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Abstract— Energy consumption is one of the major con-
straints in wireless sensor networks. A highly feasible strat-
egy is to aggressively reduce the spatial sampling rate of
sensors (i.e., the density of the measure points in a field).
By properly scheduling, we want to retain the high quality
of data collection. In this paper, we propose a novel dynamic
clustering and scheduling approach. Orthogonal to most ex-
isting methods which mainly utilize the overlaps of sensing
ranges of sensors to reduce the spatial sampling rate, our
method is based on a careful analysis of the surveillance
data reported by the sensors. We dynamically partition the
sensors into groups so that the sensors in the same group
have similar surveillance time series. They can share the
workload of data collection in the future since their future
readings may likely be similar. A generic framework is de-
veloped to address several important technical challenges,
including how to partition the sensors into groups, how to
dynamically maintain the groups, and how to schedule sam-
pling for the sensors in a group. We conduct an extensive
empirical study to test our method using both a real test
bed system and a large-scale synthetic dataset.

I. INTRODUCTION

A wireless sensor network may consist of a large num-
ber of sensor nodes, and each node is equipped with sen-
sors, microprocessors, memory, wireless transceiver, and
battery. Once deployed, the sensor nodes form a network
through short-range wireless communication. They col-
lect environmental surveillance data and send them back
to the data processing center, which is also called the sink
node.

In many applications, wireless sensor networks are used
to monitor some measures of interest, such as tempera-
ture, light intensity, air pressure, etc. In order to obtain
accurate surveillance, spatially frequent sampling is re-
quired to capture the variation of a monitored measure.
That is, the density of the measure points in a field should
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Fig. 1. Redundant Sensors Based on Sensing Ranges.

be sufficiently high so that the spatial distribution of the
monitored measure can be restored with high quality.

However, the energy consumption is one of the major
constraints in wireless sensor networks. Typically, the ca-
pacity of the battery in a sensor node is limited. More-
over, due to the sheer number of sensor nodes and the
potentially hostile environment, it is usually very hard, if
not impossible at all, to recharge the battery after the de-
ployment of a sensor node. How to extend the lifetime
of a sensor network under the stringent energy constraint
of each individual sensor node is an important and chal-
lenging problem. Our goal is to maintain the satisfactory
spatial sampling rate for data collection and extend the
lifetime of the sensor nodes as long as possible.

A critical observation is that all sensor nodes reporting
data may generate a lot of redundant data. For example,
in Figure 1, if the sensing range of a sensor node z is fully
covered by the sensing ranges of some of its neighboring
sensors, then sensor x can be regarded redundant. Stimu-
lated by this observation, most existing methods [8], [18],
[19], [20] adopt the coverage-based scheduling methods.
That is, they check the redundancy based on the sensing
coverage of sensor nodes. In this case, the pairwise ge-
ographic distance between sensor nodes is the only fac-
tor considered in sensor scheduling, and the output of the
scheduling algorithm is a scheduling scheme that samples



the field uniformly in space.

The coverage-based scheduling methods may not work
well for heterogeneous environment where the monitored
measure changes quickly in some sub-regions but slowly
in others. It is also possible that the readings of two ge-
ographically proximate sensor nodes are dramatically dif-
ferent due to a boundary that separates the two sensor
nodes into two sub-regions with distinguished features.
For example, if the temperature is monitored, two proxi-
mate sensor nodes can report very different values if one is
directly under sunshine and the other one is in the shadow.
Furthermore, it is often very difficult to accurately esti-
mate the sensing range of a sensor node, since it is highly
related to the local environment in which the sensor node
is deployed. As a result, the scheduling purely based on
the sensing coverage may not be efficient or effective.

The major inherent problem of the coverage-based
scheduling methods is that they only rely on the static
structure of the sensor networks and are not aware of the
data reported by the sensor nodes. Intuitively, the corre-
lation between the data reported by the sensor nodes may
help to reduce the spatial sampling rate of the sensor nodes
substantially.

Example 1—Intuition: The readings reported by a sen-
sor node over time form a time series. Suppose the time
series of sensor nodes x, ¥, and z are very similar in the
past. Thus, we may conjecture that the readings of z, y,
and z would also likely be similar in the future. Thus, in-
stead of scheduling the three sensor nodes reporting data
simultaneously, we can let two out of the three sensor
nodes report at a time and all the three take turn to report.
Such a schedule has the following two advantages.

o Energy saving. Each sensor node saves 33.3% en-
ergy on reporting data.

e Quality guarantee. When the three sensors are still
correlated, we can obtain the data with high quality
and also save energy. On the other hand, even if the
readings of one sensor node is not similar to the other
two, we still can detect the divergency with a minor
delay. Then, an updated schedule can be made based
on the change. |

Motivated by the intuition in Example 1, in this paper,

we develop a dynamic clustering and scheduling approach
to solve the typical data collection problem in wireless
sensor networks: how the sink node can collect data from
highly-redundant geographically-distributed sensor nodes
with high observation fidelity and low energy consump-
tion. Our solution is to dynamically group sensor nodes
into a set of disjoint clusters such that the sensor nodes
within a single cluster have current strong spatial correla-
tion, hence great similarity in observations. Therefore, all

the sensor nodes in a cluster can be treated equally, and
at any time instance, only one sensor node is needed to
be active, serving as the representative for the whole clus-
ter. All the rest of sensor nodes can go to sleep without
much degradation of observation fidelity, since at the pres-
ence of the representative node, other nodes will not bring
much gain. To balance the workload, the sensor nodes
within a cluster can be scheduled to work in a round-robin
way.

