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Abstract—Limited energy supply is one of the major constraints in wireless sensor networks. A feasible strategy is to aggressively

reduce the spatial sampling rate of sensors, that is, the density of the measure points in a field. By properly scheduling, we want to

retain the high fidelity of data collection. In this paper, we propose a data collection method that is based on a careful analysis of the

surveillance data reported by the sensors. By exploring the spatial correlation of sensing data, we dynamically partition the sensor

nodes into clusters so that the sensors in the same cluster have similar surveillance time series. They can share the workload of data

collection in the future since their future readings may likely be similar. Furthermore, during a short-time period, a sensor may report

similar readings. Such a correlation in the data reported from the same sensor is called temporal correlation, which can be explored to

further save energy. We develop a generic framework to address several important technical challenges, including how to partition the

sensors into clusters, how to dynamically maintain the clusters in response to environmental changes, how to schedule the sensors in

a cluster, how to explore temporal correlation, and how to restore the data in the sink with high fidelity. We conduct an extensive

empirical study to test our method using both a real test bed system and a large-scale synthetic data set.

Index Terms—Energy efficiency, data collection, spatiotemporal correlation, wireless sensor networks.

Ç

1 INTRODUCTION

Awireless sensor network may consist of a large number
of sensor nodes, and each node is equipped with

sensors, microprocessors, memory, wireless transceiver,
and battery. Once deployed, the sensor nodes form a
network through short-range wireless communication.
They collect environmental surveillance data and send
them back to the data processing center, which is also called
the sink node.

An application domain where wireless sensor networks
are broadly used is environmental data collection and
surveillance. Imagine that scientists want to collect
information about the evolving process of a particular
phenomenon over a given region. They can deploy a
wireless sensor network in the region, consisting of a
large number of geographically distributed sensor nodes.
Each sensor node periodically collects local measures of
interest such as temperature and humidity and transmits
them back to the sink node. Each sampling value is
associated with the sensor’s location. In the sink node, a
snapshot of the region is obtained by assembling the
received sampling values in the corresponding locations.
Snapshots may be periodically generated, one for each
time instant at a given time granularity. These snapshot

sequences constitute a SpatioTemporal Data Map
(STDMap) [3]. Building up an STDMap is actually the
target of a lot of applications.

STDMaps could be considered as analogous to video
recording of the monitored region. The playback quality of
a piece of a video clip is determined by its time resolution
(frame rate) and spatial resolution (the number of pixels).
Similarly, the observation fidelity of an STDMap is decided
by its spatiotemporal resolution as well. For a given
requirement on the observation fidelity, a certain spatio-
temporal resolution might suffice and, hence, it is unneces-
sary to ask all the sensor nodes to sample and report data as
fast as they can. Since sampling and wireless communica-
tion consume much energy, energy consumption can be
significantly reduced by turning off redundant sensor
nodes. Fortunately, due to the pervasive existence of
spatiotemporal correlation in the sampling data, data
transmission can be reduced aggressively for energy saving
without a large degradation of observation fidelity.

Spatial correlation usually exists among the readings of
close sensor nodes, meaning that the measures from a
sensor node may be predicted from that of its nearby sensor
nodes with high confidence. Therefore, given a certain
requirement on spatial accuracy, only part of the sensor
nodes should be required to work for sampling and data
transmission in order to save energy.

Unlike spatial correlation, temporal correlation exists in
the time series from a single sensor node, meaning that the
future readings of a sensor node can be predicted based on
the previous readings from the same node. The correlation
can be captured by mathematical models such as the linear
model or the Auto Regressive Integrated Moving Average
(ARIMA) model [8]. Therefore, the time series can be
approximated by suitable mathematical models, and the
number of model parameters is usually significantly less
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than the length of the whole series. Transferring the model
parameters, instead of the raw time series, can significantly
decrease the energy consumption on communication.

This paper aims to save energy in continuous data
collection applications in Wireless Sensor Networks (WSNs)
by exploiting the spatiotemporal correlation. To exploit the
spatial correlation, we partition the sensor nodes with
similar observations into a cluster. Within each cluster, the
reading of any sensor node can be approximated by any
other sensor nodes within an error bound. Therefore, the
sensor nodes within a cluster can be scheduled to work
alternatively to save energy. We model this clustering
problem as a clique-covering problem and propose a greedy
algorithm to solve it. Also, we propose a randomized
scheduling algorithm to balance the energy consumption.

To exploit temporal correlation, we adopt the piecewise
linear approximation technique, that is, approximating the
time series with a sequence of line segments. In order to
minimize the energy consumption on data transmission with
certain accuracy at the sink node, we model the problem as an
optimization problem, called the PLAMLiS (Piecewise Linear
Approximation with Minimum number of Line Segments)
problem. The PLAMLiS problem can be solved in polynomial
time by being converted to a shortest path problem [18].
However, the optimal solution requires excessive computing
and memory resources, which might be prohibitive for sensor
nodes. Therefore, we propose a lightweight greedy algorithm
to solve it. The greedy algorithm has the time complexity of
Oðn2 lognÞ, where n is the number of data items; it can be
easily integrated into our Energy-Efficient Data Collection
(EEDC) framework and work together with the dynamical
clustering and the randomized scheduling algorithm, leading
to further energy saving.

Our EEDC framework is aware of the spatiotemporal
correlation and can achieve adaptive sampling in both time
and spatial domains. Adaptive sampling can dynamically
adjust the temporal and spatial sampling rate aligning with
the phenomenon changes while a given accuracy require-
ment is always satisfied. When a phenomenon varies slowly
in the time domain, the number of line segments required
for approximation with certain accuracy decreases and,
hence, less sampling data is transmitted to the sink node.
Therefore, the actual temporal sampling rate decreases, and
oversampling is avoided during the slow-changing period.
Similarly, when a phenomenon varies slowly in the spatial
domain and the observations are similar in a larger area, the
size of each cluster increases and, hence, the total number of
cluster decreases. Since the number of simultaneous work-
ing nodes is proportional to the number of the clusters, the
actual spatial sampling rate decreases in this case.

In Section 2, we review related work and point out the
differences between our method and other existing meth-
ods. In Section 3, we propose the EEDC framework. In
Section 4, we explore spatial correlation, and in Section 5,
we propose a sensor-scheduling scheme based on spatial
correlation. In Section 6, we explore temporal correlation for
further energy saving. In Section 7, we perform a
comprehensive performance evaluation of the EEDC frame-
work based on both a real test bed and a large synthetic
data set. The paper is concluded in Section 8.

