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Abstract
Supervised learning on sequence data, also known as se-
quence classification, has been well recognized as an impor-
tant data mining task with many significant applications.
Since temporal order is important in sequence data, in many
critical applications of sequence classification such as med-
ical diagnosis and disaster prediction, early prediction is a
highly desirable feature of sequence classifiers. In early pre-
diction, a sequence classifier should use a prefix of a sequence
as short as possible to make a reasonably accurate predic-
tion. To the best of our knowledge, early prediction on se-
quence data has not been studied systematically.

In this paper, we identify the novel problem of mining
sequence classifiers for early prediction. We analyze the
problem and the challenges. As the first attempt to tackle
the problem, we propose two interesting methods. The
sequential classification rule (SCR) method mines a set of
sequential classification rules as a classifier. A so-called
early-prediction utility is defined and used to select features
and rules. The generalized sequential decision tree (GSDT)
method adopts a divide-and-conquer strategy to generate
a classification model. We conduct an extensive empirical
evaluation on several real data sets. Interestingly, our two
methods achieve accuracy comparable to that of the state-
of-the-art methods, but typically need to use only very short
prefixes of the sequences. The results clearly indicate that
early prediction is highly feasible and effective.

1 Introduction

Supervised learning on sequence data, also known as
sequence classification, has been well recognized as an
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important data mining task with many applications [4].
Sequence classification can be tackled by the general
classification strategies using feature extraction [13].
That is, (short) subsequences can be extracted as fea-
tures. A sequence is transformed into a set of features.
Then, a general classification method such as support
vector machines (SVM) and artificial neural networks
can be applied on the transformed data set.

A unique characteristic of sequence data is that the
order is essential. In many applications of sequence
classification, the temporal order plays a critical role.
As an example, consider the application of disease
diagnosis using medical record sequences. For a patient,
the symptoms and the medical test results are recorded
as a sequence. Diagnosis can be modeled as a problem
of classification of the medical record sequences.

Obviously, the longer the sequence for a patient,
the more information is available about the patient
and the more accurate a classification decision can be
made. However, to make the diagnosis useful, an early
prediction is always desirable. A reasonably accurate
prediction using an as short as possible prefix of a
patient’s medical record sequence is highly valuable.
Such an early prediction can lead to early treatment of
diseases. For example, the survival rate of many types
of cancer is high if the tumors can be detected in an
early stage.

Early prediction is also strongly needed in disaster
prediction. For example, early prediction of earthquakes
and tsunamis is extremely important since a few min-
utes ahead may save thousands of lives. In applications
of system management including intrusion detection, an
event sequence generated from a complex system is used
to determine the underlying problem. Early prediction
will save time and provide opportunity to take early
action and prevent catastrophic failures.



Surprisingly, early prediction has not been studied
systematically. The existing work on sequence classifi-
cation only focuses on improving the accuracy of clas-
sification. The existing methods extract features from
the whole sequences and use those features to construct
classification models. None of them explore the utility
of features in early prediction.

In this paper, we study the important problem of se-
quence classification towards early prediction. We make
the following contributions. First, we identify the prob-
lem of sequence classification towards early prediction.
We analyze the problem and the challenges. Second, as
the first attempt to tackle the problem, we propose two
interesting methods. The sequential classification rule
(SCR) method mines a set of sequential classification
rules as a classifier. A so-called early-prediction utility
is defined and used to select features and rules. The gen-
eralized sequential decision tree (GSDT) method adopts
a divide-and-conquer strategy to generate a classifica-
tion model. Last, we conduct an extensive empirical
evaluation on several real data sets. Interestingly, our
two methods achieve accuracy comparable to that of the
state-of-the-art methods, but typically need to use only
very short prefixes of the sequences. The results clearly
indicate that early prediction is feasible and effective.

The rest of the paper is organized as follows. We
describe the problem of sequence classification for early
prediction and review the related work in Section 2. The
sequential classification rule (SCR) method is developed
in Section 3. Section 4 presents the generalized sequen-
tial decision tree (GSDT) method. We report a sys-
tematic empirical evaluation in Section 5. The paper is
concluded in Section 6.

2 Problem Description and Related Work

2.1 Sequence Classification and Early Predic-
tion Let Ω be a set of symbols which is the alphabet
of the sequence database in question. s = a1 · · · al is a
sequence if ai ∈ Ω (1 ≤ i ≤ l). len(s) = l is the length
of the sequence.

Let L be a finite set of class labels. A sequence
database SDB is a set of tuples (s, c) such that s ∈ Ω∗

is a sequence and c ∈ L is a class label.
A sequence classifier is a function C : Ω∗ → L.

That is, for each sequence s ∈ Ω∗, C predicts the class
label of s as C(s).

There are many possible ways to construct a se-
quence classifier. We review some existing methods in
Section 2.2. In order to make early prediction, in this
paper, we are particularly interested in serial sequence
classifiers, a special type of sequence classifier. Roughly
speaking, a serial classifier reads a sequence from left to
right, and makes prediction once it is confident about

the class label of the input sequence based on the prefix
read so far.

Formally, for sequence s = a1 · · · al, sequence s′ =
a1 · · · al′ (1 ≤ l′ ≤ l) is a prefix of s. We write
s′ = s[1, l′]. A sequence classifier C is serial if for any
(potentially infinite) sequence s = a1a2 · · ·, there exists
a positive integer l0 such that C(s[1, l0]) = C(s[1, l0 +
1]) = C(s[1, l0 + k]) = C(s) (k ≥ 0). In other words,
C predicts based on only the prefix s[1, l0]. One may
generalize the definition to require C to give consistent
predictions most of the time. The length l0 of the prefix
that C checks in order to make the prediction is called
the cost of the prediction, denoted by Cost(C, s) = l0.
Clearly, Cost(C, s[1, l0]) = Cost(C, s[1, l0 + 1]) = · · · =
Cost(C, s). Trivially, Cost(C, s) ≤ ‖s‖ for any finite
sequence s.