The clustering operation is based on the dissimilarity
measure of time series consisting of historical observa-
tions from individual sensor nodes. The degree of spa-
tial correlation can be evaluated by the dissimilarity mea-
sure. For two locations with high spatial correlation, their
corresponding time series are usually associated with a
low dissimilarity measure. Therefore, in a very smooth
sub-region, the observed measure has only small changes
within the sub-region, that is, the difference between ob-
servations at any two locations within the sub-region may
be quite small. Hence, the working sensor nodes within
this sub-region could be sparse without losing observa-
tion fidelity. In contrast, in a not so smooth sub-region,
the working sensor nodes should be dense. By setting an
appropriate dissimilarity measure threshold value to dis-
tinguish similar nodes from dissimilar nodes, the spatial
sampling rate will match the spatial variation of the ob-
served physical phenomenon. A smaller threshold value
increases the spatial sampling rate and observation fi-
delity, but it requires more energy consumption. In this
sense, the dissimilarity measure threshold value consti-
tutes a degree of freedom that could be tuned to balance
the trade-off between observation fidelity and energy con-
sumption.

Another advantage of our method is that, the difficulty
of estimating a sensor’s sensing range is avoided be-
cause the dissimilarity measure relies solely on the data
reported.

While some research exploits the spatial correlation
among sampling data, the correlation is used in the context
of in-network aggregation [15], where the redundant data
are suppressed in some aggregation nodes before they are
transmitted to the sink node. This paper utilizes the spa-
tial correlation in the context of sensor scheduling. With
our method, data redundancy among sensor nodes can be
determined in a run-time system to avoid the generation
and transmission of redundant data. So we can expect a
much higher energy saving than in-network data aggrega-
tion. Note that in addition to exploiting spatial correla-
tion, exploiting temporal correlation among sensor nodes’
observation can further reduce the energy consumption.
Nevertheless, due to the limit of space, we only consider



spatial correlation in this paper.

The rest of the paper is organized as follows. In Sec-
tion II, we propose an Energy Efficient Data Collection
(EEDC) framework. We introduce the key modules of
EEDC, namely sensor node clustering and sensor node
scheduling, in Sections III and IV respectively. EEDC
is then evaluated with a real test bed using MICA2 sen-
sors [5] and also with a large-scale synthetic dataset in
Section V. We review related work in Section VI and fi-
nally conclude the paper in Section VII.

II. THE ENERGY EFFICIENT DATA COLLECTION
(EEDC) FRAMEWORK

Compared to sensors nodes, the sink node usually has
much larger memory and much powerful computing ca-
pability. Also, the energy supply is generally not a big
problem for the sink node. Such an asymmetry between
the sink node and the sensor nodes determines that a good
design for data collection should not put heavy burdens on
sensor nodes. Instead, the heavy duties should be assigned
to the powerful sink node. Our Energy Efficient Data Col-
lection (EEDC) framework follows this design principle
and is shown in Figure 2. As we can see, the functional-
ities in sensor nodes are much simpler than those in the
sink node. In a sensor node, the scheduler module sim-
ply extracts the working schedules received from the sink
node and makes the sensor node work/sleep according to
the schedule. In contrast, the sink node takes most work-
loads, including four main functional modules as shown
in Figure 2.

The framework has the following major modules.

1) The data storage module. 1t stores all sampling
data received from the sensor nodes. This module
records a time series for each sensor, which is fed
into the dissimilarity measure module as input data.

2) The dissimilarity measure module. It calculates the
pairwise dissimilarity measure of time series. Dis-
similarity measure is application specific, and it is
impossible to use a common dissimilarity measure
to accommodate all application scenarios. As such,
this model has an input parameter from the user,
specifying the criterion for dissimilarity measure
for a specific application scenario. We will intro-
duce the details of dissimilarity measure used in our
experimental study in Section V-B.

3) The clustering module. Given the dissimilarity
computed by the dissimilarity measure module and
a maximal dissimilarity threshold value max_dst,
this module divides the sensor nodes into clusters,
such that the dissimilarity measure of any two sen-
sor nodes within a cluster is less than max _dst. The
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Fig. 2. Energy Efficient Data Collection (EEDC) Framework
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details of the clustering algorithm will be discussed
in Section III.

4) The sensor node working schedule generator. It
generates a working schedule for each sensor node
based on the clusters obtained from the clustering
module. The details of sensor scheduling will be
discussed in Section IV.