2 RELATED WORK

WSNs are generally used in two types of applications: event
detection or continuous data collection. The main task of
event detection applications is to detect and report the

occurrences of interesting events to the sink node. Each
sensor device has a coverage area in which events will be
detected with high confidence. Therefore, a high detection
rate of interested events requires a high coverage rate. The
sensor node does not transmit data to the sink unless events
are detected. In this context, the data quality is directly
determined by the coverage rate. Coverage-based schedul-
ing methods [10], [26], [29] are widely used in event
detection applications in WSNs.

Continuous data collection applications require sensor
nodes to continuously sample local environmental measures
such as temperature and humidity and transmit them back to
the sink node. Each sample of an individual sensor node is
associated with the location and time. Then, the sink node
assembles all the received samples to reproduce the evolving
process of certain physical phenomenon in the monitored
area. In this context, the data quality is directly determined by
the spatial and temporal resolution of these samples. In order
to save energy, it is desirable that sensor nodes can adaptively
adjust their spatial and temporal sampling rates, according to
the changes of physical phenomenon. Adjusting the spatio-
temporal sampling rate is a sensor-scheduling problem, that
is, coordinating the on/off operation of distributed sensor
nodes to ensure data quality.

Achieving energy efficiency is more challenging for
continuous data collection than for event detection applica-
tions, due to a larger amount of data transmitted in the
former. Most existing coverage-based scheduling methods
assume the homogeneity of the monitored area, that is, the
evolving pattern of phenomenon is the same in the whole
area. They may be effective for event detection applications
but are inapplicable in continuous data collection, for which
any a priori assumption on the homogeneity of a phenom-
enon may be inaccurate. Spatial and temporal sampling rates
must be adaptively adjusted in continuous data collection.

Several pioneering methods have been proposed to
adjust the spatial sampling rate according to the statistic
features of the monitored phenomenon. In [9], a linear
model is proposed to capture the spatiotemporal correlation
in sampling data from different sources. With this model,
most sensor nodes can be turned off, and their readings can
be estimated with certain accuracy by using the linear
combination of data from working sensor nodes. However,
in the real world, a lot of systems may not be linear.
Furthermore, the method of choosing the right working
nodes has not been discussed in [9].

An approach to adjusting the spatial sampling rate with the
help of mobile sensor nodes is proposed in [1]. Mobility,
combined with an adaptive algorithm, allows the system to
get the most efficient spatiotemporal sampling rate to achieve
the specified dataaccuracy.Mobility canalso makethe system
respond quickly to unpredictable environmental changes.

To exploit temporal correction, piecewise linear approx-
imation has been broadly studied in the database research
community and is widely used to classify, cluster, and index
time series. The basic idea is to approximate complex time
series with pieces of line segments. Many algorithms have
been proposed [7], [22], [14], [15], [25], [27]. These algorithms
are supposed to execute on a server, which has enough
computational resources for mining large time series online
or offline. Unfortunately, sensor nodes in wireless sensor
networks are very limited in computational and energy
resources, making existing methods not effective.

Our work aims at energy-efficient continuous data
collection by dynamically exploiting spatiotemporal correla-
tion. Unlike other EEDC techniques, exploiting spatial
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correlation such as Slepian-Wolf coding [2], [4] and model-
driven data acquisition [6] where the spatial correlation is
assumed to be known a priori, our method does not make any
assumption on the spatial correlation model. Unlike the
research exploiting the spatial correlation in in-network
aggregation [21], [24], [28], [30], where redundant data are
aggregated in intermediate nodes on their way to the sink, our
adaptive sampling approach utilizes the spatial correlation in
the context of sensor scheduling. Our method determines
data redundancy among sensor nodes in runtime to avoid the
generation and transmission of redundant data. That is, our
method depresses redundant data in the first mile and does not
transmit them into the network at all. So, we can expect that the
adaptive sampling approach can achieve much higher energy
savings than the in-network data aggregation.

The novelty of our method is described as follows. First,
our method is among the first several that exploit the
spatiotemporal correlation in sensory data in the context of
sensor scheduling rather than the in-network aggregation.
Second, our method is purely data driven and does not
make any assumption on the sensor nodes’ sensing range or
the homogeneity of the monitored area. Third, our method
dynamically adjusts spatial and temporal sampling rates
according to phenomenon changes. Last, we abort powerful
but costly techniques on mining temporal correlation and
focus on lightweight piecewise linear approximation to
achieve a good balance among accuracy, optimization, and
resource consumption.

3 THE EEDC FRAMEWORK

In this paper, we assume that all the sensor nodes are within a
single-hop radio transmission to the sink node or to a local
center. With this setting, we do not need to consider network
partitioning due to sensor scheduling. As can be seen, the sink
node may become a bottleneck for large-scale networks.
When a network becomes very large, the EEDC framework
can be easily extended to a hierarchical architecture, as shown
in Fig. 1. A commonly used strategy is to divide the network
into several subnetworks, with each depending on a local
center for local data collection and long-distance radio
transmission to the sink node [20]. In this case, the EEDC
framework should be implemented in the local centers, and a
local center could be considered as a local sink node. In the
following, the sink node should be understood as a local
center if the hierarchical network architecture is assumed.

Compared to other existing sensor-scheduling schemes
that rely on sensing coverage and the geographic distribu-
tion of sensors [10], [26], [29], EEDC distinguishes itself in
that it is data aware and makes scheduling decisions
according to the spatiotemporal correlation of phenomena.

Compared to sensor nodes, the sink node usually has a
much larger memory and more powerful computing
capability. Such an asymmetry between the sink node and
the sensor nodes determines that a good design for data
collection should not put heavy burdens on sensor nodes.
Instead, the heavy duties should be assigned to the
powerful sink node. Our EEDC framework follows this
design principle and is shown in Fig. 2. As we can see, the
functionalities in sensor nodes are much simpler than those
in the sink node.

In a sensor node, the scheduler module simply extracts
the working schedules received from the sink node and
makes the sensor node work/sleep according to the
schedule. In its working shift, it obtains the sensor readings
periodically and puts the reading to the buffer. When the
buffer is full, the PLAMLiS module takes the readings in the
buffer as a time series, approximates it with the PLAMLiS
algorithm, and sends the calculated line segments to the
output interface.

