
A Practical Method for Estimating Performance
Degradation on Multicore Processors, and its

Application to HPC Workloads
Tyler Dwyer, Alexandra Fedorova, Sergey Blagodurov, Mark Roth, Fabien Gaud, Jian Pei

School of Computing Science, Simon Fraser University
{tdwyer,fedorova,sergey blagodurov,mroth,fgaud,jpei}@sfu.ca

Abstract—When multiple threads or processes run on a multi-
core CPU they compete for shared resources, such as caches and
memory controllers, and can suffer performance degradation as
high as 200%. We design and evaluate a new machine learning
model that estimates this degradation online, on previously
unseen workloads, and without perturbing the execution.

Our motivation is to help data center and HPC cluster
operators effectively use workload consolidation. Data center con-
solidation is about placing many applications on the same server
to maximize hardware utilization. In HPC clusters, processes
of the same distributed applications run on the same machine.
Consolidation improves hardware utilization, but may sacrifice
performance as processes compete for resources. Our model helps
determine when consolidation is overly harmful to performance.
Our work is the first to apply machine learning to this problem
domain, and we report on our experience reaping the advantages
of machine learning while navigating around its limitations. We
demonstrate how the model can be used to improve performance
fidelity and save energy for HPC workloads.

I. INTRODUCTION

Workload consolidation refers to a resource allocation prin-
ciple where we try to place many applications or processes
comprising a distributed application on the same server, so as
to not leave any cores idle. Consolidation makes a fundamental
trade-off between performance and hardware utilization (and
thus power efficiency). We improve utilization of the ma-
chine’s resources, but sacrifice some amount of performance,
because increased resource sharing among threads may reduce
the rate of retired instructions.

Previous studies have shown that performance degradation
occurring when threads or processes run on the same multicore
CPU and share resources, such as last-level caches, memory
controllers, system request queues, and prefetch bandwidth,
can reach as much as 200%, relative to running in isola-
tion [1]–[5]. Such severe degradation can defeat the benefits of
consolidation, leading to violation of customer QoS constraints
or simply producing application slowdowns that are deemed
unreasonable [6], [7]. In certain cases, the slowdown could
be so extreme, that despite saving power we waste energy,
because the workload takes much longer to complete under
consolidation than without it [8].

It is clear that we cannot use workload consolidation without
considering its potentially damaging effects. Unfortunately,
conventional performance tools, while allowing us to observe
events like retired instructions or cache and memory controller

accesses, do not tell us how much performance degradation the
workload is experiencing. If we have the luxury of knowing
in advance the input used by our workload and have access to
the hardware on which it will run in the field, we can execute
the workload offline with various degrees of consolidation,
determine the optimal, and use that setting in the field. Unfor-
tunately, in most cases we do not have advance knowledge
of runtime parameters, and so deciding whether or not to
consolidate becomes guesswork.

We propose a method that helps making better consolidation
decisions in data centers. We develop a model that takes as
inputs performance counter values obtained on a consolidated
workload (which can be measured inexpensively online) and
produces an estimate of how much performance degradation
each thread or process is suffering relative to running on
the CPU alone, without contention for resources. We do
not require running applications in isolation or perturb their
execution. Using this estimate, the operator can decide if
the degradation is beyond an acceptable threshold, and if it
is distribute the workload to a larger number of CPUs or
servers. The model is designed for scenarios where either
different applications are consolidated on the same machine,
or processes of the same application share the hardware (as
commonly happens in a HPC setting).

We create the model using machine learning; to the best
of our knowledge, our work is the first to apply machine
learning to this incredibly complex problem. We train the
model offline, using a set of widely available benchmark
programs. To maximize accuracy, the training programs should
have properties similar to the workload on which the model
will be used, but they need not be the same or overlap. For
example, if we are targeting business applications, we could
train on SPEC JBB or TPC-W; for scientific workloads, we
could train on SPEC CPU. The model is trained for specific
hardware, but this needs to be done only once, and can be
performed as part of system installation and configuration.

Although machine learning has been used to model system
behaviour in the past, it has not been applied to performance
degradation on multicore systems. We were compelled to try
machine learning, because it could help overcome practical
limitations of previous solutions. Previous solutions used
analytical modeling, heuristics based on hardware counters,
or trial-and-error methods. Analytical modeling is extremely

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

fragile and challenging, because modern CPUs are incredibly
complex; moreover, crucial details about the microarchiecture
are often unavailable due to intellectual property protection.
Heuristic-based models provide only a coarse approximation
of performance degradation; typically they can tell us whether
the degradation is occurring, but not its magnitude. Indeed, as
we show in Section IV, a cluster scheduler based on a heuristic
model can waste energy relative to the scheduler that is based
on the more precise model proposed here. Trial-and-error
methods require running applications in different co-schedules
with other applications [9] or with dummy workloads [7] in an
effort to find a co-schedule that minimizes the degradation, but
as the number of cores increases the number of co-schedules
grows as well, as does the perturbation imposed on the work-
load. In considering the limitations of previous approaches,
machine learning looked like a promising alternative.

Machine learning excels at discovering complex relation-
ships between a variety of factors and filtering out the factors
that are not important. This seemed very well suited to our
problem, because modern CPUs allow monitoring hundreds
of performance events, some of which correlate with sharing-
induced degradation, but it is very difficult to filter the spurious
events manually. Our idea was to use machine learning to
discover the relevant hardware events automatically, so we
could apply the same methodology on any hardware platform,
to automatically create a model for the desired processor
without the manual labour of picking the right counters.
Indeed, we observed that our model-building methodology
seamlessly ported between two machines with different hard-
ware counters, cache and system bus architectures.

The key limitation of machine learning is that the model
is only as good as the training data. While we can make
an effort to train on the workloads similar to those used in
the field, it is not always possible. In evaluating the model,
we observed that if the input data falls outside the range of
the values seen in training, the model becomes limited in its
ability to make accurate predictions. While it is possible to
re-train the model using the “outlier” workload, it is crucial to
detect in real-time when the model is about to produce a poor
estimate. To that end, we propose a statistical solution, called
confidence predictor, which detects when the model is about to
make a mistake. Upon detecting the “low confidence” signal,
the operator can conservatively decide to not consolidate this
workload, or re-train the model using the data obtained on
the “outlier” workload. The confidence predictor reduces the
maximum error by a factor of 2× or 3× in our experiments,
while marking roughly 25% of the predictions as “non-
confident”.