With the EEDC framework, the data collection proce-
dure in a sensor network could be divided into the follow-
ing three phases:

1) Data accumulation. In this phase, each sensor node
keeps sampling and transmitting samples to the sink
node. The sink node records the time-ordered sam-
pling data and maintains a time series for each sen-
sor node. After collecting enough data, the sink
node calculates the dissimilarity measure between
any two time series. It terminates this phase when-
ever the dissimilarity measure among the collected
time series remains roughly stable.

2) Clustering. In this phase, the sink node uses a clus-
tering algorithm to separate sensor nodes according
to the dissimilarity measure calculated in the first
phase. The output of the clustering algorithm is a set
of clusters, and inside each cluster the dissimilar-
ity measure between two arbitrary sensor nodes is
smaller than a given threshold value. Consequently,
the whole field is divided into pieces of smooth sub-
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Fig. 3. Energy Efficient Data Collection (EEDC) Framework in a
Hierarchical Architecture

regions, each of which is covered by a correspond-
ing cluster of sensor nodes. The observation at any
point in this sub-region can be approximated by the
observation of any sensor node within the cluster
covering this sub-region.

3) Saving and dynamic clustering. In this phase, the
sink node sends out the decision of clusters to all
sensor nodes and requires the sensor nodes within
the same cluster to work in turn to save energy. In
the mean time, the sink node monitors large vari-
ations within a cluster and dynamically adjusts the
cluster.

Note that after clustering, the environment may change
and thus the previous clusters may not be valid anymore.
It is desirable to adaptively change the clusters according
to the changes of the monitored measure. The details of
re-clustering will be discussed in Section IV when we in-
troduce the scheduling algorithm.

As can be seen, the sink node may become a bottleneck
for large-scale networks. When a network becomes very
large, the EEDC framework can be easily extended to a
hierarchical architecture as shown in Figure 3. A com-
monly used strategy is to divide the network into several
sub-networks, with each depending on a local center for
local data collection and long-distance radio transmission
to the sink node. In this case, a local center, with the above
four main components installed, takes the full responsibil-
ity for collecting data, calculating pairwise dissimilarity
measure, executing the clustering algorithm, and generat-
ing working schedules, within the local region. The sink
node only needs to collect information directly from those
local centers.

Note that in this paper, we assume the single-hop net-
work architecture, i.e., all the sensor nodes are within
single-hop radio transmission to the sink node, or to a lo-
cal center. With this setting, we do not need to consider

network partitioning due to sensor scheduling.

Compared to other existing sensor scheduling schemes
that rely on sensing coverage and the static geographic
distribution of sensors [8], [18], [19], [20], EEDC dis-
tinguishes itself from existing schemes in that it is data-
aware and makes scheduling decisions according to the
spatial distribution of the monitored phenomenon.

III. CLUSTERING SENSOR NODES

Given the pairwise dissimilarity values, we need a clus-
tering algorithm to partition the sensor nodes into ex-
clusive groups (called clusters) such that within each
cluster, the pairwise dissimilarity measure of the sensor
nodes is below a given intra-cluster dissimilarity thresh-
old max_dst. All sensor nodes in the same cluster are
correlated. In each cluster, only one sensor node needs
to work at any time instant. Because of this reason, it is
desirable to minimize the number of clusters to maximize
the energy saving.

Interestingly, the above problem could be modeled as
a clique-covering problem. We construct a graph G such
that each sensor node is a vertex in the graph. An edge
(u, v) is drawn if the dissimilarity measure between vertex
u and vertex v is less than or equal to the given intra-
cluster dissimilarity measure threshold max _dst. Clearly,
a cluster is a clique in the graph. Then, the clustering
problem is to use the minimum number of cliques to cover
all vertices in the graph.

The clique-covering problem is proven to be NP-
complete and even does not allow constant approxima-
tion [13], [21]. Hence we propose a greedy algorithm
as described in Figure 4 to obtain a rough approxima-
tion. The basic idea of the algorithm is to heuristically
find cliques that cover more vertices that have not been
clustered. Heuristically, the vertices with larger degrees
may have a better chance of appearing in larger cliques.
Thus, the search starts from the vertex with the largest
degree, until all vertices are covered. The output of this
algorithm is a set of cliques that covers all vertices.