In contrast, the sink node takes most workloads,
including four main functional modules, as shown in Fig. 2:

1. Data storage module. It stores all sampling data
received from the sensor nodes. This module records
a time series for each sensor, which is fed into the
dissimilarity measure module as input data.

2. Dissimilarity measure module. It calculates the pairwise
dissimilarity measure of time series. The dissimilarity
measure is application specific, and it is impossible to
use a common dissimilarity measure to accommodate
all application scenarios. As such, this module
assumes that the dissimilarity measure is provided
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by the user for a specific application scenario. We will
introduce the details of the dissimilarity measure used
in our experimental study in Section 4.2.

3. Clustering module. Given the dissimilarity computed
by the dissimilarity measure module and a maximal
dissimilarity threshold value max dst, this module
divides the sensor nodes into clusters such that the
dissimilarity of any two sensor nodes within a
cluster is less than max dst. The details of the
clustering algorithm will be discussed in Section 4.3.

4. Sensor node working schedule generator. It generates a
working schedule for each sensor node based on the
clusters obtained from the clustering module. The
details of sensor scheduling will be discussed in
Section 5.

With the EEDC framework, the data collection procedure
in a sensor network could be divided into the following
three phases:

1. Data accumulation. In this phase, each sensor node
keeps sampling, processes the samples with the
PLAMLiS algorithm when the data buffer is full, then
transmits the approximated time series to the sink
node. The sink node records the received time series
for each sensor node. After collecting enough data, the
sink node calculates the dissimilarity measure be-
tween any two time series. It terminates this phase
whenever the dissimilarity measure among most of
the collected time series remains roughly stable. Note
that, in some applications, the dissimilarity measure
among some sensor nodes may never become stable
due to environmental noise or fast-changing phenom-
ena. In this situation, it may be very hard, if not
impossible, to explore data correlation for energy
saving for these nodes. In other words, the sensors that
do not exhibit any similarity to other sensors cannot
use spatial correlation for energy saving and will not
be considered in the following clustering phase.

2. Clustering. In this phase, the sink node uses a
clustering algorithm to partition sensor nodes
according to the dissimilarity measure calculated in
the first phase. The output of the clustering
algorithm is a set of clusters, and inside each cluster,
the dissimilarity measure between two arbitrary
sensor nodes is smaller than a given threshold value.
Consequently, the whole field is divided into pieces
of subregions, each of which is covered by a
corresponding cluster of sensor nodes. The observa-
tion at any point in this subregion can be approxi-
mated by the observation of any sensor node within
the cluster covering this subregion.

3. Saving and dynamic clustering. In this phase, the sink
node sends out the decision of clusters to all sensor
nodes and requires the sensor nodes within the same
cluster to work alternatively to save energy. In the
meantime, the sink node monitors large variations
within a cluster and dynamically adjusts the cluster.

Note that, after clustering, the environment may change
and, thus, the previous clusters may not be valid anymore.
It is desirable to adaptively change the clusters in response
to the changes of the spatial correlation. The details of
reclustering will be discussed in Section 5 when we
introduce the scheduling algorithm.

In terms of data restoration quality, if the approximation
error is bounded by �1 in the PLAMLiS algorithm and by �2
in the clustering algorithm, the final approximation error of

each reading at any point in the restored STDMap is upper
bounded by �1 þ �2. Our experimental results show that the
approximation error is actually far below this upper bound
in our experimental scenario. The details will be disclosed
in Section 7.8. Note that the order of performing the
PLAMLiS algorithm and clustering algorithm is inter-
changeable since we exploit the spatial correlation and
temporal correlation orthogonally, and the final approx-
imation error bound is the same regardless of the order.
However, executing PLAMLiS first can save energy in the
data accumulation phase.

4 EXPLOITING SPATIAL CORRELATION

4.1 Motivation and Methodology

The purpose of continuous data collection applications is to
construct the STDMap by restoring the spatiotemporal
evolving process of phenomenon in the field for further
online or offline analysis. The restoration is based on a
sequence of snapshots, each of which consists of local
measures from geographically distributed sensor nodes.
Therefore, in such applications, sensor nodes must report
their local measures of interest such as temperature and
light intensity to the sink node continuously. Also, the
density of the measure points in a field should be
sufficiently high so that the spatial distribution of the
measures can be restored with high quality.

As discussed in Section 2, the coverage-based scheduling
methods [10], [26], [29], which aim at event detection
applications, are not suitable for continuous data collection
applications. The inherent problem of coverage-based
scheduling methods is that they only rely on the static
structure of the sensor networks but are unaware of the data
reported by the sensor nodes. Intuitively, the correlation
between the data reported by the sensor nodes may help
to reduce the spatial sampling rate of the sensor nodes
substantially.

Example 1 (Intuition). The readings reported by a sensor
node over time form a time series. Suppose that the time
series of sensor nodes x, y, and z were very similar in the
past. Thus, we may conjecture that the readings of x, y,
and z would also likely be similar in the future.
Therefore, instead of scheduling the three sensor nodes
reporting data simultaneously, we can let two out of the
three sensor nodes report at a time, and all the three take
turns to report. Such a schedule has the following two
advantages:

. Energy saving. Each sensor node saves 33.3 percent
energy on reporting data.

. Quality guarantee. When the three sensors are still
correlated, we can obtain the data with high
quality and also save energy. On the other hand,
even if the readings of one sensor node become
dissimilar to the other two, we can still detect the
divergence with a minor delay. Then, an updated
schedule can be made based on the change.

Motivated by the intuition in Example 1, we develop a
dynamic clustering and scheduling approach to solve the
typical data collection problem in continuous data collection
with wireless sensor networks. Our solution is to dynamically
group sensor nodes into a set of disjoint clusters such that the
sensor nodes within a single cluster have strong spatial
correlation and, hence, great similarity in observations.
Therefore, all the sensor nodes in a cluster can be treated

LIU ET AL.: AN ENERGY-EFFICIENT DATA COLLECTION FRAMEWORK FOR WIRELESS SENSOR NETWORKS BY EXPLOITING... 1013



equally, and at any time instant, only a small fraction of sensor
nodes needs to be active, serving as the representatives for the
whole cluster. All the rest of the sensor nodes can sleep
without much degradation of observation fidelity. To balance
the energy consumption, the sensor nodes within a cluster
can share the workload equally.