We focus on modeling the degradation resulting from shar-
ing the multicore chip’s resources, because they are the most
difficult to control in software, unlike CPU cycles, memory
space and disk/network bandwidth, which can be controlled by
quotas. In fact, in the environment where we chose to evaluate
our model, an HPC cluster running scientific workloads, each
thread is typically given a dedicated CPU, and a job’s memory
is sized to fit within the physical memory limits of the

machine. Network bandwidth on the cluster interconnect was
not a bottleneck in our experiments, but if it were, machine
learning could also be used to model contention for that
resource.

The contributions of our work are: (1) creating the
methodology for modeling performance degradation on mul-
ticore systems using machine learning, (2) evaluating the
strengths and limitations of the resulting model, (3) designing
a confidence predictor that signals when the model is unable
to produce an accurate estimate, and (4) demonstrating how
the model can be applied to improve performance fidelity and
save energy in an HPC setting.

The rest of the paper is organized as follows: Section II
describes the methodology for building the model. Section III
evaluates its accuracy. Section IV presents and evaluates
a simple scheduler for HPC clusters that uses our model.
Section V discusses related work. Section VI summarizes our
findings.

II. THE MODEL

Before we describe the methodology for creating the model,
we explain how the model would be used in practice. We begin
with the assumption that our target application is a single-
threaded process. Then we explain how the model would work
with multi-threaded processes.

First, the user would train the model following the procedure
described below, and using as the training set the applications
that most closely resemble those on which the model would
be used in the field. Each application is executed alone on
the machine and in combination with other applications. We
compute how much slower the application runs when co-
scheduled with others relative to running alone; this slowdown
is the performance degradation. We then train the model
to predict performance degradation using hardware counter
values obtained on the system when the target application runs
with other jobs. The resulting model is thus set up to estimate
how much slowdown the application is suffering when space-
sharing the CPU with others, without the need to execute the
target application alone.

The model estimates the degradation based on per-core and
system-wide hardware counter values, and so it is agnostic
to whether the cores are running single-threaded processes or
threads from the same application. We purposefully do not
configure the model to account for positive effects of co-
operative sharing; such models are available and, if desired,
can be used in conjunction with the proposed model [10].

The goal of the model is not to facilitate contention-aware
scheduling of threads within an application, but to decide
whether we need to allocate more hardware in environments
where many applications runs on the same physical server.
So if we have a multi-threaded application sharing hardware
with other processes, we would use the model to estimate, for
each thread, the performance degradation that the thread is
suffering under resource contention relative to running alone
and then average the degradations of all threads to obtain
the degradation for the entire application. If the application is

Intel: 2-socket “Clover-
town”

AMD: 2-socket “Istan-
bul”

Cores per socket 4 6
Shared per socket Two L2 caches (per pair

of cores), front-side bus,
prefetcher, memory con-
troller

L3 cache (all cores),
system request queue,
memory controller, data
and memory controller
prefetchers

TABLE I
SHARED RESOURCES IN THE EXPERIMENTAL SYSTEMS

deemed to suffer unreasonable performance penalty, we would
migrate that application to a less loaded server, to create a less
contentious environment. Within each server, a local OS or
hypervisor scheduler, ideally one that takes into account both
resource contention [5] and co-operative resource sharing [10],
[11] will decide how to place threads on cores. Other resource-
allocation decisions, e.g., regarding CPU and memory quotas,
can be applied on top; deciding how to combine allocation of
resources of different types is deferred to future work.

In the rest of the section we explain how we build the model.
As will become clear in Section II-B2, our model is a decision
tree. A decision tree consists of nodes and branches, where
each node is labeled with an attribute (e.g., a hardware counter
type in our model) and a threshold for the attribute’s value.
Based on the thresholds we decide which of the branches
emanating from the node to follow. We follow the tree all
the way down to a leaf, comparing the measured hardware
counter values with the corresponding thresholds assigned to
the nodes. The resulting leaf node will give us the predicted
degradation for the data point characterized by these hardware
counter values. So the goal of building the model is to assign
the right attribute thresholds to intermediate tree nodes and
predicted degradation values to the leaves, so we arrive at
a reasonably accurate prediction of performance degradation.
The process of building the model consists of three steps:
(1) collection of the training data, (2) attribute selection, (3)
model training.

A. Collection of the training data

1) Testing Platform: To confirm portability of our method-
ology, we built and tested our model on two systems, Intel
and AMD using exactly the same procedure. Refer to Table I
for system parameters. We trained and tested the model only
on a single socket, because additional contention from running
applications on the second socket did not significantly affect
degradation [5]. The (AMD) system has a NUMA (non-
uniform memory access) architecture, and so we ensured that
an application’s memory is allocated on the same node as
where the application runs. This is how the OS would typically
behave1.

2) Applications and Co-schedules: Since our goal was to
evaluate the model on scientific applications typical of HPC
clusters, we trained the model on the SPEC CPU2006 suite.

1On most recent NUMA systems with directory-based cache coherence
protocol, processes running on separate memory nodes and sourcing data from
their local memory node will not noticeably affect each other’s performance

We ran applications in three different types of co-schedules.
The solo run is when an application runs alone on a system
without contention. The solo run was used in calculating the
true value of performance degradation. True degradation is
needed only to train the model and to evaluate the accuracy
of predictions; we do not expect to know it on a production
system. In the other two types of co-schedules the application
runs in contention, concurrently with others. In the clean co-
schedule, the primary application (the one whose degradation
we predict) runs with several copies of itself (three on the
Intel system, five on the AMD system). In the random co-
schedule, the primary runs with randomly chosen benchmarks
on the remaining cores.