Given a sequence database SDB, the accuracy
of a serial classifier C is Accuracy(C, SDB) =
‖{C(s)=c | (s,c)∈SDB}‖

‖SDB‖ .
Moreover, the cost of the prediction is

Cost(C,SDB) =
∑

(s,c)∈SDB
Cost(C,s)

‖SDB‖ .
Generally, for early prediction, we want to reduce

the prediction cost and retain the prediction accuracy
at a satisfactory level. Theoretically, we define the
following optimization problem.

Problem Definition The problem of sequence
classification for early prediction is to construct a serial
classifier C such that C has an expected accuracy p0

and minimizes the expected prediction cost, where p0 is
a user specified parameter.

2.2 Related Work To the best of our knowledge, [1]
is the only existing study mentioning early prediction.
In [1], early classification is to classify a case before
all features required by the classifier are present. It
uses linear combinations of features in classification,
allowing one to make a prediction when some features
are missing, although the accuracy may deteriorate.
The problem addressed by [1] is very different from the
problem discussed in this paper. The method in [1]
is not entirely dedicated to early prediction. In [33],
progressive confidence rules are proposed. Our work
is different from [33] because we focus on using prefix
to do early prediction but [33] considers progressive
confidence rules as patterns to increase the accuracy of
prediction but does not deal with early classification.

Recently, [18] studies the problem of phrase predic-
tion as suggesting the highly possible phrases given a
prefix. The phrase prediction problem is different from
the early prediction problem in this paper. Phrase pre-
diction can suggest multiple phrases for a prefix, and
can revise the prediction as the prefix grows.



Generally, classification on sequence data has been
an extensively studied problem. Most previous stud-
ies tackle the sequence classification problem by com-
bining some general classification methods and some
sequence feature selection methods. In [13], criteria
for selecting features for sequence classification is pro-
posed. [20, 9, 25, 27] study the prediction of outer mem-
brane proteins from protein sequences by combining the
support vector machines (SVM) [29] and several fea-
ture selection methods. Particularly, [20] uses five dif-
ferent types of features, namely amino acids, amino acid
pairs, one-gapped amino acid pairs (allowing exactly
one gap between two amino acids), two-gapped amino
acid pairs, and three-gapped amino acid pairs. [9] uses
gapped amino acid pairs as the features. [25] used fre-
quent subsequences as the features. Several kernel func-
tions (e.g., the simple linear kernel, the polynomial ker-
nel, and the RBF kernel) are used in those studies.

Some other studies use artificial neural networks
(ANN) for sequence classification. For example, [31]
uses ANN for protein sequence family classification.
Sequences are mapped to vectors of k-gram frequencies.
The vectors are used as input to the ANN. It reduces the
dimensionality of the vectors by mapping amino acids
into amino-acid equivalence groups, together with the
SVD method. Moreover, [17] uses neural networks and
expectation maximization to classify E. Coli promoters.

The methods using SVM and ANN are often whole-
sequence based, where all features from all parts of the
sequences can be used.

Early prediction is different from general whole-
sequence based prediction, since it desires to use fea-
tures as near the beginning of the sequences as possible.

Hidden Markov models (HMM) [24, 5] and vari-
ants are popular classification methods for the so-called
“site-based” classification problem, where one is inter-
ested in whether a sequence contains a site of interest
and the actual position of the site in the sequence if
it exists. This problem is closely related to the mo-
tif finding problems. Here, one usually uses features
before/around the site. Examples of site-based classi-
fication include the gene transcription start site prob-
lem [11, 16], the splicing site problem [3, 26], the tran-
scription factor binding sites area [21], etc. Examples of
using HMM and variants include [12, 7]. Early predic-
tion is different from site-based prediction since there
might be no obvious sites in the sequences under con-
sideration.

3 The Sequential Classification Rule Method

In this section, we develop a sequential classification rule
(SCR) method. The major idea is that we learn a set of
classification rules from a training data set. Each rule

hypothetically represents a set of sequences of the same
class and sharing the same set of features.

3.1 Sequential Classification Rules A feature is a
short sequence f ∈ Ω∗. A feature f = b1 · · · bm appears
in a sequence s = a1 · · · al, denoted by f v s, if there
exist 1 ≤ i0 ≤ l −m + 1 such that ai0 = b1, ai0+1 = b2,
. . . , ai0+m−1 = bm. For example, feature f = bbd
appears in sequence s = acbbdadbbdca. When a feature
f appears in a sequence s, we can write s = s′fs′′ such
that s′ = a1 · · · ai0−1 and s′′ = ai0+m · · · al. Generally,
a feature may appear multiple times in a sequence. The
minimum prefix of s where feature f appears is denoted
by minprefix (s, f). When f 6v s, minprefix (s, f) = s,
which means f does not appear in any prefix of s.

A sequential classification rule (or simply a rule) is
in the form of R : f1 → · · · → fn ⇒ c where f1, . . . , fn

are features and c ∈ L is a class label. For the sake of
simplicity, we also write a rule as R : F ⇒ c where F
is the shorthand of a series of features f1 → · · · → fn.
The class label in a rule R is denoted by L(R) = c.

