements in sequential pattern mining. For example, for
studying Web traversal sequences, gaps between traversals become important
if one wants to predict what could be the next Web pages to be clicked. Many
other applications may want to find gap-free or gap-sensitive sequential pat-
terns as well, such as weather prediction, scientific, engineering and production
processes, DNA sequence analysis, and so on. Moreover, one may like to find
approximate sequential patterns instead of precise sequential patterns, such
as in DNA sequence analysis where DNA sequences may contain nontrivial
proportions of insertions, deletions, and mutations.

In our model of study, the gap between two consecutive elements in a
sequence is unimportant. However, the gap-free or gap-sensitive frequent se-
quential patterns can be treated as special cases of our model since gaps
are essentially constraints enforced on patterns. The efficient mining of gap-
sensitive patterns will be discussed in our later section on constraint-based
sequential pattern mining. Moreover, the mining of approximate sequential
patterns is also treated as an extension of our basic mining methodology.
Those and other related issues will be discussed in the later part of the paper.

Many previous studies contributed to the efficient mining of sequential pat-
terns or other frequent patterns in time-related data [2, 4, 8, 20, 22, 24, 29,
30, 32, 37]. Reference [30] generalized their definition of sequential patterns in
[2] to include time constraints, sliding time window, and user-defined taxon-
omy and present an Apriori-based, improved algorithm GSP (i.e., generalized
sequential patterns). Reference [21] presented a problem of mining frequent
episodes in a sequence of events, where episodes are essentially acyclic graphs
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of events whose edges specify the temporal precedent-subsequent relationship
without restriction on interval. Reference [4] considered a generalization of
inter-transaction association rules. These are essentially rules whose left-hand
and right-hand sides are episodes with time-interval restrictions. Reference
[20] proposed inter-transaction association rules that are implication rules
whose two sides are totally-ordered episodes with timing-interval restrictions.
Reference [7] proposed the use of regular expressions as a flexible constraint
specification tool that enables user-controlled focus to be incorporated into
the sequential pattern mining process. Some other studies extended the scope
from mining sequential patterns to mining partial periodic patterns. Refer-
ence [24] introduced cyclic association rules that are essentially partial peri-
odic patterns with perfect periodicity in the sense that each pattern reoccurs
in every cycle, with 100% confidence. Reference [8] developed a frequent pat-
tern mining method for mining partial periodicity patterns that are frequent
maximal patterns where each pattern appears in a fixed period with a fixed
set of offsets, and with sufficient support. Reference [36] developed a vertical
format-based sequential pattern mining method, called SPADE, which can be
considered as an extension of vertical-format-based frequent itemset mining
methods, such as [37, 39].

Almost all of the above proposed methods for mining sequential patterns
and other time-related frequent patterns are Apriori-like, i.e., based on the
Apriori principle, which states the fact that any super-pattern of an infrequent
pattern cannot be frequent, and based on a candidate generation-and-test par-
adigm proposed in association mining [1].

In our recent studies, we have developed and systematically explored a
pattern-growth approach for efficient mining of sequential patterns in large se-
quence database. The approach adopts a divide-and-conquer, pattern-growth
principle as follows, sequence databases are recursively projected into a set of
smaller projected databases based on the current sequential pattern(s), and se-
quential patterns are grown in each projected database by exploring only locally
frequent fragments. Based on this philosophy, we first proposed a straight-
forward pattern growth method, FreeSpan (for Frequent pattern-projected
Sequential pattern mining) [11], which reduces the efforts of candidate sub-
sequence generation. Then, we introduced another and more efficient method,
called PrefixSpan (for Prefix-projected Sequential pattern mining), which
offers ordered growth and reduced projected databases. To further improve
the performance, a pseudo-projection technique is developed in PrefixSpan. A
comprehensive performance study shows that PrefixSpan in most cases outper-
forms the Apriori-based GSP algorithm, FreeSpan, and SPADE [36] (a sequential
pattern mining algorithm that adopts vertical data format), and PrefixSpan
integrated with pseudo-projection is the fastest among all the tested algo-
rithms. Furthermore, our experiments show that PrefixSpan consumes a much
smaller memory space in comparison with GSP and SPADE.

PrefixSpan is an efficient algorithm at mining the complete set of sequential
patterns. However, a long sequential pattern may contain a combinatorial
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number of frequent subsequences. To avoid generating a large number by
many of which are essentially redundant subsequences, our task becomes the
mining of closed sequential pattern instead of the complete set of sequential
patterns. An efficient algorithm called CloSpan [35] is developed based on the
philosophy of (sequential) pattern-growth and by exploring sharing among
generated or to be generated sequences. Our performance study shows that
CloSpan may further reduce the cost at mining closed sequential patterns
substantially in comparison with PrefixSpan.

This pattern-growth methodology has been further extended in various
ways to cover the methods and applications of sequential and structured pat-
tern mining. This includes (1) mining multi-level, multi-dimensional sequen-
tial patterns, (2) mining other structured patterns, such as graph patterns,
(3) constraint-based sequential pattern mining, (4) mining closed sequential
patterns, (5) mining top-k sequential patterns, (6) mining long sequences in
the noise environment, (7) mining approximate consensus sequential patterns,
and (8) clustering time-series gene expressions.

In this paper, we will systematically present the methods for pattern-
growth-based sequential patterns, their principle and applications.

The remainder of the paper is organized as follows. In Sect. 2, we intro-
duce the Apriori-based sequential pattern mining methods, GSP and SPADE,
both relying on a candidate generation-and-test philosophy. In Sect. 3, our
approach, projection-based sequential pattern growth, is introduced, by first
summarizing FreeSpan, and then presenting PrefixSpan, associated with a
pseudo-projection technique for performance improvement. In Sect. 4, we
introduce CloSpan, an efficient method for mining closed sequential pat-
terns. Some experimental results and performance analysis are summarized
in Sect. 5. The extensions of the method in different directions are discussed
in Sect. 6. We conclude our study in Sect. 7.

2 Previous Work:
The Candidate Generation-and-Test Approach

The candidate generation-and-test approach is an extension of the Apriori-
based frequent pattern mining algorithm [1] to sequential pattern analysis.
Similar to frequent patterns, sequential patterns has the anti-monotone (i.e.,
downward closure) property as follows: every non-empty sub-sequence of a
sequential pattern is a sequential pattern.

Based on this property, there are two algorithms developed for efficient se-
quential pattern mining: (1) a horizontal data format based sequential pattern
mining method: GSP [30], and (2) a vertical data format based sequential pat-
tern mining method: SPADE [36]. We outline and analyze these two methods
in this section.
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2.1 GSP: A Horizontal Data Format
Based Sequential Pattern Mining Algorithm

From the sequential pattern mining point of view, a sequence database can
be represented in two data formats: (1) a horizontal data format, and (2) a
vertical data format. The former uses the natural representation of the data set
as 〈sequence id : a sequence of objects〉, whereas the latter uses the vertical
representation of the sequence database: 〈object : (sequence id, time stamp)〉,
which can be obtained by transforming from a horizontal formatted sequence
database.

GSP is a horizontal data format based sequential pattern mining developed
by [30] by extension of their frequent itemset mining algorithm, Apriori [1].
Based on the downward closure property of a sequential pattern, GSP adopts
a multiple-pass, candidate-generation-and-test approach in sequential pattern
mining. The algorithm is outlined as follows. The first scan finds all of the
frequent items which form the set of single item frequent sequences. Each
subsequent pass starts with a seed set of sequential patterns, which is the
set of sequential patterns found in the previous pass. This seed set is used to
generate new potential patterns, called candidate sequences. Each candidate
sequence contains one more item than a seed sequential pattern, where each
element in the pattern may contain one or multiple items. The number of
items in a sequence is called the length of the sequence. So, all the candidate
sequences in a pass will have the same length. The scan of the database in
one pass finds the support for each candidate sequence. All of the candidates
whose support in the database is no less than min support form the set of the
newly found sequential patterns. This set then becomes the seed set for the
next pass. The algorithm terminates when no new sequential pattern is found
in a pass, or no candidate sequence can be generated.

The method is illustrated using the following example.

Example 2. (GSP) Given the database S and min support in Example 1, GSP
first scans S, collects the support for each item, and finds the set of frequent
items, i.e., frequent length-1 subsequences (in the form of “item : support”):
〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 3, 〈d〉 : 3, 〈e〉 : 3, 〈f〉 : 3, 〈g〉 : 1.

By filtering the infrequent item g, we obtain the first seed set L1 =
{〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f〉}, each member in the set representing a 1-element
sequential pattern. Each subsequent pass starts with the seed set found in the
previous pass and uses it to generate new potential sequential patterns, called
candidate sequences.

For L1, a set of 6 length-1 sequential patterns generates a set of 6 × 6 +
6×5
2 = 51 candidate sequences, C2 = {〈aa〉, 〈ab〉, . . . , 〈af〉, 〈ba〉, 〈bb〉, . . . , 〈ff〉,

〈(ab)〉, 〈(ac)〉, . . . , 〈(ef)〉}.
The multi-scan mining process is shown in Fig. 1. The set of candidates is

generated by a self-join of the sequential patterns found in the previous pass.
In the k-th pass, a sequence is a candidate only if each of its length-(k − 1)



Sequential Pattern Mining by Pattern-Growth: Principles and Extensions 189

...... ............