IV. SCHEDULING SENSOR NODES
A. Round-Robin Scheduling Based on Clusters

Since all the sensor nodes in the same cluster are con-
sidered correlated, it is desirable to schedule them to work
alternatively to save energy. For a cluster with k sensor
nodes, we can divide a time period 7" into k£ time slots,
and require only 1 sensor node to work for each time slot.
Other sensor nodes in the same cluster can fall asleep. If
the sensor nodes work with a round robin scheduling, each



Input: a graph G;

Output: a set of cliques covering the graph G;

Algorithm Description:

Label all vertices in the graph G as uncovered;

while (there are vertices uncovered in the graph G){
Pick up the vertex v with the highest node degree among the uncovered vertices;
Pick up all the vertices adjacent to v and put them into a list of S;
Construct a graph Gmp, consisting of only the vertices in S;
Calculate the node degree of each vertices in Gump;
Sort the vertices in S according to the decreasing order of node degree in Gump;
(To break a tie, the vertex with lower degree in the original graph G precedes);
Construct a clique C containing only v;
while (there are vertices available in S){

Pick up next vertex s from S;

If s is adjacent to all vertices in C thus far, put s into the clique C;

}
Output clique C,;

Remove all vertices covered by C from the graph G;

}

Fig. 4. The Greedy Algorithm

sensor node needs to work only for a duration of % in ev-
ery time period of 7. Note that if we assume that each
time slot has a fixed length, different clusters may have
different 7" values and the duration of 7" in a cluster is
proportional to the size of the cluster.

To generate a working schedule for a cluster with & sen-
sor nodes, the sink node randomly selects a working order
of the k sensor nodes and then sends the working schedule
to the sensor nodes. An example of working schedule is
shown in Figure 5.

To make the scheduling algorithm work correctly, sen-
sor nodes should be time synchronized. Time synchro-
nization is one of the fundamental requirements in sen-
sor networks, because large time asynchrony will generate
sampling data with incorrect timestamps and any surveil-
lance based on such incorrect information is likely unreli-
able. To avoid potential monitoring gap due to small time
asynchrony, we can simply require that each sensor works
a little bit longer at the end of its working shift so that the
consecutive sensor in duty has a minor monitoring over-
lap.

B. Dynamic Adjustment

The environment being monitored by the sensor net-
work might change, and thus the previous clusters might
not be valid any more. A good scheduling algorithm
should accommodate such changes and dynamically ad-
just the clusters. This requires the sink node to de-
tect whether the sensor nodes in the current clusters are
still correlated, and adjust the clusters according to the
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Fig. 5. Round-Robin Scheduling Scheme

changes as quickly as possible. To achieve this, the sink
node can utilize the fact that the dissimilarity measures
from some sensor nodes in the same cluster should be
larger than the given intra-cluster dissimilarity measure
threshold if the current cluster does not match the features
of the monitored phenomenon.

To get a quick detection of changes in the spatial cor-
relation, we can extend the working time of each sensor
node by A, at the end of its working shift for the purpose
of clustering validation. As shown in Figure 6, during the
time period of A4, the sink node should receive sampling
data from two sensor nodes assigned to two consecutive
time slots. By calculating the dissimilarity measure of the
two sensors in the time period of A, the sink node can
detect the large variation within the cluster. The selection
of the value of Ay is empirical and application specific.

Remark: If a cluster must be split into two clusters due
to the changes of the monitored environment, the changes
must be detected by the sink node within the time period
of T, even if the sink node only compares sampling data
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Fig. 6. The Extension of Round-Robin Scheduling Scheme

from two sensor nodes in consecutive time slots.

To prove the above claim, we assume that in real ap-
plications, the precondition of splitting an existing cluster
is that the changes of the monitored phenomena should
form a boundary cutting the current region covered by the
cluster. As shown in Figure 7, assume that initially 10 sen-
sors in the rectangular area have similar observations and
thus belong to the same cluster. Due to the phenomenon
changes, a boundary is formed to cut the rectangular area
into two sub-areas, A and B. If all the 10 sensors fall
within either A or B, the phenomenon changes cannot be
detected and thus there is no need to split the current clus-
ter. If there is at least one sensor in each sub-area, then no
matter what the current working order of the 10 sensors
is, at least two sensors belonging to different sub-areas
must be assigned into two consecutive time slots. Their
large dissimilarity will be detected within one round of
scheduling time, 7. |

Once the sink node detects that a cluster includes sen-
sor nodes with dissimilarity measure larger than the given
intra-cluster threshold value, it asks all sensor nodes in
the corresponding cluster to work simultaneously. Then
the clustering algorithm will be executed to re-group these
sensor nodes to several clusters as a response to local phe-
nomenon changes. It is obvious that the number of clus-
ters will keep increasing, since there is only splitting oper-
ation in the above adjustment. In the worst case, most sen-
sors in the network will be woken up to work simultane-
ously. To avoid this situation, the sink node can re-cluster
the whole network when the current number of clusters
becomes significantly larger than the number of clusters
at the previous network-wide clustering.

When the spatial correlation within a sub-region re-
mains stable, the frequency of dynamic adjustment of
clusters should be very low. We stress that spatial cor-
relation is quite stable for some applications even if the
monitored phenomenon changes dramatically. This ob-
servation is demonstrated true in our later experimental
study.

Fig. 7. A Scenario in Which a Cluster Should Be Split

C. Further Discussion

In addition to the above round-robin scheduling
method, which maintains a single active sensor node
within each cluster, we are currently investigating differ-
ent scheduling schemes to maintain multiple active sensor
nodes per cluster. Due to the limit of space and for the
simplicity of this paper, we do not include different varia-
tions of the round-robin scheduling method.