A sequence s is said to match a sequential classifi-
cation rule R : f1 → · · · → fn ⇒ c, denoted by R v s, if
s = s′f1s1f2 · · · sn−1fns′′. That is, the features in R ap-
pear in s in the same order as in R. The minimum pre-
fix of s matching rule R is denoted by minprefix (s, R).
Particularly, when R 6v s, minprefix (s,R) = s, which
means any prefix of s does not match R.

Given a sequence database SDB and a sequential
classification rule R, the support of R in SDB is defined
as supSDB(R) = ‖{s|s∈SDB,Rvs}‖

‖SDB‖ .
Moreover, the confidence of rule R on SDB is given

by confSDB(R) = ‖{(s,c)|(s,c)∈SDB,Rvs,c=L(R)}‖
‖{(s,c)|(s,c)∈SDB,Rvs}‖ .

Let R = {R1, . . . , Rn} be a set of sequential
classification rules. For early prediction, a sequence
tries to match a rule using a prefix as short as possible.
Therefore, the action rule is the rule in R which s
has the shortest minimum prefix of matching, that is,
actionR(s,R) = arg minRi∈R ‖minprefix (s,Ri)‖.

Given a sequence database SDB, the cost of predic-
tion can be measured as the average cost per sequence,
that is,

Cost(R, SDB) =
∑

s∈SDB ‖minprefix (s, action(s,R))‖
‖SDB‖

To make the classifier accurate, we can confine
that only sequential rules of confidence at least p0

are considered, where p0 is a user-specified accuracy
expectation. Now, the problem is how to mine a set of
rulesR such that each rule is accurate (i.e., of confidence
at least p0) and the cost Cost(R, SDB) is as small as
possible.



3.2 Feature Selection To form sequential classifica-
tion rules, we need to extract features from sequences in
the training data set. Particularly, we need to extract
effective features for classification.

3.2.1 Utility Measure for Early Prediction We
consider three characteristics of features for early pre-
diction. First, a feature should be relatively frequent. A
frequent feature in the training set may indicate that it
is applicable to many sequences to be classified in the
future. On the other hand, an infrequent feature may
overfit a small number of training samples. Second, a
feature should be discriminative between classes. Dis-
criminative features are powerful in classification. Last,
we consider the earliness of features. We prefer features
to appear early in sequences in the training set.

Based on the above consideration, we propose a
utility measure of a feature for early prediction. We
consider a finite training sequence database SDB and
a feature f .

The entropy of SDB is given by E(SDB) =
−∑

c∈L pc log pc where pc = ‖{(s,c)∈SDB}‖
‖SDB‖ is the prob-

ability that a sequence is in class c in SDB.
Let SDBf = {(s, c)|(s, c) ∈ SDB, f v s} be

the subset of sequences in SDB where feature f ap-
pears. The difference of entropy in SDB and SDBf ,
E(SDB)− E(SDBf ), measures the discriminativeness
of feature f .

To measure the frequency and the earliness of a
feature f , we can use a weighted frequency of f . That
is, for each sequence s where f appears, we use the
minimum prefix of s where f appears to weight the
contribution of s to the support of f . Technically,

we have wsupSDB(f) =

∑
fvs,s∈SDB

1

‖minprefix (s,f)‖
‖SDB‖ .

Then, the utility measure of f is defined as

U(f) = (E(SDB)− E(SDBf ))wwsupSDB(f)(3.1)

In the formula, we use a parameter w ≥ 1 to determine
the relative importance of information gain versus ear-
liness and popularity. This parameter carries the same
spirit of those used in some previous studies such as [19].

3.2.2 Top-k Feature Selection Many existing rule-
based classification methods such as [15, 14, 32] set some
thresholds on feature quality measures like support,
confidence, and discriminativeness, so that only those
high quality (i.e., relatively frequent and discriminative)
rules are selected for classifier construction. In our case,
we may take a similar approach to set a utility threshold
and mine all features passing the threshold from the
training database.

However, we argue that such a utility threshold

b

abaa ac ba bb bc ca

c

cb cc

aaa aab aac
...

...

a

Figure 1: A sequence enumeration tree.

method is ineffective in practice. The utility values
of effective features may differ substantially in various
data sets. It is very hard for a user to guess the right
utility threshold value. On the one hand, a too high
utility threshold may lead to too few features which are
insufficient to generate an accurate classifier. On the
other hand, a too low utility threshold may lead to too
many features which are costly to mine.

To overcome the problem, we propose a progressive
approach. We first find top-k features in utility, and
build a set of rules using the top-k features. If the
rules are insufficient in classification, we mine the next
k features. The progressive mining procedure continues
until the resulting set of sequential classification rules
are sufficient. As verified by our experimental results,
on real data sets, we often only need to find a small
number of rules, ranging from 20 on small data sets to
100 on large data sets, to achieve an accurate classifier.

Now, the problem becomes how to mine top-k fea-
tures effectively for sequential classification rule con-
struction.

Given a finite alphabet set Ω, all possible features
as sequences in Ω∗ can be enumerated using a sequence
enumeration tree T (Ω). The root of the tree represents
the empty feature ∅. Each symbol x ∈ Ω is a child of
the root node. Generally, a length-l sequence s is the
parent of a length-(l + 1) sequence s′ if s′ = sx where
x ∈ Ω. Figure 1 shows a sequence enumeration tree of
alphabet Ω = {a, b, c}.

To find the top-k features, we search a sequence
enumeration tree. As the first step, we select a set Seed
of k features as the seeds.