......

......

1st scan, 7 candidates

Candidate cannot pass support threshold

6 length-1 sequential patterns

<aa> <ab> <af> <ba> <bb> <(ab)> <(ef)><ff>

3rd scan, 64 candidates
21 length-3 sequential patterns
13 candidates not appear in database at all

<aab> <a(ab)> <aac>

4 length-4 sequential patterns <a(bc)a>

Candidate does not appear in database at all

22 length-2 sequential patterns
9 candidates not appear in database at all

2nd scan, 51 candidates

4th scan, 6 candidates

<a> <b> <c> <d> <e> <f> <g>

<(ab)dc> <efbc>

Fig. 1. Candidates, candidate generation, and sequential patterns in GSP

subsequences is a sequential pattern found at the (k− 1)-th pass. A new scan
of the database collects the support for each candidate sequence and finds the
new set of sequential patterns. This set becomes the seed for the next pass.
The algorithm terminates when no sequential pattern is found in a pass, or
when there is no candidate sequence generated. Clearly, the number of scans is
at least the maximum length of sequential patterns. It needs one more scan if
the sequential patterns obtained in the last scan still generate new candidates.

GSP, though benefits from the Apriori pruning, still generates a large num-
ber of candidates. In this example, 6 length-1 sequential patterns generate
51 length-2 candidates, 22 length-2 sequential patterns generate 64 length-3
candidates, etc. Some candidates generated by GSP may not appear in the
database at all. For example, 13 out of 64 length-3 candidates do not appear
in the database. �

The example shows that an Apriori-like sequential pattern mining method,
such as GSP, though reduces search space, bears three nontrivial, inherent
costs which are independent of detailed implementation techniques.

First, there are potentially huge sets of candidate sequences. Since the set of
candidate sequences includes all the possible permutations of the elements and
repetition of items in a sequence, an Apriori-based method may generate a re-
ally large set of candidate sequences even for a moderate seed set. For example,
if there are 1000 frequent sequences of length-1, such as 〈a1〉, 〈a2〉, . . . , 〈a1000〉,
an Apriori-like algorithm will generate 1000 × 1000 + 1000×999

2 = 1, 499, 500
candidate sequences, where the first term is derived from the set 〈a1a1〉,
〈a1a2〉, . . . , 〈a1a1000〉, 〈a2a1〉, 〈a2a2〉, . . . , 〈a1000a1000〉, and the second term is
derived from the set 〈(a1a2)〉, 〈(a1a3)〉, . . . , 〈(a999a1000)〉.
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Second, multiple scans of databases could be costly. Since the length of each
candidate sequence grows by one at each database scan, to find a sequential
pattern {(abc)(abc) (abc)(abc)(abc)}, an Apriori-based method must scan the
database at least 15 times.

Last, there are inherent difficulties at mining long sequential patterns. A
long sequential pattern must grow from a combination of short ones, but the
number of such candidate sequences is exponential to the length of the se-
quential patterns to be mined. For example, suppose there is only a single
sequence of length 100, 〈a1a2 . . . a100〉, in the database, and the min support
threshold is 1 (i.e., every occurring pattern is frequent), to (re-)derive this
length-100 sequential pattern, the Apriori-based method has to generate 100
length-1 candidate sequences, 100 × 100 + 100×99

2 = 14,950 length-2 candi-

date sequences, ( 100
3 ) = 161,700 length-3 candidate sequences, and so on.

Obviously, the total number of candidate sequences to be generated is greater
than Σ100

i=1( 100
i ) = 2100 − 1 ≈ 1030.

In many applications, it is not rare that one may encounter a large number
of sequential patterns and long sequences, such as stock sequence analysis.
Therefore, it is important to re-examine the sequential pattern mining problem
to explore more efficient and scalable methods. Based on our analysis, both
the thrust and the bottleneck of an Apriori-based sequential pattern mining
method come from its step-wise candidate sequence generation and test. Then
the problem becomes, “can we develop a method which may absorb the spirit
of Apriori but avoid or substantially reduce the expensive candidate generation
and test?”

2.2 SPADE: An Apriori-Based Vertical Data Format Sequential
Pattern Mining Algorithm

The Apriori-based sequential pattern mining can also be explored by mapping
a sequence database into the vertical data format which takes each item as the
center of observation and takes its associated sequence and event identifiers
as data sets. To find sequence of length-2 items, one just needs to join two
single items if they are frequent and they share the same sequence identifier
and their event identifiers (which are essentially relative timestamps) follow
the sequential ordering. Similarly, one can grow the length of itemsets from
length two to length three, and so on. Such an Apriori-based vertical data for-
mat sequential pattern mining algorithm, called SPADE (Sequential PAttern
Discovery using Equivalent classes) algorithm [36], is illustrated using the
following example.

Example 3. (SPADE) Given our running sequence database S and mins
support in Example 1, SPADE first scans S, transforms the database into the
vertical format by introducing EID (event ID) which is a (local) timestamp for
each event. Each single item is associated with a set of SID (sequence id) and
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SID EID Items

1 1 a

1 2 abc

1 3 ac

1 4 d

1 5 cf

2 1 ad

2 2 c

2 3 bc

2 4 ae

3 1 ef

3 2 ab

3 3 df

3 4 c

3 5 b

4 1 e

4 2 g

4 3 af

4 4 c

4 5 b

4 6 c

a b

SID EID SID EID

1 1 1 2

1 2 2 3

1 3 3 2

2 1 3 5

2 4 4 5

3 2

4 3

ab ba

SID EID (a) EID(b) SID EID (b) EID(a)

1 1 2 1 2 3

2 1 3 2 3 4

3 2 5

4 3 5

aba

SID EID (a) EID(b) EID(a)

1 1 2 3

2 1 3 4

Fig. 2. Vertical format of the sequence database and fragments of the SPADE mining
process

EID (event id) pairs. For example, item “b” is associated with (SID, EID) pairs
as follows: {(1, 2), (2, 3), (3, 2), (3, 5), (4, 5)}, as shown in Fig. 2. This is because
item b appears in sequence 1, event 2, and so on. Frequent single items “a” and
“b” can be joined together to form a length-two subsequence by joining the
same sequence id with event ids following the corresponding sequence order.
For example, subsequence ab contains a set of triples (SID,EID(a), EID(b)),
such as (1, 1, 2), and so on. Furthermore, the frequent length-2 subsequences
can be joined together based on the Apriori heuristic to form length-3 subse-
quences, and so on. The process continuous until no frequent sequences can
be found or no such sequences can be formed by such joins.

Some fragments of the SPADE mining process are illustrated in Fig. 2. The
detailed analysis of the method can be found in [36]. �

The SPADE algorithm may reduce the access of sequence databases since
the information required to construct longer sequences are localized to the
related items and/or subsequences represented by their associated sequence
and event identifiers. However, the basic search methodology of SPADE is
similar to GSP, exploring both breadth-first search and Apriori pruning. It
has to generate a large set of candidates in breadth-first manner in order to
grow longer subsequences. Thus most of the difficulties suffered in the GSP
algorithm will reoccur in SPADE as well.
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3 The Pattern-Growth Approach
for Sequential Pattern Mining

In this section, we introduce a pattern-growth methodology for mining se-
quential patterns. It is based on the methodology of pattern-growth mining of
frequent patterns in transaction databases developed in the FP-growth algo-
rithm [12]. We introduce first the FreeSpan algorithm and then a more efficient
alternative, the PrefixSpan algorithm.

3.1 FreeSpan: Frequent Pattern-Projected
Sequential Pattern Mining

For a sequence α = 〈s1 · · · sl〉, the itemset s1 ∪ · · · ∪ sl is called α’s projected
itemset. FreeSpan is based on the following property: if an itemset X is in-
frequent, any sequence whose projected itemset is a superset of X cannot be
a sequential pattern. FreeSpan mines sequential patterns by partitioning the
search space and projecting the sequence sub-databases recursively based on
the projected itemsets.

Let f list = 〈x1, . . . , xn〉 be a list of all frequent items in sequence database
S. Then, the complete set of sequential patterns in S can be divided into
n disjoint subsets: (1) the set of sequential patterns containing only item x1,
(2) those containing item x2 but no item in {x3, . . . , xn}, and so on. In general,
the ith subset (1 ≤ i ≤ n) is the set of sequential patterns containing item xi

but no item in {xi+1, . . . , xn}.
Then, the database projection can be performed as follows. At the time

of deriving p’s projected database from DB, the set of frequent items X of
DB is already known. Only those items in X will need to be projected into
p’s projected database. This effectively discards irrelevant information and
keeps the size of the projected database minimal. By recursively doing so, one
can mine the projected databases and generate the complete set of sequential
patterns in the given partition without duplication. The details are illustrated
in the following example.