Maintaining multiple active sensor nodes per cluster
has two obvious advantages. First, multiple active sen-
sor nodes can improve data reliability. In the case of one
active sensor node per cluster, the sink node has no way
to restore the readings of the sensor nodes in a cluster if
a packet from the only active sensor node in the cluster is
lost. If multiple active sensor nodes per cluster are used,
the data can be restored as long as at least one packet out
of the multiple active sensor nodes reaches the sink node.
Second, multiple active sensor nodes can help to shorten
the delay of cluster split detection and make the system
quickly respond to the spatial correlation changes among
sensor nodes within a single cluster.

Nevertheless, it is clear that the above benefits are ob-
tained with extra energy consumption. We are again met
with the trade-off between observation fidelity and energy
consumption.

V. PERFORMANCE EVALUATION
A. Experiment Setup

We experimentally tested the EEDC framework based
on MICAZ2 sensor nodes [5]. As illustrated in Figure 8, we
deployed 18 MICA2 sensor nodes in a 3 x 6 grid layout on
a big table to sample the light intensity. A desk lamp with
a dimmer was the only light source in the room. We used
several boxes with different sizes of holes on the top to
divide the area into sub-regions with different light inten-
sity. The deployment of sensor nodes and the boxes are
illustrated in Figure 9. The monitored phenomenon was
generated by varying the light intensity of the lamp. We
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implemented the EEDC framework on the sink node and
the MICAZ2 sensor nodes to collect the light intensity data.

The purpose of this experiment is twofold. First, we
need to verify the correctness of the proposed clustering
algorithm. Second, since the energy saving should not be
achieved at the cost of observation fidelity, we need to ver-
ify that the information loss rate with EEDC is acceptable.

Although this experiment is not a real application, we
remark that the experimental design may be representative
for some real applications with sensor networks, for in-
stance, the monitoring system for storage rooms in a gro-
cery warehouse.

B. Calculating Dissimilarity

As described above, the time-ordered data sequence at
each sensor node forms a time series, and the clustering
algorithm is based on the dissimilarity between the time
series of the sensor nodes.

Nevertheless, dissimilarity measure in practice is
highly application specific. For example, Figure 10 illus-
trates two time series of light intensity collected at two
separate locations in our experimental test bed with a rate
of 2 samples per second. If the magnitude is the main con-
cern, the two time series are not similar at all. On the other
hand, if the trends and the patterns are the main concern,
they are quite similar.
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Fig. 10. An Example of Dissimilarity Measure

We define the following two metrics to describe the av-
erage difference of two time series in magnitude and in
trend respectively.

Definition 1: magnitude m-similar. Two time se-
ries X{x1,x9,...,2,} and Y{y1,y2,...,yn} are magni-
tude m-similar if

n

<m.

Definition 2: trend t-similar. Two time series
X{x1,z9,...,2,} and Y{y1,y2,...,yn} are trend t-
similar if

ni

— 2>t

n
where n; is the total number of pairs (x;,y;) in the time se-
ries that satisfy Vz; X Vy; > 0,Va; = x; —x;-1, Vy; =
Yi — Yi—1,1 > 1.

In our experiment, we assume that users are mainly in-
terested in the general trend as well as the magnitude of
time series. Moreover, if two sensor nodes are spatially
far away, even if their readings in the past are similar, the
conjecture that their readings will correlate in the future is
likely unreliable. Thus, we constrain that the geographic
distance between any two sensor nodes that are considered
similar must be at most gmax_dist, where gmax_dist is
a given maximal distance threshold. This requirement is
also to facilitate the transmission of scheduling decisions
from the sink node.

In general, we want the dissimilarity measure to have
a straightforward and practical meaning. In this specific
experiment, we separate two time series into different
groups if any of the following constraints is violated:

1) They have a small difference in magnitude on aver-

age;

2) They have the same trends in most of time;

3) They are geographically close.



Assume that gdst(S;,S,) denotes the geographical
distance between sensor node S, and sensor node Sy,
and assume that gmax_dst is the user-defined threshold
value for geographical distance. In our experiment, we
put two time series X and Y into different groups if (a)
they are not magnitude m-similar, or (b) they are not trend
t-similar, or (c) gdst(S,, Sy) is greater than gmax_dst.

In the following experiment, we calculated the dissimi-
larity measure within a modest timeframe of 5 minutes.
This value was selected depending on the fact that the
dissimilarity measure in our experiment remained roughly
stable within the time period of 5 minutes and using a rel-
atively larger value did not exhibit big differences.