To obtain the initial set Seed of seed features,
we first select k′ < k length-1 features. That is, we
compute the utility values of all length-1 features, and
select the best k′ features into Seed. Then, for each
of those length-1 features f in Seed, we search the
length-2 children of f , and select the best k′ children
as candidates. Among all the k′2 length-2 candidate
features, we select the best k′ features and insert them
into Seed. We use an auxiliary support threshold
min sup to prune features. A feature is not considered



if its support is lower than min sup. The selection
procedure continues iteratively level by level until no
longer features can be added into the seed set. As the
last step, we choose the best k features in the set Seed,
and remove the rest.

Once we obtain a set of k seed features, we can
use the seeds to prune the search space. Let Ulb =
minf∈Seed U(f) be the lower bound of the utility values
of the features in the set Seed. For a feature f in
the sequence enumeration tree, if the utility of the
descendants of f can be determined no greater than
Ulb, then the subtree of f can be pruned.

Then, for a feature f in the sequence enumeration
tree, how can we determine whether a descendant of f
may have a utility value over Ulb?

Theorem 3.1. (Utility bound) Let SDB be the
training data set. For features f and f ′ such that f
is a prefix of f ′,

U(f ′) ≤ E(SDB)w

‖SDB‖
∑

s∈SDB,fvs

1
minprefix(s, f) + 1

Proof. In the best case, all sequences in SDBf ′ belong
to the same class. In such a case, E(SDBf ′) = 0. Thus,
the gain in entropy is no greater than E(SDB)w.

Since f is a prefix of f ′, ‖f ′‖ ≥ ‖f‖+ 1. Thus,

wsupSDB(f ′) ≤
∑

s∈SDB,fvs
1

minprefix(s,f)+1

‖SDB‖
Both the gain in entropy and the weighted support

are non-negative. Thus, using Equation 3.1, we have
the upper bound in the theorem.

If the descendants of f cannot be pruned by Theo-
rem 3.1, we need to search the subtree of f . Once a fea-
ture whose utility value is greater than Ulb is found, we
insert it into Seed, the set of seed features, and remove
the feature in Seed whose utility value is the lowest. Af-
ter inserting a better feature into Seed and removing a
worse one from Seed, the lower bound Ulb of the top-k
utility values is increased. The new lower bound Ulb is
used to prune the search space.

When there are multiple nodes in the sequence
enumeration tree whose utility values are over Ulb and
whose subtrees need to be searched, we conduct a best-
first search. That is, we first search the subtree of the
node of the highest utility value, since heuristically it
may have a good chance to provide good features. The
search continues until all branches are pruned.

Since we search the sequence enumeration tree,
which is the complete space of all possible features,
and our pruning method guarantees no feature which
is promising in the top-k list in utility is discarded, we
have the following claim.

Theorem 3.2. (Completeness of top-k features)
The top-k feature selection procedure described in this
section selects the top-k features in utility values.

3.3 Mining Sequential Classification Rules
Given a set of features F = {f1, . . . , fk}, all possible
rules using the features in F can be enumerated using
a rule enumeration tree similar to a feature enumera-
tion tree in spirit. The root of the tree is the empty
set. The children of the root are the single features
fi ∈ F . The node fi represents a set of rules fi ⇒ c
(c ∈ L). Generally, a node R1 : f1 → · · · → fl repre-
sents a set of rules f1 → · · · → fl ⇒ c (c ∈ L). Node
R2 : f1 → · · · → fl → fl+1 is a child of R1.

To construct a set of sequential classification rules of
low prediction cost, we conduct a best-first search on the
rule enumeration tree. A node in the rule enumeration
tree can be in one of the five status: inactive, active,
chosen, pruned, or processed. At the beginning, all
nodes are inactive.

We consider rules with smaller prediction cost be-
fore rules with larger cost. We start with all nodes in
the enumeration tree of single feature. For each node,
we calculate the dominant class. For a node of feature
fi, if the dominant class in the sequences in SDBfi is
c, then f1 ⇒ c is the rule at the node. We also calcu-
late the prediction cost for each rule. All those nodes of
single features are set to active.

Among the active nodes, we select a rule R of the
lowest cost. If its confidence is at least p0, where p0 is
the user-specified accuracy expectation, then the rule is
chosen and added to the rule set R. The status of R
is set to chosen, and all descendants of R in the rule
enumeration tree are set to pruned.

If the confidence of R is less than p0, we consider
all children of R by adding one feature at the end
of R. We calculate the dominant class, the sup-
port and the prediction cost for each child node. The
support of R′ that is a child of R is defined as sup(R′) =
‖{s|s∈SDB,R′vs,6∃R′′∈R st. minprefix (s,R′′)≤minprefix (s,R′)}‖

‖SDB‖ .
It means if a sequence s can be matched by rule R′, and
the sequence cannot be matched by any rule R′′ already
in the rule set with a lower cost, s contributes one vote
for the support of R′. Otherwise, if a s matches both
R′ and R′′, and minprefix (s,R′′) ≤ minprefix (s,R′),
then s should not contribute to the support of R′.

A child node is set to active if its support is at least
min sup (the auxiliary support threshold). Otherwise,
the child node and its descendants are set to pruned.
After the expansion, node R is set to processed.

Once a rule R is chosen and added into the rule
set R, we need to adjust as follows the support and
the confidence of the other active rules in the rule



enumeration tree. If a sequence s uses another rule R′

as the action rule before R is chosen, and uses R as the
action rule because s has the shortest minimum prefix
matching R, then the support of R′ is decreased by 1.
After the adjustment, a node R′ and its descendants
may be pruned if the support of R′ is lower than
min sup.