Example 4. (FreeSpan) Given the database S and min support in Example 1,
FreeSpan first scans S, collects the support for each item, and finds the set
of frequent items. This step is similar to GSP. Frequent items are listed in
support descending order (in the form of “item : support”), that is, f list =
〈a : 4, b : 4, c : 4, d : 3, e : 3, f : 3〉. They form six length-one sequential
patterns: 〈a〉:4, 〈b〉:4, 〈c〉:4, 〈d〉:3, 〈e〉:3, 〈f〉:3.

According to the f list, the complete set of sequential patterns in S can be
divided into 6 disjoint subsets: (1) the ones containing only item a, (2) the
ones containing item b but no item after b in f list, (3) the ones containing item
c but no item after c in f list, and so on, and finally, (6) the ones containing
item f .
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The sequential patterns related to the six partitioned subsets can be mined
by constructing six projected databases (obtained by one additional scan of the
original database). Infrequent items, such as g in this example, are removed
from the projected databases. The process for mining each projected database
is detailed as follows.

• Mining sequential patterns containing only item a.
The 〈a〉-projected database is {〈aaa〉, 〈aa〉, 〈a〉, 〈a〉}. By mining this projected
database, only one additional sequential pattern containing only item a, i.e.,
〈aa〉:2, is found.

• Mining sequential patterns containing item b but no item after b in the f list.
By mining the 〈b〉-projected database: {〈a(ab)a〉, 〈aba〉, 〈(ab)b〉, 〈ab〉}, four
additional sequential patterns containing item b but no item after b in f list
are found. They are {〈ab〉:4, 〈ba〉:2, 〈(ab)〉:2, 〈aba〉:2}.

• Mining sequential patterns containing item c but no item after c in the f list.
The mining of the 〈c〉-projected database: {〈a(abc)(ac)c〉, 〈ac(bc)a〉, 〈(ab)cb〉,
〈acbc〉}, proceeds as follows. One scan of the projected database generates
the set of length-2 frequent sequences, which are {〈ac〉:4, 〈(bc)〉:2, 〈bc〉:3,
〈cc〉:3, 〈ca〉:2, 〈cb〉:3}. One additional scan of the 〈c〉-projected database gen-
erates all of its projected databases.
The mining of the 〈ac〉-projected database: {〈a(abc)(ac)c〉, 〈ac(bc)a〉, 〈(ab)cb〉,
〈acbc〉} generates the set of length-3 patterns as follows: {〈acb〉:3, 〈acc〉:3,
〈(ab)c〉:2, 〈aca〉:2}. Four projected database will be generated from them.
The mining of the first one, the 〈acb〉-projected database: {〈ac(bc)a〉, 〈(ab)cb〉,
〈acbc〉} generates no length-4 pattern. The mining along this line termi-
nates. Similarly, we can show that the mining of the other three projected
databases terminates without generating any length-4 patterns for the 〈ac〉-
projected database.

• Mining other subsets of sequential patterns.
Other subsets of sequential patterns can be mined similarly on their cor-
responding projected databases. This mining process proceeds recursively,
which derives the complete set of sequential patterns. �

The detailed presentation of the FreeSpan algorithm, the proof of its com-
pleteness and correctness, and the performance study of the algorithm are in
[11]. By the analysis of Example 4 and verified by our experimental study, we
have the following observations on the strength and weakness of FreeSpan:

The strength of FreeSpan is that it searches a smaller projected data-
base than GSP in each subsequent database projection. This is because that
FreeSpan projects a large sequence database recursively into a set of small
projected sequence databases based on the currently mined frequent item-
patterns, and the subsequent mining is confined to each projected database
relevant to a smaller set of candidates.

The major overhead of FreeSpan is that it may have to generate many non-
trivial projected databases. If a pattern appears in each sequence of a data-
base, its projected database does not shrink (except for the removal of some
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infrequent items). For example, the {f}-projected database in this example
contains three same sequences as that in the original sequence database, ex-
cept for the removal of the infrequent item g in sequence 4. Moreover, since a
length-k subsequence may grow at any position, the search for length-(k + 1)
candidate sequence will need to check every possible combination, which is
costly.

3.2 PrefixSpan: Prefix-Projected Sequential Patterns Mining

Based on the analysis of the FreeSpan algorithm, one can see that one may
still have to pay high cost at handling projected databases. To avoid checking
every possible combination of a potential candidate sequence, one can first fix
the order of items within each element. Since items within an element of a
sequence can be listed in any order, without loss of generality, one can assume
that they are always listed alphabetically. For example, the sequence in S with
Sequence id 1 in our running example is listed as 〈a(abc)(ac)d(cf)〉 instead
of 〈a(bac)(ca)d(fc)〉. With such a convention, the expression of a sequence is
unique.

Then, we examine whether one can fix the order of item projection in
the generation of a projected database. Intuitively, if one follows the order
of the prefix of a sequence and projects only the suffix of a sequence, one
can examine in an orderly manner all the possible subsequences and their
associated projected database. Thus we first introduce the concept of prefix
and suffix.

Suppose all the items within an element are listed alphabetically. Given a
sequence α = 〈e1e2 · · · en〉 (where each ei corresponds to a frequent element
in S), a sequence β = 〈e′1e′2 · · · e′m〉 (m ≤ n) is called a prefix of α if and only
if (1) e′i = ei for (i ≤ m − 1); (2) e′m ⊆ em; and (3) all the frequent items in
(em − e′m) are alphabetically after those in e′m. Sequence γ = 〈e′′mem+1 · · · en〉
is called the suffix of α w.r.t. prefix β, denoted as γ = α/β, where e′′m =
(em − e′m).1 We also denote α = β · γ. Note if β is not a subsequence of α, the
suffix of α w.r.t. β is empty.

Example 5. For a sequence s = 〈a(abc)(ac)d(cf)〉, 〈a〉, 〈aa〉, 〈a(ab)〉 and
〈a(abc)〉 are prefixes of sequence s = 〈a(abc)(ac)d(cf)〉, but neither 〈ab〉 nor
〈a(bc)〉 is considered as a prefix if every item in the prefix 〈a(abc)〉 of sequence
s is frequent in S. Also, 〈(abc)(ac)d(cf)〉 is the suffix w.r.t. the prefix 〈a〉,
〈( bc)(ac)d(cf)〉 is the suffix w.r.t. the prefix 〈aa〉, and 〈( c)(ac)d(cf)〉 is the
suffix w.r.t. the prefix 〈a(ab)〉. �

Based on the concepts of prefix and suffix, the problem of mining sequential
patterns can be decomposed into a set of subproblems as shown below.

1If e′′m is not empty, the suffix is also denoted as 〈( items in e′′m)em+1 · · · en〉.
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1. Let {〈x1〉, 〈x2〉, . . . , 〈xn〉} be the complete set of length-1 sequential pat-
terns in a sequence database S. The complete set of sequential patterns in
S can be divided into n disjoint subsets. The ith subset (1 ≤ i ≤ n) is the
set of sequential patterns with prefix 〈xi〉.

2. Let α be a length-l sequential pattern and {β1, β2, . . . , βm} be the set of
all length-(l + 1) sequential patterns with prefix α. The complete set of
sequential patterns with prefix α, except for α itself, can be divided into
m disjoint subsets. The jth subset (1 ≤ j ≤ m) is the set of sequential
patterns prefixed with βj .

Based on this observation, the problem can be partitioned recursively. That
is, each subset of sequential patterns can be further divided when necessary.
This forms a divide-and-conquer framework. To mine the subsets of sequential
patterns, the corresponding projected databases can be constructed.

Let α be a sequential pattern in a sequence database S. The α-projected
database, denoted as S|α, is the collection of suffixes of sequences in S w.r.t.
prefix α. Let β be a sequence with prefix α. The support count of β in α-
projected database S|α, denoted as supportS|α(β), is the number of sequences
γ in S|α such that β � α · γ.

We have the following lemma regarding to the projected databases.

Lemma 1. (Projected database) Let α and β be two sequential patterns
in a sequence database S such that α is a prefix of β.

1. S|β = (S|α)|β;
2. for any sequence γ with prefix α, supportS(γ) = supportS|α(γ); and
3. The size of α-projected database cannot exceed that of S.

Proof Sketch. The first part of the lemma follows the fact that, for a sequence
γ, the suffix of γ w.r.t. β, γ/β, equals to the sequence resulted from first
doing projection of γ w.r.t. α, i.e., γ/α, and then doing projection γ/α w.r.t.
β. That is γ/β = (γ/α)/β.

The second part of the lemma states that to collect support count of a
sequence γ, only the sequences in the database sharing the same prefix should
be considered. Furthermore, only those suffixes with the prefix being a super-
sequence of γ should be counted. The claim follows the related definitions.