To collect the data for training, we start all applications in
the co-schedule at the same time. If any interfering application
terminates before the primary is finished, we restart the inter-
fering application, thus keeping the primary in full contention
for the entire run. Overall, we recorded over 10 random co-
schedules for each of the 27 applications. Together with clean
and solo runs, this resulted in over 500 co-schedules.

3) Recording Performance Events: To record the attributes
relevant for modeling degradation, we use the hardware per-
formance counters that can be used to measure events, such
as last-level cache misses, the number of bus transactions, etc.
(some shown in Table III). On the Intel system there are 340
event counters per core, but only four hardware registers for
counting them. To be able to record all these events, we had
to sample them by switching between different event types.

When we switch between events, we have to make sure
that each event is sampled for a substantial period of time,
to ensure good sampling accuracy. The need to measure a
large number of events puts a lower bound on the interval
of execution for which we are able to record all available
counters. We set that interval to 5 billion instructions, which
allowed us to capture the required events without major loss of
precision2. Each 5-billion instruction window is called an ex-
ecution instance. We train the model and produce predictions
for execution instances, as opposed to the entire program. The
implication is that in production setting, we need to sample
event counters for 5 billion instructions (a few seconds of
execution time) before we are able to produce an estimate
of the degradation. Therefore, the model is best suited for
long-running workloads, such as the scientific applications we
evaluate in our study.

As we rapidly switch between different types of counters,
intermittent system events, such as handling of an interrupt,
can introduce unexpected spikes or dips in the measurements.
Data containing these variations presents a challenge for a ma-
chine learning algorithm, because there is not enough training
data to learn the behaviour during these extraneous events. To
smooth out their influence, we found it helpful to represent
attribute values for each instance as the rolling average of

2Adding the attribute selection step, described below, enabled us to use a
smaller execution interval. We observed, however, that the accuracy of the
model was not sensitive to the size of that interval.

the past ten instances, with an exponential preference to more
recent instances.

4) Calculating performance degradation: The degradation
for an instance is obtained by calculating the percent increase
in clock cycles needed to complete the fixed instruction
window under contention, relative to solo. For example if the
co-schedule A-B-C-D has 50 execution instances, then the
A solo run would also have 50 instances, as instances are
based upon retired instructions, which are constant regardless
of contention. The clock cycles of the ith instance of A-B-C-
D, denoted ABCDi

clk, are compared with the ith instance of
A’s solo run, denoted as Ai

clk. From these, the degradation of
A while in contention with B-C-D is computed as:

Deg(Ai
BCD) =

ABCDi
clk −Ai

clk

Ai
clk

∗ 100% (1)

We performed the above calculation on all instances in our
data set. After this procedure our dataset contains equally-sized
execution instances, each with 340×4 = 1360 attributes from
the event counters, and the degradation value.

B. Attribute Selection and Model Training

1) Attribute Selection: Before building the model we re-
duced the number of attributes in the dataset from 340 per
core to 19 per core. Attribute selection was performed for
three reasons. The first is to eliminate the attributes that were
redundant or unrelated to degradation. The second is to reduce
the training time from up to several hours (with 340 attributes)
to several minutes (with 19 attributes). Third is to allow a new
dataset to be recorded with fewer events sets, leading to more
accurate recording.

We performed attribute selection using a suite of machine
learning algorithms Weka. We tested several attribute selection
techniques by creating models for each set of selected at-
tributes and comparing their accuracy. The technique with the
lowest error rate was correlation based feature subset attribute
selection (CfsSubset) [12]. CfsSubset sorts the attributes by
their correlation to the class attribute (degradation) and to
the other attributes in the dataset. Attributes with a high
correlation to the class attribute and a low correlation to the
other attributes are considered relevant.

Attribute selection yielded 19 attributes for each core, shown
in Table III; same 19 attributes on each core were selected. In
order to train the model, we want to distinguish the counters of
the target core (the one whose degradation we are predicting)
from those of the interfering cores. To do that, for each event
counter we average the values obtained on all interfering cores,
for a given execution instance. In summary, before we train
the model, we have thousands of execution instances, and for
each we have the values of the event counters on the target
core, the average of the counters on the interfering cores, and
the degradation.

2) Model Creation: In the process of building the model we
evaluated all modeling algorithms available in Weka, listed in
Table II. Although we are unable to provide detailed analysis
of all these methods due to space constraints, we settled on

Bagged REPTree +0.00% Linear Regression +4.45%
Gaussian Process +1.20% PLS Classifier +4.76%
REP Tree +2.35% Decision Table +6.12%
Isotonic Regression +3.79% Simple Linear Regression +8.10%
SVM Reg +3.84% Neural Network +10.60%
SMO Reg +3.85% Conjunctive Rule +11.17%
M5P +4.14% Decision Stump +12.18%
Pace Regression +4.36% M5Rules +17.84%

TABLE II
MODELLING TECHNIQUES TESTED AND THE AVERAGE ERROR THEY

PRODUCED RELATIVE TO REPTREE. REPTREE’S AVERAGE ERROR WAS
16% IN CROSS-VALIDATION.

REPTree, because it yielded the highest accuracy in a variety
of test cases. REPTree can be used in two modes: as a
regression tree, where the predicted outcome a real number,
and as a classification tree, where the predicted outcome is a
class, or a range of degradation values in our case. Regression
mode produced a higher accuracy than the classification mode,
so we use it in our model.

We experimented with several accuracy-improving tech-
niques and found bagging to be very effective. Bagging, also
referred to as bootstrap aggregating, is known to lower the
error rate, reduce the variance and help avoid over-fitting.
Bagging works by creating m new datasets each populated
through sampling from the original dataset, uniformly with
replacement. From each of these m data sets a new model is
created, providing us with m models. Each model is then used
to produce an estimate, and all these estimates are averaged to
create the final estimate. When bagging was used, the average
error of our REPTree model reduced by over 6%, and the time
to train the model and make predictions remained reasonable.

The REPTree model is well suited for online use, because
an estimate can be produced exceptionally quickly (tens of
microseconds in our experiments). The tree is represented as
a table, and all that is required is a few table look-ups, whose
number is proportional to the depth of the tree.