The above best-first search will terminate due to
two facts. First, as the active rules grow to longer rules,
the supports monotonically decrease. Second, once a
rule is found, the supports of some active rules will also
decrease. The number of sequences in the training data
set is finite. Thus, the search procedure will terminate.

After the best-first search where a set of rules R
is selected, there still can be some sequences in SDB
which do not match any rules inR. We need to find new
features and new rules to cover them. We consider the
subset SDBR̄ ⊆ SDB which is the set of sequences not
matching any rules in R. We select features and mine
rules on SDBR̄ using the feature selection procedure
and the rule mining procedure as described before. The
only difference is that, when computing the utility of
features, we still use (E(SDB) − E(SDBf )) as the
entropy gain, but use wsupSDBR̄(f) as the weighted
support. The reason is that the feature selected should
be discriminative on the whole data set. Otherwise,
some biased or overfitting features may be chosen if we
use (E(SDBR̄)− E(SDBf )) as the entropy gain.

Iteratively, we conduct the feature selection and rule
mining until each sequence in the training data set SDB
matches at least one rule in R. The rule set R is used
as the classifier.

When a set of rules R is used in classification, a se-
quence is matched against all rules in R simultaneously,
until the first rule is matched completely. This earliest
matched rule gives the prediction.

3.4 Summary In this section, we give a sequential
classification rule approach towards early prediction.
The major idea is to mine a set of sequential classifica-
tion rules as the classifier. Discriminative features are
selected to construct rules. Earliness is considered in
both feature selection (through weighted support) and
rule mining (through prediction cost). An auxiliary sup-
port threshold is used to avoid overfitting. We conduct
best-first search for the sake of efficiency. The search of
features is complete and the search of rules is greedy.

4 The Generalized Sequential Decision Tree
Method

The decision tree model [22, 23] is popularly used for
classification on attribute-value data which does not
consider any sequential order of attributes. It is well rec-
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Figure 2: The idea of using a set of features as an
attribute in GSDT.

ognized that decision trees have good understandability.
Moreover, a decision tree is often easy to construct.

Unfortunately, the classical decision tree construc-
tion framework cannot be applied straightforwardly to
sequence data for early prediction. There are not nat-
ural attributes in sequences since sequences are not
attribute-value data. Thus, the first challenge is how to
construct some “attributes” using features in sequences.
One critical difference between attribute-value data and
features in sequences is that, while an attribute is de-
fined in every record of an attribute-value data set such
as a relational table, a feature may appear in only a
relatively small number of sequences. Thus, a feature
cannot be used directly as an attribute.

Moreover, in order to achieve early prediction, when
a feature is selected as an attribute in a sequential deci-
sion tree, we cannot wait to scan the whole sequence to
determine whether the feature appears or not. Instead,
we need to aggressively integrate the early prediction
utility in attribute composition.

In this section, we develop a generalized sequential
decision tree (GSDT for short) method.

4.1 The GSDT Framework As the critical idea
of attribute construction in GSDT, we use a set of
features A as an attribute such that at least one feature
in A likely appears in a sequence to be classified. In
classification of a sequence s, once a feature in A is
matched by a minimum prefix in s, s can be moved
to the corresponding child of the node for further
classification. Figure 2 illustrates the intuition.

Ideally, we can choose a set of features A as an
attribute such that each sequence to be classified has
one and only one feature in A. Such an attribute
mimics a node in a classical decision tree perfectly.
Unfortunately, such an ideal case may not happen
in practice. Due to the existence of noise and the
incompleteness of training data, a sequence may contain
none, one, or multiple features in A.

To tackle the problem, in GSDT, we allow a se-
quence in the training set to contain more than one
feature from A, and simultaneously ensure that each se-
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Figure 3: A GSDT.

quence in the training set contains at least one feature
in A. By covering the training data set well, we hope
that when the resulting decision tree is applied for clas-
sification of a unseen sequence, the sequence may likely
have at least one feature from A.

Figure 3 shows a GSDT example. At the root node,
a set of features {f1, f2, f3, f4} are chosen to form an
attribute A. As will be explained in Section 4.2, we
ensure that every sequence in the training set contains
at least one feature from A, and allow more than one
feature to appear in a sequence.

Attribute A divides the sequences in the training set
into 4 subsets: SDBf1 , SDBf2 , SDBf3 , and SDBf4 .
Each feature and the corresponding subset form a
branch. Different from a classical decision tree, the four
subsets are not disjoint. A sequence s in the training
set is in both SDBf1 and SDBf2 if both features f1 and
f2 appear in s. Therefore, GSDT allows redundancy in
covering the training data set.

The redundancy in covering the training set in fact
improves the robustness of GSDT. Due to the existence
of noise, a feature may randomly appear or disappear
in a sequence by a low probability. If a sequence is
captured by more than one feature and thus more than
one branch in GSDT, the opportunity that the sequence
is classified correctly by GSDT is improved.

Although we select the features at the root node
in a way such that each sequence in the training set
contains at least one feature at the root node, it is still
possible that an unseen sequence to be classified in the
future does not contain any feature at the root node. To
handle those sequences, we also store the majority class
(i.e., the class of the largest population) in the training
data set at the root node. If a sequence does not match
any feature at the root node, the GSDT predicts its
class using the majority class.

Once the root node is constructed, the subtrees
of the branches of the root node can be constructed
recursively. For example, in Figure 3, the branch of
feature f2 is further partitioned by choosing a set of

features B = {f21, f22}.
If a branch is pure enough, that is, the majority

class has a population of at least p0 where p0 is the user
specified parameter to express accuracy expectation,
a leaf node carrying the label of the majority class
is added. In Figure 3, the branch f4 is further split
by attribute C = {f31, f32}, and two leaf nodes are
obtained.