The third part of the lemma is on the size of a projected database. Ob-
viously, the α-projected database can have the same number of sequences as
S only if α appears in every sequence in S. Otherwise, only those sequences
in S which are super-sequences of α appear in the α-projected database. So,
the α-projected database cannot contain more sequences than S. For every
sequence γ in S such that γ is a super-sequence of α, γ appears in the α-
projected database in whole only if α is a prefix of γ. Otherwise, only a
subsequence of γ appears in the α-projected database. Therefore, the size of
α-projected database cannot exceed that of S. �

Let us examine how to use the prefix-based projection approach for mining
sequential patterns based our running example.



196 J. Han et al.

Example 6. (PrefixSpan) For the same sequence database S in Table 1 with
min sup = 2, sequential patterns in S can be mined by a prefix-projection
method in the following steps.

1. Find length-1 sequential patterns.
Scan S once to find all the frequent items in sequences. Each of these
frequent items is a length-1 sequential pattern. They are 〈a〉 : 4, 〈b〉 : 4,
〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, and 〈f〉 : 3, where the notation “〈pattern〉 : count”
represents the pattern and its associated support count.

2. Divide search space.
The complete set of sequential patterns can be partitioned into the following
six subsets according to the six prefixes: (1) the ones with prefix 〈a〉, (2)
the ones with prefix 〈b〉, . . . , and (6) the ones with prefix 〈f〉.

3. Find subsets of sequential patterns.
The subsets of sequential patterns can be mined by constructing the corre-
sponding set of projected databases and mining each recursively. The pro-
jected databases as well as sequential patterns found in them are listed in
Table 2, while the mining process is explained as follows.
(a) Find sequential patterns with prefix 〈a〉.

Only the sequences containing 〈a〉 should be collected. Moreover, in
a sequence containing 〈a〉, only the subsequence prefixed with the
first occurrence of 〈a〉 should be considered. For example, in sequence
〈(ef)(ab)(df)cb〉, only the subsequence 〈( b)(df)cb〉 should be considered
for mining sequential patterns prefixed with 〈a〉. Notice that ( b) means
that the last element in the prefix, which is a, together with b, form one
element.
The sequences in S containing 〈a〉 are projected w.r.t. 〈a〉 to form
the 〈a〉-projected database, which consists of four suffix sequences:
〈(abc)(ac)d(cf)〉, 〈( d)c(bc)(ae)〉, 〈( b)(df)cb〉 and 〈( f)cbc〉.

Table 2. Projected databases and sequential patterns

Prefix Projected Database Sequential Patterns

〈a〉 〈(abc)(ac)d(cf)〉, 〈( d)c(bc)(ae)〉,
〈( b)(df)cb〉, 〈( f)cbc〉

〈a〉, 〈aa〉, 〈ab〉, 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉,
〈abc〉, 〈(ab)〉, 〈(ab)c〉, 〈(ab)d〉, 〈(ab)f〉,
〈(ab)dc〉, 〈ac〉, 〈aca〉, 〈acb〉, 〈acc〉, 〈ad〉,
〈adc〉, 〈af〉

〈b〉 〈( c)(ac)d(cf)〉,
〈( c)(ae)〉, 〈(df)cb〉, 〈c〉

〈b〉, 〈ba〉, 〈bc〉, 〈(bc)〉, 〈(bc)a〉, 〈bd〉, 〈bdc〉,
〈bf〉

〈c〉 〈(ac)d(cf)〉, 〈(bc)(ae)〉, 〈b〉, 〈bc〉 〈c〉, 〈ca〉, 〈cb〉, 〈cc〉
〈d〉 〈(cf)〉, 〈c(bc)(ae)〉, 〈( f)cb〉 〈d〉, 〈db〉, 〈dc〉, 〈dcb〉
〈e〉 〈( f)(ab)(df)cb〉, 〈(af)cbc〉 〈e〉, 〈ea〉, 〈eab〉, 〈eac〉, 〈eacb〉, 〈eb〉, 〈ebc〉,

〈ec〉, 〈ecb〉, 〈ef〉, 〈efb〉, 〈efc〉, 〈efcb〉.
〈f〉 〈(ab)(df)cb〉, 〈cbc〉 〈f〉, 〈fb〉, 〈fbc〉, 〈fc〉, 〈fcb〉
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By scanning the 〈a〉-projected database once, its locally frequent items
are a : 2, b : 4, b : 2, c : 4, d : 2, and f : 2. Thus all the length-2
sequential patterns prefixed with 〈a〉 are found, and they are: 〈aa〉 : 2,
〈ab〉 : 4, 〈(ab)〉 : 2, 〈ac〉 : 4, 〈ad〉 : 2, and 〈af〉 : 2.
Recursively, all sequential patterns with prefix 〈a〉 can be partitioned
into 6 subsets: (1) those prefixed with 〈aa〉, (2) those with 〈ab〉, . . . , and
finally, (6) those with 〈af〉. These subsets can be mined by constructing
respective projected databases and mining each recursively as follows.
i. The 〈aa〉-projected database consists of two non-empty (suffix) sub-

sequences prefixed with 〈aa〉: {〈( bc)(ac)d(cf)〉, {〈( e)〉}. Since
there is no hope to generate any frequent subsequence from this
projected database, the processing of the 〈aa〉-projected database
terminates.

ii. The 〈ab〉-projected database consists of three suffix sequences:
〈( c)(ac)d(cf)〉, 〈( c)a〉, and 〈c〉. Recursively mining the 〈ab〉-
projected database returns four sequential patterns: 〈( c)〉, 〈( c)a〉,
〈a〉, and 〈c〉 (i.e., 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉, and 〈abc〉.) They form the
complete set of sequential patterns prefixed with 〈ab〉.

iii. The 〈(ab)〉-projected database contains only two sequences: 〈( c)(ac)
d(cf)〉 and 〈(df)cb〉, which leads to the finding of the following se-
quential patterns prefixed with 〈(ab)〉: 〈c〉, 〈d〉, 〈f〉, and 〈dc〉.

iv. The 〈ac〉-, 〈ad〉- and 〈af〉- projected databases can be constructed
and recursively mined similarly. The sequential patterns found are
shown in Table 2.

(b) Find sequential patterns with prefix 〈b〉, 〈c〉, 〈d〉, 〈e〉 and 〈f〉, respec-
tively.
This can be done by constructing the 〈b〉-, 〈c〉- 〈d〉-, 〈e〉- and 〈f〉-
projected databases and mining them respectively. The projected data-
bases as well as the sequential patterns found are shown in Table 2.

4. The set of sequential patterns is the collection of patterns found in the above
recursive mining process.
One can verify that it returns exactly the same set of sequential patterns
as what GSP and FreeSpan do. �

Based on the above discussion, the algorithm of PrefixSpan is presented as
follows.

3.3 Pseudo-Projection

The above analysis shows that the major cost of PrefixSpan is database pro-
jection, i.e., forming projected databases recursively. Usually, a large number
of projected databases will be generated in sequential pattern mining. If the
number and/or the size of projected databases can be reduced, the perfor-
mance of sequential pattern mining can be further improved.
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Algorithm 1.
(PrefixSpan) Prefix-projected sequential pattern mining.

Input: A sequence database S, and the minimum support threshold min support.
Output: The complete set of sequential patterns.
Method: Call PrefixSpan(〈〉, 0, S).

Subroutine PrefixSpan(α, l, S|α)
The parameters are (1) α is a sequential pattern; (2) l is the length of α; and
(3) S|α is the α-projected database if α 
= 〈〉, otherwise, it is the sequence
database S.
Method:
1. Scan S|α once, find each frequent item, b, such that

(a) b can be assembled to the last element of α to form a new sequential
pattern; or

(a) 〈b〉 can be appended to α to form a new sequential pattern.
2. For each new sequential pattern α′, if α′ is frequent, output α′, construct

α′-projected database S|α′ , and call PrefixSpan(α′, l + 1, S|α′).

Analysis. The correctness and completeness of the algorithm can be justified based
on Lemma 1. Here, we analyze the efficiency of the algorithm as follows.

• No candidate sequence needs to be generated by PrefixSpan.
Unlike Apriori-like algorithms, PrefixSpan only grows longer sequential patterns
from the shorter frequent ones. It neither generates nor tests any candidate se-
quence non-existent in a projected database. Comparing with GSP, which gener-
ates and tests a substantial number of candidate sequences, PrefixSpan searches a
much smaller space.

• Projected databases keep shrinking.
As indicated in Lemma 1, a projected database is smaller than the original one
because only the suffix subsequences of a frequent prefix are projected into a pro-
jected database. In practice, the shrinking factors can be significant because (1)
usually, only a small set of sequential patterns grow quite long in a sequence data-
base, and thus the number of sequences in a projected database usually reduces
substantially when prefix grows; and (2) projection only takes the suffix portion
with respect to a prefix. Notice that FreeSpan also employs the idea of projected
databases. However, the projection there often takes the whole string (not just
suffix) and thus the shrinking factor is less than that of PrefixSpan.