III. RESULTS

We begin by taking a closer look at the decision tree created
for the Intel system (Section III-A). Then, in Section III-B we
present the quantitative evaluation of the model’s accuracy,
along with the analysis of scenarios producing high errors, and
the confidence predictor, a solution for anticipating inaccurate
predictions online. We are unable to present detailed results
for the AMD system, but the conclusions we reached from that
data were qualitatively similar.

A. Analysis of the decision tree

A decision tree is structured as a collection on nodes
and branches, where each node contains the attribute used
for making the branching decision and the corresponding
threshold value. For instance, in our tree for the Intel system
the attribute showing the number of delayed bus transactions
(L2 REJECT BUSQ:MESI from Table III) is used for branch-
ing at the root of the tree. Instances that generated fewer than

Event Name Event Description Event Name Event Description

UNHALTED CORE CYCLES Clock cycles elapsed. INSTRUCTIONS RETIRED The number of retired instructions.

RS UOPS DISPATCHED CYCLES:PORT 1 The number of cycles for which micro-ops are dis-
patched for execution on port 1. Indicative of processor
utilization.

SEGMENT REG LOADS Number of segment register loads.

SSE PRE EXEC:NTA This is a software prefetching event. Counts the number
of times the SSE prefetch NTA instruction is executed.

SSE PRE EXEC:STORES This is a software prefetching event. Counts the number of
times SSE non-temporal store instructions are executed.

L2 M LINES OUT:BOTH CORES Counts the number of L2 modified cache lines evicted
by both cores. Indicative of the pressure on the memory
hierarchy.

L2 RQSTS:M STATE Counts all completed L2 cache requests, including hardware
prefetches. M STATE counts accesses to cache lines whose
content differs from that in in the memory).

L2 REJECT BUSQ:MESI Counts event when a pending L2 cache request that
requires a bus transaction is delayed from moving to
the bus queue. This can happen, for instance, when the
bus queue is full.

L1D CACHE ST:I STATE Counts the number of data writes to cacheable memory that
missed the cache.

L1D CACHE LOCK:M STATE Counts the number of locked data reads in modified state
from cacheable memory.

LOAD HIT PRE Counts load operations conflicting with a software prefetch to
the same address.

BUS TRANS INVAL:BOTH CORES Counts invalidate bus transactions for both cores, which
can be generated, for instance, when a cache line write
misses the L2 cache.

BUS TRANS P:ALL AGENTS Counts all partial bus transactions.

BR MISSP EXEC Counts the number of mispredicted branch instructions. BR IND MISSP EXEC Counts the number of mispredicted indirect branch instructions.

SIMD UOP TYPE EXEC:SHIFT SIMD packed shift micro-ops executed. INST RETIRED:STORES Counts the number of instructions retired that contain a store
operation.

SIMD COMP INST RETIRED Retired computational Streaming SIMD Extensions
(SSE) scalar-single instructions.

TABLE III
LIST OF THE ATTRIBUTES SELECTED BY ATTRIBUTE SELECTION FOR THE INTEL SYSTEM

5 delayed bus transactions per thousand instructions follow the
right branch, the rest of the instances follow the left branch.

Examining the Intel tree, we observed that the number
of delayed bus transactions was one of the most important
attributes in the decision tree, as it is used for branching
decisions at almost every tree level starting from the root and
appears as the branching attribute in 10% of all the tree nodes.
A delayed bus transaction indicates that a memory request has
to wait in the queue before it is issued. Frequent occurrence
of this event is indicative of memory bus contention. Earlier
work studying contention on the same Intel system observed
that memory bus contention was the key cause of performance
degradation [5]. Our model identified this event as important
automatically. Other events that are used most frequently in de-
cision making include L1 store misses (L1D CACHE ST), L2
cache requests (L2 RQSTS), evicted L2 cache lines that were
dirty (L2 M LINES OUT) and other events indicative of the
bus traffic (BUS TRANS INVAL and BUS TRANS P).

Somewhat surprisingly, we observed that many of the most
significant attributes were related to the write intensity of the
workload, e.g., L1D CACHE ST and L2 M LINES OUT.
This could indicate that the underlying system is not able to
buffer the writes to the extent that their effect on the memory
system is minimal.

The strongest positive correlation with degradation was
observed for the following attributes: L2 REJECT BUSQ
(0.87 correlation coefficient), UNHALTED CORE CYCLES
(0.64), BUS TRANS P (0.48), L2 M LINES OUT (0.26)
and L1D CACHE ST (0.22). This makes sense, as these
attributes are indicative of the memory bus contention: UN-
HALTED CORE CYCLES (the number of cycles it took to
execute the instruction window) will be high for applications
that experience large memory-bus delays, as will be the
number of bus transactions (BUS TRANS P), the number of
evicted last-level cache lines (L2 M LINES OUT) and the
number of stores (L1D CACHE ST). The strongest negative

Fig. 1. Cumulative distribution of errors

correlations were observed for INST RETIRED.STORES (-
0.25) and BR IND MISSP EXEC (-0.21).

B. Evaluation of the model’s accuracy on the Intel system

We evaluate the model’s accuracy using cross-validation.
For each primary benchmark, we predict its degradation in
the clean and random co-schedules. To produce the estimates,
we first remove from the data set all execution instances con-
taining this benchmark (either as the primary or interfering).
We train the model on the reduced data set and then produce
the estimate of the degradation. This way we ensure that the
model is not trained on any instances of the application for
which it is trying to make predictions. This is the most rigorous
validation procedure of all the available options.

Our metric of accuracy, the error rate, is the absolute
difference between the estimated and the actual measured
degradation. For instance, if the measured degradation was 5%,
but we predicted 7%, the error would be 2%. Figure 1 shows
the cumulative distribution of prediction errors produced by
our model. We observe that 80% of the errors are under 20%.
The average error was 16%.

Figure 2 shows the estimated and predicted degradation
over time (for all instances) for two benchmarks that are
representative of the results that we observed. Each benchmark
was run in many co-schedules; since we are unable to show

Fig. 2. Estimated vs. predicted degradation for all instances over time for two selected benchmarks. We show the co-schedules that produced the lowest,
median and the highest errors.

all co-schedules due to space limitations, we report the data
for the co-schedule that produced the smallest prediction
error (Min Error Co.), median error (Median Error Co.) and
the highest error (Max Error Co.). In the case of tonto we
observe that the model is very good at following degradation
trends over time; we observed similar behaviour with other
benchmarks exhibiting temporal variation in degradation.