To avoid overfitting, similar to the classical decision
tree construction, we stop growing a branch if the
training subset in the branch has less than min sup
sequences, where min sup is the minimum support
threshold.

4.2 Attribute Composition Now, the only remain-
ing issue is how to select a set of features as an attribute.

Consider a training set SDB, we need to find a set
of features which have high early prediction utility and
cover all sequences in SDB. We also want the set of
features as small as possible to avoid overfitting.

We can extract features of high early prediction util-
ity using the top-k feature selection method described in
Section 3.2.2. However, finding a minimal set of features
covering all sequences in the training set is NP-hard due
to the minimum cover problem [6].

Here, we adopt a greedy approach. We set A = ∅
and SDB′ = SDB at the beginning. We consider the
top-k features of the highest early prediction utility
extracted using the method in Section 3.2.2. If a
sequence in SDB′ matches a feature in A, then the
sequence is removed from SDB′. We iteratively add to
A the feature which has the largest support in SDB′.
Such a feature matches the largest number of sequences
in the training set that do not have any feature in the
current A. The iteration continues until SDB′ is empty.
If the k features are used up but SDB′ is not empty yet,
another k features are extracted.

In the classical decision tree construction, at each
node, an attribute of the best capability to discrim-
inate different classes is chosen. In GSDT, impor-
tantly only the features of high early prediction utility
are considered for attribute composition. As explained
in Section 3.2.1, the utility measure defined in Equa-
tion 3.1 captures the capability of discriminating dif-
ferent classes and the earliness of prediction simultane-
ously. Using only the features of high utility in attribute
composition ensures the effectiveness of GSDT in clas-
sification accuracy and earliness.

4.3 Summary In this section, we develop GSDT, a
generalized sequential decision tree method for early
prediction. The central idea is to use a (small) set of
features having high early prediction utility to compose



an attribute. Redundancy is allowed in covering the
sequences in the training set to improve the robustness
of GSDTs. A GSDT is easy to construct.

Similar to the existing decision tree construction
methods, the hypothesis space of the GSDT method is
complete, i.e., all possible GSDTs are considered. The
GSDT method maintains only one current hypothesis
and does not backtrack. In each step, the GSDT
method uses all training examples and is insensitive to
errors in individual training examples.

Importantly, GSDT has good understandability.
The features appearing at the nodes closer to the
root are those likely appearing early in sequences and
effective for classification. This kind of information is
not captured by the sequential classification rule (SCR)
approach.

5 Empirical Evaluation

In this section, we report an empirical study on our
two methods using 3 real data sets and 1 synthetic
data set across different application domains. All the
experiments were conducted using a PC computer with
an AMD 2.2GHz CPU and 1GB main memory. The
algorithms were implemented in Java using platform
JDKTM 6.

5.1 Results on DNA Sequence Data Sets DNA
promoter data sets are suitable for testing our feature
extraction techniques for early prediction, because there
are explicit motifs on promoters. Also, the sequential
nature of DNA sequences can be used to simulate the
temporal orders. We use two promoter data sets of
prokaryotes and eukaryotes respectively in our exper-
iments.

5.1.1 Results on the E.Coli Promoters Data Set
The E. Coli Promoters data set was obtained from
the UCI machine learning repository [2]. The data
set contains 53 E. Coli promoters instances and 53
non-promoter instances. Every instance contains 57
sequential nucleotide (“base-pair”) positions.

Along with the data set, the results of some previous
classification methods [28] on it are also provided.
The accuracy of those results are obtained by using
the “leave-one-out” methodology. For the comparison
purpose, we also use “leave-one-out” in our experiments.
In methods SCR and GSDT, we set the maximal
length of a feature to 20. In each round of feature
extraction, we extract the top-30 features with the
highest utility scores. The results in Table 1 are
obtained by setting the accuracy parameter as p0 =
94%, minimal support threshold as s0 = 5%, and
the weight in Equation 3.1 as ω = 3. Those three

Method Error rate Comments
KBANN 4

106 a hybrid machine learning
system

SCR 7
106 Average prefix length for

prediction: 21
57

BP 8
106 standard artificial neu-

ral network with back-
propagation using one
hidden layer

GSDT 10
106 Average prefix length for

prediction: 20
57

O’Neill 12
106 ad hoc technique from the

bioinformatics literature
3-NN 13

106 a nearest-neighbor method
ID3 19

106 [22]

Table 1: The accuracy of several methods on the E. Coli
Data set. Except for SCR and GSDT, all methods use
the entire sequences in classification.

parameters are user-specified instead of being learned
automatically from data. Parameters selection will be
discussed in session 5.1.3.

In Table 1, the results from our methods and the
previous methods are listed in the error rate ascending
order. Our two methods can obtain competitive predic-
tion accuracy. Except for our two methods, the other
methods all use every nucleotide position as a feature
and thus cannot give early prediction. Our two meth-
ods use very short prefixes (up to 36.8% of the whole
sequence on average) to give early prediction.

Please note that, when counting the error rate of
SCR and GSDT in Table 1, if a testing sequence cannot
be classified using a sequential classification rule or a
path in the GSDT (i.e., the sequence does not match
any feature in a node of a path), we treat the case as an
error. In other words, we test the exact effectiveness of
the sequential classification rules generated by SCR and
the decision tree generated by GSDT. Thus, the error
rate reported in Table 1 is the upper bound. In practice,
the two methods can make prediction on an unmatched
sequence using the majority class.