C. Experimental Results

1) The Correctness of Clustering with EEDC: Al-
though the clique-covering problem for a general graph is
NP-complete, it is easy to know the optimal clique covers
in our experiment since the knowledge of which sensor
node belongs to which sub-region is known as a priori.
We use the above criteria to check the dissimilarity and
set m = 30,t = 95%, gmax_dst = 3 feet. By calcu-
lating the pairwise dissimilarity measure, we get a graph
as shown in Figure 11, where a link between two nodes
indicates that they are similar according to the above cri-
teria. From this figure we can see that all cliques consist
of the sensor nodes in the same box, which validates the
effectiveness of the dissimilarity measure. The output of
the clustering algorithm is illustrated in Figure 12, which
is apparently the optimal solution for this specific simple
graph.

We want to stress again that spatial correlation is quite
stable for some applications even if the monitored phe-
nomenon changes dramatically. In our experiment, we
changed the light strength very quickly by tuning the dim-
mer of the desk lamp. The sampling data from the sensors
within the same box remained similar no matter how fast
we changed the light.

2) The Observation Fidelity with EEDC: In order to
evaluate the observation fidelity with EEDC, we used the
joint entropy of multiple sources [4] to measure the to-
tal information obtained. For comparison purpose, we
required that all sensors work simultaneously to obtain
the best case of lossless information collection. We also
applied our clustering and scheduling algorithms on the
same dataset to get the information collected with EEDC.

In this case study, we investigated the light intensity
data collected in our MICA?2 testbed with 18 MICA2 sen-
sor nodes deployed in the way illustrated in Figure 9. The
sampling rate was 2 samples per second, and the data col-
lection time was 10 minutes. The onboard ADC translates
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a light intensity raw reading into a discrete integer value
between 0 and 1024.

We treated the light intensity data from the i-th sen-
sor node as an independent discrete random variable S;.
The joint entropy of the total 18 sensor nodes’ observa-
tions H(S1, Sy, ..., S18), i.e., the maximum possible total
information, can be calculated as,

H(Sl, SQ, ey 518) =

-

51,52,...,518

p(S1, 52, ..., 518) x Inp(St, S, ..., S1s)

However, calculating H(Si,Ss,...,S18) in an 18-
dimensional space is quite computationally expensive. In-
stead, we calculated its upper bound. If H(C;) denotes the
joint entropy of all sensor nodes belonging to cluster Cj,
then

H(Cl) = H(Sa, Sb, ceey Sz)’Sa, Sb, ceey S, € C;

In our real dataset collected in 10 minutes with a rate of

2 samples per second, we had

7
H(Sl, SQ, ceey 518) E Z H(Cl) = 39.7nat.
=1



Let X; denote the current working node of cluster C}
with EEDC. Since only one sensor node in a cluster is
required to work in any given time, the expectation of the
joint entropy of working nodes, H (X1, Xo, ..., X7), is the
information gathered with EEDC on average. Tested with
the real dataset, it can be lower bounded by

7 1=7,5="7
H(Xy, Xy, X7) =Y H(X)— Y I(X, X))
i=1 i=1,j=1,i#j

= 36.5nat,

where I(X;, X;) is the expectation of mutual information
of X; and X, and H (X;) is the expectation of the entropy
of Xi .

As the result, the actual information loss rate with
EEDC in our case study, rggpc, can be calculated as

H(X1, Xo, ..., X7)
H(S1, 5, ..., S18)

TEEDC = 1-— S 8.0%

The low information loss rate with EEDC can be ex-
plained as follows. Since the observations of any two sen-
sor nodes within a single cluster are similar, their mutual
information is large. That is, given the observation from
one sensor node, the observations from other sensor nodes
in the same cluster should not bring much extra informa-
tion. On the other hand, since the observations of two
sensor nodes from different clusters are not similar, their
mutual information is small. In this case, the total infor-
mation of the two sensor nodes should be close to the sum
of their individual information, indicating that the joint
entropy of the sensor nodes selected with EEDC from dif-
ferent clusters at any given time is approximately equal to
the joint entropy of all sensor nodes.

3) Energy Saving: At any time instance, only one sen-
sor node in a cluster is required to work. Since the extra
working time of each sensor after its working shift, Ay,
is far less than the one round of scheduling time, 7', the
energy cost during A, can be safely ignored. In this case
study, the eighteen sensor nodes were grouped into seven
clusters with EEDC as shown in Figure 12. By calculating

2*2*5+4*4*2N
18 -

3,

we can see that without using EEDC, on average each sen-
sor will spend three times more energy in sampling and
data transmission.