Since we are unable to show detailed time-series graphs for
every benchmark, we present a summary in Figure 3. The
x-axis shows the degradation values, the y-axis shows the
primary benchmarks. For each benchmark, the dot indicates
the true degradation, and the triangle indicates the value
predicted by the model. The length of the line connecting the
two symbols correlates with the magnitude of the error. The
first chart on the left shows the results for the co-schedules that
produced the smallest error for each benchmark, the second
chart shows the median-error co-schedules, the third chart
shows the highest-error co-schedules.

Min- and median-error charts show that, with a few excep-
tions, the prediction errors are quite small. From the highest-
error chart we observe that there are a few large errors for
high-degradation benchmarks, such as lbm, soplex, libquantum
and mcf. As we will demonstrate in the next section, these
benchmarks show behaviour that is distinct from the other
benchmarks in the training set. Since cross-validation ensures
that we do not train on the benchmarks whose degradation we
are trying to predict, the model is not trained to recognize these
“outliers”. The fourth chart in Figure 3 shows how the results
for highest-error co-schedules improve when we apply the
confidence predictor; these data and the confidence predictor
will be explained in Section III-D.

C. Uncovering the outliers

With cross-validation, the training set contains absolutely
no instances of the application whose degradation we are
trying to predict. So, for instance, if we are predicting lbm
the model had no event counters involving lbm in its training
set. Therefore, if lbm’s attributes are very different from the
training set, we could use this variation to explain inaccurate
predictions and, furthermore, to anticipate them. To test this
theory, we compare performance attributes of the outliers to
those in the rest of the set.

Figure 4 compares the event counter values of four
benchmarks with the highest errors in the max-error co-
schedules (lbm, libquantum, mcf and soplex) with those of
the other benchmarks. We begin by analyzing lbm. Fig-
ure 4 clearly shows that lbm is an outlier in the attribute
L2 M LINES OUT. This event count is high when the work-

load evicts a lot of L2 cache lines in the modified state. When
the evicted cache lines are dirty, the memory system has to
do more work in handling cache misses, because modified
lines must be written back to memory. Lbm happens to be
a very write-intensive application [13], and since its value of
L2 M LINES OUT is extremely high, our model extrapo-
lates an extremely high degradation. In reality, writes, while
certainly adding pressure to the memory system, contribute
to execution latency only indirectly, since they are handled
asynchronously. (The correlation of L2 M LINES OUT with
performance degradation is only 0.26). As a result, our model
greatly overestimates the degradation.

We now look at libquantum. In sharp contrast to lbm,
libquantum performs very few writes [13] and is unique in its
extreme latency sensitivity. It has very poor cache reuse and as
a result spends 100% of execution time in memory episodes,
where it is waiting for at least one memory request [14].
Indeed, in Figure 4 we observe that libquantum has an un-
usually high value of the attribute L2 REJECT BUSQ:MESI,
which occurs when a pending data request from the L2
cache is delayed from moving to the bus queue, and is
indicative of long memory episodes. No other benchmark
in the SPEC CPU2006 suite has similar behaviour. As a
result of its latency sensitivity, libquantum suffers significantly
more from contention than other benchmarks, because any
increase in memory-system latency has a direct effect on its
performance. Since libquantum is the only benchmark with
this behaviour, the model is unable to capture its extreme
latency sensitivity and so it consistently underestimates the
degradation for libquantum.

Looking further at soplex, we observe that it has a vastly
different prefetching behavior than the rest of the benchmarks.
First of all, it has a somewhat higher count of software prefetch
events (SSE PRE EXEC:NTA) than other benchmarks. But
what is particularly interesting is that it has a dramatically
high count of LOAD HIT PRE events, which counts load
operations conflicting with a software prefetch to the same
address. For every other benchmark in the suite except one3,
this event count is close to zero. This means that soplex
performs extremely effective prefetching, since a large number
of loads already have a corresponding prefetch request in
flight. Effective prefetching masks memory latency, and so
contention for shared resources has a much smaller impact on
soplex’s performance than one might expect. Since soplex is
the only benchmark with such property, the model is unable

3Gobmk also has a high occurrence of this event, but it is still roughly four
times smaller than for soplex.

Degradation Value

P
rim

ar
y

B
en

ch
m

ar
k

470.lbm
450.soplex

462.libquantum
429.mcf

471.omnetpp
403.gcc
433.milc

436.cactusADM
459.GemsFDTD

401.bzip2
473.astar

435.gromacs
458.sjeng

410.bwaves
437.leslie3d
445.gobmk

434.zeusmp
481.wrf

447.dealII
464.h264ref

465.tonto
444.namd

456.hmmer
453.povray

400.perlbench
454.calculix
416.gamess

Min Error Co.

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●

0% 50% 100%

Median Error Co.

●
●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

0% 50% 100% 150%

Max Error Co.

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●

0% 50% 100% 150% 200% 250% 300%

Conf Max Error Co.

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●

0% 50% 100% 150%

Legend

● True

Predicted

Fig. 3. Difference between the actual and predicted degradation for the best, median and worst predicted co-schedules for each primary benchmark. The
right-most chart shows the max-error co-scheduled when we apply the confidence predictor.

Fig. 4. Highlighted event counters for libquantum, lbm, soplex and mcf. (Must be viewed in colour).

to correctly factor in the effect of successful prefetching and
so it typically overestimates soplex’s degradation.

Finally, examining the outlier events for mcf, we see that,
similarly to lbm and libquantum, it has a large number
of L2 REJECT BUSQ and L2 M LINES OUT events. Al-
though when we validate mcf, the training data does include
lbm and libquantum, the number of the instances that include
these benchmarks is very small, relative to the other instances
that have much lower counts of the two events. As a result,
the model is not strongly trained to make accurate predictions
in this case.