The clustering operation is based on the dissimilarity
measure of time series consisting of historical observations
from individual sensor nodes. The degree of spatial correla-
tion can be evaluated by the dissimilarity measure. For two
locations with high spatial correlation, their corresponding
time series are usually associated with a low dissimilarity
measure. Therefore, in a very smooth subregion, the observed
measure has only small changes within the subregion; that is,
the difference between observations at any two locations
within the subregion may be quite small. Hence, the working
sensor nodes within this subregion could be sparse without
losing the observation fidelity. In contrast, in a fast-changing
subregion, the working sensor nodes should be dense. By
setting an appropriate dissimilarity measure threshold value
to distinguish similar nodes from dissimilar nodes, the spatial
sampling rate will match the spatial variation of the observed
physical phenomena. A smaller threshold value increases the
spatial sampling rate and the observation fidelity, but it
requires more energy consumption. In this sense, the
dissimilarity measure threshold value constitutes a degree
of freedom that could be tuned to balance the trade-off
between observation fidelity and energy consumption.

4.2 Dissimilarity Measure

As described above, the time-ordered data sequence at each
sensor node forms a time series, and the clustering
algorithm is based on the dissimilarity between the time
series of the sensor nodes. Nevertheless, the notion of
dissimilarity of complex objects such as time series is
application specific and task oriented, and defining dissim-
ilarity is nontrivial [12]. However, in the context of
continuous data collection, we believe that the magnitude
and the trend of time series are of most concern, since they
determine the general shape and the trend of the phenom-
ena’s evolving curve. Therefore, we define the following
two metrics to evaluate the difference of the two time series.

Definition 1: magnitude mm-dissimilarity. Two time series

Xfx1; x2; . . . ; xqg and Y fy1; y2; . . . ; yqg are magnitude

m-dissimilar if there is an ið1 � i � qÞ such that

jxi � yij > m.

Definition 2: trend tt-dissimilarity. Two time series Xfx1;

x2; . . . ; xqg and Y fy1; y2; . . . ; yqg are trend t-dissimilar if

q1

q
< t;

where q1 is the total number of pairs ðxi; yiÞ in the time series that

satisfy rxi �ryi � 0, rxi ¼ xi � xi�1, ryi ¼ yi � yi�1,

1 � i � q � 1.

If we put geographical constraints on the dissimilarity
measure of two sensor nodes, for instance, any two sensor
nodes whose geographical distance is larger than a thresh-
old value are considered to be dissimilar [13], the computa-
tional complexity of calculating pairwise dissimilarity can
be greatly reduced. Thus, we constrain that the geographic
distance between any two sensor nodes that are considered

similar must be at most gmax dist, where gmax dist is a
given maximal distance threshold.

In general, we want the dissimilarity measure to have a
straightforward and practical meaning. Assume that
gdstðSx; SyÞ denotes the geographical distance between
sensor node Sx and sensor node Sy, and assume that
gmax dst is the user-defined threshold value for geogra-
phical distance. In our later experiments, we put two time
series X and Y into different groups if 1) they are
magnitude m-dissimilar, 2) they are trend t-dissimilar, or
3) gdstðSx; SyÞ is greater than gmax dst.

4.3 Clustering Sensor Nodes

Given the pairwise dissimilarity values, we need a cluster-
ing algorithm to partition the sensor nodes into exclusive
clusters such that, within each cluster, the pairwise
dissimilarity measure of the sensor nodes is below a given
intracluster dissimilarity threshold max dst, which is
defined by the tuple ðm; t; gmax dstÞ in our example. All
sensor nodes in the same cluster are correlated. In each
cluster, only as few as one sensor node needs to work at any
time instant. Because of this reason, it is desirable to
minimize the number of clusters to maximize the energy
savings.

Interestingly, the above problem could be modeled as a
clique-covering problem. We construct a graph G such that
each sensor node is a vertex in the graph. An edge ðu; vÞ is
drawn if the dissimilarity measure between vertex u and
vertex v is less than or equal to the given intracluster
dissimilarity measure threshold max dst. Clearly, a cluster
is a clique in the graph. Then, the clustering problem is to
use the minimum number of cliques to cover all vertices in
the graph.

The clique-covering problem is proven NP-complete and
does not even allow constant approximation [19], [31]. Hence,
we adopt a greedy algorithm to obtain a rough approxima-
tion, as shown in Fig. 3. The basic idea of the algorithm is to
heuristically find cliques that cover more vertices that have
not been clustered. Heuristically, the vertices with larger
degrees may have a better chance of appearing in larger
cliques. Thus, the search starts from the vertex with the largest
degree until all vertices are covered. The output of this
algorithm is a set of cliques that cover all vertices.

5 SENSOR SCHEDULING BASED ON SPATIAL

CORRELATION

5.1 Randomized Intracluster Scheduling Method

Unlike the round-robin scheduling method, which maintains
a single active sensor node within each cluster [17], we use
multiple active sensor nodes per cluster at an instant. This has
several advantages. First, multiple active sensor nodes can
improve data reliability. When multiple active sensor nodes
per cluster are used, the data can be restored as long as at least
one packet out of the multiple active sensor nodes reaches the
sink node. Second, it is possible that a cluster needs to be split
into two or more clusters due to spatial correlation changes
caused by the environmental changes. Multiple active sensor
nodes can help to shorten the delay of detecting spatial
correlation changes, making the system quickly respond to
such changes within a single cluster.
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Randomized Intracluster Scheduling Method. The time
is divided into a sequence of time slots, each with a length
of T . T is the time needed to collect q samples. (This is
because we need q samples to evaluate the dissimilarity
between the two sensor nodes.) For each time slot, the
sensor node goes into work state with a probability �. Note
that � varies among clusters. A big cluster should have a
small � and a small cluster should have a large � in order to
obtain the same detection delay for cluster split. Note that
the detection delay is the interval between the time instant
when an event occurs and the time instant when it is first
detected by an active sensor node.

Randomization balances the workload distribution
among all sensor nodes without introducing any commu-
nication overhead for coordination. Besides, by adjusting
the value of �, we can easily control the trade-off between
energy saving and detection delay for cluster split.

The sink node calculates the pairwise dissimilarity of
active sensor nodes within each cluster at the end of each
time slot, after it successfully collects the latest q samples
from each active sensor node. The current cluster should be
split if the sink node finds that there is at least one active
sensor node reporting a significantly different data.

5.2 Analysis on Detection Delay for Cluster Split

Theorem 1. With the randomized intracluster scheduling

method, the expectation of the detection delay for cluster

split Td is no greater than T 1
� 1�ð1��Þn�1½ � �

1
2

� �
, where n is

the size of the cluster.