Since the data set is small, the running time of
GSDT and SCR is 294 and 340 milliseconds, respec-
tively. SCR is slightly more accurate than GSDT but
uses a slightly longer prefix on average.

Some rules generated by SCR and some paths gen-
erated in GSDT are interesting. For example, rules
(paths) TATAA⇒promoter and ATAAT⇒promoter
generated by both SCR and GSDT are highly mean-
ingful in biology, since TATAAT is a highly conserved



Method Accuracy Avg. prefix len Runtime
SCR 87% 83.56 /300 142 seconds
GSDT 86% 85.64 /300 453 seconds

Table 2: Results on the drosophila promoters data set.

region on E. Coli promoters [8].

5.1.2 Results on the Drosophila Promoters
Data Set The Berkeley Drosophila Genome Project
provides a large number of drosophila promoter se-
quences and non-promoter coding sequences (CDS). We
use a set of promoter sequences of 327 instances and
a set of CDS of 527 instances provided in year 2002
by the project to test our two methods. The data set
is obtained from http://genomebiology.com/2002/3/
12/research/0087.1.

The length of each sequence is 300 nucleotide base
pairs. Compared to the E. Coli data set, this data set
has longer sequences and more instances. Drosophila
(fruit fly) is a more advanced species than E. Coli
(bacteria), which is expected to have more complex
mechanics on promoters. Those differences make the
feature extraction in this data set more challenging than
that in the E. Coli data set.

10-fold cross validation is used to test the two
methods. When setting the accuracy parameter as p0 =
90% and 95%, respectively, for SCR and GSDT, the
minimal support threshold as s0 = 10%, and ω = 8, the
accuracy and the runtime of SCR and GSDT obtained
are shown in Table 2.

SCR and GSDT reach similar accuracy, and both
use a short prefix in prediction, around 28% of the whole
sequence on average. GSDT is much slower than SCR
because the rules discovered for drosophila promoters
are more complex than those in the E. Coli data set.
SCR only needs to conduct feature extraction once,
but GSDT has to extract features for each node in the
decision tree. Moreover, GSDT has to select features to
build attributes.

5.1.3 Parameters selection On the E. Coli data
set, we test the effect of parameter ω in Equation 3.1 on
the accuracy and the early prediction of SCR and GSDT
using the setting described before except for varying
ω. Figure 4 shows the accuracy of the two methods
with respect to ω. When ω = 3, both methods reach
the highest accuracy. When ω > 3, the accuracy is
insensitive to ω.

Figure 5 shows the average length of prefix with
respect to ω. SCR and GSDT use the shortest prefix
length on average in early prediction when ω is 2 and 3,

respectively. When ω > 3, the average length of prefix
used in prediction is insensitive to ω. On the drosophila
promoters data set, similar experiments are conducted,
and the results are shown in Figures 6 and 7. We observe
that the best prediction accuracy is achieved by SCR
when ω = 8, and by GSDT when ω = 10.

On the drosophila promoters data set, we test the
effect of accuracy parameter p0 on accuracy and average
length of prefix in prediction. The results are shown in
Figures 8 (for SCR) and 9 (for GSDT).

The figures show the accuracy, the average length
of prefix in percentage, the unmatch rate (i.e., the
percentage of the test sequences which do not match
any rule in SCR or any path in GSDT, and are assigned
to the majority class). Figure 8 also shows the rule
error rate which is the percentage of test sequences
incorrectly classified by some sequential classification
rules. Correspondingly, Figure 9 shows the tree error
rate which is the percentage of the test sequences
incorrectly classified by some leaf nodes in the decision
tree. The figures are obtained by using the default
settings described before except for varying the p0 value.

When p0 increases, the rule error rate of SCR and
the tree error rate of GSDT decrease. The reason is that
the accuracy of each rule in SCR and each path in GSDT
increases. However, the unmatch rates in both methods
increase, since the number of qualified rules and that
of tree paths decrease. The overall effect is that the
accuracy of SCR and GSDT is high when choosing a
modest p0. The accuracy is not good when p0 is either
too low or too high. Choosing p0 = 0.9 as a starting
point and adjusting it to find the optimal result is the
way we used in all the experiments.

In those two methods, the support of a rule is not
required high. Usually, s0 is set between 5% and 10%.

5.2 Results on Time Series Data Set Early pre-
diction is important for the sequences capturing tempo-
ral relationships. In this subsection, we use two time
series data sets to test the efficacy of our methods.

The data sets we used contain continuous data.
Since our methods are designed for categorical se-
quences, we preprocess the time series as follows. We
apply k-means discretization on the training data set
to get the discretization threshold, and transform the
training data set into discrete sequences. The test data
set is discretized using the same threshold learned from
the training data set. In classification, the discretization
is performed online. The results in the following session
are obtained by setting k = 3 for the discretization.

5.2.1 Results on the Synthetic Control Data set
The synthetic control data set from the UCI machine
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Figure 4: Accuracy with respect to
weight on the E. Coli data set.
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Figure 5: Average length of prefix
with respect to weight on the E. Coli
data set.
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Figure 6: Accuracy with respect to
weight on the Drosophila data set.
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Figure 7: Average length of pre-
fix with respect to weight on the
Drosophila data set.
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Figure 8: Performance of SCR with
respect to p0.
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Figure 9: Performance of GSDT
with respect to p0.

learning repository [2] contains 600 examples of control
charts synthetically generated by the process. There are
six different classes of control charts: normal, cyclic,
increasing trend, decreasing trend, upward shift, and
downward shift. Every instance contains 60 time points.