The key insight that we gain from this analysis is that
the applications responsible for the highest errors can be
predictably identified if we analyze how their performance
attributes are different from those of other applications. We
use this insight to create a method for anticipating when the
model is likely to produce a high error.

D. Confidence Predictor

The confidence predictor decides whether or not the model
is likely to make an accurate prediction by comparing the
hardware counter attributes of the instance whose degradation
we are about to predict with the distribution of attribute values
seen in training. If two or more attributes of the to-be-predicted
instance are more than two standard deviations away from the
mean of the values seen in training, the confidence predictor
marks the instance as non-confident and produces a null
prediction. There are several ways how the operator can handle
null predictions. One possibility is to conservatively label this
workload as high-degradation and not to consolidate it – this
policy can be used for workloads with strict QoS requirements.
Another solution is to add a copy of this workload to a
database of training benchmarks, so that the model can be
trained on it in the future.

The fourth chart in Figure 3 shows the highest-error co-

schedules once we introduce the confidence predictor. We
observe that the magnitude of errors is substantially reduced.
As the trade-off, the predictions for a few benchmarks are not
made: this would occur if all instances for that benchmark are
marked as non-confident. This is expected: if the behaviour of
the benchmark is drastically different from the behaviour seen
in training, the model would not be able to confidently predict
any of its instances. In this case, it is best to either re-train the
model on the benchmark or to conservatively assume a high
degradation. Overall, about 25% of the instances are omitted
as non-confident.

Figure 5 shows the scatter plots of the errors produced
by the model when we make the estimates for all instances,
regardless of confidence, and when we produce the estimates
only for confident instances. The confidence predictor substan-
tially helps to filter out erroneous predictions, reducing the
maximum error by about a factor of two. The average error
for all instance is around 16%, but it is reduced to 10% when
the confidence predictor is applied. On our AMD system, the
confidence predictor reduces the maximum error by about a
factor of 3× and improves the average error from 13% to 10%,
while marking 25% of the instances as non-confident.

In summary, we conclude that machine learning is a rea-
sonable method for estimating the complex effect of sharing-
induced performance degradation on multicore processors. It
is able to produce accurate predictions in the majority of
the cases, but when the training set has insufficient diversity
we can anticipate high errors in the model by applying the
proposed confidence predictor.

IV. USE CASE FOR THE MODEL

In this section we describe how our model could be used for
improving resource-allocation decisions in high-performance
computing (HPC) clusters. HPC clusters run scientific ap-
plications, many of which are structured as multi-process
jobs communicating via MPI (message-passing interface). By
default, cluster scheduling algorithms, such as Maui [15] or
Moab [16], will assign a process of a given job to every
available core on the server, but since many MPI applications
are very memory-intensive, they will experience substantial

Fig. 5. Errors for all instances (left) and only confident instances (right).

performance degradation when the processes of the same job
share a multicore CPU [17]. The cluster operator may want to
spread the job’s processes across a larger number of nodes, so
as to avoid unreasonable performance degradation, but with
existing tools it is difficult to decide whether the degradation
is high enough to justify using extra hardware.

To demonstrate how the proposed model can address this
problem, we prototype a new cluster scheduler that uses
the model for scheduling decisions. The proposed scheduler,
described later, improves on two baseline cluster scheduling
policies: Best-fit and Min-collocation. Best-fit, which is the
most commonly used policy, allocates the processes of the
same job on all available cores on the node, using additional
nodes if needed, but if a single job does not fill all the cores,
it fills them with processes of another job. The other baseline
policy, Min-collocation, attempts to schedule no more than one
job per node, as long as there are unused nodes available.

The Best-fit policy ensures maximum hardware utilization,
but allows contention for multicore resources. Min-collocation
would produce less resource contention, but will use more
hardware (and power). We demonstrate how to find the balance
between these extremes with a new Balanced scheduler that
relies on our model.

The Balanced scheduler initially assigns jobs to nodes
following the Best-fit policy. It then begins monitoring the
hardware counter values selected by the model, and estimates
the performance degradation for each job. If the degradation
is estimated higher than the acceptable threshold, set to 50%
in our experiments, the Balanced scheduler starts up an
additional server and migrates the suffering job to that server.
The scheduler is also able to migrate a part of the job by
operating on individual containers, but these partial migrations
did not occur in our experiments. The scheduler monitors
hardware counters continuously, and so is able to detect any
changes in the program behaviour.

This proof-of-concept scheduler is simple and does not
take into account communication overhead that may occur if
the processes of the same job run on several nodes. This is
deferred to future research; in this work we show how to avoid
contention-induced performance degradation.

The Balanced scheduler is implemented as a collection of
daemons that run on each node. Within each node, jobs are
scheduled by a user-level scheduler Clavis [18] that is based
on the Distributed Intensity algorithm [5], [17], and assigns
threads to cores so as to avoid multicore resource contention.
Clavis is used as the intra-node scheduling policy under Best-
fit and Min-collocation policies as well.

Our experimental environment mimics an HPC cluster. We
do not have exclusive access to the actual cluster where we are
able to modify the scheduling algorithm, so instead we used
three identical multicore systems connected by the Gigabit
Ethernet. We did not have multiple Intel systems, so our mini-
cluster is comprised of the three AMD systems (Table I). Each
system has two multicore CPUs with six cores each.

In order to be able to migrate MPI processes from one
node to another after the job had begun execution, we place

Experiment 1
Node 1 Node 2 Node 3

Best-fit fds0, tachyon fds1, fds2
Min-Collocation fds0, fds2 tachyon fds1
Balanced fds0, tachyon fds1 fds2

Experiment 2
Node 1 Node 2 Node 3

Balanced (DI model) fds, tachyon zeus1 zeus2
Balanced (our model) fds, tachyon zeus1, zeus2

TABLE IV
JOB ALLOCATION ACROSS NODES

the processes into OpenVZ containers [19], which is a light-
weight virtualization option for Linux. OpenVZ produced the
lowest overhead compared to Xen and KVM, and offered
better reliability than MPI checkpoints. The degradation for
the job is estimated by averaging the degradation estimates
for the corresponding containers.