Proof. We only consider the case that the environment
changes make a current cluster split into two clusters. If
we can detect the case that the current cluster must be
split into two clusters, we can certainly detect the case of
splitting the cluster into more clusters, since the latter
case is simply the recurrence of the former one.

Suppose that n sensor nodes are split into two clusters
C1 and C2 of size n1 and n2 ðn1 þ n2 ¼ nÞ, respectively.

Without losing generality, we assume that the split
occurs at slot 1. Therefore,

Prfsplit is detected at slot 1g
¼ Prfat least one node is active in C1g�
Prfat least one node is active in C2g
¼ 1� ð1� �Þn1½ � � 1� ð1� �Þn2½ �:

Denote the above probability by p. We have

Prfsplit is detected at slot 2g
¼ Prfsplit is not detected at slot 1g�
Prfsplitting is detected at slot 2g
¼ ð1� pÞ � p:

Similarly,

Prfsplit is detected at slot ig ¼ ð1� pÞi�1 � p:

So,

Td ¼
X1
i¼1

Z iT

ði�1Þ�T

t� Prfsplitting is detected at slot ig
T

dt

¼ T 1

p
� 1

2

� �
:

Td reaches its upper bound when p is minimum.
Conditioned on n1 > 0, n2 > 0, and 0 < � � 1, p is
minimum when n1 or n2 equals 1. That is, it is hardest
to detect when only one sensor node deviates from the
rest of the sensor nodes in a cluster.

Therefore,

Td � T
1

�½1� ð1� �Þn�1�
� 1

2

 !
:

ut
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Since the actual working time of each sensor node is
proportional to �, based on Theorem 1, we can set � to the
minimum value such that the specified split-detection delay
can be met while the actual working time of each sensor
node is minimized.

Note that, with the randomized intracluster scheduling
scheme proposed above, it is possible that, in a particular
time slot, all the sensor nodes in a cluster happen to sleep
and, hence, the sink node cannot restore the readings in this
time slot. A solution to this problem is to use the round-
robin scheduling method in our previous work [17] together
with the randomized intracluster scheduling method. The
round-robin scheduling method evenly distributes the
workload among the nodes in a cluster and guarantees at
least one node active in any time slot. In the working time
slot assigned by the round-robin scheduling, the sensor
node must go into work state. For the rest of the time slots,
the sensor node randomly goes into the sleep/work state
with the probability of �. In this case, the number of
working nodes in any time slot is no less than that in the
purely randomized intracluster scheduling. Therefore, the
upper bound of the expectation of the detection delay for
cluster split still holds for the joint scheduling scheme.

5.3 Energy Saving

With joint round-robin and randomized scheduling, it is
obvious that, after the formation of clusters, for any sensor
node within a cluster of size n, the average amount of data it
reports to the sink node is only a fraction �ðn�1Þþ1

n of the
amount of data without scheduling.

Note that the amount of energy saving varies with the
size of the cluster. For sensor nodes within a large cluster, a
long lifetime can be expected due to a low workload. For
sensor nodes within a small cluster, their workload is high
and, thus, the lifetime is short, due to low data redundancy
in the vicinity. In other words, they are critical nodes, and
the absence of their measures results in a large information
loss. In this case, there is no room for the scheduling
algorithm to exploit spatial correlation for energy saving.
The only solution to prolong the lifetime of these critical
nodes is to deploy more sensor nodes in their vicinity to
share their workload.

5.4 Dynamic Adjustment

Once the sink node detects that a cluster should be split, it
asks all sensor nodes in the corresponding cluster to work
simultaneously. Then, the clustering algorithm will be
executed to regroup these sensor nodes into several clusters
in response to local spatial correlation changes. It is obvious
that the number of clusters will keep increasing, since there
are only splitting operations in the above adjustment. In the
worst case, most sensors in the network will be woken up to
work simultaneously. To avoid this situation, the sink node
can recluster the whole network when the current number
of clusters becomes significantly larger than the number of
clusters at the previous network-wide clustering.

When the spatial correlation within a subregion remains
stable, the frequency of dynamic adjustment of clusters
should be very low. We stress that spatial correlation is quite
stable for many applications even if the monitored phenomenon
changes dramatically. For instance, in the experimental

results presented in Section 7.2, we changed light strength
very quickly by tuning the dimmer of a desk lamp. The
sampling data from the sensors within the same box
remained similar no matter how fast we changed the light.

5.5 Data Restoration at the Sink

Based on the joint round-robin and randomized scheduling,
for a cluster of size n, the number of working sensor nodes
in any time slot varies between 1 and n with an expectation
of 1þ ðn� 1Þ � �. The sink node uses the following
restoration rule to restore the observation of sleeping nodes:

Restoration Rule. For any sleeping node, the observation
at instant i, denoted as vi, is restored as miniþmaxi

2 , where
maxi and mini denote the maximum and minimum
observation of the working sensor nodes within the same
cluster at instant i, respectively.

Theorem 2. If the cluster is not split, with the restoration rule
given above, the upper bound of the restoration error at instant i
is m� maxi�mini

2 , where m is the dissimilarity threshold value.

Proof. If the cluster is not split, the difference of two
observations from any pair of sensor nodes, no matter
whether they are working or sleeping, should be less than
m. Therefore, the upper bound and lower bound of
observation from sleeping nodes at instant i is mini þm
and maxi �m, respectively. The length of this feasible
region for the observation of a sleeping node is mini þ
m� ðmaxi �mÞ ¼ 2�mþmini �maxi. Since we take
the middle point of this feasible region as the restoration
value, the difference between the actual value and
restoration value is no more than half the length of the
feasible region, that is, 2�mþmini�maxi

2 ¼ m� maxi�mini
2 . tu

Note that another way to restore the data is to use the
average of all working nodes, but in the worst case, the
error bound could be as large as m. We ignore the proof due
to lack of space.