• The major cost of PrefixSpan is the construction of projected databases.
In the worst case, PrefixSpan constructs a projected database for every sequential
pattern. If there exist a good number of sequential patterns, the cost is non-trivial.
Techniques for reducing the number of projected databases will be discussed in
the next subsection. �
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One technique which may reduce the number and size of projected data-
bases is pseudo-projection. The idea is outlined as follows. Instead of per-
forming physical projection, one can register the index (or identifier) of the
corresponding sequence and the starting position of the projected suffix in the
sequence. Then, a physical projection of a sequence is replaced by registering a
sequence identifier and the projected position index point. Pseudo-projection
reduces the cost of projection substantially when the projected database can
fit in main memory.

This method is based on the following observation. For any sequence s,
each projection can be represented by a corresponding projection position (an
index point) instead of copying the whole suffix as a projected subsequence.
Consider a sequence 〈a(abc)(ac)d(cf)〉. Physical projections may lead to re-
peated copying of different suffixes of the sequence. An index position pointer
may save physical projection of the suffix and thus save both space and time
of generating numerous physical projected databases.

Example 7. (Pseudo-projection) For the same sequence database S in Table 1
with min sup = 2, sequential patterns in S can be mined by pseudo-projection
method as follows.

Suppose the sequence database S in Table 1 can be held in main mem-
ory. Instead of constructing the 〈a〉-projected database, one can represent the
projected suffix sequences using pointer (sequence id) and offset(s). For ex-
ample, the projection of sequence s1 = 〈a(abc)d(ae)(cf)〉 with regard to the
〈a〉-projection consists two pieces of information: (1) a pointer to s1 which
could be the string id s1, and (2) the offset(s), which should be a single in-
teger, such as 2, if there is a single projection point; and a set of integers,
such as {2, 3, 6}, if there are multiple projection points. Each offset indicates
at which position the projection starts in the sequence.

The projected databases for prefixes 〈a〉-, 〈b〉-, 〈c〉-, 〈d〉-, 〈f〉-, and 〈aa〉- are
shown in Table 3, where $ indicates the prefix has an occurrence in the current
sequence but its projected suffix is empty, whereas ∅ indicates that there is no
occurrence of the prefix in the corresponding sequence. From Table 3, one can
see that the pseudo-projected database usually takes much less space than its
corresponding physically projected one. �

Pseudo-projection avoids physically copying suffixes. Thus, it is efficient
in terms of both running time and space. However, it may not be efficient

Table 3. A sequence database and some of its pseudo-projected databases

Sequence id Sequence 〈a〉 〈b〉 〈c〉 〈d〉 〈f〉 〈aa〉 . . .

10 〈a(abc)(ac)d(cf)〉 2, 3, 6 4 5, 7 8 $ 3, 6 . . .
20 〈(ad)c(bc)(ae)〉 2 5 4, 6 3 ∅ 7 . . .
30 〈(ef)(ab)(df)cb〉 4 5 8 6 3, 7 ∅ . . .
40 〈eg(af)cbc〉 4 6 6 ∅ 5 ∅ . . .
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if the pseudo-projection is used for disk-based accessing since random access
disk space is costly. Based on this observation, the suggested approach is that
if the original sequence database or the projected databases is too big to fit
in memory, the physical projection should be applied, however, the execution
should be swapped to pseudo-projection once the projected databases can fit
in memory. This methodology is adopted in our PrefixSpan implementation.

Notice that the pseudo-projection works efficiently for PrefixSpan but not
so for FreeSpan. This is because for PrefixSpan, an offset position clearly iden-
tifies the suffix and thus the projected subsequence. However, for FreeSpan,
since the next step pattern-growth can be in both forward and backward di-
rections, one needs to register more information on the possible extension
positions in order to identify the remainder of the projected subsequences.
Therefore, we only explore the pseudo-projection technique for PrefixSpan.

4 CloSpan: Mining Closed Frequent Sequential Patterns

The sequential pattern mining algorithms developed so far have good per-
formance in databases consisting of short frequent sequences. Unfortunately,
when mining long frequent sequences, or when using very low support thresh-
olds, the performance of such algorithms often degrades dramatically. This is
not surprising: Assume the database contains only one long frequent sequence
〈(a1)(a2) . . . (a100)〉, it will generate 2100−1 frequent subsequences if the min-
imum support is 1, although all of them except the longest one are redundant
because they have the same support as that of 〈(a1)(a2) . . . (a100)〉.

We propose an alternative but equally powerful solution: instead of min-
ing the complete set of frequent subsequences, we mine frequent closed subse-
quences only, i.e., those containing no super-sequence with the same support.
We develop CloSpan [35] (Closed Sequential pattern mining) to mine these
patterns. CloSpan can produce a significantly less number of sequences than
the traditional (i.e., full-set) methods while preserving the same expressive
power since the whole set of frequent subsequences, together with their sup-
ports, can be derived easily from our mining results.

CloSpan first mines a closed sequence candidate set which contains all
frequent closed sequences. The candidate set may contain some non-closed
sequences. Thus, CloSpan needs a post-pruning step to filter out non-closed
sequences. In order to efficiently mine the candidate set, we introduce a search
space pruning condition: Whenever we find two exactly same prefix-based
project databases, we can stop growing one prefix.

Let I(S) represent the total number of items in S, defined by

I(S) =
∑

α∈S

l(α) ,

where l(α) is α’s length. We call I(S) the the database size. For the sample
dataset in Table 1, I(S) = 31.
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Theorem 1 (Equivalence of Projected Databases). Given two sequences,
α � β, then

S|α = S|β ⇔ I(S|α) = I(S|β) (1)

Proof. It is obvious that S|α = S|β ⇒ I(S|α) = I(S|β). Now we prove the
sufficient condition. Since α � β, then I(S|α) � I(S|β). The equality between
I(S|α) and I(S|β) holds only if ∀γ ∈ S|β , γ ∈ S|α, and vice vera. Therefore,
S|α = S|β . �

For the sample database in Table 1, S|〈ac〉 = S|〈c〉 = {〈(ac)d(cf)〉, 〈(bc)
(ae)〉, 〈b〉, 〈bc〉} and I(S|〈ac〉) = I(S|〈c〉) = 12. According to Theorem 1, the
search space can be pruned as follows.

Lemma 2 (Early Termination by Equivalence). Given two sequences,
α � β, if I(S|α) = I(S|β), then ∀γ, support(α ! γ) = support(β ! γ), where
α!γ and β!γ means γ is assembled to the last itemset of α and β (or appended
to them), respectively.

Considering the previous example, we have I(S|〈ac〉) = I(S|〈c〉). Based on
Lemma 2, without calculating the supports of 〈acb〉 and 〈cb〉, we can conclude
that they are the same.

The search space of PrefixSpan, when mining frequent sequences in Table 1,
is depicted in Fig. 3. Each node in the figure represents one frequent sequence.
PrefixSpan performs depth-first search by assembling one item to the last
itemset of the current frequent sequence or appending one item to it. In Fig. 3,
we use subscript “i” to denote the assembling extension, and “s” to denote
the appending extension.

According to Lemma 2, it is recognized that if α and all of its descendants
(α ! γ) in the prefix search tree have been discovered, it is unnecessary to
search the branch under β. The reason is α and β share the exactly same de-
scendants in the prefix search tree. So we can directly transplant the branch

<>

as bs

bi as bs

cs ds

cs

as cs

Fig. 3. Prefix Search Tree
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under α to β. The power of such transplanting is that only two operations
needed to detect such condition: first, containment between α and β; second,
comparison between I(S|α) and I(S|β). Since I(S|α) is just a number and
can be produced as a side-product when we project the database, the compu-
tation cost introduced by Lemma 2 is nearly negligible. We define projected
database closed set, LS = {α | support(s) � min support and �β, s.t. α �
β and I(S|α) = I(S|β)}. Obviously, LS is a superset of closed frequent se-
quences. In CloSpan, instead of mining closed frequent sequences directly, it
first produces the complete set of LS and then applies the non-closed sequence
elimination in LS to generate the accurate set of closed frequent sequences.

Corollary 1 (Backward Sub-Pattern). If sequence α is discovered before
β, α � β, and the condition I(S|α) = I(S|β) holds, it is sufficient to stop
searching any descendant of β in the prefix search tree.

We call β a backward sub-pattern of α if α is discovered before β and
α � β. For the sample database in Table 1, if we know I(S|〈ac〉) = I(S|〈c〉), we
can conclude that S|〈ac〉 = S|〈c〉. We even need not compare the sequences in
S|〈ac〉 and S|〈c〉 one by one to determine whether they are the same. This is the
advantage of only comparing their size. Just as proved in Theorem 1, if their
size is equal, we can conclude S|〈c〉 = S|〈ac〉. We need not grow 〈c〉 anymore
since all the children of 〈c〉 are the same as that of 〈ac〉 and vice versa under the
condition of S|〈c〉 = S|〈ac〉. Moreover, their supports are the same. Therefore,
any sequence beginning with 〈c〉 is absorbed by the sequences beginning
with 〈ac〉. Figure 4(a) shows that their subtrees (descendant branches) can be
merged into one without mining the subtree under 〈c〉.

Corollary 2 (Backward Super-Pattern). If a sequence α is discovered
before β, α � β, and the condition I(S|α) = I(S|β) holds, it is sufficient to
transplanting the descendants of α to β instead of searching any descendant
of β in the prefix search tree.