We show two experiments demonstrating the benefits of
the Balanced policy and the underlying model. The first
experiment shows that the Balanced scheduler is able to
respect performance degradation threshold, unlike the Best-
fit scheduler, while using less energy than the Min-collocation
scheduler. The second experiment shows that the Balanced
scheduler that uses our model saves energy relative to the
same scheduler that estimates performance degradation using
a simple heuristic model proposed in the earlier work [5]. In
both experiments we run four MPI jobs from the SPEC MPI
suite, each with six processes. We report the running times
and the energy consumed to run the workload4. The model
was trained on SPEC CPU 2006 application; it did not include
the MPI applications that we test.

Experiment 1: Improved performance fidelity. In this
experiment, we run three copies of the fds application and
one copy of tachyon. Fds is memory-intensive, so it would suf-
fer performance degradation under contention, while tachyon
would not. The Balanced scheduler is configured to avoid
performance degradation above 50%. Table IV shows how the
jobs were assigned to servers under the three algorithms, and
Figure 6 shows the running time (relative to solo) and energy
consumption. The red line indicates the 50% degradation
threshold. Migration overhead is always included into the
running times that we report.

Under Best-fit and Min-collocation, only one copy of fds is
able to meet the 50% degradation constraint. The other two
copies of fds suffer roughly 70% performance degradation,
because they run together on the same server. Both schedulers
assign jobs to nodes according to the order of their arrival.
The jobs arrive in the order fds0, tachyon, fds1, fds2, so Best-
fit fills the first node with fds0 and tachyon, then fills the
second node with the other two copies of fds. Min-collocation
assigns one job per node, but when fds2 arrives and all three
nodes are filled, it is forced to scheduled fds2 with fds0 on
Node 1. Although Min-collocation has an additional node at

4Energy was measured using the Dell Remote Access Control interface on
our servers.

0%

50%

100%

150%

200%

fd
s0

ta
ch

y
o

n

fd
s1

fd
s2

fd
s0

ta
ch

y
o

n

fd
s1

fd
s2

fd
s0

ta
ch

y
o

n

fd
s1

fd
s2

Best-Fit Min-Collocation Balanced

R
u

n
ti

m
e

 r
e

la
ti

v
e

 t
o

 s
o

lo

2.91 kWh 3.51 kWh 3.17 kWh

Fig. 6. Performance and energy consumption during Experiment 1.

0

5000

10000

15000

20000

25000

fds tachyon zeus0 zeus1 fds tachyon zeus0 zeus1

Balanced -- DI Model Balanced -- Our Model
R

u
n

n
in

g
 t

im
e

 (
se

co
n

d
s)

5.06 kWh 3.27 kWh

Fig. 7. Performance and energy consumption during Experiment 2.

its disposal, it is unable to realize that it is better to run a copy
of fds alone on Node 3 rather than tachyon.

Balanced, on the other hand, discovers that two copies of
fds co-located on the same node will suffer more than 50%
performance degradation and migrates one of them to the
third node. As a result, it improves performance by about
15% on average (across all applications) relative to Best-fit
and Min-collocation, while using 44% less energy than Min-
collocation. Even though Balanced uses the same number of
nodes as Min-collocation, it enables the workload to complete
quicker, hence smaller energy consumption. Best-fit uses 8%
less energy than Balanced, because it uses fewer nodes,
but unlike Balanced it does not meet the 50% degradation
threshold.

Experiment 2: Improved power efficiency. The purpose
of this experiment is to demonstrate the benefit of precise
estimates of performance degradation that would be produced
by our model, as opposed to coarse estimates that would
be produced by heuristic-based models [4], [5]. We compare
the Balanced scheduler that uses our model with the same
scheduler, but that uses the miss-rate based model underlying
the Distributed Intensity (DI) algorithm. We refer to this
version as Balanced-DI. The DI model checks if any co-
located jobs have the miss rate greater than one miss per
thousand instructions. If that threshold is exceeded, the jobs
are deemed “contentious” and the scheduler distributes them to
different CPUs, or in our case, different servers. The DI model
is considered state-of-the-art, as most software-only contention
aware algorithms relied on the models almost identical to
DI [3], [4], [17].

We run the following jobs: fds, tachyon and two copies of
zeus. Like in the first experiment, the schedulers are configured
to avoid the degradation above 50%. Table IV shows how the
schedulers assign the jobs to nodes. Balanced-DI observes that
zeus has the miss rate of 25 misses per 1000 instructions,
which by far exceeds its thresholds, so it migrates one copy
of zeus to the third node. However, it turns out that despite its
high miss rate, zeus experiences only negligible degradation
when co-scheduled with another copy (see Figure 7). The
Balanced scheduler that uses our model is able to produce
an accurate estimate, so it does not migrate zeus to another
node, and meets the degradation threshold while using 35%
less energy than Balanced-DI.

V. RELATED WORK

Our work is the first to evaluate machine learning for mod-
eling performance degradation on multicore CPUs. Besides
machine learning, there are three major strategies that attacked
the same problem: analytical modeling (often requiring uncon-
ventional hardware), models based on heuristics, and trial-
and-error methods.

Analytical modeling. One of the first models for resource
contention on multicore chips was proposed by Chandra et
al. [1]. It estimated the increase in the last-level cache (LLC)
miss rate resulting from cache contention. Chandra’s model
required unconventional hardware which in limited cases could
be substituted with compiler extensions. The main limitation
of this model is that it focused only on caches and did not
address other resources, such as memory buses, system request
queues, hardware prefetchers, etc., contention for which was
found to be a crucial factor in performance degradation on
modern CPUs [5], [17]. Machine learning models will cap-
ture contention in any hardware component as long as this
component is represented by relevant performance events.

Eyerman, Hoste and Eeckhout [20] used a semi-manual
methodology for modeling CPI stacks. They estimated un-
known relationships using regression analysis. However, at
the heart of their method is a generic analytical model for
the processor. As we explained, we wanted to find a practical
method that does not involve any manual model construction,
and machine learning answered these needs.