6 EXPLOITING TEMPORAL CORRELATION

6.1 Motivation and Methodology

Typically, each sensor node measures the environment at a
fixed interval, and the time-ordered sequence of samples
constitutes a time series. However, transmitting all data
from each sensor node back to the sink node is often
prohibitive due to limited bandwidth and heavy energy
consumption on data transmission. In order to reduce the
volume of transmitted data from each individual sensor
node, we approximate the observed time series within a
given error bound. Our technique builds on the fact that, for
most time series consisting of environmental measures such
as temperature and humidity, linear approximation is
simple and works well enough in a short time period.
Therefore, we use the piecewise linear approximation
technique to approximate the time series at each individual
sensor node. If computational capacity permits, it is
possible to adopt other approximation and compression
techniques such as wavelet transformation. We did not
explore complex approximation techniques in this paper
since it is still unrealistic to perform complex calculation
with the current sensor nodes.
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The sensor node maintains a fixed size of buffer to
temporally store the latest sampling values. Once the buffer
is full, the sensor node calculates the line segments
approximating the original time series. Then, only the end
points from every line segment, rather than the whole time
series, will be transmitted to the sink node. Usually, each
line segment represents more than two measures, so we can
expect a significant decrease in data volume.

6.2 Problem Modeling

Piecewise linear approximation is a well-investigated
research area [7], [14], [15], [22], [25], [27]. The idea is to
use a sequence of line segments to represent the time series
with a bounded approximation error. Since a line segment
can be determined by only two end points, piecewise linear
approximation can make the storage, transmission, and
computation of time series more efficient.

Most existing piecewise linear approximation algorithms
use a standard linear regression technique to calculate a line
segment fitting the original data with the minimum mean
squared error. Unlike these methods, we use a simpler
method to reduce the computation complexity. In our
method, the end points of each line segment must be the
points in the time series and, hence, the linear fitting
procedure is not necessary. For the observations that are not
the end points of the selected line segments in the time
series, their values are approximated by the corresponding
points in the line segments. To facilitate understanding,
Fig. 4 shows a possible scenario for the piecewise linear
approximation, where three line segments (four values)
ðx1; x2Þ, ðx2; x6Þ, and ðx6; x7Þ could be used to approximate
the time series.

The problem. For a given time series and a given error
bound �, find the minimum number of line segments to
approximate the time series such that the difference
between any approximation value and its actual value is
less than �. The end points of the line segments must be the
points in the time series.

6.3 The PLAMLiS Algorithm

In [18], it is disclosed that the PLAMLiS problem can be
solved in polynomial time. Assume that the time series
consists of n points x1; x2; . . . ; xnf g. The basic idea is to
build a graph with the data points as the vertices. An edge
is established between xi and xjði < jÞ if the line segment
ðxi; xjÞ meets the error bound; that is, the difference
between the approximation value of xkði < k < jÞ and the
actual value of xk is not larger than the given error bound.
Note that the approximation value of xk is the intersection
point of the line segment ðxi; xjÞ and the vertical line x ¼ xk.

The PLAMLiS problem is solved by searching the shortest
path from x1 to xn in Fig. 4. Fig. 4 shows the graph and the
shortest path ðx1; x2; x6; x7Þ that constitutes the optimal
solution.

In the worst case, the above algorithm has the time
complexity of Oðn3Þ and requires a space cost of Oðn2Þ. The
calculation and storage complexity of the solution might be
too high for the sensor nodes. Therefore, we propose a greedy
algorithm to solve it. If the time series consists of n points, the
greedy PLAMLiS algorithm can run in Oðn2 lognÞ time and
takes OðnÞ space.

The greedy algorithm converts the PLAMLiS problem into
a set-covering problem as follows: Suppose that there is a time
series X consisting of n points fx1; x2; . . . ; xng. For each
point xi in the time series, associate it with point xj ðj > iÞ,
which is farthest away from point xi, and the line segment
ðxi; xjÞ meets the given error bound; that is, the difference
between the approximation value of xk ði < k < jÞ and the
actual value of xk ði < k < jÞ is not larger than the given error
bound. LetFi denote the subset consisting of all the points on
this line segment fxi; xiþ1; . . . ; xjg. Eventually, we have a set
F with n subsets ðfF1; F2; . . . ; FngÞ. The running time to
construct the set F is Oðn2lognÞ, and the memory needed is
OðnÞ.

Now, the PLAMLiS problem is converted to the problem
of picking up the least number of subsets from F , which
covers all the elements in set X. This is the minimum set
cover problem, which is proved NP-complete. We use the
following well-known greedy algorithm to solve this
problem. The basic idea is that, at each stage, pick the set
that covers the largest number of remaining elements that
are uncovered. The algorithm ends whenever all the
elements are covered. This greedy algorithm can run in
time Oð

P
S2F jSjÞ with a P(n)-approximation rate, where

P ðnÞ ¼ HðmaxjSj : S 2 F Þ ðHðdÞ ¼
Pd

i¼1
1
i , which is the

dth harmonic number). The space complexity is OðnÞ. In
the PLAMLiS problem, since jF j ¼ n and jSj � n ðS 2 F Þ,
the running time is bounded by Oðn2Þ.

On the whole, the greedy PLAMLiS algorithm can run in
Oðn2 lognÞ time and takes OðnÞ memory space.

7 COMPREHENSIVE PERFORMANCE EVALUATION

7.1 Evaluation Methodology

In the following sections, we first evaluate the performance of
EEDC when only spatial correlation is exploited. The
evaluation is based on both a real test bed, as well as a
large-scale synthetic data set. We then evaluate the perfor-
mance of the PLAMLiS algorithm in exploring temporal
correlation. Finally, we investigate the performance when
spatial correlation and temporal correlation are jointly
considered to further reduce energy consumption.

7.2 Experiment Setup of Testing Spatial Correlation

We experimentally test the EEDC framework based on
MICA2 sensor nodes [5]. As illustrated in Fig. 5, we deploy
18 MICA2 sensor nodes in a 3� 6 grid layout on a big table
to sample the light intensity. The unit length of each grid is
1 foot. A desk lamp with a dimmer is the only light source
in the room. We use several boxes with different sizes of
holes on the top to divide the area into subregions with
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different light intensity. The deployment of sensor nodes
and the boxes are illustrated in Fig. 6. The monitored
phenomenon is generated by varying the light intensity of
the lamp. The onboard analog-to-digital converter (ADC)
translates a light intensity raw reading into an integer value
between 0 and 1,024. We implement the EEDC framework
on the sink node and the MICA2 sensor nodes to collect the
light intensity data. The sampling rate is 2 samples per
second at the working sensors, and the data collection time
is 10 minutes.

The purpose of this experiment is twofold. First, we need
to verify the correctness of the proposed clustering
algorithm. Second, since the energy saving should not be
achieved at the cost of observation fidelity, we need to
verify that the observation fidelity with EEDC is acceptable.