We call β a backward super-pattern of α if α is discovered before β and
α � β). For example, if we know I(S|〈b〉) = I(S|〈eb〉), we can conclude that
S|〈eb〉 = S|〈b〉. There is no need to grow 〈eb〉 since all the children of 〈b〉 are

a

c

c a

c c

b e
bb b

e

(a) backward sub-pattern (b) backward super-pattern

Fig. 4. Backward Sub-Pattern and Super-Pattern
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the same as those of 〈eb〉 and vice versa. Furthermore, they have the same
support. Therefore, the sequences beginning with eb can absorb any sequence
beginning with b. Figure 4(b) shows that their subtrees can be merged into
one without discovering the subtree under 〈eb〉.

Based on the above discussion, we formulate the algorithm of CloSpan as
follows.

Algorithm 2
(CloSpan) Closed frequent sequential pattern mining.

Input: A sequence database S, and the minimum support threshold min support.
Output: The candidate set of closed sequential patterns.
Method: Call CloSpan(〈〉, 0, S, L).

Subroutine CloSpan(α, l, S|α, L)
The parameters are (1) α is a sequential pattern; (2) l is the length of α; and (3)
S|α is the α-projected database if α 
= 〈〉, otherwise, it is the sequence database
S. (4) L is the closed frequent sequence candidate set.
Method:
1. Check whether a discovered sequence β exists s.t. either α � β or β � α,

and I(S|α) = I(S|β); If such pattern exists, then apply Corollary 1 or 2 and
return;

2. Insert α into L;
3. Scan S|α once, find each frequent item, b, such that

(a) b can be assembled to the last element of α to form a new sequential
pattern; or

(b) 〈b〉 can be appended to α to form a new sequential pattern;
4. For each new sequential pattern α′, if α′ is frequent, construct α′-projected

database S|α′ , and call CloSpan(α′, l + 1, S|α′ , L).

After we perform CloSpan(α, l, S|α, L), we get a closed frequent sequence
candidate set, L. A post-processing step is required in order to delete non-
closed sequential patterns existing in L.

5 Experimental Results and Performance Analysis

Since GSP [30] and SPADE [36] are the two most influential sequential pat-
tern mining algorithms, we conduct an extensive performance study to com-
pare PrefixSpan with them. In this section, we first report our experimen-
tal results on the performance of PrefixSpan in comparison with GSP and
SPADE and then present our performance results of CloSpan in comparison
with PrefixSpan.
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5.1 Performance Comparison
Among PrefixSpan, FreeSpan, GSP and SPADE

To evaluate the effectiveness and efficiency of the PrefixSpan algorithm, we
performed an extensive performance study of four algorithms: PrefixSpan,
FreeSpan, GSP and SPADE, on both real and synthetic data sets, with various
kinds of sizes and data distributions.

All experiments were conducted on a 750 MHz AMD PC with 512 mega-
bytes main memory, running Microsoft Windows-2000 Server. Three al-
gorithms, GSP, FreeSpan, and PrefixSpan, were implemented by us using
Microsoft Visual C++ 6.0. The implementation of the fourth algorithm,
SPADE, is obtained directly from the author of the algorithm [36].

For real data set, we obtained the Gazelle data set from Blue Martini
Software. This data set is used in KDD-CUP’2000. It contains customers’
web click-stream data from Gazelle.com, a legwear and legcare web retailer.
For each customer, there are several sessions of webpage click-stream and each
session can have multiple webpage views. Because each session is associated
with both starting and ending date/time, for each customer we can sort its
sessions of click-stream into a sequence of page views according to the view-
ing date/time. This dataset contains 29369 sequences (i.e., customers), 35722
sessions (i.e., transactions or events), and 87546 page views (i.e., products or
items). There are in total 1423 distinct page views. More detailed information
about this data set can be found in [16].

For synthetic data sets, we have also used a large set of synthetic sequence
data generated by a data generator similar in spirit to the IBM data gen-
erator [2] designed for testing sequential pattern mining algorithms. Various
kinds of sizes and data distributions of data sets are generated and tested
in this performance study. The convention for the data sets is as follows:
C200T2.5S10I1.25 means that the data set contains 200 k customers (i.e.,
sequences) and the number of items is 10000. The average number of items
in a transaction (i.e., event) is 2.5 and the average number of transactions
in a sequence is 10. On average, a frequent sequential pattern consists of 4
transactions, and each transaction is composed of 1.25 items.

To make our experiments fair to all the algorithms, our synthetic test data
sets are similar to that used in the performance study in [36]. Additional data
sets are used for scalability study and for testing the algorithm behavior with
varied (and sometimes very low) support thresholds.

The first test of the four algorithms is on the data set C10T8S8I8, which
contains 10 k customers (i.e., sequences) and the number of items is 1000.
Both the average number of items in a transaction (i.e., event) and the av-
erage number of transactions in a sequence are set to 8. On average, a fre-
quent sequential pattern consists of 4 transactions, and each transaction is
composed of 8 items. Figure 5 shows the distribution of frequent sequences
of data set C10T8S8I8, from which one can see that when min support
is no less than 1%, the length of frequent sequences is very short (only
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Fig. 5. Distribution of frequent sequences of data set C10T8S8I8

2–3), and the maximum number of frequent patterns in total is less than
10,000. Figure 6 shows the processing time of the four algorithms at differ-
ent support thresholds. The processing times are sorted in time ascending
order as “PrefixSpan <SPADE < FreeSpan <GSP”. When min support = 1%,
PrefixSpan (runtime = 6.8 seconds) is about two orders of magnitude faster
than GSP (runtime = 772.72 seconds). When min support is reduced to 0.5%,
the data set contains a large number of frequent sequences, PrefixSpan takes
32.56 seconds, which is more than 3.5 times faster than SPADE (116.35 sec-
onds), while GSP never terminates on our machine.

The performance study on the real data set Gazelle is reported as follows.
Figure 7 shows the distribution of frequent sequences of Gazelle dataset for
different support thresholds. We can see that this dataset is a very sparse
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Fig. 6. Performance of the four algorithms on data set C10T8S8I8
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dataset: only when the support threshold is lower than 0.05% are there some
long frequent sequences. Figure 8 shows the performance comparison among
the four algorithms for Gazelle dataset. From Fig. 8 we can see that PrefixSpan
is much more efficient than SPADE, FreeSpan and GSP. The SPADE algorithm
is faster than both FreeSpan and GSP when the support threshold is no less
than 0.025%, but once the support threshold is no greater than 0.018%, it
cannot stop running.

Finally, we compare the memory usage among the three algorithms,
PrefixSpan, SPADE, and GSP using both real data set Gazelle and synthetic
data set C200T5S10I2.5. Figure 9 shows the results for Gazelle dataset, from
which we can see that PrefixSpan is efficient in memory usage. It consumes
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Fig. 10. Memory usage: PrefixSpan, SPADE, and GSP for synthetic data set
C200T5S10I2.5

almost one order of magnitude less memory than both SPADE and GSP. For
example, at support 0.018%, GSP consumes about 40 MB memory and SPADE
just cannot stop running after it has used more than 22 MB memory while
PrefixSpan only uses about 2.7 MB memory.

Figure 10 demonstrates the memory usage for dataset C200T5S10I2.5,
from which we can see that PrefixSpan is not only more efficient but also more
stable in memory usage than both SPADE and GSP. At support 0.25%, GSP
cannot stop running after it has consumed about 362 MB memory and SPADE
reported an error message “memory:: Array: Not enough memory” when it
tried to allocate another bulk of memory after it has used about 262 MB
memory, while PrefixSpan only uses 108 MB memory. This also explains why in
several cases in our previous experiments when the support threshold becomes
really low, only PrefixSpan can finish running.
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Based on our analysis, PrefixSpan only needs memory space to hold the
sequence datasets plus a set of header tables and pseudo-projection tables.
Since the dataset C200T5S10I2.5 is about 46 MB, which is much bigger than
Gazelle (less than 1 MB), it consumes more memory space than Gazelle but
the memory usage is still quite stable (from 65 MB to 108 MB for different
thresholds in our testing). However, both SPADE and GSP need memory space
to hold candidate sequence patterns as well as the sequence datasets. When
the min support threshold drops, the set of candidate subsequences grows
up quickly, which causes memory consumption upsurge, and sometimes both
GSP and SPADE cannot finish processing.

In summary, our performance study shows that PrefixSpan has the best
overall performance among the four algorithms tested. SPADE, though weaker
than PrefixSpan in most cases, outperforms GSP consistently, which is consis-
tent with the performance study reported in [36]. GSP performs fairly well
only when min support is rather high, with good scalability, which is consis-
tent with the performance study reported in [30]. However, when there are a
large number of frequent sequences, its performance starts deteriorating. Our
memory usage analysis also shows part of the reason why some algorithms
becomes really slow because the huge number of candidate sets may consume
a tremendous amount of memory. Also, when there are a large number of
frequent subsequences, all the algorithms run slow. This problem can be par-
tially solved by closed frequent sequential pattern mining. In the remaining
of this section, we will demonstrate the compactness of closed patterns and
the better performance achieved by CloSpan.