Luque et al. developed a method to precisely count how
many extra cycles the thread is wasting, waiting for CPU
resources that are occupied as a result of contention [21]. This
information can be used directly to estimate the performance
degradation that contention is causing. While this is a very
promising technique in terms of accuracy, it requires changing
the hardware. Furthermore, this technique, at the time of this
writing, addresses only shared caches. Our goal was to design
a method that will work on today’s hardware and cover all
kinds of shared CPU resources.

Models based on heuristics. In recent studies, the last-level
cache miss rate was used as a heuristic to predict whether
threads or processes sharing a multicore CPU are suffering
performance degradation [3]–[5], [17]. In that work, the LLC
miss rate was used to decide when the threads should be

scheduled on separate chips to avoid cache contention. While
suitable for coarse-grained scheduling decisions, the miss rate
is not sufficient to estimate performance degradation with a
greater precision.

Furthermore, relying on a single indicator of performance
(the miss-rate) to estimate the effect of sharing multiple
resources is a fragile strategy. It may work as long as mem-
ory controllers and prefetch bandwidth are key contended
resources on multicore systems [5], but if the hardware bot-
tlenecks change, the heuristic will stop working. Furthermore,
this method does not easily allow integration of other shared
resources into the model. Machine learning can adjust to
changes in hardware and be extended to model any new
resources that emerge as important for contention; therefore,
it is a more future-proof method.

Trial-and-error methods. Trial-and-error methods require
running the workloads in various combinations (co-schedules)
with other workloads [9] or with dummy benchmarks [7]. The
goal is to observe how performance degradation changes in
different co-schedules and to use that information to create
online a machine- and workload-specific model of the degra-
dation. A system called Cuanta is a very elegant solution,
relying on a set of “clones”, each with a particular cache access
pattern. By co-scheduling all clones with a target application,
we can find the one that most closely mimics the behaviour
of that application. Then, based on a previously constructed
degradation matrix and application clones we can predict the
degradation for any pair of applications. This approach works
well when the number of cores per chip is small, but as the
number grows, we would need to run a larger and larger
combination of clones concurrently with the application. This
is not practical, because the cores are unavailable to run other
applications when we use them to run clones. Our machine
learning model, on the other hand, requires hardware counter
values that can be measured for all cores in parallel, and so
the time to perform the on-line measurement does not grow
with the number of cores.

VI. CONCLUSIONS

Our study aimed to investigate the effectiveness of ma-
chine learning in modeling contention-induced performance
degradation: online, on a live workload, and without a priori
knowledge of applications or the need to run them in isolation.
We aimed for a model that seamlessly ports across different
systems, and machine learning met this need as it does not
rely on microarchitectural knowledge. We found that machine
learning can indeed be used to built reasonably accurate mod-
els, which estimate degradation within 16% of the true value
on average, however inaccurate estimates can occur if the test
application is very different from the applications in the train-
ing set. Fortunately, these cases can be anticipated by checking
how “dissimilar” the test application is from the training set,
in terms of its attribute values. Our proposed method, the
confidence predictor, successfully anticipates when the model
is likely to produce an inaccurate estimate and reduces the
maximum error by up to a factor of three.

REFERENCES

[1] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting Inter-Thread
Cache Contention on a Chip Multi-Processor Architecture,” in HPCA,
2005.

[2] Y. Jiang, X. Shen, J. Chen, and R. Tripathi, “Analysis and Approximation
of Optimal Co-Scheduling on Chip Multiprocessors,” in PACT, 2008.

[3] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using OS
Observations to Improve Performance in Multicore Systems,” IEEE
Micro, vol. 28, no. 3, pp. pp. 54–66, 2008.

[4] A. Merkel, J. Stoess, and F. Bellosa, “Resource-Conscious Scheduling
for Energy Efficiency on Multicore Processors,” in EuroSys, 2010.

[5] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing Contention
on Multicore Processors via Scheduling,” in Proceedings of ASPLOS,
2010.

[6] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing
performance interference effects for qos-aware clouds,” in Proceedings
of the 5th European conference on Computer systems, ser. EuroSys ’10,
2010.

[7] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta: quan-
tifying effects of shared on-chip resource interference for consolidated
virtual machines,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing, ser. SOCC ’11, 2011.

[8] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware
scheduling on multicore systems,” ACM Trans. Comput. Syst., vol. 28,
pp. 8:1–8:45, December 2010.

[9] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic jobscheduling
with priorities for a simultaneous multithreading processor,” in Pro-
ceedings of the 2002 ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, ser. SIGMETRICS
’02, 2002, pp. 66–76.

[10] A. Kamali, “Sharing Aware Scheduling on Multicore Systems,” Master’s
thesis, Simon Fraser University, 2010.

[11] D. Tam, R. Azimi, and M. Stumm, “Thread Clustering: Sharing-Aware
Scheduling on SMP-CMP-SMT Multiprocessors,” in Proceedings of
EuroSys, 2007.

[12] M. A. Hall, “Correlation-based Feature Selection for Machine Learning,”
Master’s thesis, University of Waikato, 1999.

[13] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. R.
Das, “Architecting on-chip interconnects for stacked 3d stt-ram caches
in cmps,” in ISCA, 2011.

[14] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in HPCA, 2010.

[15] Sourceforge, “Maui Scheduler Open Cluster Software,” in
http://mauischeduler.sourceforge.net/.

[16] “Moab Adaptive HPC Suite,” in http://www.adaptivecomputing.com.
[17] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A Case

for NUMA-Aware Contention Management on Multicore Systems,” in
Proceedings of USENIX Annual Technical Conference, 2011.

[18] S. Blagodurov and A. Fedorova, “User-level Scheduling on NUMA
Multicore Systems under Linux,” in Proc. of Linux Symposium, 2011.

[19] “OpenVZ: Container-based Virtualization for Linux,” wiki.openvz.org.
[20] S. Eyerman, K. Hoste, and L. Eeckhout, “Mechanistic-empirical proces-

sor performance modeling for constructing cpi stacks on real hardware,”
in ISPASS, 2011.

[21] C. Luque, M. Moret, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu,
and M. Valero, “ITCA: Inter-task Conflict-Aware CPU Accounting for
CMPs,” in PACT, 2009.