Although this experiment is not a real application, we
remark that the experimental design may be representative
for some real applications with sensor networks, for
instance, the monitoring system for storage rooms in a
grocery warehouse.

7.3 Experimental Results of Exploring Spatial
Correlation

7.3.1 The Correctness of Clustering with EEDC

Although the clique-covering problem for a general graph is
NP-complete, it is easy to know the optimal clique covers in
our experiment since the knowledge of which sensor node
belongs to which subregion is known a priori. We use the
criteria in Section 4.2 to check the dissimilarity and set
m ¼ 30, t ¼ 95 percent, and gmax dst ¼ 3 feet. By calculat-
ing the pairwise dissimilarity measure, we get a graph as
shown in Fig. 7, where a link between two nodes indicates
that they are similar according to the above criteria. From

this figure, we can see that all cliques consist of sensor
nodes in the same box, which validates the effectiveness of
the dissimilarity measure. The output of the clustering
algorithm is illustrated in Fig. 8, which is apparently the
optimal solution for this specific simple graph.

7.3.2 The Observation Fidelity with EEDC

The difference distortion measure has been broadly used in
image compression to evaluate the fidelity of a recon-
structed image against the original image [23]. The
difference distortion measure �2 is given by

�2 ¼
PM

j¼1

PN
i¼1ðXij � YijÞ2

M �N ;

where Xij is the jth actual sampling value from the
ith sensor node, Yij is the jth restoration value of the
ith sensor node at the sink, N is the total number of sensor
nodes, and M is the total number of samples from each
sensor node.

The absolute value of �2 is not meaningful without
considering the degree of variation in magnitude. So, we
normalize the difference distortion measure by the average
variation of samples and used it as the measure of
observation fidelity. Formally,

�2
norm ¼

�2PN

i¼1
V arðXiÞ
N

¼ N�2PN
i¼1 V arðXiÞ

;

where V arðXiÞ is the observation variation of the ith sensor
node. Generally, a smaller �2

norm value indicates higher
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Fig. 5. The test bed.

Fig. 6. The sensor nodes and the boxes.

Fig. 7. The generated graph.

Fig. 8. The clustering result with the real data set.



observation fidelity. When we set m ¼ 30, t ¼ 95 percent,
and gmax dst ¼ 3 feet, the �2

norm of the light intensity in our
test bed is equal to 0.0093, indicating that the data collected
with EEDC has high fidelity.

7.3.3 Energy Saving

In this case study, at any time instant, only one sensor node
in a cluster is scheduled to work. The 18 sensor nodes were
grouped into seven clusters with EEDC, as shown in Fig. 8.
By calculating 2�2�5þ4�4�2

18 � 3, we can see that, without using
EEDC, on the average, each sensor will spend three times
more energy in sampling and data transmission.

7.4 Large-Scale Synthetic Data Generation

Due to the high system cost, we cannot afford an experiment
with hundreds of sensor nodes. In order to further investigate
the performance of EEDC with large-scale networks, we
generate large traces of a spatially correlated data set based on
a mathematical model proposed in [13]. We utilize the
software toolkit provided in [13] to extract the model
parameters from small-scale real data sets and generate
large-scale synthetic data sets based on the model para-
meters. The toolkit has been validated by comparing the
statistical features of the synthetic data set and the experi-
mental data set [13].

Initially, we use our test bed in Section 7.2 to collect a
small-size real data set. Then, we utilize the synthetic data
generation toolkit [13] on the data set from each individual
subregion to generate a larger data set for each individual
subregion. As a result, a field consisting of nine distin-
guished subregions with 100 sensor nodes in a 10� 10 grid
layout is generated, as shown in Fig. 9.

7.5 Performance Results on Large-Scale
Synthetic Data

7.5.1 The Correctness of Clustering with EEDC

Since we know which sensor node belongs to which
subregion, it is easy to verify the correctness of the

clustering algorithm. We set m ¼ 20, t ¼ 95 percent, and
gmax dst ¼ 8 distance units. The distant unit is defined as
the distance between two neighboring sensor nodes in a
row. By calculating the pairwise dissimilarity measure and
performing the clustering algorithm, we obtain nine
clusters, each for a subregion.

7.5.2 The Observation Fidelity and Energy Saving

with EEDC

By varying the value m in the magnitude m-dissimilarity

and applying different intracluster scheduling methods, we
collect a set of performance data, based on which Figs. 10,
11, and 12 are drawn. Fig. 10 demonstrates that, with the
decrease of m, the number of cliques increases. This
conforms to intuition, because a lower m value corresponds
to a higher data resolution requirement. Note that the
number of cliques is irrelevant to the intracluster schedul-
ing methods. Therefore, Fig. 10 will not change under
different scheduling methods.

Figs. 11 and 12 compare the performance of two different
intracluster scheduling methods discussed in previous
sections in terms of observation fidelity and energy saving.
With the round-robin scheduling, only one sensor node
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Fig. 9. The field with nine distinguished subregions.

Fig. 10. Magnitude m-dissimilarity threshold versus the number of

cliques.

Fig. 11. Obsevation fidelity.



from a cluster is working at a time, whereas, with the joint
round-robin and randomized scheduling, the multiple
sensor nodes are working simultaneously within each
cluster. Note that, in our experiment, the wakeup prob-
ability � is chosen cluster by cluster such that the
expectation of the split detection delay of a specific cluster
Td � 4T . The data restoration rule discussed in Section 5.5 is
applied to both cases to restore the observations of sleeping
nodes. Note that, with the round-robin scheduling, there is
only one working node in each cluster at any given time; the
sink node simply assumes that the sampling values of all
sleeping sensor nodes in the same cluster are equal to that
of the working node. Figs. 11 and 12 clearly demonstrate the
trade-off between energy saving and observation fidelity:
Compared with the round-robin scheduling, the joint
round-robin and randomized scheduling can significantly
improve the observation fidelity, but with a smaller energy
savings.

7.6 Response to Spatial Correlation Changes

In order to verify that the spatial correlation changes can be
detected by EEDC and demonstrate how EEDC responds to
the changes, we simulate a scenario where an opaque object
suddenly covers sensor nodes 10, 20, 30, 40, and 50 in
subregion 3 and makes the covered area totally dark.
Therefore, the readings from those covered sensor nodes
should be totally different from those from the rest of the
nodes, and a cluster split action is expected in response to
significant changes in the spatial correlation.