5.2 Performance Comparison between CloSpan and PrefixSpan

The performance comparison between CloSpan and PrefixSpan are conducted
in a different programming environment. All the experiments are done on a
1.7 GHZ Intel Pentium-4 PC with 1 GB main memory, running Windows XP
Professional. All two algorithms are written in C++ with STL library support
and compiled by g++ in cygwin environment with −O3 optimization.

The first experiment was conducted on the dataset C10T2.5S6I2.5 with
10 k items. Figure 11 shows the run time of both PrefixSpan and CloSpan with
different support threshold. PrefixSpan cannot complete the task below sup-
port threshold 0.001 due to too long runtime. Figure 12 shows the distribution
of discovered frequent closed sequences in terms of length. With the decreasing
minimum support, the maximum length of frequent closed sequences grows
larger. Figure 13 shows the number of frequent sequences which are discovered
and checked in order to generate the frequent closed sequence set. This num-
ber is roughly equal to how many times the procedure, CloSpan, is called and
how many times projected databases are generated. Surprisingly, this num-
ber accurately predicates the total running time as the great similarity exists
between Fig. 11 and Fig. 12. Therefore, for the same dataset, the number of
checked frequent sequences approximately determines the performance.
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Fig. 11. The performance comparison between CloSpan and PrefixSpan on the
dataset C10T2.5S6I2.5

We then test the performance of these two algorithms as some major pa-
rameters in the synthetic data generator are varied. The impact of different
parameters is presented on the runtime of each algorithm. We select the fol-
lowing parameters as varied ones: the number of sequences in the dataset,
the average number of transactions per sequence, and the average number of
items per transaction. For each experiment, only one parameter varies with
the others fixed. The experimental results are shown in Figs. 14 to 16. We
also discovered in other experiments, the speed-up decreases when the num-
ber of distinct items in the dataset goes down. However, it is still faster than
PrefixSpan.

Direct mining of closed patterns leads to much fewer patterns, especially
when the patterns are long or when the minimum support threshold is low.
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(C?T15S20I20, support threshold 0.8%

According to our analysis, the sets of patterns derived from CloSpan have
the same expressive power as the traditional sequential pattern mining algo-
rithms. As indicated in Fig. 13, CloSpan checks less frequent sequences than
PrefixSpan and generates less number of projected databases. CloSpan clearly
shows better performance than PrefixSpan in these cases. Our experimental
results demonstrated this point since CloSpan often leads to savings in compu-
tation time over one order of magnitude in comparison with PrefixSpan. Based
on the performance curves reported in Sect. 5.1 and the explosive number of
subsequences generated for long sequences, it is expected that CloSpan will
outperform GSP and SPADE as well when the patterns to be mined are long
or when the support thresholds are low.
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CloSpan has been successfully used to improve the performance of stor-
age systems by mining correlated access patterns [19]. A further study is in
progress. Preliminary result shows that intelligent disk data layout using cor-
related access patterns can improve the average I/O response time by up
to 25%.

6 Extensions of Sequential Pattern Growth Approach

Comparing with mining (unordered) frequent patterns, mining sequential pat-
terns is one step towards mining more sophisticated frequent patterns in
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large databases. With the successful development of sequential pattern-growth
method, it is interesting to explore how such a method can be extended to
handle more sophisticated mining requests. In this section, we will discuss a
few extensions of the sequential pattern growth approach.

6.1 Mining Multi-Dimensional, Multi-Level Sequential Patterns

In many applications, sequences are often associated with different circum-
stances, and such circumstances form a multiple dimensional space. For exam-
ple, customer purchase sequences are associated with region, time, customer
group, and others. It is interesting and useful to mine sequential patterns
associated with multi-dimensional information. For example, one may find
that retired customers (with age) over 60 may have very different patterns in
shopping sequences from the professional customers younger than 40. Simi-
larly, items in the sequences may also be associated with different levels of
abstraction, and such multiple abstraction levels will form a multi-level space
for sequential pattern mining. For example, one may not be able to find any
interesting buying patterns in an electronics store by examining the concrete
models of products that customers purchase. However, if the concept level
is raised a little high to brand-level, one may find some interesting patterns,
such as “if one bought an IBM PC, it is likely s/he will buy a new IBM Laptop
and then a Cannon digital camera within the next six months.”

There have been numerous studies at mining frequent patterns or associ-
ations at multiple levels of abstraction, such as [2, 9], and mining association
or correlations at multiple dimensional space, such as [6, 15]. One may like
to see how to extend the framework to mining sequential patterns in multi-
dimensional, multi-level spaces.

Interestingly, pattern growth-based methods, such as PrefixSpan, can be
naturally extended to mining such patterns. Here is an example illustrating
one such extension.

Example 8 (Mining multi-dimensional, multi-level sequential patterns). Con-
sider a sequence database SDB in Table 4, where each sequence is associated
with certain multi-dimensional, multi-level information. For example, it may
contain multi-dimensional circumstance information, such as cust-grp = busi-
ness, city = Boston, and age-grp = middle aged. Also, each item may be
associated with multiple-level information, such as item b being IBM Laptop
Thinkpad X30.

PrefixSpan can be extended to mining sequential patterns efficiently in
such a multi-dimensional, multi-level environment. One such solution which
we call uniform sequential (or Uni-Seq) [28] is outlined as follows. For each se-
quence, a set of multi-dimensional circumstance values can be treated as one
added transaction in the sequence. For example, for cid = 10, (business,
Boston, middle aged) can be added into the sequence as one additional
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Table 4. A multi-dimensional sequence database

cid Cust-grp City Age-grp Sequence

10 business Boston middle aged 〈(bd)cba〉
20 professional Chicago young 〈(bf)(ce)(fg)〉
30 business Chicago middle aged 〈(ah)abf〉
40 education New York retired 〈(be)(ce)〉

transaction. Similarly, for each item b, its associated multi-level informa-
tion can be added as additional items into the same transaction that b re-
sides. Thus the first sequence can be transformed into a sequence cid10 as,
cid10 : 〈 (business, Boston, middle aged), ((IBM,Laptop, Thinkpad X30),
(Dell, PC, Precision 330)) (Canon, digital camera,CD420), (IBM , Laptop,
Thinkpad X30), (Microsoft, RDBMS, SQLServer 2000)〉. With such trans-
formation, the database becomes a typical single-dimensional, single-level se-
quence database, and the PrefixSpan algorithm can be applied to efficient
mining of multi-dimensional, multi-level sequential patterns. �

The proposed embedding of multi-dimensional, multi-level information
into a transformed sequence database, and then extension of PrefixSpan to
mining sequential patterns, as shown in Example 8, has been studied and im-
plemented in [28]. In the study, we propose a few alternative methods, which
integrate some efficient cubing algorithms, such as BUC [5] and H-cubing [10],
with PrefixSpan. A detailed performance study in [28] shows that the Uni-Seq
is an efficient algorithm. Another interesting algorithm, called Seq-Dim, which
first mines sequential patterns, and then for each sequential pattern, forms
projected multi-dimensional database and finds multi-dimensional patterns
within the projected databases, also shows high performance in some situa-
tions. In both cases, PrefixSpan forms the kernel of the algorithm for efficient
mining of multi-dimensional, multi-level sequential patterns.

6.2 Constraint-Based Mining of Sequential Patterns

For many sequential pattern mining applications, instead of finding all the
possible sequential patterns in a database, a user may often like to enforce
certain constraints to find desired patterns. The mining process which incor-
porates user-specified constraints to reduce search space and derive only the
user-interested patterns is called constraint-based mining.

Constraint-based mining has been studied extensively in frequent pattern
mining, such as [3, 23, 25]. In general, constraints can be characterized based
on the notion of monotonicity, anti-monotonicity, succinctness, as well as con-
vertible and inconvertible constraints respectively, depending on whether a
constraint can be transformed into one of these categories if it does not nat-
urally belong to one of them [25]. This has become a classical framework for
constraint-based frequent pattern mining.
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Interestingly, such a constraint-based mining framework can be extended
to sequential pattern mining. Moreover, with pattern-growth framework, some
previously not-so-easy-to-push constraints, such as regular expression con-
straints [7] can be handled elegantly. Let’s examine one such example.

Example 9 (Constraint-based sequential pattern mining). Suppose our task is
to mine sequential patterns with a regular expression constraint C = 〈a ∗
{bb|(bc)d|dd}〉 with min support = 2, in a sequence database S (Table 1).

Since a regular expression constraint, like C, is neither anti-monotone, nor
monotone, nor succinct, the classical constraint-pushing framework [23] can-
not push it deep. To overcome this difficulty, Reference [7] develop a set of
four SPIRIT algorithms, each pushing a stronger relaxation of regular expres-
sion constraint R than its predecessor in the pattern mining loop. However,
the basic evaluation framework for sequential patterns is still based on GSP
[30], a typical candidate generation-and-test approach.