D. Large-scale Synthetic Data Generation

Due to the high system cost, it is impractical for us to
perform an experiment with hundreds of sensor nodes. In

L ] L ] [ ] L ] L ] L L ] [ ] [ ] L ]
el Subregion 9 i

L ] L ] L ] L ] [ ] L ] L ] [ ] [ ] L ]
81 90

[ ] [} ® L] [ ] L] * [ ] [ ] ®

71 ¢ 3
Subregion 5| Subregion 6 Subregion 8 8
e o o o o e e e o @
61 70
Subregion 7
e o | o o e e o e e @
51 60

¢ & o & o e o o e o
41 50

] ] [ ] ] [ ] L ] L [ ] [ ] I40

81 Subregion 3
Subregion 1 Subregion 2 || SHRregien

.21 L] ® ] L] L ] L L] ] L]
30

e, & ® o o e s oo =
Subregion 1 2

e, @, 083 ©, O

5| ®6 ®7 @g| @9 @&

e Sensor Node

Fig. 13. The Field with Nine Distiguished Subregions

order to further investigate the performance of EEDC with
large-scale networks, we synthetically generated large
traces of spatially correlated dataset based on a mathe-
matical model proposed in [11]. We utilized the soft-
ware toolkit provided by [11] to extract the model param-
eters from small-scale real datasets and generate large-
scale synthetic datasets based on the model parameters.
The toolkit has been validated by comparing the statisti-
cal features of the synthetic dataset and the experimental
dataset [11].

Initially, we used our test bed in Section V-A to collect
a small-size real dataset. Then we utilized the synthetic
data generation toolkit [11] on the dataset from each in-
dividual sub-region to generate a larger dataset for each
individual sub-region. As the result, a field consisting of
nine distinguished sub-regions with 100 sensor nodes in a
10 x 10 grid layout was generated, as shown in Figure 13.

E. Performance Results with Large-scale Synthetic Data

1) The Correctness of Clustering with EEDC: Since
we know which sensor node belongs to which sub-region
as a priori, it is easy to verify the correctness of the cluster-
ing algorithm. We set m = 20,t = 95%, gmax_dst = 8
distance units. The distant unit is defined as the distance
between the two neighboring sensor nodes in a row. By
calculating the pairwise dissimilarity measure and per-
forming the clustering algorithm, we obtained nine clus-
ters, each for a sub-region.



2) The Observation Fidelity with EEDC: Unlike the
small-size real dataset, the large-scale synthetic dataset
does not permit easy approximation of joint entropy. To
avoid this problem, we use another performance metric,
the difference distortion measure, which has been broadly
used in image compression to evaluate the fidelity of a re-
constructed image against the original image [17]. The
difference distortion measure o is given by

M N
o2 — Zj:l i1 (Xij — Yi')2
N M x N

where X;; is the j-th actual sampling value from the -
th sensor node, Y;; is the j-th sampling value of the i-th
sensor node restored at the sink, NV is the total number of
sensor nodes, and M is the total number of samples from
each sensor node. Note that since with EEDC, there is
only one working node in each cluster at any given time,
the sink node simply assumes that the sampling values of
all sleeping sensor nodes in the same cluster are equal to
that of the working node.

The absolute value of o2 is not meaningful without con-
sidering the degree of variation in magnitude. So we nor-
malized the difference distortion measure by the average
variation of samples and used it as the metric of observa-
tion fidelity. Formally,

2 o’

N
where Var(X;) is the observation variation of the i-th
sensor node.

By varying the value m in the magnitude m-similarity,
we collected a set of performance data listed in Table 1.
Since with EEDC there is only one node working in a
cluster at any time instance, the number of clusters is
equal to the number of working nodes. Therefore, the
number of clusters is proportional to the total number of
transmitted data packets in the network, and hence it is
an indicator of system energy consumption. From Table
1 we can see that with the decrease of the threshold m,
the number of clusters and thus the energy consumption
increase. But o2, decreases, indicating that the obser-
vation fidelity becomes better. This demonstrates clearly
a trade-off between energy consumption and observation
fidelity.

3) Energy Saving: At any time instance, only one sen-
sor node in a cluster is required to work. Based on the
clustering result, the 100 sensor nodes were grouped into
9 clusters with EEDC. By calculating

1616 4+9%x9%x24+6x6+10%x10%3+15%x15%2
100

~ 12,

TABLE I
EEDC PERFORMANCE RESULTS

m | No. Of Cliques | o2,,,,
20 9 0.0112
15 14 0.0074
10 23 0.0037

we can see that without using EEDC, on average each sen-
sor will spend 12 times more energy in sampling and data
transmission.

E Performance Comparison with Coverage Based
Scheduling

For comparison purpose, we also investigated the
scheduling algorithm based purely on sensors’ sensing
coverage, that is, a sensor node is considered redundant
if its sensing range is fully covered by its neighbors. We
applied the coverage based scheduling algorithm to the
above large-scale synthetic dataset, and compared the re-
sult to that obtained with EEDC.

Note that we did not compare EEDC to any specific
coverage based scheduling algorithm. Instead, given a
fixed sensing range, we calculated the optimal set for
working sensor nodes. The optimization is in the sense
that the size of the set of working sensor nodes is mini-
mum, and thus the smallest energy is consumed to cover
the whole area. Therefore, the number of working nodes
is the lower bound that any coverage-guaranteed schedul-
ing algorithm could achieve.

In the following experiment, we set sensors’ sensing
range as unit square, resulting in the minimum working
sensor node set consisting of 25 evenly distributed work-
ing sensor nodes. The sink node assumes that the sam-
pling value of a sleeping node is equal to that of the closest
sensor node. For a specific sleeping node, if it has several
closest working sensor nodes, the sink node picks up one
working node randomly and takes its sampling value as
the restored value of the sleeping node.