In this scenario, the joint round-robin and randomized
scheduling is used and the wakeup probability � is set such
that the expectation of the split detection delay of every
cluster Td � 4T . An active sensor node sends 10 packets in a
working shift with a length of T . We monitor the number of
packets sent back to the sink node from the 10 sensor nodes
in subregion 3, which is illustrated in Fig. 13. Originally, the
number of packets that is sent to the sink node per work
shift oscillates around 30 packets. The lid comes in at time
instant 3:5T . The sink detects the changes in spatial
correlation between 4T and 5T and instructs all the sensor
nodes to wake up and send sampling at 5T . The sink node
gets enough data for reclustering at 6T , executes the

clustering algorithm to split the sensor nodes in subregion 3

into two clusters, and then sends the updated working

schedules to the sensor nodes at 7T . Afterward, the sensor

nodes work according to the updated schedule, and the

number of packets sent to the sink node oscillates around

40 packets.

7.7 Performance Evaluation of Exploring Temporal
Correlation

To evaluate the performance of the proposed PLAMLiS

algorithm, we first apply the algorithm to an indoor

temperature data set we collect on the Crossbow MICA2

platform. The sampling interval is set to 2 minutes, and

877 samples are taken in total.
By varying the error bound from 0.5 	C to 0.05 	C, we get

Figs. 14, 15, 16, and 17. From these figures, we can see that the

number of line segments generated by the PLAMLiS

algorithm to fit the original data curve is significantly less

than the number of points in the original data curve. When the

error bound is set to 0.5, only 12 line segments are needed to

transmit. Since each line segment is presented by two end

points, only 24 points are transmitted with the PLAMLiS

algorithm. Compared to 877 points, if the PLAMLiS algo-

rithm is not used, this translates to a 97.3 percent data

reduction in transmission.
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Fig. 12. Energy savings.

Fig. 13. Response to spatial correlation changes.

Fig. 14. Error bound ¼ 0:5, number of l ine segments with

PLAMLiS ¼ 12.



With the PLAMLiS algorithm, the transmitted data
increases with the decrease of error bound. However, as
shown in Fig. 17, since even the error bound is as small as
0.05 	C, only 158 line segments need to be transmitted, which
translates to a 64 percent data reduction in transmission.

We also apply the PLAMLiS to the light intensity data set
we collect in our experimental test bed. Unlike the indoor
temperature data set, the light intensity data set is not
smooth at all. Even in this situation, Fig. 18 illustrates that
only 58 line segments are needed to approximate the time
series, which translates to a 42 percent reduction in
transmission.

7.8 Performance of Jointly Exploring Spatial
Correlation and Temporal Correlation

In this phase, both the PLAMLiS algorithm and the
dynamical clustering algorithm are integrated into EEDC,
as illustrated in Fig. 2.

7.8.1 Restoration Data Quality

Suppose that the error bound of the dynamical clustering
algorithm is set to �1 (that is, m ¼ �1 in the magnitude
m-dissimilarity), and the error bound of the PLAMLiS
algorithm is set to �2. Since the temporal correlation and
spatial correlation are exploited orthogonally, it is easy to

see that, in the enhanced EEDC framework, the error bound
of data restoration � ¼ �1 þ �2. That is to say, any restoration
value in the sink node will not differ from its actual value
more than �1 þ �2.

However, given an error bound �with the enhanced EEDC
framework, we are faced with a question of assigning
appropriate values to �1 and �2 such that �1 þ �2 ¼ � and data
transmission is minimized. The heuristic is that, for the sensor
nodes having strong temporal correlation in their readings, �2
can be set large. For the sensor nodes having strong spatial
correlation in their neighborhood, �1 can be set large. The
method of obtaining the optimal values and dynamically
adjusting these values is left as our future work.

7.8.2 Performance Evaluation

To illustrate the benefit of using the PLAMLiS algorithm in
the EEDC framework, we evaluate the performance of EEDC
with and without using the PLAMLiS algorithm. In all tests,
round-robin scheduling is used for simplicity. In the EEDC
framework without PLAMLiS, the error bound threshold
value � is equal to m in the magnitude m-dissimilarity
measure. In the EEDC framework with PLAMLiS, the error
bound threshold value � ¼ �1 þ �2, as discussed above. In all
our test cases, �1 takes 75 percent of � and �2 takes 25 percent.
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Fig. 15. Error bound ¼ 0:3, number of l ine segments with

PLAMLiS ¼ 23.

F ig. 16. Error bound ¼ 0:1, number of l ine segments with

PLAMLiS ¼ 56.

Fig. 17. Error bound ¼ 0:5, number of l ine segments with

PLAMLiS ¼ 158.

F ig. 18. Error bound ¼ 20, number of l ine segments wi th

PLAMLiS ¼ 58.



Figs. 19 and 20 clearly demonstrate that, after introdu-
cing the PLAMLiS algorithm, the data restoration accuracy
is improved and the energy consumption decreases. This is
because, given the same error bound �, the actual error
bound used for dynamical clustering �2 in the enhanced
EEDC framework is smaller than that in the EEDC frame-
work without PLAMLiS. Therefore, more cliques are
generated when the enhanced EEDC framework is used,
as illustrated in Fig. 21. This actually increases the spatial
sampling rate and helps to improve the data restoration
accuracy. The increase in energy consumption by using
more clusters is offset by the energy savings with the
PLAMLiS algorithm.

8 CONCLUSION

In this paper, we design an EEDC framework that is aware
of the spatiotemporal correlation among the sensing data.
Spatial correlation is exploited by dynamically grouping
sensor nodes into clusters based on the dissimilarity
measure of sampling data. With this method, the whole
network is divided into several subregions, with each
covered by a cluster of sensor nodes. Since the clusters are
based on the features of sampling data, scheduling based on

the clusters is much more accurate than scheduling based
purely on the sensing range of sensor nodes. Temporal
correlation is exploited by using the piecewise linear
approximation technique to represent the sampling data
and minimize the data transmission under a given bound
on approximation accuracy. We discuss the details of all
major components in the EEDC framework, including the
calculation of dissimilarity, sensor clustering, sensor sche-
duling, data restoration, and the PLAMLiS algorithm.

We thoroughly evaluate the performance of the EEDC
framework using a real experiment based on MICA2 motes
[5] and a large-scale synthetic data set. Experimental results
demonstrate that the EEDC framework can effectively save
energy without losing observation fidelity.
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