We randomly split the data set into two subsets
of the same size, i.e., 300 instances as the training
examples, and the other 300 instances as the testing
examples. We set p0 = 0.95, w = 3, s0 = 10%,
k = 30, and the maximal length of features as 20 to
obtain the results in Table 3. [10] shows that, for
time series classification, one-nearest-neighbor (1NN)
with Euclidean distance is very difficult to beat. In
Table 3, the results of 1NN classification with Euclidean
distance using the whole sequences and using prefixes
with different lengthes are shown for comparison.

From the results of 1NN classification, we can see
that there is a big accuracy drop from using prefixes of
length 40 to using prefixes of length 30. It indicates that
the prefixes till length 40 contain the important features
for classification. In GSDT and SCR, the average length

used in prediction is 27 and 33. It demonstrates that our
feature selection procedure can capture the key features
within suitable length. GSDT and SCR perform better
on sequences in classes normal, cyclic, increasing trend
and decreasing trend than in class upward shift and
downward shift. The reason is that upward shift and
downward shift sequences are very similar to increasing
and decreasing sequences, respectively, especially after
discretization. To correctly classify the upward and
downward shift sequences, a classifier has to capture
the shift regions accurately. However, the shift regions
are similar to some noise regions in other classes, which
make the early prediction inaccurate.

SCR and GSDT do not perform as well as 1NN on
this data set for early prediction. One major reason
is that SCR and GSDT are designed for categorical
sequences.

If we remove the sequences in the classes of upward
shift and downward shift, the performance of the two
methods, as shown in Table 4, improve substantially.
The accuracy is improved further and the average length



Method Normal Cyclic Increasing Decreasing Upward shift Downward shift Avg. prefix len.

SCR 0.96 0.96 0.80 0.76 0.36 0.46 33/60
GSDT 0.98 0.88 0.92 0.96 0.42 0.36 27/60
1NN 1 1 1 0.98 0.94 0.9 60/60

1NN (on prefix) 0.48 1 1 1 0.54 0.54 30/60
1NN (on prefix) 0.98 1 0.98 0.98 0.82 0.74 40/60
1NN (on prefix) 1 1 1 0.98 0.9 0.84 50/60

Table 3: Results on the Synthetic Control data set.
Method Normal Cyclic Increasing Decreasing Avg. prefix len.

SCR 0.96 0.90 0.98 1.00 13/60
GSCT 0.96 0.92 0.98 1.00 15/60
1NN 1 1 1 1 60/60

1NN (on prefix) 0.84 1 0.92 0.96 20/60
1NN (on prefix) 1 1 1 1 30/60

Table 4: Results on the Synthetic Control data set without upward/downward shift sequences.

of prefix is shortened remarkably. Our two method
cannot beat 1NN when the prefix is longer than 30.
But when the prefix is reduced to 20, SCR and GSDT
outperform 1NN by using average prefixes of 13 and 15
respectively.

The features at the root node of a GSDT have good
utility in early prediction. In the complete synthetic
control data set (i.e., containing sequences of all 6
classes), on average, a sequence matches one of the
features at the root node with a prefix of length 14.54,
which is substantially shorter than the length of the
whole sequence (60). Moreover, when the sequences
in classes upward/downward shift are excluded, the
average length of prefix matching one of the features
in the root node is further reduced to 11.885.

5.2.2 Results on Physiology ECG Data Set
PhysioBank (http://physionet.org/physiobank/)
provides a large amount of time series physiology data.
A set of ECG data from physioBank is normalized
and used in [30]. We downloaded the data set from
http://www.cs.ucr.edu/~wli/selfTraining/. The
data set records the ECG data of abnormal people and
normal people. Each instance in the normalized data
set contains 85 time points. As same as in [30], we
use 810 instances as the training examples and 1, 216
instances as the test examples.

In Figure 10, the prediction accuracy by using
various lengths of prefixes in 1NN is shown by the
curve. From the result, we can see this data set has
highly distinguishing feature around the very beginning
of the sequence. When p0 = 99%, w = 3, k = 30,
and s0 = 10%, SCR reaches a prediction accuracy as
0.99 using average prediction prefix of length 17.3 out
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Figure 10: Results Comparison on ECG Data.

of 85, which is the asterisk point in the figure. Under
the same setting, GSDT reaches an accuracy of 0.98
by using an average prefix of length 11.6, which is the
diamond point in the figure. Both methods can make
prediction with competitive accuracy compared to 1NN
and using a very short prefix on average. SCR takes
6.799 seconds for training and predication, while GSDT
takes 491.147 seconds.

5.3 Summary In this section, we report an empirical
study on DNA sequence data sets and time series data
sets. The results clearly show that SCR and GSDT can
obtain competitive prediction accuracy using an often
remarkably short prefix on average. Early prediction is
highly feasible and effective. SCR tends to get a better
accuracy, and GSDT often achieves earlier prediction.
SCR is often faster than GSDT.



6 Conclusions

In this paper, we identify the novel problem of min-
ing sequence classifiers for early prediction, which has
several important applications. As the first attempt to
tackle the challenging problem, we propose two inter-
esting methods: the sequential classification rule (SCR)
method and the generalized sequential decision tree
(GSDT) method. A so-called early prediction utility is
used to select features to form rules and decision trees.
An extensive empirical evaluation clearly shows that our
two methods can achieve accuracy comparable to the
state-of-the-art methods, but often make prediction us-
ing only very short prefixes of sequences. The results
clearly indicate that early prediction is highly feasible
and effective.

Although we made some good initial progress in
early prediction, the problem is still far from being
solved. For example, more accurate methods should be
developed and methods on continuous time series are
needed.
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