After calculation, the normalized distortion measure,
02, .m» Was equal to 1.0452. Comparing to the results
of EEDC in Table I, we can see that even if the num-
ber of data packets transmitted with EEDC is less than
that with the coverage based sampling scheme, the ob-
servation fidelity of EEDC is much better. Experiments
also show that changing the coverage range of each sen-
sor node does not change this fact. The reason is straight-
forward: scheduling based purely on sensors’ coverage
range may be inaccurate since it does not consider the
features of the monitored phenomenon. The above results



clearly demonstrate the advantages of EEDC over cover-
age based scheduling schemes.

VI. RELATED WORK

The problem of achieving energy efficiency in dense
wireless sensor networks by decreasing spatial sampling
rate has been explored to some extent. The basic idea of
most existing approaches is to schedule sensor nodes to
work alternatively to maintain a high coverage rate over
the field of interests. A sensor node whose sensing range
is fully covered by other working nodes is considered re-
dundant and can be put into sleep. In this case, the geo-
graphical distance between sensor nodes is the only factor
taken into consideration in sensor scheduling.

In [8], Hsin proposed a random scheduling scheme and
a coordinated sleep scheduling scheme. In the random
one, time is divided into slots with same length and each
node determines randomly and independently at each slot
whether it should be on or off. In the coordinated one,
each node is assumed to be aware of its current location
thus it can check whether it is totally redundant or not. If
yes, it selects a random delay, picks up a sponsor node set,
and broadcasts a request message to inform the nodes in
the sponsor set to stay awake in a predefined sleep period.
The sponsor node set consists of its neighbor nodes that
can fully cover its sensing range. By adjusting the length
of backoff time based on the relative residual energy, en-
ergy balance can be achieved.

A similar method was proposed in [18]. A coverage-
based off-duty eligibility rule and a backoff-based node-
scheduling scheme were adopted to guarantee a high sens-
ing coverage.

In [20], a sensor node uses a probing mechanism to de-
termine whether it should sleep. Once a sleeping node
wakes up, it broadcasts a probing message to ask for reply
from its neighboring active nodes. If no reply is received
within a timeout period, the node assumes that there are
no working nodes nearby and starts to work till it depletes
its energy. Otherwise, it believes that it is redundant and
goes to sleep again. The coverage rate can be changed by
adjusting the probing range and the wakeup rate.

In [19], the authors divided the whole monitored field
into grids and transformed the area coverage problem into
the grid intersection point coverage problem. Each sensor
node knows its location and its neighbors’ locations. By
exchanging messages with its neighbors through an adap-
tive energy-efficient sensing coverage protocol, each node
is able to dynamically decide a schedule for itself, which
guarantees the grid intersection points within its sensing
range to be monitored by itself or by its neighbors at any
time.

Rather than considering coverage as the only factor in
scheduling, several pioneering methods have been pro-
posed to adjust spatial sampling rate according to statis-
tic features of the monitored phenomenon. In [6], a linear
model was proposed to capture the spatial-temporal corre-
lations among sampling data from different sources. With
this model, most sensor nodes can be turned off and their
readings can be estimated with certain accuracy by using
the linear combinations of the data from working sensor
nodes. However, in real world, a lot of systems may not
be linear. Furthermore, the method of choosing the right
working nodes has not been discussed in [6].

A novel approach to adjusting spatial sampling rate
with the help of mobile sensor nodes was proposed in
[2]. Mobility, combined with an adaptive algorithm, al-
lows the system to get the most efficient spatial-temporal
sampling rate to achieve a specified monitoring accuracy.
Mobility can also make the system respond quickly to un-
predictable environmental changes.

VII. CONCLUSION AND ON-GOING WORK

In this paper, we design an Energy Efficient Data Col-
lection (EEDC) framework that utilizes the spatial correla-
tion to group sensor nodes into clusters. In the framework,
the time-ordered sampling data from each sensor is treated
as a time series and sensor nodes are separated based on
the dissimilarity measure of the time series. With this
method, the whole network is divided into several sub-
regions, with each covered by a cluster of sensor nodes.
Since the clusters are based on the features of sampling
data, scheduling based on the clusters is much more ac-
curate than scheduling based purely on the sensing range
of sensor nodes. We also discuss the details of all ma-
jor components in the EEDC framework, including the
calculation of dissimilarity, sensor clustering, and sensor
scheduling.

We thoroughly evaluate the performance of the EEDC
framework with a real experiment based on MICA?2
motes [5] and with a large-scale synthetic dataset. Ex-
perimental results demonstrate that the EEDC framework
can effectively save energy without losing observation fi-
delity.

As our on-going work, we are investigating different
approaches to measuring dissimilarity based on different
application contexts. We hope to provide a set of criteria
that can guide data analysis and simplify protocol design
for specific applications.
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