With the development of the pattern-growth methodology, such kinds of
constraints can be pushed deep easily and elegantly into the sequential pattern
mining process [27]. This is because in the context of PrefixSpan a regular
expression constraint has a nice property called growth-based anti-monotonic.
A constraint is growth-based anti-monotonic if it has the following property:
if a sequence α satisfies the constraint, α must be reachable by growing from
any component which matches part of the regular expression.

The constraint C = 〈a∗{bb|(bc)d|dd}〉 can be integrated with the pattern-
growth mining process as follows. First, only the 〈a〉-projected database needs
to be mined since the regular expression constraint C starting with a, and only
the sequences which contain frequent single item within the set of {b, c, d}
should retain in the 〈a〉-projected database. Second, the remaining mining
can proceed from the suffix, which is essentially “Suffix-Span”, an algorithm
symmetric to PrefixSpan by growing suffixes from the end of the sequence
forward. The growth should match the suffix constraint “〈{bb|(bc)d|dd}〉”. For
the projected databases which matches these suffixes, one can grow sequential
patterns either in prefix- or suffix- expansion manner to find all the remaining
sequential patterns. �

Notice that the regular expression constraint C given in Example 9 is
in a special form “〈prefix ∗ suffix〉” out of many possible general regular
expressions. In this special case, an integration of PrefixSpan and Suffix-Span
may achieve the best performance. In general, a regular expression could be
of the form “〈 ∗ α1 ∗ α2 ∗ α3 ∗ 〉”, where αi is a set of instantiated regular
expressions. In this case, FreeSpan should be applied to push the instantiated
items by expansion first from the instantiated items. A detailed discussion of
constraint-based sequential pattern mining is in [27].
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6.3 Mining Top-k Closed Sequential Patterns

Mining closed patterns may significantly reduce the number of patterns gener-
ated and is information lossless because it can be used to derive the complete
set of sequential patterns. However, setting min support is a subtle task: A
too small value may lead to the generation of thousands of patterns, whereas
a too big one may lead to no answer found. To come up with an appropri-
ate min support, one needs prior knowledge about the mining query and the
task-specific data, and be able to estimate beforehand how many patterns will
be generated with a particular threshold.

As proposed in [13], a desirable solution is to change the task of mining
frequent patterns to mining top-k frequent closed patterns of minimum length
min 	, where k is the number of closed patterns to be mined, top-k refers to
the k most frequent patterns, and min 	 is the minimum length of the closed
patterns. We develop TSP [31] to discover top-k closed sequences. TSP is a
multi-pass search space traversal algorithm that finds the most frequent pat-
terns early in the mining process and allows dynamic raising of min support
which is then used to prune unpromising branches in the search space. Also,
TSP devises an efficient closed pattern verification method which guarantees
that during the mining process the candidate result set consists of the de-
sired number of closed sequential patterns. The efficiency of TSP is further
improved by applying the minimum length constraint in the mining and by
employing the early termination conditions developed in CloSpan [35].

6.4 Mining Approximate Consensus Sequential Patterns

As we discussed before, conventional sequential pattern mining methods may
meet inherent difficulties in mining databases with long sequences and noise.
They may generate a huge number of short and trivial patterns but fail to
find interesting patterns approximately shared by many sequences. In many
applications, it is necessary to mine sequential patterns approximately shared
by many sequences.

To attack these problems, in [17], we propose the theme of approximate se-
quential pattern mining roughly defined as identifying patterns approximately
shared by many sequences. We present an efficient and effective algorithm, Ap-
proxMap (for APPROXimate Multiple Alignment Pattern mining), to mine
consensus patterns from large sequence databases. The method works in two
steps. First, the sequences are clustered by similarity. Then, the consensus
patterns are mined directly from each cluster through multiple alignments. A
novel structure called weighted sequence is used to compress the alignment
result. For each cluster, the longest consensus pattern best representing the
cluster is generated from its weighted sequence.

Our extensive experimental results on both synthetic and real data sets
show that ApproxMap is robust to noise and is both effective and efficient in
mining approximate sequential patterns from noisy sequence databases with
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lengthy sequences. In particular, we report a successful case of mining a real
data set which triggered important investigations in welfare services.

6.5 Clustering Time Series Gene Expression

Clustering the time series gene expression data is an important task in bioin-
formatics research and biomedical applications. Time series gene expression
data is also in the form of sequences. Recently, some clustering methods have
been adapted or proposed. However, some problems still remain, such as the
robustness of the mining methods, the quality and the interpretability of the
mining results.

In [14], we tackle the problem of effectively clustering time series gene
expression data by proposing algorithm DHC, a density-based, hierarchical
clustering method aiming at time series gene expression data. We use a
density-based approach to identifying the clusters such that the clustering
results are with high quality and robustness. Moreover, The mining result is
in the form of a density tree, which uncovers the embedded clusters in a data
sets. The inner-structures, the borders and the outliers of the clusters can be
further investigated using the attraction tree, which is a intermediate result
of the mining. By these two trees, the internal structure of the data set can
be visualized effectively. Our empirical evaluation using some real-world data
sets show that the method is effective, robust and scalable. It matches the
ground truth given by bioinformatics experts very well in the sample data
sets.

6.6 Towards Mining More Complex Kinds of Structured Patterns

Besides mining sequential patterns, another important task is the mining
of frequent sub-structures in a database composed of structured or semi-
structured data sets. The substructures may consist of trees, directed-acyclic
graphs (i.e., DAGs), or general graphs which may contain cycles. There are a
lot of applications related to mining frequent substructures since most human
activities and natural processes may contain certain structures, and a huge
amount of such data has been collected in large data/information reposito-
ries, such as molecule or bio-chemical structures, Web connection structures,
and so on. It is important to develop scalable and flexible methods for mining
structured patterns in such databases. There have been some recent work on
mining frequent subtrees, such as [38], and frequent subgraphs, such as [18, 33]
in structured databases, where [33] shows that the pattern growth approach
has clear performance edge over a candidate generation-and-test approach.
Furthermore, as discussed above, is it is more desirable to mine closed frequent
subgraphs (a subgraph g is closed if there exists no super-graph of g carrying
the same support as g) than mining explicitly the complete set of frequent
subgraphs because a large graph inherently contains an exponential number
of subgraphs. A recent study [34] has developed an efficient closed subgraph
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pattern method, called CloseGraph, which is also based on the pattern-growth
framework and influenced by this approach.

7 Conclusions

We have introduced a pattern-growth approach for efficient and scalable mining
of sequential patterns in large sequence databases. Instead of refinement of
the Apriori-like, candidate generation-and-test approach, such as GSP [30] and
SPADE[36], we promote a divide-and-conquer approach, called pattern-growth
approach, which is an extension of FP-growth [12], an efficient pattern-growth
algorithm for mining frequent patterns without candidate generation.

An efficient pattern-growth method is developed for mining frequent se-
quential patterns, represented by PrefixSpan, and mining closed sequential
patterns, represented by CloSpan, are presented and studied in this paper.

PrefixSpan recursively projects a sequence database into a set of smaller
projected sequence databases and grows sequential patterns in each projected
database by exploring only locally frequent fragments. It mines the complete
set of sequential patterns and substantially reduces the efforts of candidate
subsequence generation. Since PrefixSpan explores ordered growth by prefix-
ordered expansion, it results in less “growth points” and reduced projected
databases in comparison with our previously proposed pattern-growth algo-
rithm, FreeSpan. Furthermore, a pseudo-projection technique is proposed for
PrefixSpan to reduce the number of physical projected databases to be gener-
ated.

CloSpan mines closed sequential patterns efficiently by discovery of shar-
ing portions of the projected databases in the mining process and prune any
redundant search space and therefore substantially enhanced the mining effi-
ciency and reduces the redundant patterns.

Our comprehensive performance study shows that PrefixSpan outperforms
the Apriori-based GSP algorithm, FreeSpan, and SPADE in most cases, and
PrefixSpan integrated with pseudo-projection is the fastest among all the
tested algorithms for mining the complete set of sequential patterns; whereas
CloSpan may substantially improve the mining efficiency over PrefixSpan and
returns a substantially smaller set of results while preserving the completeness
of the answer sets.

Based on our view, the implication of this method is far beyond yet another
efficient sequential pattern mining algorithm. It demonstrates the strength of
the pattern-growth mining methodology since the methodology has achieved
high performance in both frequent-pattern mining and sequential pattern min-
ing. Moreover, our discussion shows that the methodology can be extended to
mining multi-level, multi-dimensional sequential patterns, mining sequential
patterns with user-specified constraints, and a few interesting applications.
Therefore, it represents a promising approach for the applications that rely
on the discovery of frequent patterns and/or sequential patterns.
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There are many interesting issues that need to be studied further. Espe-
cially, the developments of specialized sequential pattern mining methods for
particular applications, such as DNA sequence mining that may admit faults,
such as allowing insertions, deletions and mutations in DNA sequences, and
handling industry/engineering sequential process analysis are interesting is-
sues for future research.
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